CN109473435B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN109473435B CN109473435B CN201811392815.3A CN201811392815A CN109473435B CN 109473435 B CN109473435 B CN 109473435B CN 201811392815 A CN201811392815 A CN 201811392815A CN 109473435 B CN109473435 B CN 109473435B
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor substrate
- substrate
- lead
- insulating ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/41—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件及其制造领域,特别涉及一种半导体器件及其制造方法。The present invention relates to the field of semiconductor devices and their manufacturing, in particular to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
随着半导体技术的不断发展,集成电路的集成度不断地提高。在集成电路的芯片设计中,通常会同时集成有有源器件和无源器件,无源器件例如电阻、电容等也会占据芯片的面积,尤其是在3D NAND存储器的芯片设计中,外围电路由HVMOS(高压金属氧化物半导体,High Voltage Metal Oxide Semiconductor)器件和LVMOS(低压金属氧化物半导体,Low Voltage Metal Oxide Semiconductor)器件组成的模拟电路,外围电路中会使用大量的电阻,这些电阻会占用大量的芯片面积,不利于提高芯片的集成度。With the continuous development of semiconductor technology, the integration level of integrated circuits has been continuously improved. In the chip design of integrated circuits, active devices and passive devices are usually integrated at the same time, and passive devices such as resistors and capacitors also occupy the chip area, especially in the chip design of 3D NAND memory, the peripheral circuit is composed of The analog circuit composed of HVMOS (High Voltage Metal Oxide Semiconductor) devices and LVMOS (Low Voltage Metal Oxide Semiconductor) devices will use a large number of resistors in the peripheral circuits, which will occupy a large amount of The chip area is not conducive to improving the integration degree of the chip.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种半导体器件及其制造方法,将电阻集成于存储器件所在衬底,减小外围电路所在衬底的面积。In view of this, the purpose of the present invention is to provide a semiconductor device and a manufacturing method thereof, in which the resistor is integrated into the substrate where the memory device is located, and the area of the substrate where the peripheral circuit is located is reduced.
为实现上述目的,本发明有如下技术方案:For achieving the above object, the present invention has the following technical solutions:
一种半导体器件,包括:A semiconductor device, comprising:
第一半导体衬底,所述第一半导体衬底具有第一表面和与其相对的第二表面,所述半导体衬底包括第一区域和第二区域,所述第一区域的第一表面上形成有存储器件;a first semiconductor substrate, the first semiconductor substrate has a first surface and a second surface opposite thereto, the semiconductor substrate includes a first region and a second region, the first region is formed on the first surface There are storage devices;
所述第二区域中贯通所述半导体衬底的绝缘环;an insulating ring penetrating the semiconductor substrate in the second region;
所述绝缘环内位于所述第一表面衬底中的扩散层;a diffusion layer in the first surface substrate within the insulating ring;
位于所述第二区域的第一表面上的覆盖层;a cover layer on the first surface of the second region;
所述覆盖层中所述扩散层的第一引出结构和第二引出结构。The first lead-out structure and the second lead-out structure of the diffusion layer in the cover layer.
可选地,所述存储器件包括栅极层与绝缘层交替层叠的堆叠层、穿过所述堆叠层的存储单元串以及存储单元串之上的介质层中的存储单元互联结构;Optionally, the memory device includes a stack layer in which gate layers and insulating layers are alternately stacked, memory cell strings passing through the stack layer, and a memory cell interconnect structure in a dielectric layer above the memory cell strings;
所述覆盖层包括第一覆盖层和第二覆盖层,所述第一覆盖层与所述堆叠层基本等高,所述第二覆盖层为所述介质层;The cover layer includes a first cover layer and a second cover layer, the first cover layer and the stacked layer have substantially the same height, and the second cover layer is the dielectric layer;
所述第一引出结构包括贯穿所述第一覆盖层的所述扩散层上的第一接触以及所述第二覆盖层中、所述第一接触上的第一互联结构;The first lead-out structure includes a first contact on the diffusion layer penetrating the first capping layer and a first interconnection structure in the second capping layer and on the first contact;
所述第二引出结构包括贯穿所述第一覆盖层的所述扩散层上的第二接触以及所述第二覆盖层中、所述第二接触上的第二互联结构。The second lead-out structure includes a second contact on the diffusion layer penetrating the first capping layer and a second interconnection structure in the second capping layer and on the second contact.
可选地,所述存储单元串包括穿过所述堆叠层的沟道孔以及所述沟道孔侧壁上依次形成的遂穿层、电荷存储层、阻挡层以及沟道层。Optionally, the memory cell string includes a channel hole passing through the stacked layers, and a tunneling layer, a charge storage layer, a blocking layer and a channel layer sequentially formed on sidewalls of the channel hole.
可选地,还包括所述第二表面上的钝化层。Optionally, a passivation layer on the second surface is also included.
可选地,所述绝缘环为圆形或多边形。Optionally, the insulating ring is circular or polygonal.
可选地,所述半导体衬底的厚度小于10um。Optionally, the thickness of the semiconductor substrate is less than 10um.
可选地,还包括第二半导体衬底,所述第二半导体衬底上形成有MOS器件以及MOS器件的互联结构;Optionally, it also includes a second semiconductor substrate on which MOS devices and an interconnection structure of the MOS devices are formed;
所述第一半导体衬底的第一表面朝向所述第二半导体衬底的MOS器件的互联结构,且所述第一半导体衬底与所述第二半导体衬底固定;The first surface of the first semiconductor substrate faces the interconnection structure of the MOS device of the second semiconductor substrate, and the first semiconductor substrate and the second semiconductor substrate are fixed;
所述第一引出结构和第二引出结构分别与所述MOS器件的互联结构电连接。The first lead-out structure and the second lead-out structure are respectively electrically connected to the interconnection structure of the MOS device.
可选地,所述MOS器件包括低压MOS器件和高压MOS器件。Optionally, the MOS device includes a low-voltage MOS device and a high-voltage MOS device.
一种半导体器件的制造方法,包括:A method of manufacturing a semiconductor device, comprising:
提供第一半导体衬底,所述第一半导体衬底具有第一表面和与其相对的第二表面,所述半导体衬底包括第一区域和第二区域,所述第一区域的第一表面上形成有存储器件;所述第二区域的第一表面的衬底中形成有扩散层,所述第二区域的第一表面上形成有覆盖层,所述覆盖层中形成有所述扩散层的第一引出结构和第二引出结构;A first semiconductor substrate is provided, the first semiconductor substrate has a first surface and a second surface opposite thereto, the semiconductor substrate includes a first region and a second region, the first region on the first surface A memory device is formed; a diffusion layer is formed in the substrate on the first surface of the second region, a cover layer is formed on the first surface of the second region, and the diffusion layer is formed in the cover layer a first lead-out structure and a second lead-out structure;
从所述第二表面进行所述第一半导体衬底的减薄;thinning of the first semiconductor substrate from the second surface;
从所述第二表面在所述第二区域中形成贯通所述半导体衬底的绝缘环,所述绝缘环的内部区域覆盖所述第一引出结构和第二引出结构所连接的扩散层区域。An insulating ring penetrating the semiconductor substrate is formed in the second area from the second surface, and an inner area of the insulating ring covers a diffusion layer area where the first lead-out structure and the second lead-out structure are connected.
可选地,在形成所述绝缘环之后,还包括:Optionally, after forming the insulating ring, the method further includes:
在所述第二表面上形成钝化层。A passivation layer is formed on the second surface.
可选地,所述存储器件包括栅极层与绝缘层交替层叠的堆叠层、穿过所述堆叠层的存储单元串以及存储单元串之上的介质层中的存储单元互联结构;Optionally, the memory device includes a stack layer in which gate layers and insulating layers are alternately stacked, memory cell strings passing through the stack layer, and a memory cell interconnect structure in a dielectric layer above the memory cell strings;
所述覆盖层包括第一覆盖层和第二覆盖层,所述第一覆盖层与所述堆叠层基本等高,所述第二覆盖层为所述介质层;The cover layer includes a first cover layer and a second cover layer, the first cover layer and the stacked layer have substantially the same height, and the second cover layer is the dielectric layer;
所述第一引出结构包括贯穿所述第一覆盖层的所述扩散层上的第一接触以及所述第二覆盖层中、所述第一接触上的第一互联结构;The first lead-out structure includes a first contact on the diffusion layer penetrating the first capping layer and a first interconnection structure in the second capping layer and on the first contact;
所述第二引出结构包括贯穿所述第一覆盖层的所述扩散层上的第二接触以及所述第二覆盖层中、所述第二接触上的第二互联结构。The second lead-out structure includes a second contact on the diffusion layer penetrating the first capping layer and a second interconnection structure in the second capping layer and on the second contact.
可选地,所述存储单元串包括穿过所述堆叠层的沟道孔以及所述沟道孔侧壁上依次形成的遂穿层、电荷存储层、阻挡层以及沟道层。Optionally, the memory cell string includes a channel hole passing through the stacked layers, and a tunneling layer, a charge storage layer, a blocking layer and a channel layer sequentially formed on sidewalls of the channel hole.
可选地,所述绝缘环为圆形或多边形。Optionally, the insulating ring is circular or polygonal.
可选地,在从所述第二表面进行所述第一半导体衬底的减薄之前,还包括:Optionally, before thinning the first semiconductor substrate from the second surface, further comprising:
提供第二半导体衬底,所述第二半导体衬底上形成有MOS器件以及MOS器件的互联结构;providing a second semiconductor substrate on which MOS devices and an interconnection structure of the MOS devices are formed;
将所述第一半导体衬底的第一表面朝向所述第二半导体衬底的MOS器件的互联结构,并将所述第一半导体衬底与所述第二半导体衬底固定,所述第一引出结构和第二引出结构分别与所述MOS器件的互联结构电连接。Facing the first surface of the first semiconductor substrate toward the interconnection structure of the MOS device of the second semiconductor substrate, and fixing the first semiconductor substrate and the second semiconductor substrate, the first semiconductor substrate The lead-out structure and the second lead-out structure are respectively electrically connected with the interconnection structure of the MOS device.
可选地,所述MOS器件包括低压MOS器件和高压MOS器件。Optionally, the MOS device includes a low-voltage MOS device and a high-voltage MOS device.
可选地,从所述第二表面在所述第二区域中形成贯通所述半导体衬底的绝缘环,包括:Optionally, forming an insulating ring through the semiconductor substrate in the second region from the second surface includes:
通过光刻工艺将绝缘环的图案转移至掩膜层中;Transferring the pattern of the insulating ring into the mask layer by a photolithography process;
在所述掩膜层的掩蔽下,从第二表面进行第一半导体衬底的刻蚀,直至贯通所述第一半导体衬底;Under the masking of the mask layer, the first semiconductor substrate is etched from the second surface until the first semiconductor substrate is penetrated;
进行绝缘材料的填充,以形成绝缘环。Filling with insulating material is performed to form an insulating ring.
本发明实施例提供的半导体器件及其制造方法,在存储器件所在的经减薄工艺后的半导体衬底中,通过蚀刻与填充工艺形成绝缘环,绝缘环将其中的衬底和周围的衬底隔离开,而绝缘环中的衬底中形成有扩散层,从而,在绝缘环中形成了由扩散层调节阻值的电阻结构,该电阻结构通过两个引出结构将其扩散层引出,通过引出结构即可以实现对该电阻结构的连接及使用。该电阻结构形成于存储器件所在的衬底中,该衬底将与包含有外围电路的另一衬底封装在一起,而在存储器件区域的周围会存在一些非器件的空白区域,可以在这些区域的衬底中形成电阻结构,该电阻结构由扩散层调节阻值,进而通过扩散层的引出结构将电阻结构引出,以便于外围电路的器件的连接及使用,这样,减小外围电路所在衬底的有效面积,提高芯片的集成度。In the semiconductor device and the manufacturing method thereof provided by the embodiments of the present invention, in the thinned semiconductor substrate where the memory device is located, an insulating ring is formed by etching and filling processes, and the insulating ring separates the substrate and the surrounding substrate. isolated, and a diffusion layer is formed in the substrate in the insulating ring, thus, a resistance structure whose resistance value is adjusted by the diffusion layer is formed in the insulating ring. The structure can realize the connection and use of the resistance structure. The resistance structure is formed in the substrate where the memory device is located, the substrate will be packaged with another substrate containing peripheral circuits, and there will be some non-device blank areas around the memory device area, which can be used in these A resistance structure is formed in the substrate of the area, and the resistance value of the resistance structure is adjusted by the diffusion layer, and then the resistance structure is drawn out through the extraction structure of the diffusion layer, so as to facilitate the connection and use of the peripheral circuit devices. The effective area of the bottom is improved, and the integration degree of the chip is improved.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1示出了根据本发明实施例半导体器件的结构示意图;FIG. 1 shows a schematic structural diagram of a semiconductor device according to an embodiment of the present invention;
图2示出了根据本发明另一实施例的半导体器件的结构示意图;FIG. 2 shows a schematic structural diagram of a semiconductor device according to another embodiment of the present invention;
图3示出了根据本发明实施例的半导体器件中绝缘环从第一表面的俯视结构示意图;FIG. 3 shows a schematic top-view structure of an insulating ring in a semiconductor device from a first surface according to an embodiment of the present invention;
图4-8示出了根据本发明实施例的制造方法形成半导体器件过程中的器件剖面结构示意图。4-8 are schematic diagrams showing the cross-sectional structure of the device in the process of forming the semiconductor device according to the manufacturing method according to the embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。Many specific details are set forth in the following description to facilitate a full understanding of the present invention, but the present invention can also be implemented in other ways different from those described herein, and those skilled in the art can do so without departing from the connotation of the present invention. Similar promotion, therefore, the present invention is not limited by the specific embodiments disclosed below.
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Next, the present invention is described in detail with reference to the schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional views showing the device structure will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not be limited here. The scope of protection of the present invention. In addition, the three-dimensional spatial dimensions of length, width and depth should be included in the actual production.
正如背景技术中的描述,在集成电路的芯片中,也会使用到大量无源器件例如电阻等,这些器件也会占据芯片的面积,而在存储器件的应用中,随着对集成度要求的不断提高,为了进一步地提高存储容量,降低每比特的存储成本,提出了立体结构的存储器件。在立体结构的存储器件的一个应用中,3D NAND存储器件可以为外围电路的MOS(金属氧化物半导体,Metal Oxide Semiconductor)器件形成在不同的衬底上,而后可以通过封装技术将二者连接在一起,该外围电路由HVMOS器件和LVMOS器件组成的模拟电路,外围电路中会使用大量的电阻,这些电阻会占用大量的芯片面积,导致外围电路的芯片面积难以降低,不利于提高芯片的集成度。As described in the background art, in the chip of the integrated circuit, a large number of passive devices such as resistors are also used, and these devices also occupy the area of the chip. In the application of memory devices, with the requirements for integration With the continuous improvement, in order to further increase the storage capacity and reduce the storage cost per bit, a storage device with a three-dimensional structure is proposed. In one application of the three-dimensional memory device, the 3D NAND memory device can be a MOS (Metal Oxide Semiconductor) device for peripheral circuits formed on different substrates, and then the two can be connected by packaging technology on different substrates. At the same time, the peripheral circuit is an analog circuit composed of HVMOS devices and LVMOS devices. A large number of resistors will be used in the peripheral circuit, and these resistors will occupy a large amount of chip area, which makes it difficult to reduce the chip area of the peripheral circuit, which is not conducive to improving the integration of the chip. .
基于此,本申请提出了一种半导体器件,参考图1所示,包括:Based on this, the present application proposes a semiconductor device, as shown in FIG. 1 , including:
第一半导体衬底100,所述第一半导体衬底100具有第一表面101和与其相对的第二表面102,所述半导体衬底包括第一区域1001和第二区域1002,所述第一区域1001的第一表面101上形成有存储器件;A
所述第二区域1002中贯通所述半导体衬底100的绝缘环150;the insulating
所述绝缘环内150位于所述第一表面101衬底100中的扩散层104;the
位于所述第二区域1002的第一表面101上的覆盖层120;a
所述覆盖层120中所述扩散层104的第一引出结构130和第二引出结构140。The first lead-out
在本申请实施例中,存储器件和存储器件的外围电路的MOS器件分别形成在不同的衬底上,而电阻结构则形成在存储器件所在的衬底上,具体的,绝缘环将环内的衬底与环外的衬底隔离开,绝缘环内的衬底中形成有扩散层,这样,就在绝缘环内形成了通过扩散层调节阻值的电阻结构,该电阻结构通过两个引出结构将其扩散层引出,通过引出结构即可以实现对该电阻结构的连接及使用。该电阻结构形成在存储器件所在的衬底中,在存储器件区域的周围,尤其是3D NAND存储器件的周围,会存在一些非器件的空白区域,利用这些空白区域来形成电阻结构,并不会额外增加芯片的面积,同时该电阻结构由扩散层调节阻值,进而通过扩散层的引出结构将电阻结构引出,以便于外围电路的器件的连接及使用,这样,减小外围电路所在衬底的有效面积,提高芯片的集成度。In the embodiments of the present application, the storage device and the MOS devices of the peripheral circuits of the storage device are formed on different substrates respectively, and the resistance structure is formed on the substrate where the storage device is located. The substrate is separated from the substrate outside the ring, and a diffusion layer is formed in the substrate inside the insulating ring. In this way, a resistance structure is formed in the insulating ring to adjust the resistance value through the diffusion layer. The diffusion layer is drawn out, and the connection and use of the resistance structure can be realized through the lead-out structure. The resistive structure is formed in the substrate where the storage device is located. Around the storage device region, especially around the 3D NAND storage device, there will be some non-device blank areas. Using these blank areas to form the resistive structure will not The area of the chip is additionally increased, and at the same time, the resistance value of the resistance structure is adjusted by the diffusion layer, and then the resistance structure is drawn out through the extraction structure of the diffusion layer, so as to facilitate the connection and use of the devices of the peripheral circuit, thus reducing the resistance of the substrate where the peripheral circuit is located. Effective area, improve the integration of the chip.
在本申请实施例中,存储器件可以是立体的存储器件,也就是说,除了衬底水平的二维方向,在垂直衬底方向上也分布有多个存储单元,本申请实施例中,该立体的存储器件为3D NAND存储器件,形成于衬底100的第一表面上,3D NAND存储器件至少包括栅极层与绝缘层交替层叠的堆叠层110、穿过所述堆叠层110的存储单元串112以及存储单元串112上的存储单元互联结构114,该互联结构114形成于介质层124之中,用于存储单元串的引出,可以包括一层或多层金属层以及连接金属层的接触、过孔、衬垫等。In the embodiment of the present application, the storage device may be a three-dimensional storage device, that is, in addition to the horizontal two-dimensional direction of the substrate, there are also a plurality of storage cells distributed in the vertical direction of the substrate. The three-dimensional memory device is a 3D NAND memory device, which is formed on the first surface of the
在3D NAND存储器件中,堆叠层110由栅极层和绝缘层交替层叠而成,每一层的栅极层与存储单元串112构成一个存储单元,从而在垂直于衬底的方向上也形成多个存储单元。其中,堆叠层110的端部可以为阶梯结构(图未示出),使得每一层的栅极层存在未被上层栅极层覆盖的部分,从而可以用于形成该层栅极层的接触,从而可以将每一层栅极层引出。存储单元串120形成可以形成于贯穿堆叠层110的沟道孔中,沿沟道孔侧壁至沟道孔中心,存储单元串112依次包括存储功能层和沟道层,存储功能层起到电荷存储的作用,通常包括遂穿层、电荷存储层以及阻挡层,存储功能层可以基本为L型,沟道层形成于存储功能层的侧壁以及沟道孔的底部上,沟道层之间还可以形成有绝缘材料的填充层。可以理解的是,在具体的应用中,在该半导体衬底100的第一表面101之上,还可以包括其他的必要部件,例如存储单元串114顶部的导电垫、在存储单元串的下方的选通管器件等。In the 3D NAND memory device, the
在本申请实施例中,参考图1和图3所示,绝缘环150形成在衬底100中,该衬底100可以是经过减薄之后的衬底,其厚度通常会小于10um以下,可以通过传统的半导体工艺,例如光刻、刻蚀以及填充等工艺,来形成贯通的绝缘环150。In this embodiment of the present application, as shown in FIG. 1 and FIG. 3 , the insulating
绝缘环150由为能将衬底隔离为不同部分的材料形成,绝缘环150的材料例如可以为氧化硅、氮化硅或氮氧化硅等介质材料中的一种或多种来形成。绝缘环150为封闭的环形结构,绝缘环起到绝缘隔离的作用,使得将环内的衬底与环外的衬底隔离开,绝缘环内的衬底用来形成电阻结构。可以根据需要来设置绝缘环150的形状,绝缘环150的形状也即电阻结构的形状,绝缘环150的形状例如可以为多边形或圆形,多边形可以包括方形或其他多边形,方形包括正方形和长方形,参考图3所示,在该具体的示例中,绝缘环150的形状为方形。The insulating
本申请中,在绝缘环150内衬底的第一表面101中设置有扩散层104,也就是说,在绝缘环内150形成了硅扩散型电阻结构,该扩散层104为衬底中的掺杂层,扩散层104可以具有p型掺杂或n型掺杂,n型掺杂的掺杂离子例如可以为N、P、As、S等,p型掺杂的掺杂粒子例如可以为B、Al、Ga或In等。在具体的应用中,可以通过控制扩散层104的掺杂粒子、掺杂浓度及掺杂深度等工艺参数,以及结合绝缘环150内的面积,来获得所需阻值的电阻结构。In the present application, a
该电阻结构形成在存储器件所在的衬底100上,且在存储器件的非器件的空白区域上形成,为了便于描述,在本申请中,该区域记做第二区域1002,在第二区域1002的第一表面101上形成有覆盖层120,覆盖层120中形成有扩散层104的第一引出结构130和第二引出结构140,通过第一引出结构130和第二引出结构140将扩散层104引出。该第一引出结构130和第二引出结构140作为电阻的两个连接端,以便于其他衬底中的电路,例如外围电路使用该电阻结构。The resistance structure is formed on the
在具体的实施例中,覆盖层120可以具有不同的结构,可以为介质材料的叠层结构。第一引出结构130和第二引出结构140用于扩散层104电性引出,可以包括接触、一层或多层金属层以及连接金属层的过孔、衬垫等。在存储器件为3D NAND存储器件的实施例中,该覆盖层120包括第一覆盖层122和第二覆盖层124,第一覆盖层122基本与3D NAND存储器件的堆叠层110等高,第二覆盖层124为第一区域1001存储单元的介质层124;第一引出结构130包括贯穿第一覆盖层122的所述扩散层104上的第一接触132以及第二覆盖层124中、所述第一接触132上的第一互联结构134,第二引出结构140包括贯穿第一覆盖层122的所述扩散层104上的第二接触142以及第二覆盖层124中、所述第二接触142上的第二互联结构144。第一互联结构134、第二互联结构144可以包括一层或多次金属层以及连接金属层的过孔、衬垫等,可以与第一区域1001的存储单元串112上的存储器件互联结构114具有相同的结构,也就是可以在同一工艺中同时形成。In a specific embodiment, the
在衬底100的第二表面102上还可以进一步设置有钝化层160,该钝化层160起到保护作用,钝化层160可以为一层或多层结构,该钝化层160例如可以为氧化硅层。A
以上的半导体器件可以是晶圆制造完成后的晶圆上的器件,也可以是与其他晶圆完成封装后的封装结构中的器件,在封装结构的实施例中,参考图2所示,还进一步包括第二半导体衬底200,第二半导体衬底200上形成有MOS器件210以及MOS器件的互联结构220;该第一半导体衬底100的第一表面101朝向第二半导体衬底200的MOS器件的互联结构220,第一半导体衬底100与第二半导体衬底200固定,具体的应用中,可以是通过封装技术将两衬底上相对应的互联结构固定在一起,且第一引出结构130和第二引出结构140分别与所述MOS器件的互联结构220电连接。The above semiconductor device may be a device on a wafer after the wafer fabrication is completed, or a device in a package structure after being packaged with other wafers. In the embodiment of the package structure, referring to FIG. It further includes a
第一半导体衬底100和第二半导体衬底200通过封装技术固定在一起,将电阻结构形成在存储器件所在的衬底中,并通过第一引出结构130和第二引出结构140与第二半导体衬底200上的MOS器件的互联结构220电连接起来,这样,无需占用第二半导体衬底200的面积,利用第一半导体衬底100的存储器件之外的闲置区域,即可以实现用于第二半导体衬底200中电路所需的电阻结构的布局,减小外围电路所在衬底的有效面积,提高芯片的集成度。The
根据不同的设计需要,第二半导体衬底200上可以具有不同源漏工作电压以及器件类型,在3D NAND存储器件的应用中,3D NAND存储器件需要较高的驱动电压,其外围电路中通常包括高压MOS器件和低压MOS器件,也即HVMOS和LVMOS,器件类型可以为PMOS和/或NMOS。其中,高压MOS器件是相对于标准MOS器件的源漏工作电压而言,例如在0.18um的CMOS器件工艺中,标准MOS器件的源漏工作电压为1.8V,而高于该标准MOS器件的工作电压的,则为高压MOS器件。在3D NAND的应用中,高压MOS器件的源漏工作电压可以为高于20V,典型地可以为25V。According to different design requirements, the
在具体的实施例中,MOS器件至少包括第二半导体衬底200上的栅极、栅极侧壁的侧墙以及栅极两侧衬底中的源漏区,MOS器件的互联结构220包括一层或多次金属层以及连接金属层的过孔、衬垫等,互联结构220可以设置于源漏区和/或栅极上。In a specific embodiment, the MOS device at least includes a gate on the
以上对本申请实施例的半导体器件的结构进行了详细的描述,为了更好地理解本申请的技术方案和技术效果,以下将结合流程图和附图对具体的实施例进行详细的描述。The structure of the semiconductor device of the embodiments of the present application is described in detail above. In order to better understand the technical solutions and technical effects of the present application, the specific embodiments will be described in detail below with reference to the flowcharts and the accompanying drawings.
参考图4所示,在步骤S01,提供第一半导体衬底100,所述第一半导体衬底100具有第一表面101和与其相对的第二表面102,所述半导体衬底100包括第一区域1001和第二区域1002,所述第一区域1001的第一表面101上形成有存储器件;所述第二区域1002的第一表面101的衬底100中形成有扩散层104,所述第二区域1002的第一表面102上形成有覆盖层120,所述覆盖层120中形成有所述扩散层104的第一引出结构130和第二引出结构140,参考图5所示。Referring to FIG. 4 , in step S01 , a
在本申请优选实施例中,半导体衬底100可以为Si衬底、Ge衬底、SiGe衬底、SOI(绝缘体上硅,Silicon On Insulator)或GOI(绝缘体上锗,Germanium On Insulator)等。在其他实施例中,半导体衬底还可以为包括其他元素半导体或化合物半导体的衬底,例如GaAs、InP或SiC等,还可以为叠层结构,例如Si/SiGe等,还可以其他外延结构,例如SGOI(绝缘体上锗硅)等。在本实施例中,该半导体衬底100可以为硅衬底。In a preferred embodiment of the present application, the
在本申请实施例中,在该第一衬底100上已经形成有上述的存储器件、扩散层以及第一和第二引出结构,本申请并不对形成这些器件和结构的方法做特别限定,为了便于理解,以下将以一个具体的示例对这些器件和结构的方法进行描述。In this embodiment of the present application, the above-mentioned storage device, diffusion layer, and first and second lead-out structures have been formed on the
可以在第一区域1001上形成存储单元串112之后或之前,从第二区域1002的第二表面102在衬底100中形成扩散层104。具体的,可以通过离子注入向衬底注入所需类型的杂质,而后进行热退火激活掺杂,从而形成扩散层104,参考图5所示。具体的,扩散层104可以具有p型掺杂或n型掺杂,n型掺杂的掺杂离子例如可以为N、P、As、S等,p型掺杂的掺杂粒子例如可以为B、Al、Ga或In等,可以根据所要形成的电阻结构的阻值来选择掺杂粒子以及掺杂的浓度和深度等参数。The
在本实施例中,存储器件为立体的NAND存储器件,在具体实现中,首先,可以在第一区域1001的通过交替层叠牺牲层和绝缘层来形成堆叠层,牺牲层和绝缘层具有不同的刻蚀选择性,牺牲层将会被去除并由栅极层替代,牺牲层例如可以为氮化硅,绝缘层例如可以为氧化硅,堆叠层中牺牲层和绝缘层的层数由垂直方向所需形成的存储单元的个数来确定,牺牲层和绝缘层的层数例如可以为32层、64层、128层等,该层数决定了垂直方向上存储单元的个数,因此,堆叠层的层数越多,越能提高集成度。In this embodiment, the memory device is a three-dimensional NAND memory device. In a specific implementation, firstly, a stacked layer may be formed by alternately stacking sacrificial layers and insulating layers in the
而后,可以通过刻蚀工艺,使得堆叠层110的端部为阶梯结构,阶梯结构用于后续形成栅极层上的接触,堆叠层的中央区域为存储区,用于形成存储器件。Then, an etching process can be used to make the end of the stack layer 110 a stepped structure, the stepped structure is used for subsequent formation of contacts on the gate layer, and the central area of the stacked layer is a storage area for forming a memory device.
在形成存储器件的过程中,首先,在堆叠层中形成沟道孔,该沟道孔可以为堆叠层中的通孔,可以采用刻蚀技术,刻蚀堆叠层,直到暴露出衬底100第一表面101,形成沟道孔。而后,可以通过选择性外延生长(Selective EpitaxialGrowth),先在沟道孔底部原位生长出外延结构,该外延结构为选通管器件的沟道层。在该沟道孔下的衬底中,可以事先形成有掺杂区,作为选通管器件的有源区。而后,在沟道孔中形成存储单元串,具体地,现在沟道孔侧壁上形成存储功能层,存储功能层可以包括遂穿层、电荷存储层以及阻挡层,具体的可以为ONO叠层,ONO(Oxide-Ntride-Oxide)即氧化物、氮化物和氧化物,该存储功能层可以为L型,暴露出选通管器件的沟道层。而后,沉积沟道层,沟道层可以为多晶硅,从而在存储功能层以及选通管器件的沟道层上形成存储器件的沟道层。最后,以绝缘材料填充沟道孔,绝缘材料例如为氧化硅。In the process of forming the memory device, first, a channel hole is formed in the stacked layer, the channel hole can be a through hole in the stacked layer, and an etching technique can be used to etch the stacked layer until the
之后,可以刻蚀堆叠层110,形成栅线缝隙(Gate Line Seam),通过栅线缝隙将堆叠层中的牺牲层去除,同时,进行栅极材料的填充,栅极材料例如可以为金属钨,在原牺牲层的区域形成栅极层,并填充栅线缝隙。这样,形成了栅极层与绝缘层交替层叠的堆叠层110,该堆叠层中的栅极层作为存储单元串112的每个存储单元的控制栅极以及选通管器件的控制栅极。After that, the
而后,可以以介质材料覆盖上述器件,在第二区域1002的第一表面101以及堆叠层的阶梯结构(图未示出)上都将覆盖有第一覆盖层122,在进行平坦化工艺之后,第二区域上的第一覆盖层122将具有基本与堆叠层等高的厚度。Then, the above-mentioned device may be covered with a dielectric material, and the
之后,可以进行第一覆盖层122的刻蚀和填充,在第二区域1002的扩散层104上形成第一接触132以及第二接触142,以及在第一区域1001的堆叠层的阶梯结构上形成栅极接触(图未示出)。After that, etching and filling of the
之后,继续覆盖介质材料的第二覆盖层124,可以同时在第二区域1002的第一接触132、第二接触142上分别形成第一互联结构134、第二互联结构144,以及第一区域1001的存储单元串112之上形成存储器件的互联结构114,互联结构可以包括一层或多层金属层、连接金属层的过孔以及衬垫等。After that, continuing to cover the
至此,就在第一半导体衬底100的正面形成了存储器件以及电阻结构的扩散层104和扩散层104的引出结构。So far, the memory device and the
在步骤S02,从所述第二表面102进行所述第一半导体衬底100的减薄,参考图6所示。In step S02 , thinning of the
在需要将第一半导体衬底与另一半导体衬底封装在一起时,可以采用晶圆级封装技术,先将该第一半导体衬底与另一半导体衬底进行封装,而后,再进行从第一半导体衬底100的背面进行减薄的工艺。When the first semiconductor substrate and another semiconductor substrate need to be packaged together, the wafer level packaging technology can be used, the first semiconductor substrate and the other semiconductor substrate are packaged first, and then the The backside of a
在本实施例中,在进行减薄之前,参考图6所示,还包括:提供第二半导体衬底200,所述第二半导体衬底200上形成有MOS器件210以及MOS器件的互联结构220;将第一半导体衬底100的第一表面101朝向第二半导体衬底200的MOS器件的互联结构114,并将第一半导体衬底100与所述第二半导体衬底200固定,第一引出结构130和第二引出结构140分别与MOS器件的互联结构114电连接。In this embodiment, before thinning, as shown in FIG. 6 , the method further includes: providing a
在第二半导体衬底200上已经形成有MOS器件,MOS器件用于构成存储器件的外围电路,根据不同的设计需要,MOS器件可以具有不同源漏工作电压以及器件类型,在3D NAND存储器件的应用中,3D NAND存储器件需要较高的驱动电压,其外围电路中通常包括高压MOS器件和低压MOS器件,也即HVMOS和LVMOS,器件类型可以为PMOS和/或NMOS。A MOS device has been formed on the
具体的应用中,MOS器件包括第二半导体衬底200上的栅介质层、栅极、栅极侧壁的侧墙以及栅极两侧衬底中的源漏区,MOS器件的互联结构220包括一层或多次金属层以及连接金属层的过孔、衬垫等,互联结构220可以设置于源漏区和/或栅极上。其中,栅介质层1例如可以为热氧化层或其他合适的介质材料,例如氧化硅或高k介质材料,高k介质栅材料例如铪基氧化物,HFO2、HfSiO、HfSiON、HfTaO、HfTiO等中的一种或其中几种的组合。栅极例如可以为多晶硅、非晶硅或金属电极材料或他们的组合,金属电极材料可以为TiN、TiAl、Al、TaN、TaC、W一种或多种组合。侧墙可以具有单层或多层结构,可以由氮化硅、氧化硅、氮氧化硅、碳化硅、氟化物掺杂硅玻璃、低k电介质材料及其组合,和/或其他合适的材料形成。源漏区具有第一掺杂类型,第一掺杂类型可以为n型或p型。第二半导体衬底200上的MOS器件可以采用任意的方法形成,本申请此并不做特别限定。In a specific application, the MOS device includes a gate dielectric layer on the
在将第一半导体衬底100与所述第二半导体衬底200固定时,可以采用封装技术,例如金属键合或焊球连接等方式,将第一引出结构130和第二引出结构140分别与MOS器件的互联结构114进行固定并电连接。When the
这样,就将第一半导体衬底100与第二半导体衬底电连接在一起,将电阻结构形成在存储器件所在的衬底中,并通过第一引出结构130和第二引出结构140与第二半导体衬底200上的MOS器件的互联结构220电连接起来,这样,无需占用第二半导体衬底200的面积,利用第一半导体衬底100的存储器件之外的闲置区域,即可以实现用于第二半导体衬底200中电路所需的电阻结构的布局,减小外围电路所在衬底的有效面积,提高芯片的集成度。In this way, the
之后,参考图6所示,可以对第一半导体衬底100的反面进行减薄,使得衬底100具有合适的厚度,便于后续工艺的进行。具体的,可以通过化学机械研磨的方法,对第一半导体衬底100的第二表面102进行减薄,直到达到所需的厚度,通常地,减薄之后的第一半导体衬底100的厚度小于10um。Afterwards, as shown in FIG. 6 , the reverse side of the
在步骤S03,从所述第二表面102在所述第二区域1002中形成贯通所述半导体衬底100的绝缘环150,所述绝缘环150的内部区域覆盖所述第一引出结构130和第二引出结构140所连接的扩散层104区域,参考图7所示。In step S03 , an insulating
由于第一半导体衬底100经过减薄,厚度大大降低,则可以通过现有的半导体技术来形成贯通半导体衬底的绝缘环,具体的,可以先通过光刻工艺将绝缘环的图案转移至掩膜层中,而后,在该掩膜层的掩蔽下,通过刻蚀工艺,先从第二表面102进行衬底100的刻蚀,直至刻通衬底100,刻蚀出贯通的绝缘环,也即封闭的环形槽,而后,进行绝缘材料的填充,绝缘材料例如可以为氧化硅、氮化硅或氮氧化硅中的一种或多种,从而形成绝缘环150。通过控制绝缘环150所在的位置,使得绝缘环150的内部区域覆盖第一引出结构130和第二引出结构140所连接的扩散层104区域,这样,就在绝缘环150内形成了电阻结构。Since the thickness of the
可以根据需要来设置绝缘环150的形状,绝缘环150的形状也即电阻结构的形状,绝缘环150的形状例如可以为多边形或圆形,多边形例如可以为方形或其他形状,方形包括正方形和长方形,参考图3所示,在该具体的示例中,绝缘环150的形状为方形。最终以绝缘环150内的衬底面积以及绝缘环150内扩散层104的掺杂情况确定电阻结构的阻值。The shape of the insulating
这样,就在存储器件所在的衬底中集成了电阻结构,该电阻结构形成在衬底中的绝缘环内,通过扩散层调节阻值的电阻结构,该电阻结构通过两个引出结构将其扩散层引出,这两个引出结构作为电阻的两个连接端,以便于其他衬底中的电路,例如外围电路使用该电阻结构。In this way, the resistance structure is integrated in the substrate where the memory device is located, the resistance structure is formed in the insulating ring in the substrate, the resistance structure is adjusted by the diffusion layer, and the resistance structure is diffused through the two lead-out structures Layer lead-out, these two lead-out structures serve as two connection terminals of the resistor, so that circuits in other substrates, such as peripheral circuits, use the resistor structure.
之后,参考图8所示,还可以进一步在第二表面102上形成钝化层160。可以进行钝化层的沉积,例如氧化硅材料,并进行平坦化,从而形成该钝化层。Afterwards, as shown in FIG. 8 , a
至此,就完成本申请实施例的半导体器件的加工。So far, the processing of the semiconductor device of the embodiment of the present application is completed.
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred embodiments of the present invention. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art, without departing from the scope of the technical solution of the present invention, can make many possible changes and modifications to the technical solution of the present invention by using the methods and technical contents disclosed above, or modify them into equivalents of equivalent changes. Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention still fall within the protection scope of the technical solutions of the present invention.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811392815.3A CN109473435B (en) | 2018-11-21 | 2018-11-21 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811392815.3A CN109473435B (en) | 2018-11-21 | 2018-11-21 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109473435A CN109473435A (en) | 2019-03-15 |
CN109473435B true CN109473435B (en) | 2020-09-18 |
Family
ID=65674077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811392815.3A Active CN109473435B (en) | 2018-11-21 | 2018-11-21 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109473435B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110692138B (en) * | 2019-08-02 | 2021-04-27 | 长江存储科技有限责任公司 | Three-dimensional memory device and method of manufacturing the same |
CN111128721A (en) * | 2019-12-04 | 2020-05-08 | 长江存储科技有限责任公司 | Method of making memory and memory |
CN111162002B (en) * | 2020-01-02 | 2023-05-09 | 长江存储科技有限责任公司 | Memory manufacturing method and memory |
CN111180344B (en) * | 2020-01-02 | 2021-12-07 | 长江存储科技有限责任公司 | Three-dimensional stacked structure and preparation method |
WO2022077147A1 (en) * | 2020-10-12 | 2022-04-21 | Yangtze Advanced Memory Industrial Innovation Center Co., Ltd | Novel integration scheme with cpu bonding to 3d xpoint chip |
CN112702047B (en) * | 2021-01-04 | 2024-07-26 | 长江存储科技有限责任公司 | Switching device, integrated circuit, and electronic apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101562969B1 (en) * | 2009-03-03 | 2015-10-26 | 삼성전자주식회사 | Semiconductor device |
KR101190743B1 (en) * | 2010-12-30 | 2012-10-12 | 에스케이하이닉스 주식회사 | Nonvolatile memory device and method for fabricating the same |
CN102610495A (en) * | 2012-03-31 | 2012-07-25 | 上海宏力半导体制造有限公司 | Manufacturing method of semiconductor resistor, semiconductor resistor and electronic device |
-
2018
- 2018-11-21 CN CN201811392815.3A patent/CN109473435B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109473435A (en) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109473435B (en) | Semiconductor device and manufacturing method thereof | |
CN111566815B (en) | Three-dimensional memory device with backside source contact | |
CN111566816B (en) | Method for forming three-dimensional memory device with backside source contact | |
CN111801797B (en) | Method for forming three-dimensional memory device | |
CN111801798B (en) | three-dimensional memory device | |
CN109461737B (en) | Semiconductor device and manufacturing method thereof | |
US10249630B2 (en) | Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors | |
CN111801800B (en) | Three-dimensional memory device | |
CN111801799B (en) | Method for forming a three-dimensional memory device | |
KR102762111B1 (en) | 3D memory device with hydrogen-rich semiconductor channels | |
CN113097218A (en) | Three-dimensional memory device | |
CN112951838A (en) | Three-dimensional memory device | |
CN112041986A (en) | Method for forming three-dimensional memory device having support structure for staircase region | |
US20200365584A1 (en) | Nanosheet p-type transistor with oxygen reservoir | |
US10164037B2 (en) | Semiconductor device structure and method for forming the same | |
CN112424933A (en) | Method for forming three-dimensional memory device | |
TWI690025B (en) | Semiconductor-on-insulator (soi)substrate, method for forming thereof, and integrated circuit | |
CN112424934A (en) | Three-dimensional memory device | |
CN112585754A (en) | Method for forming three-dimensional memory device | |
TWI817877B (en) | Semiconductor structure | |
TWI875152B (en) | Semiconductor device including insulating structure surrounding through via and method for forming the same | |
CN115312463B (en) | Semiconductor device and method of forming the same | |
TW202414762A (en) | Semiconductor device including insulating structure surrounding through via and method for forming the same | |
CN117393535A (en) | Semiconductor device and method for manufacturing the same | |
CN116013897A (en) | Fuse element, semiconductor element and method for manufacturing fuse element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |