CN111525030B - PPS capacitor and forming method thereof - Google Patents
PPS capacitor and forming method thereof Download PDFInfo
- Publication number
- CN111525030B CN111525030B CN202010353697.6A CN202010353697A CN111525030B CN 111525030 B CN111525030 B CN 111525030B CN 202010353697 A CN202010353697 A CN 202010353697A CN 111525030 B CN111525030 B CN 111525030B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- semiconductor substrate
- layer
- groove
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 42
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 141
- 229920005591 polysilicon Polymers 0.000 claims abstract description 123
- 239000000758 substrate Substances 0.000 claims abstract description 97
- 239000004065 semiconductor Substances 0.000 claims abstract description 86
- 150000002500 ions Chemical class 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 7
- 108091006146 Channels Proteins 0.000 description 15
- 238000010586 diagram Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- -1 phosphorus ions Chemical class 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 3
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0411—Manufacture or treatment of FETs having insulated gates [IGFET] of FETs having floating gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供的一种PPS电容器及其形成方法,PPS电容器包括半导体衬底、第一介质层、第一多晶硅层、第二介质层、第二多晶硅层和沟槽,半导体衬底内形成有P型掺杂阱,沟槽贯穿第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,并暴露出半导体衬底,在沟槽处的半导体衬底内形成有N型阱区。本发明通过用P型掺杂阱替代现有的N型掺杂阱,以解决闩锁效应问题,使得形成的PPS电容器与其相邻的元器件之间的距离减小,节约了使用面积,提高后续所形成的存储器的面积有效利用率。同时,在半导体衬底中形成N型阱区,使得在第一多晶硅层加正压时,N型阱区与反型沟道连接,使得后续可以通过该N型阱区将反型沟道接出,以获得较大的电容值。
A PPS capacitor and its forming method provided by the present invention, the PPS capacitor comprises a semiconductor substrate, a first dielectric layer, a first polysilicon layer, a second dielectric layer, a second polysilicon layer and a groove, the semiconductor substrate A P-type doped well is formed inside, and the groove runs through the first dielectric layer, the first polysilicon layer, the second dielectric layer and the second polysilicon layer, and exposes the semiconductor substrate, and the semiconductor substrate at the groove An N-type well region is formed in the bottom. The present invention solves the problem of latch-up effect by replacing the existing N-type doped well with a P-type doped well, so that the distance between the formed PPS capacitor and its adjacent components is reduced, the use area is saved, and the improvement is improved. Effective utilization of the area of the subsequently formed memory. At the same time, an N-type well region is formed in the semiconductor substrate, so that when the first polysilicon layer is under positive pressure, the N-type well region is connected to the inversion channel, so that the inversion channel can be connected to the inversion channel through the N-type well region. Road connected to obtain a larger capacitance value.
Description
技术领域technical field
本发明涉及半导体制造领域,特别涉及一种PPS电容器及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a PPS capacitor and a forming method thereof.
背景技术Background technique
在制造存储器(具体地说为闪存)的过程中,可利用闪存工艺中必须用到的栅极多晶硅、存储器多晶硅与衬底,使它们形成一个电容值比较大的可被称为PPS电容器的电容器,这样不需要额外的光罩(掩膜)就能够形成该PPS电容器。其中,PPS电容器指的是由两层多晶硅和衬底组成的一个三层叠层的电容结构,其中PPS即栅极多晶硅(Gate Poly),存储器多晶硅(memory Poly)和衬底(Substrate)三者的简称。In the process of manufacturing memory (specifically flash memory), the gate polysilicon, memory polysilicon and substrate that must be used in the flash memory process can be used to form a capacitor with a relatively large capacitance value that can be called a PPS capacitor , so that the PPS capacitor can be formed without an additional photomask (mask). Among them, the PPS capacitor refers to a three-layer stacked capacitor structure composed of two layers of polysilicon and a substrate, where PPS is the combination of gate polysilicon (Gate Poly), memory polysilicon (memory Poly) and substrate (Substrate). Abbreviation.
图1是现有的PPS电容器的结构示意图。如图1所示,所述PPS电容器包括半导体衬底100,所述半导体衬底100内形成有高压N型掺杂阱(即HNW)110;位于所述HNW110表面的隧穿介质层120;位于所述隧穿介质层120上的存储器多晶硅层130,包裹所述存储器多晶硅层130的介质层140;位于所述介质层140上的栅极多晶硅150,所述栅极多晶硅150位于所述存储器多晶硅层130上方,且覆盖了部分的所述隧穿介质层120;所述半导体衬底100内还形成有N型源极和漏极,其位于所述栅极多晶硅150外侧。其中,所述HNW110、存储器多晶硅层130和栅极多晶硅150均通过导电插赛(图中未示出)接出。FIG. 1 is a schematic structural diagram of a conventional PPS capacitor. As shown in FIG. 1 , the PPS capacitor includes a
当所述PPS电容器的存储器多晶硅层130加正压,HNW110接地时,很容易产生闩锁效应,造成与PPS电容器相邻的元器件(例如NMOS晶体管、PMOS晶体管等)出现毁坏。为了解决这个问题,需要将PPS电容器与其相邻的元器件隔离开来,使得PPS电容器与其相邻的元器件之间的距离至少为30微米,浪费了后续所形成的存储器的面积,即,后续存储器的面积有效利用率较低。同时,当所述PPS电容器的HNW110加正压时,存储器多晶硅层130下方的HNW110处于耗尽状态,使得该PPS电容器的电容值很小。When the
发明内容Contents of the invention
本发明的目的在于提供一种PPS电容器及其形成方法,以提高后续所形成的存储器的面积有效利用率,以及增大PPS电容器的电容值。The object of the present invention is to provide a PPS capacitor and its forming method, so as to improve the area effective utilization rate of the subsequently formed memory and increase the capacitance value of the PPS capacitor.
为解决上述技术问题,本发明提供一种PPS电容器,包括:In order to solve the above technical problems, the present invention provides a PPS capacitor, comprising:
半导体衬底,所述半导体衬底内形成有P型掺杂阱;A semiconductor substrate, in which a P-type doped well is formed;
第一介质层,所述第一介质层覆盖所述P型掺杂阱;a first dielectric layer, the first dielectric layer covers the P-type doped well;
第一多晶硅层,位于部分所述第一介质层上;a first polysilicon layer located on part of the first dielectric layer;
第二介质层,所述第二介质层包裹所述第一多晶硅层;a second dielectric layer, the second dielectric layer wrapping the first polysilicon layer;
第二多晶硅层,所述第二多晶硅层包裹所述第二介质层,并覆盖至少部分所述第一介质层;a second polysilicon layer, where the second polysilicon layer wraps the second dielectric layer and covers at least part of the first dielectric layer;
沟槽,所述沟槽贯穿所述第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,并暴露出所述半导体衬底,在所述沟槽处的半导体衬底内形成有N型阱区。A trench, the trench penetrates through the first dielectric layer, the first polysilicon layer, the second dielectric layer and the second polysilicon layer, and exposes the semiconductor substrate, at the trench An N-type well region is formed in the semiconductor substrate.
可选的,还包括源极/漏极,所述源极/漏极掺杂了P型离子,所述源极/漏极形成于所述第二多晶硅层外侧的半导体衬底内。Optionally, a source/drain is further included, the source/drain is doped with P-type ions, and the source/drain is formed in the semiconductor substrate outside the second polysilicon layer.
进一步的,所述P型掺杂阱的掺杂浓度为1×E12/cm2~10×E12/cm2。Further, the doping concentration of the P-type doped well is 1×E 12 /cm 2 to 10×E 12 /cm 2 .
更进一步的,所述N型阱区的掺杂浓度为1×E15/cm2~10×E15/cm2。Furthermore, the doping concentration of the N-type well region is 1×E 15 /cm 2 to 10×E 15 /cm 2 .
更进一步的,所述第一介质层为氧化物层,所述第二介质层为氧化物层。Furthermore, the first dielectric layer is an oxide layer, and the second dielectric layer is an oxide layer.
本发明还提供一种PPS电容器的形成方法,包括以下步骤:The present invention also provides a method for forming a PPS capacitor, comprising the following steps:
步骤S10:提供一半导体衬底,所述半导体衬底内形成P型掺杂阱,在所述半导体衬底上依次形成有第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,所述第一介质层覆盖所述P型掺杂阱,所述第一多晶硅层位于部分所述第一介质层上,所述第二介质层包裹所述第一多晶硅层,所述第二多晶硅层覆盖所述第二介质层和所述第一介质层;Step S10: providing a semiconductor substrate, a P-type doped well is formed in the semiconductor substrate, and a first dielectric layer, a first polysilicon layer, a second dielectric layer and a second dielectric layer are sequentially formed on the semiconductor substrate Two polysilicon layers, the first dielectric layer covers the P-type doped well, the first polysilicon layer is located on part of the first dielectric layer, and the second dielectric layer wraps the first a polysilicon layer, the second polysilicon layer covers the second dielectric layer and the first dielectric layer;
步骤S20:依次刻蚀所述第二多晶硅层、第二介质层、第一多晶硅层和第一介质层,并暴露出所述半导体衬底,以形成沟槽;Step S20: sequentially etching the second polysilicon layer, the second dielectric layer, the first polysilicon layer and the first dielectric layer, and exposing the semiconductor substrate to form trenches;
步骤S30:在所述沟槽处的半导体衬底内形成N型阱区,在所述第二多晶硅层外侧的半导体衬底内源极/漏极,从而形成PPS电容器。Step S30: forming an N-type well region in the semiconductor substrate at the trench, and forming a source/drain in the semiconductor substrate outside the second polysilicon layer, thereby forming a PPS capacitor.
可选的,步骤S20包括以下步骤:Optionally, step S20 includes the following steps:
在所述半导体衬底上形成图形化的光刻胶层,所述光刻胶在所述第二多晶硅层上形成有开口,所述开口暴露出部分所述第二多晶硅层的表面;A patterned photoresist layer is formed on the semiconductor substrate, the photoresist forms an opening on the second polysilicon layer, and the opening exposes part of the second polysilicon layer surface;
以所述图形化的光刻胶层为掩膜,刻蚀所述第二多晶硅层,并暴露出所述第二介质层,以形成所述沟槽的第一部分;Using the patterned photoresist layer as a mask, etching the second polysilicon layer and exposing the second dielectric layer to form a first part of the trench;
通过两次刻蚀工艺,在所述沟槽的第一部分处,依次刻蚀所述第二介质层、第一多晶硅层和第一介质层,并暴露出所述半导体衬底,以形成所述沟槽的第二部分,所述沟槽的第二部分位于所述沟槽的第一部分的正下方,使得所述沟槽的第一部分和沟槽的第二部分共同构成所述沟槽。Through two etching processes, at the first part of the trench, the second dielectric layer, the first polysilicon layer and the first dielectric layer are sequentially etched, and the semiconductor substrate is exposed to form a second portion of the groove, the second portion of the groove being located directly below the first portion of the groove such that the first portion of the groove and the second portion of the groove together form the groove .
进一步的,所述沟槽的第二部分的开口尺寸小于沟槽的第一部分的开口尺寸,使得所述沟槽呈上大下小的倒凸字型。Further, the opening size of the second part of the groove is smaller than the opening size of the first part of the groove, so that the groove is in an inverted convex shape with a large top and a small bottom.
可选的,步骤S30包括以下步骤:Optionally, step S30 includes the following steps:
在所述第二多晶硅层外侧的半导体衬底内进行P型离子注入以形成源极/漏极;performing P-type ion implantation in the semiconductor substrate outside the second polysilicon layer to form source/drain;
在所述沟槽处的半导体衬底内进行N型离子注入,以形成N型阱区。N-type ion implantation is performed in the semiconductor substrate at the trench to form an N-type well region.
可选的,在步骤S30之后还包括:Optionally, after step S30, also include:
在所述沟槽中形成插塞,以在第一多晶硅层加正压时,通过所述N型阱区将反型沟道中的N型离子接出。A plug is formed in the trench, so as to access the N-type ions in the inversion channel through the N-type well region when the first polysilicon layer is under positive pressure.
与现有技术相比存在以下有益效果:Compared with the prior art, there are the following beneficial effects:
本发明提供的一种PPS电容器及其形成方法,所述PPS电容器包括半导体衬底,所述半导体衬底内形成有P型掺杂阱;第一介质层,所述第一介质层覆盖所述P型掺杂阱;第一多晶硅层,位于部分所述第一介质层上;第二介质层,所述第二介质层包裹所述第一多晶硅层;第二多晶硅层,所述第二多晶硅层包裹所述第二介质层,并覆盖至少部分所述第一介质层;沟槽,所述沟槽贯穿所述第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,并暴露出所述半导体衬底,在所述沟槽处的半导体衬底内形成有N型阱区。本发明通过用P型掺杂阱替代现有的N型掺杂阱,以解决闩锁效应问题,使得后续形成的PPS电容器与其相邻的元器件之间的距离减小至0.5微米~1微米,节约了使用面积,提高后续所形成的存储器的面积有效利用率。同时,沟槽以及在沟槽处的半导体衬底中形成N型阱区,使得在第一多晶硅层加正压时,N型阱区与反型沟道连接,使得后续可以通过该N型阱区将反型沟道中的N型离子接出,从而使得PPS电容器获得较大的电容值。A PPS capacitor and its forming method provided by the present invention, the PPS capacitor includes a semiconductor substrate, a P-type doped well is formed in the semiconductor substrate; a first dielectric layer, the first dielectric layer covers the P-type doped well; the first polysilicon layer, located on part of the first dielectric layer; the second dielectric layer, the second dielectric layer wraps the first polysilicon layer; the second polysilicon layer , the second polysilicon layer wraps the second dielectric layer and covers at least part of the first dielectric layer; a trench, the trench penetrates the first dielectric layer, the first polysilicon layer, The second dielectric layer and the second polysilicon layer expose the semiconductor substrate, and an N-type well region is formed in the semiconductor substrate at the groove. The present invention solves the problem of latch-up effect by replacing the existing N-type doped well with a P-type doped well, so that the distance between the subsequently formed PPS capacitor and its adjacent components is reduced to 0.5 micron to 1 micron , which saves the used area and improves the effective utilization rate of the area of the memory formed subsequently. At the same time, an N-type well region is formed in the trench and the semiconductor substrate at the trench, so that when the first polysilicon layer is under positive pressure, the N-type well region is connected to the inversion channel, so that the N-type well region can be passed through the N-type channel subsequently. The N-type well region connects the N-type ions in the inversion channel, so that the PPS capacitor obtains a larger capacitance value.
附图说明Description of drawings
图1为现有的PPS电容器的结构示意图;Fig. 1 is the structural representation of existing PPS capacitor;
图2为本发明一实施例的PPS电容器的形成方法的流程示意图;Fig. 2 is the schematic flow sheet of the forming method of the PPS capacitor of an embodiment of the present invention;
图3a-3e为本发明一实施例的分栅快闪存储器在各步骤中的结构示意图。3a-3e are structural schematic diagrams of the split-gate flash memory in various steps according to an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
图1中:In Figure 1:
100-半导体衬底;110-HNW;120-隧穿介质层;130-存储器多晶硅层;140-介质层;150-栅极多晶硅;100-semiconductor substrate; 110-HNW; 120-tunneling dielectric layer; 130-storage polysilicon layer; 140-dielectric layer; 150-gate polysilicon;
图3a-3e中:In Figure 3a-3e:
200-半导体衬底;210-P型掺杂阱;220-第一介质层;230-第一多晶硅层;240-第二介质层;250-第二多晶硅层;-源极/漏极;200-semiconductor substrate; 210-P-type doped well; 220-first dielectric layer; 230-first polysilicon layer; 240-second dielectric layer; 250-second polysilicon layer;-source/ Drain;
300-沟槽;300 - groove;
400-N型阱区。400-N type well region.
具体实施方式Detailed ways
本发明提供的一种PPS电容器及其形成方法,所述PPS电容器包括半导体衬底,所述半导体衬底内形成有P型掺杂阱;第一介质层,所述第一介质层覆盖所述P型掺杂阱;第一多晶硅层,位于部分所述第一介质层上;第二介质层,所述第二介质层包裹所述第一多晶硅层;第二多晶硅层,所述第二多晶硅层包裹所述第二介质层,并覆盖至少部分所述第一介质层;沟槽,所述沟槽贯穿所述第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,并暴露出所述半导体衬底,在所述沟槽处的半导体衬底内形成有N型阱区。本发明通过用P型掺杂阱替代现有的N型掺杂阱,以解决闩锁效应问题,使得后续形成的PPS电容器与其相邻的元器件之间的距离减小至0.5微米~1微米,节约了使用面积,提高后续所形成的存储器的面积有效利用率。同时,沟槽以及在沟槽处的半导体衬底中形成N型阱区,使得在第一多晶硅层加正压时,N型阱区与反型沟道连接,使得后续可以通过该N型阱区将反型沟道中的N型离子接出,从而使得PPS电容器获得较大的电容值。A PPS capacitor and its forming method provided by the present invention, the PPS capacitor includes a semiconductor substrate, a P-type doped well is formed in the semiconductor substrate; a first dielectric layer, the first dielectric layer covers the P-type doped well; the first polysilicon layer, located on part of the first dielectric layer; the second dielectric layer, the second dielectric layer wraps the first polysilicon layer; the second polysilicon layer , the second polysilicon layer wraps the second dielectric layer and covers at least part of the first dielectric layer; a trench, the trench penetrates the first dielectric layer, the first polysilicon layer, The second dielectric layer and the second polysilicon layer expose the semiconductor substrate, and an N-type well region is formed in the semiconductor substrate at the groove. The present invention solves the problem of latch-up effect by replacing the existing N-type doped well with a P-type doped well, so that the distance between the subsequently formed PPS capacitor and its adjacent components is reduced to 0.5 micron to 1 micron , which saves the used area and improves the effective utilization rate of the area of the memory formed subsequently. At the same time, an N-type well region is formed in the trench and the semiconductor substrate at the trench, so that when the first polysilicon layer is under positive pressure, the N-type well region is connected to the inversion channel, so that the N-type well region can be passed through the N-type channel subsequently. The N-type well region connects the N-type ions in the inversion channel, so that the PPS capacitor obtains a larger capacitance value.
以下将对本发明的一种PPS电容器及其形成方法作进一步的详细描述。下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。A PPS capacitor of the present invention and its forming method will be further described in detail below. The invention will now be described in more detail with reference to the accompanying drawings, in which preferred embodiments of the invention are shown, it being understood that those skilled in the art may modify the invention described herein and still achieve the advantageous effects of the invention. Therefore, the following description should be understood as the broad knowledge of those skilled in the art, but not as a limitation of the present invention.
为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。In the interest of clarity, not all features of an actual implementation are described. In the following description, well-known functions and constructions are not described in detail since they would obscure the invention with unnecessary detail. It should be appreciated that in the development of any actual embodiment, numerous implementation details must be worked out to achieve the developer's specific goals, such as changing from one embodiment to another in accordance with system-related or business-related constraints. Additionally, it should be recognized that such a development effort might be complex and time consuming, but would nevertheless be merely a routine undertaking for those skilled in the art.
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。In order to make the purpose and features of the present invention more comprehensible, the specific implementation manners of the present invention will be further described below in conjunction with the accompanying drawings. It should be noted that the drawings are all in a very simplified form and use imprecise ratios, which are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.
图2为本实施例的一种PPS电容器的形成方法流程示意图。如图2所示,本实施例提供了一种PPS电容器的形成方法,所述PPS电容器例如是应用于存储器。所述PPS电容器的形成方法包括以下步骤:FIG. 2 is a schematic flowchart of a method for forming a PPS capacitor in this embodiment. As shown in FIG. 2 , this embodiment provides a method for forming a PPS capacitor, the PPS capacitor is, for example, applied to a memory. The forming method of described PPS capacitor comprises the following steps:
步骤S10:提供一半导体衬底,所述半导体衬底内形成P型掺杂阱,在所述半导体衬底上依次形成有第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,所述第一介质层覆盖所述P型掺杂阱,所述第一多晶硅层位于部分所述第一介质层上,所述第二介质层包裹所述第一多晶硅层,所述第二多晶硅层覆盖所述第二介质层和所述第一介质层;Step S10: providing a semiconductor substrate, a P-type doped well is formed in the semiconductor substrate, and a first dielectric layer, a first polysilicon layer, a second dielectric layer and a second dielectric layer are sequentially formed on the semiconductor substrate Two polysilicon layers, the first dielectric layer covers the P-type doped well, the first polysilicon layer is located on part of the first dielectric layer, and the second dielectric layer wraps the first a polysilicon layer, the second polysilicon layer covers the second dielectric layer and the first dielectric layer;
步骤S20:依次刻蚀所述第二多晶硅层、第二介质层、第一多晶硅层和第一介质层,并暴露出所述半导体衬底,以形成沟槽;Step S20: sequentially etching the second polysilicon layer, the second dielectric layer, the first polysilicon layer and the first dielectric layer, and exposing the semiconductor substrate to form trenches;
步骤S30:在所述沟槽处的半导体衬底内形成N型阱区,在所述第二多晶硅层外侧的半导体衬底内源极/漏极,从而形成PPS电容器。Step S30: forming an N-type well region in the semiconductor substrate at the trench, and forming a source/drain in the semiconductor substrate outside the second polysilicon layer, thereby forming a PPS capacitor.
下面结合图2-3e对本实施例所公开的一种PPS电容器的形成方法进行更详细的介绍。A method for forming a PPS capacitor disclosed in this embodiment will be described in more detail below with reference to FIGS. 2-3e.
图3a为本实施例提供的半导体衬底,如图3a所示,首先执行步骤S10,提供一半导体衬底200,所述半导体衬底200内形成P型掺杂阱210,在所述半导体衬底200上依次形成有第一介质层220、第一多晶硅层230、第二介质层240和第二多晶硅层250,所述第一介质层220覆盖所述P型掺杂阱210,所述第一多晶硅层230位于部分所述第一介质层220上,所述第二介质层240包裹所述第一多晶硅层230,所述第二多晶硅层250覆盖所述第二介质层240和所述第一介质层220。所述P型掺杂阱由浅隔离结构(图中未示出)与半导体衬底200的其他元器件隔离。Fig. 3a is the semiconductor substrate provided by this embodiment, as shown in Fig. 3a, step S10 is first performed to provide a
本步骤具体包括以下步骤:This step specifically includes the following steps:
首先,提供一半导体衬底200,所述半导体衬底200可为后续工艺提供操作平台,其可以是本领域技术人员熟知的任何用以承载半导体集成电路组成元件的底材,可以是裸片,也可以是经过外延生长工艺处理后的晶圆,详细的,所述半导体衬底200例如是绝缘体上硅(silicon-on-insulator,SOI)基底、体硅(bulk silicon)基底、锗基底、锗硅基底、磷化铟(InP)基底、砷化镓(GaAs)基底或者绝缘体上锗基底等。所述半导体衬底200内形成P型掺杂阱210,所述P型掺杂阱210例如是高压P型掺杂阱。所述P型掺杂阱210的掺杂离子包括硼(B)离子、氟化硼(BF2 +)离子、镓(Ga)离子和铟(In)离子中的至少一种。在本实施例中,所述P型掺杂阱210的掺杂离子包括硼(B)离子,所述P型掺杂阱210的掺杂离子的浓度例如为1×E12/cm2~10×E12/cm2。所述P型掺杂阱210在第一多晶硅层230加正压时,不会出现闩锁效应,使得后续形成的PPS电容器与其相邻的元器件之间的距离减小至0.5微米~1微米,节约了使用面积,提高后续所形成的存储器的面积有效利用率。First, a
接着,在所述半导体衬底200上形成第一介质层220,所述第一介质层220例如是隧穿介质层,所述第一介质层220例如是覆盖了形成有所述P型掺杂阱210的半导体衬底200。所述第一介质层220的材料例如是氧化物,具体的例如是二氧化硅,所述第一介质层220的形成工艺为热氧化工艺或沉积工艺,较佳的为热氧化工艺。所述第一介质层220的厚度例如是 Next, a first
接着,在所述第一介质层220上形成第一多晶硅层230,所述第一多晶硅层230例如是存储器多晶硅层。所述第一多晶硅层230的材料为掺杂多晶硅,所掺杂的离子为磷、砷、碳或硼,以形成的PPS电容器更稳定。所述第一多晶硅层230的厚度为所述第一多晶硅层230的形成工艺为低压化学气相沉积工艺(LPCVD)。在本实施例中,所掺杂的离子为磷,则所述低压化学气相沉积工艺的反应气体为硅烷和磷烷。Next, a
接着,在所述第一多晶硅层230的表面沉积第二介质层240,使得所述第二介质层220包裹所述第一多晶硅层230的表面。所述第二介质层240的材料例如是氧化物,具体的例如是二氧化硅。所述第二介质层240的厚度为所述第二介质层240可以与所述第一介质层220的形成工艺相同,在此不做赘述。Next, a
接着,在所述第二介质层240的表面形成第二多晶硅层250,所述第二多晶硅层250了所述第二介质层240,还覆盖了部分所述第一介质层220。所述第二多晶硅层250的厚度为所述第二多晶硅层250的形成工艺与所述第一多晶硅层230的形成工艺相同,在此不做赘述。Next, a
在上述的结构中,对所述第一多晶硅层230加正压后,在所述第一多晶硅层230的正下方的HPW210中出现了沟道反型现象(即,在HPW210中出现了N离子沟道),而由于所述第二多晶硅层250和半导体衬底200等电位,因此,在所述第一多晶硅层230的正下方以外的HPW210中未出现了沟道反型现象,这就使得所述第一多晶硅层230的正下方与后续形成的N型源极/漏极之间不能导通,导致在第所述一多晶硅层230加正压时的PPS电容器的电容值很小。In the above structure, after the positive pressure is applied to the
为了解决这个问题,本实施例接着执行以下步骤:In order to solve this problem, the present embodiment then performs the following steps:
图3b为形成沟槽后的PPS结构示意图,如图3b所示,接着执行步骤S20,依次刻蚀所述第二多晶硅层250、第二介质层240、第一多晶硅层230和第一介质层220,并暴露出所述半导体衬底200,以形成沟槽300。FIG. 3b is a schematic diagram of the PPS structure after the trench is formed. As shown in FIG. 3b, step S20 is then performed to sequentially etch the
本步骤具体包括以下步骤:This step specifically includes the following steps:
首先,在所述半导体衬底200上形成图形化的光刻胶层,所述光刻胶在所述第二多晶硅层250上形成有开口,所述开口暴露出部分所述第二多晶硅层250的表面,优选的,所述开口例如是位于所述第二多晶硅层250表面的正中间。First, a patterned photoresist layer is formed on the
接着,以所述图形化的光刻胶层为掩膜,刻蚀所述第二多晶硅层250,并暴露出所述第二介质层240,以形成所述沟槽的第一部分。该步骤与形成存储器的栅极工艺同时进行,因此,无需专门的光罩来执行该步骤,从而没有增加工艺成本。Next, using the patterned photoresist layer as a mask, the
接着,通过两次刻蚀工艺,在所述沟槽300的第一部分处,依次刻蚀所述第二介质层240、第一多晶硅层230和第一介质层220,并暴露出所述半导体衬底200,以形成所述沟槽300的第二部分。其中,所述沟槽300的第二部分的开口尺寸小于沟槽300的第一部分的开口尺寸,使得所述沟槽300呈上大下小的倒凸字型。所述沟槽300的第二部分位于所述沟槽300的第一部分的正下方,使得所述沟槽300的第一部分和沟槽300的第二部分共同构成所述沟槽300。在本实施例中,本步骤的刻蚀工艺与形成存储器的字线侧墙的工艺同时进行,因此,无需专门的光罩来执行该步骤,从而没有增加工艺成本。Next, through two etching processes, at the first part of the
图3c为本实施例的PPS电容器的结构示意图。如图3c所示,接着执行步骤S30,在所述沟槽300处的半导体衬底200内形成N型阱区,在所述第二多晶硅层250外侧的半导体衬底200内形成源极/漏极,从而形成PPS电容器。Fig. 3c is a schematic structural diagram of the PPS capacitor of this embodiment. As shown in FIG. 3c, step S30 is then performed to form an N-type well region in the
本步骤具体的包括:This step specifically includes:
在所述第二多晶硅层250外侧的半导体衬底200内进行P型离子注入以形成源极/漏极;在所述沟槽处的半导体衬底内进行N型离子注入,以形成N型阱区400。其中,这两步的先后顺序可以不做限定,具体根据实际情况进行排序。此时,在第一多晶硅层230加正压时,N型阱区与反型沟道连接,使得后续可以通过该N型阱区将反型沟道中的N型离子接出,从而使得PPS电容器获得较大的电容值。所述沟槽处的N型离子包括磷离子、砷离子、氮离子、锗离子等一种或几种n型离子注入,在本实施例中,所述沟槽处的N型离子包括砷离子,且所述N型离子的注入能量为30Kev~50Kev,注入剂量为4x 10E15/cm2~10x 10E15/cm2。形成源极/漏极的P型离子例如与HPW210的离子相同,其注入能量为5Kev~10Kev,注入剂量为2x10E15/cm2~5x 10E15/cm2。Perform P-type ion implantation in the
图3d为没有形成N型阱区的PPS电容器的电容-电压曲线图。如图3d所示,在第一多晶硅层加正压时,由于PPS电容器没有通过N型阱区将反型沟道中的N型离子接出,此时的电容值为6.00E-12,此时电容值较低。图3e为形成了N型阱区的PPS电容器的电容-电压曲线图。如图3e所示,在第一多晶硅层加正压时,由于PPS电容器通过N型阱区将反型沟道中的N型离子接出,此时的电容值近似为1.00E-11,此时的电容值远大于没有形成N型阱区的PPS电容器的电容值。FIG. 3d is a capacitance-voltage curve diagram of a PPS capacitor without an N-type well region. As shown in Figure 3d, when the positive voltage is applied to the first polysilicon layer, since the PPS capacitor does not connect the N-type ions in the inversion channel through the N-type well region, the capacitance value at this time is 6.00E-12, At this time the capacitance value is low. Fig. 3e is a capacitance-voltage curve diagram of a PPS capacitor formed with an N-type well region. As shown in Figure 3e, when the positive voltage is applied to the first polysilicon layer, since the PPS capacitor connects the N-type ions in the inversion channel through the N-type well region, the capacitance value at this time is approximately 1.00E-11, The capacitance value at this time is much larger than the capacitance value of the PPS capacitor without forming the N-type well region.
所述形成方法还包括步骤,在所述沟槽中形成插塞,以在第一多晶硅层230加正压时,通过所述N型阱区将反型沟道中的N型离子接出。The forming method further includes the step of forming a plug in the trench, so as to extract the N-type ions in the inversion channel through the N-type well region when the
请参阅图3c,本实施例还提供了一种PPS电容器,包括半导体衬底200,所述半导体衬底200内形成有P型掺杂阱210,在所述半导体衬底200上依次形成有第一介质层220、第一多晶硅层230、第二介质层240和第二多晶硅层250,所述第一介质层220覆盖所述P型掺杂阱210,所述第一多晶硅层230位于部分所述第一介质层220上,所述第二介质层240包裹所述第一多晶硅层230,所述第二多晶硅层250包裹所述第二介质层240,并覆盖部分所述第一介质层220。所述PPS电容器还包括沟槽300,所述沟槽300贯穿所述第一介质层220、第一多晶硅层230、第二介质层240和第二多晶硅层250,并暴露出所述半导体衬底200,在所述沟槽300处的半导体衬底200内形成有N型阱区400,在所述第二多晶硅层250外侧的半导体衬底200中形成有P型源极/漏极。所述P型掺杂阱210的掺杂浓度为1×E12/cm2~10×E12/cm2;所述N型阱区400的掺杂浓度为1×E15/cm2~10×E15/cm2。Please refer to FIG. 3c, this embodiment also provides a PPS capacitor, including a
综上所述,本发明提供的一种PPS电容器及其形成方法,所述PPS电容器包括半导体衬底,所述半导体衬底内形成有P型掺杂阱;第一介质层,所述第一介质层覆盖所述P型掺杂阱;第一多晶硅层,位于部分所述第一介质层上;第二介质层,所述第二介质层包裹所述第一多晶硅层;第二多晶硅层,所述第二多晶硅层包裹所述第二介质层,并覆盖至少部分所述第一介质层;沟槽,所述沟槽贯穿所述第一介质层、第一多晶硅层、第二介质层和第二多晶硅层,并暴露出所述半导体衬底,在所述沟槽处的半导体衬底内形成有N型阱区。本发明通过用P型掺杂阱替代现有的N型掺杂阱,以解决闩锁效应问题,使得后续形成的PPS电容器与其相邻的元器件之间的距离减小至0.5微米~1微米,节约了使用面积,提高后续所形成的存储器的面积有效利用率。同时,沟槽以及在沟槽处的半导体衬底中形成N型阱区,使得在第一多晶硅层加正压时,N型阱区与反型沟道连接,使得后续可以通过该N型阱区将反型沟道中的N型离子接出,从而使得PPS电容器获得较大的电容值。In summary, the present invention provides a PPS capacitor and its forming method, the PPS capacitor includes a semiconductor substrate, a P-type doped well is formed in the semiconductor substrate; a first dielectric layer, the first The dielectric layer covers the P-type doped well; the first polysilicon layer is located on part of the first dielectric layer; the second dielectric layer wraps the first polysilicon layer; Two polysilicon layers, the second polysilicon layer wraps the second dielectric layer and covers at least part of the first dielectric layer; a groove, the groove penetrates the first dielectric layer, the first The polysilicon layer, the second dielectric layer and the second polysilicon layer expose the semiconductor substrate, and an N-type well region is formed in the semiconductor substrate at the trench. The present invention solves the problem of latch-up effect by replacing the existing N-type doped well with a P-type doped well, so that the distance between the subsequently formed PPS capacitor and its adjacent components is reduced to 0.5 micron to 1 micron , which saves the used area and improves the effective utilization rate of the area of the memory formed subsequently. At the same time, an N-type well region is formed in the trench and the semiconductor substrate at the trench, so that when the first polysilicon layer is under positive pressure, the N-type well region is connected to the inversion channel, so that the N-type well region can be passed through the N-type channel subsequently. The N-type well region connects the N-type ions in the inversion channel, so that the PPS capacitor obtains a larger capacitance value.
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”的描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。In addition, it should be noted that unless otherwise specified or pointed out, the descriptions of the terms "first" and "second" in the specification are only used to distinguish each component, element, step, etc. in the specification, rather than to represent each Logical or sequential relationships among components, elements, and steps, etc.
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。It can be understood that although the present invention has been disclosed above with preferred embodiments, the above embodiments are not intended to limit the present invention. For any person skilled in the art, without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make many possible changes and modifications to the technical solution of the present invention, or be modified to be equivalent to equivalent changes. Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010353697.6A CN111525030B (en) | 2020-04-29 | 2020-04-29 | PPS capacitor and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010353697.6A CN111525030B (en) | 2020-04-29 | 2020-04-29 | PPS capacitor and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111525030A CN111525030A (en) | 2020-08-11 |
CN111525030B true CN111525030B (en) | 2023-02-07 |
Family
ID=71910714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010353697.6A Active CN111525030B (en) | 2020-04-29 | 2020-04-29 | PPS capacitor and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111525030B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU206227U1 (en) * | 2021-03-10 | 2021-09-01 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICONE 3D CAPACITOR |
RU205633U1 (en) * | 2021-03-15 | 2021-07-23 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICON CAPACITOR |
US20240297211A1 (en) * | 2023-03-01 | 2024-09-05 | Globalfoundries Singapore Pte. Ltd. | Capacitor structures of semiconductor devices |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6492224B1 (en) * | 2001-07-16 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Buried PIP capacitor for mixed-mode process |
CN101937878A (en) * | 2010-07-30 | 2011-01-05 | 上海宏力半导体制造有限公司 | Memory and method for manufacturing same |
CN102214702A (en) * | 2011-05-23 | 2011-10-12 | 上海宏力半导体制造有限公司 | Semiconductor capacitor structure and formation method thereof |
CN102723261A (en) * | 2012-06-26 | 2012-10-10 | 上海宏力半导体制造有限公司 | Semiconductor capacitor formation method |
CN103441061A (en) * | 2013-08-29 | 2013-12-11 | 上海宏力半导体制造有限公司 | Capacitor structure and manufacturing method thereof |
CN103489928A (en) * | 2013-09-25 | 2014-01-01 | 北京中科微电子技术有限公司 | Capacitor structure and manufacturing method thereof |
CN105632891A (en) * | 2014-11-28 | 2016-06-01 | 中芯国际集成电路制造(上海)有限公司 | Preparation method of PIP capacitor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5129541B2 (en) * | 2007-10-15 | 2013-01-30 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US7875919B2 (en) * | 2008-03-31 | 2011-01-25 | International Business Machines Corporation | Shallow trench capacitor compatible with high-K / metal gate |
US9620594B2 (en) * | 2014-09-29 | 2017-04-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory device, memory cell and memory cell layout |
US9735188B2 (en) * | 2015-01-15 | 2017-08-15 | Hoon Kim | Image sensor with solar cell function |
-
2020
- 2020-04-29 CN CN202010353697.6A patent/CN111525030B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6492224B1 (en) * | 2001-07-16 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Buried PIP capacitor for mixed-mode process |
CN101937878A (en) * | 2010-07-30 | 2011-01-05 | 上海宏力半导体制造有限公司 | Memory and method for manufacturing same |
CN102214702A (en) * | 2011-05-23 | 2011-10-12 | 上海宏力半导体制造有限公司 | Semiconductor capacitor structure and formation method thereof |
CN102723261A (en) * | 2012-06-26 | 2012-10-10 | 上海宏力半导体制造有限公司 | Semiconductor capacitor formation method |
CN103441061A (en) * | 2013-08-29 | 2013-12-11 | 上海宏力半导体制造有限公司 | Capacitor structure and manufacturing method thereof |
CN103489928A (en) * | 2013-09-25 | 2014-01-01 | 北京中科微电子技术有限公司 | Capacitor structure and manufacturing method thereof |
CN105632891A (en) * | 2014-11-28 | 2016-06-01 | 中芯国际集成电路制造(上海)有限公司 | Preparation method of PIP capacitor |
Also Published As
Publication number | Publication date |
---|---|
CN111525030A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9865592B2 (en) | Method for FinFET integrated with capacitor | |
US8906767B2 (en) | Semiconductor device with self-aligned interconnects | |
TWI566301B (en) | Integrated circuit and manufacturing method thereof | |
CN111525030B (en) | PPS capacitor and forming method thereof | |
US9590059B2 (en) | Interdigitated capacitor to integrate with flash memory | |
CN109473435B (en) | Semiconductor device and manufacturing method thereof | |
CN105762103B (en) | Semiconductor structure and forming method thereof | |
US20070212842A1 (en) | Manufacturing method of high-voltage MOS transistor | |
US7723777B2 (en) | Semiconductor device and method for making same | |
CN101286477A (en) | Semiconductor device and method for manufacturing the same | |
CN109326650A (en) | Semiconductor device, method of manufacturing the same, and electronic apparatus including the same | |
US20200357801A1 (en) | Memory structure and manufacturing method thereof | |
CN108615675B (en) | Substrate doping structure and method of forming the same | |
US10002768B2 (en) | Semiconductor device and manufacturing method thereof | |
US20070057303A1 (en) | Method For Forming Trench Capacitor and Memory Cell | |
US9431408B2 (en) | Methods for fabricating integrated circuits with a high-voltage MOSFET | |
US20050148138A1 (en) | Method of manufacturing semiconductor device | |
US6887761B1 (en) | Vertical semiconductor devices | |
US10032772B2 (en) | Integrated circuits with high voltage devices and methods for producing the same | |
JPH04251980A (en) | High withstand-voltage transistor and its manufacture | |
CN113437148B (en) | Semiconductor structure and forming method thereof | |
CN113437149B (en) | Semiconductor structure and forming method thereof | |
CN108376683A (en) | The production method and semiconductor devices of source electrode | |
US9825138B2 (en) | Field effect transistor and method of making | |
CN119212394A (en) | SONOS memory device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |