[go: up one dir, main page]

TW486778B - Method to prevent current leakage at edge of shallow trench isolation - Google Patents

Method to prevent current leakage at edge of shallow trench isolation Download PDF

Info

Publication number
TW486778B
TW486778B TW090109456A TW90109456A TW486778B TW 486778 B TW486778 B TW 486778B TW 090109456 A TW090109456 A TW 090109456A TW 90109456 A TW90109456 A TW 90109456A TW 486778 B TW486778 B TW 486778B
Authority
TW
Taiwan
Prior art keywords
silicon oxide
layer
shallow trench
trench isolation
semiconductor wafer
Prior art date
Application number
TW090109456A
Other languages
Chinese (zh)
Inventor
Yuan-Li Tsai
Min-Hua Tsai
Kai-Jen Ko
Ching-Chun Huang
Sheng-Hsiung Yang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW090109456A priority Critical patent/TW486778B/en
Application granted granted Critical
Publication of TW486778B publication Critical patent/TW486778B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Landscapes

  • Element Separation (AREA)

Abstract

This invention provides a method to prevent current leakage at edge of shallow trench isolation on a semiconductor wafer. The semiconductor wafer includes a silicon substrate and a plural number of shallow trenches filled with silicon oxide material formed by high-density plasma chemical vapor deposition (HDPCVD). A phosphorus silicate glass or silicon oxide layer deposited by atmospheric pressure chemical vapor deposition (APCVD) is formed on the semiconductor wafer. A pattern is defined on the photoresist layer for the formation of salicide barrier (SAB). Then, the wafer is heated and a hydrofluoric acid vapor is used to etch the silicon oxide layer along the patterned photoresist to increase the etching selectivity of the silicon oxide layer with respect to the silicon oxide material at the edge of the shallow trench isolation and thus to expose part of the substrate surface pre-determined for the formation of a metal silicide layer. This also concurrently reduces loss of silicon oxide material at the edge of the shallow trench isolation and effectively decreases junction leakage of devices. Finally, a self-aligned metal silicide (salicide) process is carried out to form the salicide layer on the pre-determined area on the substrate surface.

Description

486778 五、發明說明(1) 發明之領域 本發明係提供一種降低淺溝隔離邊緣漏電流的方法4, 尤指一種降低靜電放電(electrostatic discharge, ESD) 保護電路中之淺溝隔離(S T I)邊緣漏電流(c u r r e n t 1 eakage )的方法。 背景說明 在目前半導體製程中,一般採用區域氧化法 (localized oxidation isolation,LOCOS)或是淺溝隔離 (shallow trench isolation, STI)方法來進行元件之間 的隔離。然而隨著半導體晶片的設計與製造線寬變得越來 越細時,L 0 C 0 S製程中所產生之凹坑(p i t s )、晶體缺陷 (crystal defect)以及鳥喙(bird’s beak)長度過長等缺 點,將大幅地影響半導體晶片的特性,而且LOCOS方法所 產生之場氧化層佔據較大的體積而會影響整個半導體晶片 的積集度(integration)。因此在線寬低於0.25// m的半導 體製程中,尺寸較小、可提高半導體晶片積集度之淺溝隔 離(shallow trench isolation,簡稱 STI)製程遂成為近 來被廣泛使用的隔離技術。 典型的STI的製作方法是在半導體晶片表面的各主動 區域(act ive area)間,向下蝕刻矽基底而形成一淺溝,486778 V. Description of the invention (1) Field of the invention The present invention provides a method 4 for reducing the leakage current at the edge of shallow trench isolation, especially a shallow trench isolation (STI) edge in an electrostatic discharge (ESD) protection circuit. Leakage current (current 1 eakage) method. Background In current semiconductor processes, localized oxidation isolation (LOCOS) or shallow trench isolation (STI) methods are generally used to isolate components. However, as the design and manufacturing line widths of semiconductor wafers become thinner, the pits, crystal defects, and bird's beak lengths generated in the L 0 C 0 S process have become too long. The shortcomings such as length will greatly affect the characteristics of the semiconductor wafer, and the field oxide layer produced by the LOCOS method occupies a larger volume and will affect the integration of the entire semiconductor wafer. Therefore, in semiconductor processes with a line width of less than 0.25 // m, the shallow trench isolation (STI) process, which has a small size and can improve the semiconductor wafer accumulation, has recently become a widely used isolation technology. A typical STI manufacturing method is to etch a silicon substrate downwards between each active area on the surface of a semiconductor wafer to form a shallow trench.

486778 五、發明說明(2) 並填入矽氧化合物(s i 1 i c ο η ο X i d e )所構成的絕緣物質來 隔離主動區域,以進行後續半導體製程。然而,在後續製 程中,半導體晶片上會反覆多次地進行例如N井(N-we 1.1 ) 或P井(P-we 1 1 )的離子佈植(i on i mp 1 an t)或是生成閘氧化 層前的清洗製程以及金屬矽化物阻,擋層(sal icide barrier,SAB)的蝕刻等步驟,在這些製造過程中非常容 易破壞淺溝頂部邊緣的結構。以形成金屬碎化物阻擔層為 例,由於在靜電保護電路(electrostatic discharge, ESD)製程中,部份區域之閘極與源極/汲極表面不需形成 金屬矽化物,因此在進行該自行對準金屬矽化製程 (salicide)前,需先於此一區域表面形成一金屬石夕化物阻 擋層’以避免該區域之石夕材質表面被覆蓋有一金屬層,而 於該自行對準金屬矽化製程中同時生成金屬矽化物層。然 而在目前的半導體製程中,金屬矽化物阻擋層與淺溝填充 物質均係由矽氧化合物所構成,因此在蝕刻金屬矽化物阻 擋層時,亦常會造成淺溝邊緣損失過多的矽氧材料,進而 發生有漏電流(current leakage)的現象。 請參閱圖一到圖四,圖一到圖四為習知製作一靜電放 電保護電路的方法示意圖。如圖一所示,半導體晶片1 〇上 包含有一 N型矽基底(substrate)12,複數個主動區域丨丄設 置於矽基底1 2表面之上,複數個填滿有一利用常壓化學氣 相沈積(atmospheric pressure chemical vap〇r deposition, APCVD)所形成之矽氧材料18並略微突出於486778 V. Description of the invention (2) and filled with an insulating substance composed of silicon oxide (s i 1 i c ο η ο X i d e) to isolate the active area for subsequent semiconductor processes. However, in subsequent processes, the ion implantation (i on i mp 1 an t) of, for example, N-well (N-we 1.1) or P-well (P-we 1 1) is performed repeatedly on the semiconductor wafer or The cleaning process before the gate oxide layer is generated, and the steps such as metal silicide barrier, salicide barrier (SAB) etching, etc., are very easy to destroy the structure of the top edge of the shallow trench during these manufacturing processes. Taking the formation of a metal debris resist layer as an example, in the process of electrostatic discharge (ESD), the gate and source / drain surfaces of some regions do not need to form metal silicide, so this process is being carried out. Before the metal silicide process (salicide) is aligned, a metal stone barrier layer must be formed on the surface of this area to prevent the surface of the material in the area from being covered with a metal layer. At the same time, a metal silicide layer is formed. However, in the current semiconductor manufacturing process, both the metal silicide barrier layer and the shallow trench filling material are composed of silicon oxide compounds. Therefore, when the metal silicide barrier layer is etched, too much silicon oxide material is often lost at the edge of the shallow trench. Further, a phenomenon of current leakage occurs. Please refer to FIGS. 1 to 4, which are schematic diagrams of a conventional method for manufacturing an electrostatic discharge protection circuit. As shown in FIG. 1, the semiconductor wafer 10 includes an N-type silicon substrate 12. A plurality of active regions are disposed on the surface of the silicon substrate 12. The plurality of active regions are filled with atmospheric chemical vapor deposition. (atmospheric pressure chemical vap〇r deposition (APCVD))

486778 五、發明說明(3) 矽基底1 2表面之淺溝1 4設於兩主動區域1 1之間,一 P型摻 雜區1 6設於相鄰兩淺溝1 4的矽基底1 2表面,以及一利用低 壓化學氣相沈積(LPCVD)形成之5 0 0埃的矽氧層20,覆蓋,於 P型摻雜區1 6與淺溝1 4的頂部表面。 接著在半導體晶片10上塗佈一光阻層(photoresist layer)22,以於光阻層22中定義一用來作為金屬石夕化物阻 擋層(salicide barrier, SAB)的圖案。如圖二所示,隨 後利用一乾餘刻製程(d r y e t c h i n g ),沿著光阻層2 2的圖 案向下蝕刻覆蓋於矽基底1 2表面的部份矽氧層2 0,以使殘 留於半導體晶片1 0表面的矽氧層2 0形成一金屬矽化物阻擋 層2 1,如圖三所示。然而,由於該乾蝕刻對淺溝中之矽氧 材料1 8與矽氧層2 0之選擇比不佳,因而往往會造成淺溝邊 角2 4之矽氧材料1 8受到蝕刻侵蝕而損失。 最後如圖四所示,在去除光阻層2 2後,於半導體晶片 1 0表面進行一自行對準金屬石夕化製程(salicide),以於未 覆蓋有矽氧層2 0的矽材質表面形成一金屬矽化物層2 6,然 後去除未反應之金屬層(未顯示),完成習知靜電保護電路 製程。 · " 由上述說明可知,習知實施於靜電保護電路製程中之 金屬石夕化物阻擋層的#刻製程係利用一乾姓刻方法來#刻 矽氧層2 0,但是由於淺溝之矽氧材料1 8與矽氧層均為二氧486778 V. Description of the invention (3) A shallow trench 14 on the surface of the silicon substrate 12 is provided between the two active regions 11 and a P-type doped region 16 is provided on the silicon substrate 1 2 adjacent to the shallow trenches 1 2 The surface and a 500 angstrom silicon oxide layer 20 formed by low pressure chemical vapor deposition (LPCVD) are covered on the top surfaces of the P-type doped regions 16 and the shallow trenches 14. A photoresist layer 22 is then coated on the semiconductor wafer 10 to define a pattern in the photoresist layer 22 for use as a salicide barrier (SAB). As shown in FIG. 2, a dry-etching process is then used to etch down a part of the silicon oxide layer 20 covering the surface of the silicon substrate 12 along the pattern of the photoresist layer 22 to make it remain on the semiconductor wafer. The silicon oxide layer 20 on the surface 10 forms a metal silicide blocking layer 21, as shown in FIG. However, because the dry etching has a poor selection ratio of the silicon oxide material 18 in the shallow trench and the silicon oxide layer 20, the silicon oxide material 18 in the shallow trench corner 24 is often lost by etching erosion. Finally, as shown in FIG. 4, after the photoresist layer 22 is removed, a self-aligning metal salicide process is performed on the surface of the semiconductor wafer 10 to cover the surface of the silicon material not covered with the silicon oxide layer 20. A metal silicide layer 26 is formed, and then an unreacted metal layer (not shown) is removed to complete a conventional electrostatic protection circuit process. · From the above description, it is known that the #etching process of the metal oxide barrier layer that is conventionally implemented in the electrostatic protection circuit process uses a dry method to etch the silicon oxide layer 2 0, but because of the shallow trench silicon oxide Material 18 and silicon oxide layer are both dioxygen

486778 五、發明說明(4) 化矽構成,所以在0 . 2 5// m的製程中,這種蝕刻製程常會 在靠近主動區域的淺溝邊角處2 4損失過多矽氧材料,而造 成淺溝隔離不完全,引發較大的接合漏電流,進而影響、元 件的電性表現。 發明概述 本發明之主要目的在於提供一種降低一半導體晶片上 之淺溝隔離邊緣漏電流的製作方法,以解決上述問題。 在本發明之最佳實施例中,該半導體晶片上包含有一 矽基底及複數個利用高密度電漿化學氣相沉積法(HD PC VD )形成之矽氧材料填充的淺溝隔離。該方法首先利用一磷 石夕玻璃構成或使用一常壓化學氣相沉積法於該半導體晶片 表面形成一矽氧層,並於該矽氧層表面形成一光阻層。接 著在該光阻層表面上定義一用來作為金屬石夕化物阻擋 (Sab)之圖案,然後昇溫該半導體晶片,並利用一氫氟酸 之蒸氣(vapor )來沿著該光阻層之圖案#刻該石夕氧層,以 提高該矽氧層與各該淺溝隔離邊緣之矽氧材料的蝕刻選擇 比,進而裸露預定用來形成一金屬矽化物層之部分基底表 面,同時減少各該淺溝隔離邊緣之矽馬材料的損失量,以 有效降低習知元件之接合漏電流。最後再進行一自動對準 金屬石夕化物製程(s a 1 i c i d e ),於該預定用來形成金屬石夕化 物層之部分基底表面形成該金屬矽化物層。486778 V. Description of the invention (4) Siliconized structure, so in the 0.2 5 // m process, this etching process often loses too much silicon oxide material at the shallow groove corners near the active area, resulting in Shallow trench isolation is not complete, causing a large bonding leakage current, which in turn affects the electrical performance of the component. SUMMARY OF THE INVENTION The main object of the present invention is to provide a manufacturing method for reducing the leakage current of a shallow trench isolation edge on a semiconductor wafer to solve the above problems. In a preferred embodiment of the present invention, the semiconductor wafer includes a silicon substrate and a plurality of shallow trench isolations filled with a silicon-oxygen material formed by a high-density plasma chemical vapor deposition (HD PC VD) method. In this method, a silicon oxide layer is firstly formed using a phosphorite glass or an atmospheric pressure chemical vapor deposition method is used to form a silicon oxide layer on the surface of the semiconductor wafer, and a photoresist layer is formed on the surface of the silicon oxide layer. Then define a pattern on the surface of the photoresist layer to serve as a metal oxide barrier (Sab), and then heat the semiconductor wafer, and use a vapor of hydrofluoric acid to follow the pattern of the photoresist layer. #Etch the stone oxidant layer to increase the etching selection ratio of the silicon oxylayer to each of the shallow trench isolation edges, and then expose a portion of the substrate surface intended to form a metal silicide layer, while reducing each The loss of silicon horse material at the edge of the shallow trench isolation to effectively reduce the junction leakage current of conventional components. Finally, an automatic alignment metal silicide process (s a 1 i c i d e) is performed, and the metal silicide layer is formed on a part of the surface of the substrate that is intended to form the metal silicide layer.

486778 五、發明說明(5) 由於本發明係利用氫氟酸(HF)蒸氣並同時提高半導 體晶片溫度的方式來蝕刻矽氧層,以提高該矽氧層與各、該 淺溝隔離邊緣之矽氧材料的蝕刻選擇比,進而減少各該淺 溝隔離邊緣之矽氧材料的損失量,/以有效降低習知元件之 接合漏電流。 發明之詳細說明 請參閱圖五到圖九,圖五到圖九本發明製作一靜電放 電保護電路的方法示意圖。如圖五所示,半導體晶片3 0上 包含有一 N型矽基底3 2,複數個主動區域3 1設於矽基底3 2 表面,複數個深度3 0 0 0〜4 0 0 0埃之淺溝3 4設於矽基底3 2之 上,用來隔離兩主動區域31,並略微突出於矽基底3 2表 面,一 P型摻雜區3 6設置於相鄰兩淺溝3 4的矽基底3 2表 面。其中,淺溝3 4填滿有一利用高密度電漿化學氣相沈積 法(high density plasma chemical vapor deposition, HDPCVD)所形成之具有較高緻密度的矽氧材料38。接著如 圖六所示,利用——常壓化學氣相沈積(APCVD)或磷矽玻璃 (phosphosilicate glass, PSG)於半導體晶片 3 0表面形 成一約5 0 0埃之矽氧層4 0,以覆蓋於P型摻雜區3 6與淺溝3 4 頂部表面。 隨後在半導體晶片30上塗佈一光阻層42,並於光阻層486778 V. Description of the invention (5) Because the present invention uses hydrofluoric acid (HF) vapor and simultaneously raises the temperature of the semiconductor wafer to etch the silicon oxide layer to increase the silicon oxide layer and the silicon at the edges of the shallow trench isolation. The etching selection ratio of the oxygen material further reduces the loss of the silicon oxide material at each of the shallow trench isolation edges, so as to effectively reduce the joint leakage current of the conventional device. Detailed description of the invention Please refer to FIG. 5 to FIG. 9, FIG. 5 to FIG. 9 are schematic diagrams of a method for manufacturing an electrostatic discharge protection circuit according to the present invention. As shown in FIG. 5, the semiconductor wafer 30 includes an N-type silicon substrate 3 2, a plurality of active regions 31 are provided on the surface of the silicon substrate 3 2, and a plurality of shallow trenches having a depth of 3 0 0 0 to 4 0 0 0 angstroms. 3 4 is disposed on the silicon substrate 32 to isolate the two active regions 31 and slightly protrude from the surface of the silicon substrate 32. A P-type doped region 36 is disposed on the silicon substrate 3 adjacent to the two shallow trenches 34. 2 surface. Among them, the shallow trench 34 is filled with a high-density silicon-oxygen material 38 formed by high-density plasma chemical vapor deposition (HDPCVD). Next, as shown in FIG. 6, an atmospheric pressure chemical vapor deposition (APCVD) or phosphosilicate glass (PSG) is used to form a silicon oxide layer 40 of about 50 angstroms on the surface of the semiconductor wafer 30. Covering the top surfaces of the P-type doped regions 36 and the shallow trenches 3 4. Then, a photoresist layer 42 is coated on the semiconductor wafer 30, and the photoresist layer is

486778 五、發明說明(6) 4 2中定義一用來做為金屬矽化物阻擋的圖案,如圖七所 示。然後將半導體晶片溫度由2 5°C升至約5 0°C ,並利用一 與水比例為1 : 1 0 0之氫氟酸(h y d r 〇 g e n f 1 u 〇 r i d e, H F )所 形成的蒸氣(v a p o r ),沿著該圖案來钱刻石夕氧層4 Ο,以暴 露該淺溝3 4頂部表面以及預定用來,形成一金屬矽化物層之 部分矽基底3 2表面,並使殘留的矽氧層4 0形成一金屬矽化 物阻擋層4 1,如圖八所示。 由於本發明之方法具有較佳的製程蝕刻比,因此在進 行該金屬矽化物阻擋層(SAB )的蝕刻製程時,淺溝邊角處 4 4部份會較習知製程中之淺溝邊角處2 4完整,而不易被氫 氟酸(HF)蒸氣侵蝕過多的矽氧材料38。 最後去除光阻層4 2,並進行一自行對準金屬矽化製程 (salicide),以於未覆蓋有石夕氧層4 0的石夕材質表面形成一 金屬矽化物層4 6。其中,該自行對準金屬矽化製程是先在 半導體晶片30表面、全面沈積鈷(Cobalt, Co)、鈦 (Titanium, Ti)、錄(Nicole, Ni)或鎢(Tungsten, W)之 金屬層(未顯示),隨後進行一熱處理製程(thermal process),使未覆蓋有石夕氧層4 0之石夕基底3 2與金屬層起反 應,以於半導體晶片3 0表面預定用來形成金屬矽化物部份 形成金屬矽化物4 6,如圖九所示。隨後再利用濕蝕刻去除 未反應的金屬層,以完成本發明之製作。其中,本發明之 方法並不限定用於靜電保護電路中,其他於半導體製程中486778 V. Description of the invention (6) 4 2 defines a pattern used as a metal silicide barrier, as shown in Figure 7. Then, the temperature of the semiconductor wafer was increased from 25 ° C to about 50 ° C, and a vapor formed by a hydrofluoric acid (hydr ogenf 1 u ride, HF) with a water ratio of 1: 100 was used ( vapor) along the pattern to engrav the stone oxide layer 4 0 to expose the top surface of the shallow trench 34 and the surface of the silicon substrate 32 which is intended to form a metal silicide layer and to make the remaining silicon The oxygen layer 40 forms a metal silicide barrier layer 41, as shown in FIG. Because the method of the present invention has a better process etching ratio, when the metal silicide barrier (SAB) etching process is performed, the 4 and 4 portions at the shallow groove corners will be more than the shallow groove corners in the conventional process. Position 2 4 is intact and is not easily eroded by hydrofluoric acid (HF) vapor 38. Finally, the photoresist layer 42 is removed, and a self-aligned metal silicidation process is performed to form a metal silicide layer 46 on the surface of the material of the stone material which is not covered with the stone material oxygen layer 40. The self-aligned metal silicidation process is to first deposit a metal layer of cobalt (Cobalt, Co), titanium (Titanium, Ti), Nicole, Ni, or tungsten (Tungsten, W) on the surface of the semiconductor wafer 30 ( (Not shown), and then a thermal process is performed to react the Shi Xi substrate 32 not covered with the Shi Xi oxygen layer 40 with the metal layer, so that the surface of the semiconductor wafer 30 is intended to form a metal silicide. Partially formed metal silicide 46, as shown in Figure IX. The unreacted metal layer is subsequently removed by wet etching to complete the fabrication of the present invention. The method of the present invention is not limited to use in electrostatic protection circuits, and other methods are used in semiconductor processes.

486778 五、發明說明(7) 需要蝕刻覆蓋於淺溝隔離表面之矽氧層時,均可應用以本 發明方法。 由於本發明係先使用HDPCVD來形成結構較緻密的矽氧 材料38,以填滿淺溝34,接著再利/用APCVD或PSG來形成的 結構較不緻密的矽氧層4 0,當作金屬矽化物阻擋層 (SAB ),因此兩者間的蝕刻選擇比幾可高達1 : 1 0 0 0到1 : 2 9 0 0之間。然後本發明再使用氫氟酸蒸氣並同時配合將半 導體晶片3 0施以一加溫製程,故在後續的蝕刻中,便可精 確蝕刻矽氧層4 0而不致損傷到淺溝邊角4 4靠近主動區域3 1 的矽氧材料3 8。 相較於習知利用乾蝕刻以去除矽氧層2 0的方法,本發 明係利用氣相之氫氟酸進行蝕刻,並同時改變晶片於蝕刻 中的溫度,然後搭配以一具高蝕刻選擇比的矽氧材料與矽 氧層,因此可有效地抑制淺溝邊緣靠近主動區域之矽氧材 料在蝕刻製程時被過度侵蝕,故能大幅改善現有製程的接 合漏電流問題。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆.應屬本發明專利之涵 蓋範圍。486778 V. Description of the invention (7) When the silicon oxide layer covering the shallow trench isolation surface needs to be etched, the method of the present invention can be applied. Since the present invention first uses HDPCVD to form a denser silicon oxide material 38 to fill the shallow trenches 34, and then uses / forms a less dense silicon oxide layer 40 formed using APCVD or PSG as a metal The silicide barrier layer (SAB), so the etching selection ratio between the two can be as high as 1: 100 to 1: 2900. Then, the present invention further uses hydrofluoric acid vapor and simultaneously applies a heating process to the semiconductor wafer 30, so that in subsequent etching, the silicon oxide layer 40 can be accurately etched without damaging the shallow trench corner 4 4 Silicone material 3 8 near active area 3 1. Compared with the conventional method of removing silicon oxide layer 20 by dry etching, the present invention uses gas-phase hydrofluoric acid for etching, and simultaneously changes the temperature of the wafer during etching, and is then matched with a high etching selection ratio. The silicon oxide material and the silicon oxide layer can effectively inhibit the silicon oxide material at the edge of the shallow trench close to the active area from being excessively eroded during the etching process, thereby greatly improving the joint leakage current problem of the existing process. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the patent of the present invention.

第12頁 486778 圖式簡單說明 圖示之簡單說明 圖一到圖四為習知製作一靜電放電保護電路的方法*示 意圖。 圖五至圖九為本發明製作一靜電放電保護電路的方法 示意圖。 圖示之符號說明 1〇\ 30 半 導 體晶片 11 主 動 區 域 12' 32 矽 基 底 14、 34 隔 離 淺 溝 16^ 36 P型摻雜區 18、 38 矽 氧 材 料 20> 40 矽 氧 層 21 > 41 金 屬 矽 化物阻擋層 11、 42 光 阻 層 24 ^ 44 淺 溝 邊 角 26 > 36 金 屬 矽化物層Page 12 486778 Brief description of the diagrams Brief description of the diagrams Figures 1 to 4 show the methods of making an electrostatic discharge protection circuit in the conventional way. 5 to 9 are schematic diagrams of a method for manufacturing an electrostatic discharge protection circuit according to the present invention. Symbols shown in the figure 10 \ 30 Semiconductor wafer 11 Active area 12 '32 Silicon substrate 14, 34 Isolation shallow trench 16 ^ 36 P-type doped region 18, 38 Silicon oxide material 20 > 40 Silicon oxide layer 21 > 41 Metal Silicide blocking layer 11, 42 Photoresisting layer 24 ^ 44 Shallow groove corner 26 > 36 Metal silicide layer

第13頁Page 13

Claims (1)

486778 六、申請專利範圍 1. 一種降低一半導體晶片上靜電放電(electrostatic discharge, ESD)保護電路中之淺溝隔離(shallow trench isolation, S T I)邊緣漏電流(leakage c u r r e n t)的方法, 該半導體晶片上包含有一基底(substrate),該淺溝隔離 設於該基底上,且其係填充由一高/密度電漿化學氣相沉積 法(high density plasma chemical vapor deposition, HDP CVD)所沉積之矽氧材料,該方法包含有: 於該基底表面以及該淺溝隔離頂部表面形成一矽氧 層,該矽氧層係由磷矽玻璃(PSG)所構成或利用一常壓化 學氣相沉積法(atmospheric pressure CVD,APCVD)沉積 而成; 於該矽氧層表面形成一光阻層(photoresist); 於該光阻層表面上定義一用來作為金屬矽化物阻擋 (salicide barrier, SAB)之圖案(pattern); 將該半導體晶片昇溫’並利用一氫氟酸氣體(Hp )沿著 該光阻層之圖案蝕刻該矽氧層,以使該淺溝隔離頂部表面 以及預定用來形成一金屬矽化物層之部分基底表面裸露; 以及 於該預定用來形成金屬矽化物層之部分基底表面形成 該金屬矽化物層。 2 · 如申請專利範圍第1項之方法,其中該矽氧層之厚度 約為 5〇〇埃(angStrom)。486778 VI. Scope of patent application 1. A method for reducing shallow trench isolation (STI) edge leakage current in an electrostatic discharge (ESD) protection circuit on a semiconductor wafer. The substrate comprises a substrate, the shallow trench isolation is provided on the substrate, and it is filled with a silicon oxide material deposited by a high density plasma chemical vapor deposition (HDP CVD) method. The method includes: forming a silicon oxide layer on the substrate surface and the top surface of the shallow trench isolation; the silicon oxide layer is composed of phosphosilicate glass (PSG) or an atmospheric pressure vapor deposition method (atmospheric pressure) CVD, APCVD) deposition; forming a photoresist on the surface of the silicon oxide layer; defining a pattern on the surface of the photoresist layer for use as a metal silicide barrier (SAB) Warming the semiconductor wafer 'and using a hydrofluoric acid gas (Hp) to etch the silicon oxide layer along the pattern of the photoresist layer to make the shallow The top surface of the trench isolation and a portion of the substrate surface intended to form a metal silicide layer are exposed; and the metal silicide layer is formed on a portion of the substrate surface intended to form a metal silicide layer. 2. The method according to item 1 of the patent application, wherein the thickness of the silicon oxide layer is about 500 angstroms (angstrom). 486778 六、申請專利範圍 3. 如申請專利範圍第1項之方法’其中將該半導體晶片 昇溫之步驟約將該半導體晶片由攝氏2 5度加熱至攝氏5 0 度。 ‘ 4. 如申請專利範圍第1項之方法,其中該氫氟酸與水之 比例約為1 ·· 1 0 0 〇 5 . 一種降低一半導體晶片上之淺溝隔離(s h a 1 1〇w trench isolation, STI )邊緣漏電流(leakage current) 的方法,該半導體晶片上包含有一基底(substrate),該 淺溝隔離設於該基底上,該方法包含有: 於該基底表面以及該淺溝隔離頂部表面形成一矽氧 層; 於該石夕氧層表面形成一光阻層(photoresist); 於該光阻層表面上定義一罩幕(mask)之圖案 (pattern); 將該半導體晶片昇溫,並利用一氫氟酸氣體(HF )沿著 該光阻層之圖案蝕刻該矽氧層,以使該淺溝隔離頂部表面 以及預定用來形成一金屬矽化物層之.部分基底表面裸露; 以及 於該預定用來形成金屬矽化物層之部分基底表面形成 該金屬$夕化物層。 6. 如申請專利範圍第5項之方法,其中該淺溝隔離以及486778 VI. Patent Application Range 3. The method of applying for the first item of the patent application range, wherein the step of heating the semiconductor wafer is about heating the semiconductor wafer from 25 ° C to 50 ° C. '4. The method according to item 1 of the scope of patent application, wherein the ratio of the hydrofluoric acid to water is about 1 ·· 10 0 〇5. A method to reduce the shallow trench isolation on a semiconductor wafer (sha 1 10w trench isolation (STI) method for edge leakage current, the semiconductor wafer includes a substrate, and the shallow trench isolation is provided on the substrate, the method includes: on the surface of the substrate and on top of the shallow trench isolation A silicon oxide layer is formed on the surface; a photoresist is formed on the surface of the silicon oxide layer; a mask pattern is defined on the surface of the photoresist layer; the semiconductor wafer is heated, and Using a hydrofluoric acid gas (HF) to etch the silicon oxide layer along the pattern of the photoresist layer, so that the shallow trench isolates the top surface and a portion of the surface of the substrate that is intended to form a metal silicide layer; and The metal silicide layer is formed on a part of the surface of the substrate intended to form the metal silicide layer. 6. The method of claim 5 in which the shallow trench is isolated and II 486778 六、申請專利範圍 該金屬石夕化物層係用於一靜電放電(electrostatic discharge, ESD)保護電路中。 7. 如申請專利範圍第5項之方法,其中該淺溝隔離内填 充之矽氧材料與該矽氧層之蝕刻選名比約為1 : 1 0 0 0至 1:2 9 0 0。 8. 如申請專利範圍第5項之方法,其中該淺溝隔離内填 充之矽氧材料係利用一高密度電漿化學氣相沉積法(h i gh density plasma chemical vapor deposition, HDP CVD) 所沉積而成。 9 . 如申請專利範圍第5項之方法,其中該矽氧層係由磷 矽玻璃(PSG )所構成或利用一常壓化學氣相沉積法 (atmospheric pressure CVD, APCVD)沉積而成。 1 0 ·如申請專利範圍第5項之方法,其中該矽氧層之厚度 約為 500埃(angstrom)。 1 1.如申請專利範圍第5項之方法,其中將該半導體晶片 昇溫之步驟約將該半導體晶片由攝氏2 5度加熱至攝氏5 0 度。 - 1 2 ·如申請專利範圍第5項之方法,其中該氫氟酸與水之486778 VI. Scope of patent application The metal oxide layer is used in an electrostatic discharge (ESD) protection circuit. 7. The method according to item 5 of the scope of patent application, wherein the etching selection ratio of the silicon-oxygen material filled in the shallow trench isolation and the silicon-oxygen layer is about 1: 1 0 0 to 1: 2 9 0. 8. The method according to item 5 of the patent application, wherein the silicon oxide material filled in the shallow trench isolation is deposited using a high-density plasma chemical vapor deposition (HDP CVD) method. to make. 9. The method according to item 5 of the patent application, wherein the silicon-oxygen layer is composed of phosphor-silicone glass (PSG) or is deposited by atmospheric pressure CVD (APCVD). 10 · The method according to item 5 of the patent application, wherein the thickness of the silicon oxide layer is about 500 angstroms. 1 1. The method according to item 5 of the scope of patent application, wherein the step of heating the semiconductor wafer is about heating the semiconductor wafer from 25 ° C to 50 ° C. -1 2 · The method according to item 5 of the patent application, wherein the hydrofluoric acid and water 486778 六、申請專利範圍 比例約為1 : 1 0 0。486778 6. The scope of patent application is about 1: 1 0 0.
TW090109456A 2001-04-19 2001-04-19 Method to prevent current leakage at edge of shallow trench isolation TW486778B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW090109456A TW486778B (en) 2001-04-19 2001-04-19 Method to prevent current leakage at edge of shallow trench isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW090109456A TW486778B (en) 2001-04-19 2001-04-19 Method to prevent current leakage at edge of shallow trench isolation

Publications (1)

Publication Number Publication Date
TW486778B true TW486778B (en) 2002-05-11

Family

ID=21678002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090109456A TW486778B (en) 2001-04-19 2001-04-19 Method to prevent current leakage at edge of shallow trench isolation

Country Status (1)

Country Link
TW (1) TW486778B (en)

Similar Documents

Publication Publication Date Title
US6180493B1 (en) Method for forming shallow trench isolation region
US20040021197A1 (en) Integrated circuits having adjacent P-type doped regions having shallow trench isolation structures without liner layers therein therebetween
JPH0362024B2 (en)
WO2008042732A2 (en) Recessed sti for wide transistors
JP2002016156A (en) Manufacturing method of nonvolatile memory
US20020182826A1 (en) Fabrication method for a shallow trench isolation structure
US5945352A (en) Method for fabrication of shallow isolation trenches with sloped wall profiles
KR100597768B1 (en) Gate spacer formation method of semiconductor device
US6258697B1 (en) Method of etching contacts with reduced oxide stress
TWI320215B (en) Method of forming shallow trench isolation(sti) with chamfered corner
KR20020042251A (en) Fabrication method of isolation structure for semiconductor device
JP3407023B2 (en) Method for manufacturing semiconductor device
US6503815B1 (en) Method for reducing stress and encroachment of sidewall oxide layer of shallow trench isolation
US6103581A (en) Method for producing shallow trench isolation structure
US6333218B1 (en) Method of etching contacts with reduced oxide stress
TW486778B (en) Method to prevent current leakage at edge of shallow trench isolation
US20050127474A1 (en) Semiconductor device and manufacturing method thereof
KR100478496B1 (en) Formation method of trench oxide in semiconductor device
CN1316587C (en) Formation method of junction-insulated active component
KR20010038607A (en) A method of field isolation for semiconductor devices
US6664170B1 (en) Method for forming device isolation layer of a semiconductor device
JPH09260485A (en) Manufacture of semiconductor device
KR100505427B1 (en) Method for forming isolation layer of semiconductor device
KR100677990B1 (en) Manufacturing Method of Semiconductor Device
KR100587084B1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees