[go: up one dir, main page]

CN111653484B - Method for optimizing self-alignment process of silicon carbide MOSFET - Google Patents

Method for optimizing self-alignment process of silicon carbide MOSFET Download PDF

Info

Publication number
CN111653484B
CN111653484B CN202010496482.XA CN202010496482A CN111653484B CN 111653484 B CN111653484 B CN 111653484B CN 202010496482 A CN202010496482 A CN 202010496482A CN 111653484 B CN111653484 B CN 111653484B
Authority
CN
China
Prior art keywords
region
silicon carbide
layer
mask
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010496482.XA
Other languages
Chinese (zh)
Other versions
CN111653484A (en
Inventor
郝建勇
孙军
张振中
和巍巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Basic Semiconductor Co.,Ltd.
Original Assignee
Basic Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basic Semiconductor Ltd filed Critical Basic Semiconductor Ltd
Priority to CN202010496482.XA priority Critical patent/CN111653484B/en
Publication of CN111653484A publication Critical patent/CN111653484A/en
Application granted granted Critical
Publication of CN111653484B publication Critical patent/CN111653484B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种优化碳化硅MOSFET自对准工艺的方法,该方法仅通过使用一层P阱光罩刻蚀出第一离子注入区域,以用于形成P阱;再通过沉积、刻蚀等工艺在第一离子注入区域内形成第二离子注入区域,以用于形成叠层的NPlus区域和PPlus区域;最后通过刻蚀出深度大于所述NPlus区域深度且小于所述PPlus区域深度的沟槽,以在碳化硅基底上形成对应的PN结。该方法在形成所述P阱、NPlus区域和PPlus区域的过程中仅用了一层光罩,从而减少两次薄膜沉积、涂胶、曝光、显影、去胶等工艺,如此,极大地缩短加工周期,减少制造成本。

The invention discloses a method for optimizing the self-alignment process of silicon carbide MOSFET. This method only uses a layer of P-well mask to etch out the first ion implantation area for forming the P-well; and then through deposition and etching and other processes to form a second ion implantation region in the first ion implantation region for forming the NPlus region and the PPlus region of the stack; finally, a trench with a depth greater than the depth of the NPlus region and less than the depth of the PPlus region is etched grooves to form corresponding PN junctions on the silicon carbide substrate. This method only uses one layer of photomask in the process of forming the P-well, NPlus area and PPlus area, thereby reducing two processes of film deposition, glue coating, exposure, development, glue removal, etc., thus greatly shortening the processing cycle time and reduce manufacturing costs.

Description

一种优化碳化硅MOSFET自对准工艺的方法A method to optimize the self-alignment process of silicon carbide MOSFETs

技术领域Technical field

本发明涉及半导体制造领域,尤其涉及一种优化碳化硅MOSFET自对准工艺的方法。The present invention relates to the field of semiconductor manufacturing, and in particular, to a method for optimizing the self-alignment process of silicon carbide MOSFET.

背景技术Background technique

传统的碳化硅MOSFET的自对准工艺通常需要Pwell、NPlus、PPlus三层光罩,重复地进行薄膜沉积、光刻、刻蚀、离子注入等工艺,最终在碳化硅上形成对应的PN结,如图1所示。The traditional self-alignment process of silicon carbide MOSFET usually requires three layers of photomasks: Pwell, NPlus, and PPlus, and repeated processes such as film deposition, photolithography, etching, and ion implantation to finally form the corresponding PN junction on silicon carbide. As shown in Figure 1.

从成本角度,每多一层光罩,就会增加半导体器件的制造成本;从加工周期角度,每多一层光罩,就会增加大致7天的加工时间。因此,希望提供一种优化自对准沟槽刻蚀工艺的方法来优化上述自对准工艺,以缩短加工周期,减少制造成本。From a cost perspective, each additional layer of photomask will increase the manufacturing cost of semiconductor devices; from a processing cycle perspective, each additional layer of photomask will increase the processing time by approximately 7 days. Therefore, it is desired to provide a method for optimizing the self-aligned trench etching process to optimize the above-mentioned self-aligned process, so as to shorten the processing cycle and reduce manufacturing costs.

发明内容Contents of the invention

鉴于此,有必要提供一种优化碳化硅MOSFET自对准工艺的方法,能够省去使用NPlus和PPlus两层光罩,以减少对应的沉积、光刻、涂胶、曝光、显影、去胶等工艺,从而实现减少制造成本,缩短加工周期的目的。In view of this, it is necessary to provide a method to optimize the self-alignment process of silicon carbide MOSFET, which can eliminate the use of two layers of NPlus and PPlus masks to reduce the corresponding deposition, photolithography, glue coating, exposure, development, glue removal, etc. process, thereby achieving the purpose of reducing manufacturing costs and shortening the processing cycle.

本发明为达上述目的所提出的技术方案如下:The technical solutions proposed by the present invention to achieve the above objects are as follows:

一种优化碳化硅MOSFET自对准工艺的方法,包括如下步骤:A method for optimizing the self-alignment process of silicon carbide MOSFET, including the following steps:

S1、提供一碳化硅基底,所述碳化硅基底的表面上淀积有第一掩膜层;S1. Provide a silicon carbide substrate, with a first mask layer deposited on the surface of the silicon carbide substrate;

S2、通过P阱光罩对所述第一掩膜层进行光刻,以刻蚀出第一掩膜区域及第一离子注入区域,并通过所述第一掩膜区域,对所述第一离子注入区域注入Al离子,以形成P阱;S2. Perform photolithography on the first mask layer through a P-well mask to etch out a first mask region and a first ion implantation region, and etching the first mask layer through the first mask region. Al ions are injected into the ion implantation area to form a P well;

S3、淀积第二掩膜层,并采用干法刻蚀的方法对所述第二掩膜层进行反刻形成第二离子注入区域及第二掩膜区域;S3. Deposit a second mask layer, and use dry etching to reverse-etch the second mask layer to form a second ion implantation region and a second mask region;

S4、通过所述第二掩膜区域,对所述第二离子注入区域注入N离子,形成NPlus区域;S4. Inject N ions into the second ion implantation area through the second mask area to form an NPlus area;

S5、通过所述第二掩膜区域,对所述第二离子注入区域注入Al离子,形成PPlus区域,所述PPlus区域的注入深度大于所述NPlus区域的深度且小于所述P阱的深度;S5. Inject Al ions into the second ion implantation area through the second mask area to form a PPlus area. The implantation depth of the PPlus area is greater than the depth of the NPlus area and less than the depth of the P well;

S6、将所述第一掩膜层刻蚀干净后依次在所述碳化硅基底上形成第二SiO2薄膜层及栅电极,并通过光刻及刻蚀工艺,以在所述第二SiO2薄膜层及所述栅电极上形成一刻蚀区域;S6. After etching the first mask layer cleanly, sequentially form a second SiO 2 thin film layer and a gate electrode on the silicon carbide substrate, and use photolithography and etching processes to form a second SiO 2 film layer on the silicon carbide substrate. An etched area is formed on the thin film layer and the gate electrode;

S7、淀积层间介质层,并在所述刻蚀区域内采用干法刻蚀的方法对所述层间介质层及所述碳化硅基底进行刻蚀,以形成一沟槽,所述沟槽的深度大于所述NPlus区域的深度,且小于所述PPlus区域的深度;S7. Deposit an interlayer dielectric layer, and use dry etching to etch the interlayer dielectric layer and the silicon carbide substrate in the etching area to form a trench. The depth of the groove is greater than the depth of the NPlus region and less than the depth of the PPlus region;

S8、沉积源极金属,使得所述源极金属与所述NPlus区域及所述PPlus区域形成良好的欧姆接触。S8. Deposit the source metal so that the source metal forms good ohmic contact with the NPlus region and the PPlus region.

进一步地,在步骤S1中,所述第一掩膜层包括第一SiO2薄膜层及多晶硅层,所述第一SiO2薄膜层位于所述碳化硅基底及所述多晶硅层之间。Further, in step S1, the first mask layer includes a first SiO 2 thin film layer and a polysilicon layer, and the first SiO 2 thin film layer is located between the silicon carbide substrate and the polysilicon layer.

进一步地,在步骤S3中,将所述第二离子注入区域底部的第二掩膜层刻蚀干净,以露出所述碳化硅基底的上表面,仅保留所述第二离子注入区域侧壁的第二掩膜层,以形成所述第二掩膜区域。Further, in step S3, the second mask layer at the bottom of the second ion implantation region is etched cleanly to expose the upper surface of the silicon carbide substrate, leaving only the sidewalls of the second ion implantation region. a second mask layer to form the second mask area.

进一步地,步骤S3中淀积第二掩膜层所采用的方法为低压力化学气相沉积法。Further, the method used to deposit the second mask layer in step S3 is a low pressure chemical vapor deposition method.

进一步地,步骤S3中所述第二掩膜层的材料为氧化硅。Further, the material of the second mask layer in step S3 is silicon oxide.

进一步地,步骤S6中所述刻蚀区域与所述第二离子注入区域共中心线,且所述刻蚀区域的宽度小于所述第二离子注入区域的宽度。Further, in step S6, the etching region and the second ion implantation region are on the same center line, and the width of the etching region is smaller than the width of the second ion implantation region.

进一步地,步骤S6中所述栅电极的材料均为多晶硅。Further, the material of the gate electrode in step S6 is polysilicon.

进一步地,在步骤S8中,采用湿法刻蚀的方法对所述NPlus区域上方的层间介质层进行刻蚀,以使得所述NPlus区域与所述层间介质层间形成台阶。Further, in step S8, a wet etching method is used to etch the interlayer dielectric layer above the NPlus region, so that a step is formed between the NPlus region and the interlayer dielectric layer.

上述优化碳化硅MOSFET自对准工艺的方法是仅通过使用一层P阱光罩刻蚀出第一离子注入区域,以用于形成P阱;再通过沉积、刻蚀等工艺在第一离子注入区域内形成第二离子注入区域,以用于形成叠层的NPlus区域和PPlus区域;最后通过刻蚀出深度大于所述NPlus区域深度且小于所述PPlus区域深度的沟槽,以在碳化硅基底上形成对应的PN结。该方法在形成所述P阱、NPlus区域和PPlus区域的过程中仅用了一层光罩,从而减少两次薄膜沉积、涂胶、曝光、显影、去胶等工艺,如此,极大地缩短加工周期,减少制造成本。The above-mentioned method of optimizing the self-alignment process of silicon carbide MOSFET is to only use a layer of P-well mask to etch out the first ion implantation area to form the P-well; and then use deposition, etching and other processes to create the first ion implantation area. A second ion implantation region is formed in the region to form the NPlus region and PPlus region of the stack; finally, a trench with a depth greater than the depth of the NPlus region and less than the depth of the PPlus region is etched to form a groove on the silicon carbide substrate. A corresponding PN junction is formed on it. This method only uses one layer of photomask in the process of forming the P-well, NPlus area and PPlus area, thereby reducing two processes of film deposition, glue coating, exposure, development, glue removal, etc., thus greatly shortening the processing cycle time and reduce manufacturing costs.

附图说明Description of drawings

图1为现有技术中碳化硅MOSFET器件自对准工艺图。Figure 1 is a self-alignment process diagram of silicon carbide MOSFET devices in the prior art.

图2-10为本发明的一种优化碳化硅MOSFET自对准工艺的方法的工艺过程的截面结构示意图。Figure 2-10 is a schematic cross-sectional structural diagram of the process of a method for optimizing the self-alignment process of silicon carbide MOSFET according to the present invention.

主要元件符号说明Description of main component symbols

碳化硅基底 10Silicon carbide substrate 10

P阱 12P trap 12

NPlus区域 14NPlus area 14

PPlus区域 16PPlus area 16

第一掩膜层 20First mask layer 20

第一SiO2薄膜层 21First SiO2 thin film layer 21

第一掩膜区域 22First mask area 22

多晶硅层 23Polysilicon layer 23

第一离子注入区域 24First ion implantation area 24

第二掩膜层 30Second mask layer 30

第二离子注入区域 32Second ion implantation area 32

第二掩膜区域 34Second mask area 34

第二SiO2薄膜层 40Second SiO2 thin film layer 40

栅电极 50Gate electrode 50

刻蚀区域 60Etched area 60

层间介质层 70Interlayer dielectric layer 70

沟槽 80Groove 80

源极金属 90Source metal 90

如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.

本发明提供了一种优化碳化硅MOSFET自对准工艺的方法。请参考图2至图10,根据本发明的一较佳实施方式的优化碳化硅MOSFET自对准工艺的方法包括如下步骤:The present invention provides a method for optimizing the self-alignment process of silicon carbide MOSFET. Referring to Figures 2 to 10, a method for optimizing a silicon carbide MOSFET self-alignment process according to a preferred embodiment of the present invention includes the following steps:

S1、如图2所示,提供一碳化硅基底10,所述碳化硅基底10的表面上淀积有第一掩膜层20。在本实施方式中,所述第一掩膜层20包括第一SiO2薄膜层21及多晶硅层23,所述第一SiO2薄膜层21位于所述碳化硅基底10及所述多晶硅层23之间。S1. As shown in FIG. 2 , a silicon carbide substrate 10 is provided, and a first mask layer 20 is deposited on the surface of the silicon carbide substrate 10 . In this embodiment, the first mask layer 20 includes a first SiO 2 thin film layer 21 and a polysilicon layer 23. The first SiO 2 thin film layer 21 is located between the silicon carbide substrate 10 and the polysilicon layer 23. between.

S2、如图3所示,通过P阱光罩对所述第一掩膜层20进行光刻,以刻蚀出第一掩膜区域22及第一离子注入区域24,并通过所述第一掩膜区域22,对所述第一离子注入区域24注入Al离子,以形成P阱12。S2. As shown in Figure 3, photolithography is performed on the first mask layer 20 through a P-well mask to etch out the first mask region 22 and the first ion implantation region 24, and pass through the first In the mask region 22 , Al ions are implanted into the first ion implantation region 24 to form the P well 12 .

S3、如图4至图5所示,淀积第二掩膜层30,并采用干法刻蚀的方法对所述第二掩膜层30进行反刻形成第二离子注入区域32及第二掩膜区域34。具体地,将所述第二离子注入区域32底部的第二掩膜层刻蚀干净,以露出所述碳化硅基底10的上表面,仅保留所述第二离子注入区域32侧壁的第二掩膜层,以形成所述第二掩膜区域34。S3. As shown in FIGS. 4 to 5 , deposit the second mask layer 30 , and use dry etching to reverse-etch the second mask layer 30 to form the second ion implantation region 32 and the second ion implantation region 32 . Mask area 34. Specifically, the second mask layer at the bottom of the second ion implantation region 32 is etched cleanly to expose the upper surface of the silicon carbide substrate 10 , leaving only the second mask layer on the sidewall of the second ion implantation region 32 . A mask layer is formed to form the second mask area 34 .

在本实施方式中,所述第二掩膜层30的材料为氧化硅,在其他实施方式中,所述第二掩膜层30的材料也可为氧化硅、多晶硅、氮化硅中的一种或任意几种的组合。在本实施方式中,淀积第二掩膜层30所采用的方法为低压力化学气相沉积法(low pressure chemicalvapor deposition,LPCVD)。In this embodiment, the material of the second mask layer 30 is silicon oxide. In other embodiments, the material of the second mask layer 30 may also be one of silicon oxide, polysilicon, and silicon nitride. species or any combination of species. In this embodiment, the method used to deposit the second mask layer 30 is low pressure chemical vapor deposition (LPCVD).

S4、如图6所示,通过所述第二掩膜区域34,对所述第二离子注入区域32注入N离子,形成的NPlus区域14。S4. As shown in FIG. 6 , N ions are implanted into the second ion implantation region 32 through the second mask region 34 to form the NPlus region 14 .

S5、如图7所示,通过所述第二掩膜区域34,对所述第二离子注入区域32注入Al离子,形成PPlus区域16,所述PPlus区域16的注入深度大于所述NPlus区域14的深度,且小于所述P阱12的深度。S5. As shown in FIG. 7 , Al ions are implanted into the second ion implantation region 32 through the second mask region 34 to form the PPlus region 16 , and the implantation depth of the PPlus region 16 is greater than the NPlus region 14 The depth is smaller than the depth of the P-well 12 .

S6、如图8所示,将所述第一掩膜层20刻蚀干净后通过生长或沉积工艺依次在所述碳化硅基底10上形成第二SiO2薄膜层40(相当于图1中的Gate SiO2)及栅电极50(相当于图1中的Poly层),并通过光刻及刻蚀工艺,以在所述第二SiO2薄膜层40及所述栅电极50上形成一刻蚀区域60。S6. As shown in Figure 8, after the first mask layer 20 is etched cleanly, a second SiO2 thin film layer 40 is formed on the silicon carbide substrate 10 through a growth or deposition process (equivalent to the layer in Figure 1 Gate SiO 2 ) and the gate electrode 50 (equivalent to the Poly layer in FIG. 1 ), and through photolithography and etching processes, an etching region is formed on the second SiO 2 thin film layer 40 and the gate electrode 50 60.

在本实施方式中,所述刻蚀区域60与所述第二离子注入区域32共中心线,且所述刻蚀区域60的宽度小于所述第二离子注入区域32的宽度。In this embodiment, the etching region 60 and the second ion implantation region 32 share a center line, and the width of the etching region 60 is smaller than the width of the second ion implantation region 32 .

在本实施方式中,所述栅电极50的材料均为多晶硅。In this embodiment, the gate electrode 50 is made of polysilicon.

S7、如图9所示,淀积层间介质层70,并在所述刻蚀区域60内采用干法刻蚀的方法对所述层间介质层70及所述碳化硅基底10进行刻蚀,以形成一沟槽80。所述沟槽80的深度大于所述NPlus区域14的深度,且小于所述PPlus区域16的深度。S7. As shown in Figure 9, deposit the interlayer dielectric layer 70, and use dry etching to etch the interlayer dielectric layer 70 and the silicon carbide substrate 10 in the etching area 60. , to form a trench 80. The depth of the trench 80 is greater than the depth of the NPlus region 14 and less than the depth of the PPlus region 16 .

S8、如图10所示,采用湿法刻蚀的方法对所述NPlus区域14上方的层间介质层70进行刻蚀,以使得所述NPlus区域14与所述层间介质层70间形成台阶,并沉积源极金属90、光刻刻蚀以及高温合金化,使得所述源极金属90与所述NPlus区域14及所述PPlus区域16形成良好的欧姆接触。S8. As shown in Figure 10, wet etching is used to etch the interlayer dielectric layer 70 above the NPlus region 14, so that a step is formed between the NPlus region 14 and the interlayer dielectric layer 70. , and deposit the source metal 90 , photolithography and high-temperature alloying, so that the source metal 90 forms good ohmic contact with the NPlus region 14 and the PPlus region 16 .

综上所述,本发明的优化碳化硅MOSFET自对准工艺的方法是仅通过使用一层P阱光罩刻蚀出第一离子注入区域24,以用于形成P阱12;再通过沉积、刻蚀等工艺在第一离子注入区域24内形成第二离子注入区域32,以用于形成叠层的NPlus区域14和PPlus区域16;最后通过刻蚀出深度大于所述NPlus区域14深度且小于所述PPlus区域16深度的沟槽80,以在碳化硅基底10上形成对应的PN结。该方法在形成所述P阱12、NPlus区域14和PPlus区域16的过程中仅用了一层光罩,从而减少两次薄膜沉积、涂胶、曝光、显影、去胶等工艺,如此,极大地缩短加工周期,减少制造成本。To sum up, the method of optimizing the self-alignment process of silicon carbide MOSFET of the present invention is to only use a layer of P-well mask to etch out the first ion implantation region 24 to form the P-well 12; and then through deposition, Etching and other processes form the second ion implantation region 32 in the first ion implantation region 24 for forming the NPlus region 14 and the PPlus region 16 of the stack; finally, etching is performed to a depth greater than the depth of the NPlus region 14 and less than the depth of the NPlus region 14 . The depth of the trench 80 in the PPlus region 16 is to form a corresponding PN junction on the silicon carbide substrate 10 . This method uses only one photomask in the process of forming the P-well 12, the NPlus region 14 and the PPlus region 16, thereby reducing two processes of film deposition, glue coating, exposure, development, glue removal, etc., so that it is extremely cost-effective. Dadi shortens the processing cycle and reduces manufacturing costs.

以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。The above content is a further detailed description of the present invention in combination with specific/preferred embodiments, and it cannot be concluded that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field to which the present invention belongs, they can also make several substitutions or modifications to the described embodiments without departing from the concept of the present invention, and these substitutions or modifications should be regarded as belong to the protection scope of the present invention. In the description of this specification, reference to the description of the terms "one embodiment," "some embodiments," "preferred embodiments," "examples," "specific examples," or "some examples" is intended to be in conjunction with the implementation. An example or example describes a specific feature, structure, material, or characteristic that is included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Claims (6)

1. A method for optimizing a silicon carbide MOSFET self-alignment process, comprising the steps of:
s1, providing a silicon carbide substrate, wherein a first mask layer is deposited on the surface of the silicon carbide substrate;
s2, photoetching the first mask layer through a P well photomask to etch a first mask region and a first ion implantation region, and implanting Al ions into the first ion implantation region through the first mask region to form a P well;
s3, depositing a second mask layer, and performing back etching on the second mask layer by adopting a dry etching method to form a second ion implantation region and a second mask region;
s4, implanting N ions into the second ion implantation region through the second mask region to form an NPlus region;
s5, injecting Al ions into the second ion injection region through the second mask region to form a PPlus region, wherein the NPlus region and the PPlus region are vertically stacked, and the injection depth of the PPlus region is greater than the depth of the NPlus region and less than the depth of the P well;
s6, etching the first mask layer completely and sequentially forming a second SiO on the silicon carbide substrate 2 A thin film layer and a gate electrode, and performing photolithography and etching processes to obtain a first SiO layer 2 Forming an etching area on the film layer and the gate electrode;
s7, depositing an interlayer dielectric layer, and etching the interlayer dielectric layer and the silicon carbide substrate in the etching area by adopting a dry etching method to form a groove, wherein the depth of the groove is larger than that of the NPlus area and smaller than that of the PPlus area;
s8, depositing source metal, so that the source metal forms good ohmic contact with the NPlus region and the PPlus region;
in step S6, the etching region and the second ion implantation region are concentric, and the width of the etching region is smaller than the width of the second ion implantation region;
in step S8, an interlayer dielectric layer above the NPlus region is etched by a wet etching method, so that a step is formed between the NPlus region and the interlayer dielectric layer.
2. The method of optimizing a silicon carbide MOSFET self-alignment process according to claim 1, wherein in step S1, the first mask layer comprises a first SiO 2 A film layer and a polysilicon layer, the first SiO 2 The thin film layer is positioned between the silicon carbide substrate and the polysilicon layer.
3. The method of optimizing a silicon carbide MOSFET self-alignment process of claim 1, wherein in step S3, the second mask layer at the bottom of the second ion implantation region is etched clean to expose the upper surface of the silicon carbide substrate, leaving only the second mask layer on the sidewalls of the second ion implantation region to form the second mask region.
4. The method of optimizing a silicon carbide MOSFET self-aligned process of claim 1, wherein the method used to deposit the second mask layer in step S3 is a low pressure chemical vapor deposition method.
5. The method of optimizing a silicon carbide MOSFET self-alignment process of claim 1, wherein said second mask layer material in step S3 is silicon oxide.
6. The method of optimizing a silicon carbide MOSFET self-alignment process of claim 1, wherein said gate electrode materials in step S6 are all polysilicon.
CN202010496482.XA 2020-06-03 2020-06-03 Method for optimizing self-alignment process of silicon carbide MOSFET Active CN111653484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010496482.XA CN111653484B (en) 2020-06-03 2020-06-03 Method for optimizing self-alignment process of silicon carbide MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010496482.XA CN111653484B (en) 2020-06-03 2020-06-03 Method for optimizing self-alignment process of silicon carbide MOSFET

Publications (2)

Publication Number Publication Date
CN111653484A CN111653484A (en) 2020-09-11
CN111653484B true CN111653484B (en) 2023-12-15

Family

ID=72347304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010496482.XA Active CN111653484B (en) 2020-06-03 2020-06-03 Method for optimizing self-alignment process of silicon carbide MOSFET

Country Status (1)

Country Link
CN (1) CN111653484B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203554A (en) * 2021-12-08 2022-03-18 厦门吉顺芯微电子有限公司 A simplified trench design method for high-voltage DMOS

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124257A1 (en) * 2008-05-20 2009-11-25 Mitsubishi Electric Corporation Power semiconductor device
CN101866923A (en) * 2010-05-18 2010-10-20 苏州硅能半导体科技股份有限公司 Three-layer light cover groove MOS device and manufacture method
CN101901767A (en) * 2009-05-26 2010-12-01 上海华虹Nec电子有限公司 Method for obtaining vertical channel high-voltage super junction-semiconductor device
CN105070663A (en) * 2015-09-07 2015-11-18 中国科学院微电子研究所 Silicon carbide MOSFET channel self-alignment process implementation method
CN105185831A (en) * 2015-09-07 2015-12-23 中国科学院微电子研究所 Silicon carbide MOSFET structure with self-aligned channel and manufacturing method thereof
WO2017186033A1 (en) * 2016-04-29 2017-11-02 北京世纪金光半导体有限公司 Method for fabricating sic mosfet on the basis of self-aligning technology
CN109873032A (en) * 2017-12-05 2019-06-11 株洲中车时代电气股份有限公司 A kind of trench gate IGBT device and its manufacturing method
CN110473916A (en) * 2019-09-18 2019-11-19 深圳爱仕特科技有限公司 A kind of preparation method of the silicon carbide MOSFET device with the region p+ self-registered technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966735A (en) * 2015-05-26 2015-10-07 株洲南车时代电气股份有限公司 Silicon carbide MOSFET device and preparation method thereof
WO2017041268A1 (en) * 2015-09-10 2017-03-16 中国科学院微电子研究所 Silicon carbide mosfet device and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2124257A1 (en) * 2008-05-20 2009-11-25 Mitsubishi Electric Corporation Power semiconductor device
CN101901767A (en) * 2009-05-26 2010-12-01 上海华虹Nec电子有限公司 Method for obtaining vertical channel high-voltage super junction-semiconductor device
CN101866923A (en) * 2010-05-18 2010-10-20 苏州硅能半导体科技股份有限公司 Three-layer light cover groove MOS device and manufacture method
CN105070663A (en) * 2015-09-07 2015-11-18 中国科学院微电子研究所 Silicon carbide MOSFET channel self-alignment process implementation method
CN105185831A (en) * 2015-09-07 2015-12-23 中国科学院微电子研究所 Silicon carbide MOSFET structure with self-aligned channel and manufacturing method thereof
WO2017186033A1 (en) * 2016-04-29 2017-11-02 北京世纪金光半导体有限公司 Method for fabricating sic mosfet on the basis of self-aligning technology
CN109873032A (en) * 2017-12-05 2019-06-11 株洲中车时代电气股份有限公司 A kind of trench gate IGBT device and its manufacturing method
CN110473916A (en) * 2019-09-18 2019-11-19 深圳爱仕特科技有限公司 A kind of preparation method of the silicon carbide MOSFET device with the region p+ self-registered technology

Also Published As

Publication number Publication date
CN111653484A (en) 2020-09-11

Similar Documents

Publication Publication Date Title
CN102496573B (en) Trench insulated gate bipolar transistor and its fabrication method
CN111370306B (en) Fabrication method of transistor and structure of fully surrounded gate device
CN111653484B (en) Method for optimizing self-alignment process of silicon carbide MOSFET
CN102543716B (en) The forming method of blocking layer of metal silicide
KR100832017B1 (en) Semiconductor device increased channel area and method for manufacturing the same
US8722483B2 (en) Method for manufacturing double-layer polysilicon gate
CN212517214U (en) A silicon carbide MOSFET device
US20060220075A1 (en) Methods of fabricating self-aligned source of flash memory device
CN112366179A (en) Semiconductor device structure and preparation method
CN101150072A (en) Semiconductor device
US6977134B2 (en) Manufacturing method of a MOSFET gate
CN114975123B (en) Trench MOS structure and manufacturing method thereof
CN102299062B (en) Method for manufacturing grid sidewall of semiconductor part
US6855993B2 (en) Semiconductor devices and methods for fabricating the same
US7282417B1 (en) Ion doping method to form source and drain
US6362061B1 (en) Method to differentiate source/drain doping by using oxide slivers
KR100341588B1 (en) Method for forming semiconductor device capable of reducing resistance and leakage current of silicide layer
KR100537273B1 (en) Method for manufacturing semiconductor device
CN116844962A (en) Forming method of MOS (Metal oxide semiconductor) tube
KR20030001762A (en) Method for Forming Gate in Semiconductor Device
JP2005517285A (en) Semiconductor device including thin oxide liner and method of manufacturing the same
US20060148228A1 (en) Method for forming salicide layer in semiconductor device
TW486778B (en) Method to prevent current leakage at edge of shallow trench isolation
US20040188757A1 (en) Method for forming structures self-aligned with each other on a semiconductor substrate
CN118019340A (en) SONOS memory manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: Room 801, Building 1, Bronze Sword Technology Building, No. 6 Guangke 1st Road, Laokeng Community, Longtian Street, Pingshan District, Shenzhen City, Guangdong Province 518000

Patentee after: Shenzhen Basic Semiconductor Co.,Ltd.

Country or region after: China

Address before: 22nd Floor, Phase II, International Student Entrepreneurship Building, No. 29 South Ring Road, Nanshan District, Shenzhen, Guangdong Province

Patentee before: BASIC SEMICONDUCTOR LTD.

Country or region before: China

CP03 Change of name, title or address