CN111384873A - A bionic inchworm drive device and excitation method thereof - Google Patents
A bionic inchworm drive device and excitation method thereof Download PDFInfo
- Publication number
- CN111384873A CN111384873A CN202010050003.1A CN202010050003A CN111384873A CN 111384873 A CN111384873 A CN 111384873A CN 202010050003 A CN202010050003 A CN 202010050003A CN 111384873 A CN111384873 A CN 111384873A
- Authority
- CN
- China
- Prior art keywords
- rotor
- hinge mechanism
- flexible hinge
- unit
- clamping unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000256247 Spodoptera exigua Species 0.000 title claims abstract description 18
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000005284 excitation Effects 0.000 title claims abstract description 10
- 230000036316 preload Effects 0.000 claims description 10
- 238000003754 machining Methods 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/101—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/021—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
- H02N2/023—Inchworm motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/04—Constructional details
- H02N2/043—Mechanical transmission means, e.g. for stroke amplification
- H02N2/046—Mechanical transmission means, e.g. for stroke amplification for conversion into rotary motion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/06—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/12—Constructional details
- H02N2/123—Mechanical transmission means, e.g. for gearing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明属于精密驱动领域,具体涉及一种仿生尺蠖式驱动装置及其激励方法。本发明解决了尺蠖型压电驱动装置结构复杂、控制困难的技术问题。该装置包括驱动单元、钳位单元、转子、螺钉和底座;驱动单元和钳位单元通过螺钉安装在底座上;该装置采用电压信号时序控制的激励方法,使驱动单元和钳位单元交替协同工作,可实现大行程高精度旋转运动,可应用于精密超精密机械加工、微机电系统、微操作机器人、生物技术、航空航天等领域。
The invention belongs to the field of precision driving, and in particular relates to a bionic inchworm type driving device and an excitation method thereof. The invention solves the technical problems of complex structure and difficult control of the inchworm type piezoelectric driving device. The device includes a driving unit, a clamping unit, a rotor, a screw and a base; the driving unit and the clamping unit are installed on the base by screws; the device adopts the excitation method of voltage signal timing control, so that the driving unit and the clamping unit work alternately and cooperatively , can realize large-stroke high-precision rotary motion, and can be used in precision ultra-precision machining, micro-electromechanical systems, micro-manipulation robots, biotechnology, aerospace and other fields.
Description
技术领域technical field
本发明涉及一种微纳精密驱动装置,特别涉及一种仿生尺蠖式驱动装置及其激励方法。The invention relates to a micro-nano precision driving device, in particular to a bionic inchworm type driving device and an excitation method thereof.
背景技术Background technique
具有微/纳米级定位精度的精密驱动技术是超精密加工与测量、光学工程、智能机器人、现代医疗、航空航天科技等高尖端科学技术领域中的关键技术。为实现微/纳米级的输出精度,现代精密驱动技术的应用对驱动装置的精度提出了更高要求。传统的驱动装置输出精度低,整体尺寸大,无法满足现代先进科技技术中精密系统对微/纳米级高精度和驱动装置尺寸微小的要求。压电驱动装置具有体积尺寸小、位移分辨率高、输出负载大、能量转换率高等优点,能实现微/纳米级的输出精度,已经越来越多地被应用到微定位和精密超精密加工中。尺蠖压电驱动装置在获得较大输出行程的同时能够保证较高的输出精度与承载能力,受到了研究学者的广泛关注。尺蠖型驱动装置通常需采用两路钳位单元、一路驱动单元,多路控制,存在结构复杂、控制困难的问题,不利于尺蠖型压电驱动的实际应用。因此,有必要设计一种能简化结构和控制的尺蠖型压电驱动装置。Precision drive technology with micro/nano-level positioning accuracy is a key technology in high-end scientific and technological fields such as ultra-precision machining and measurement, optical engineering, intelligent robots, modern medical care, and aerospace technology. In order to achieve micro/nano-level output precision, the application of modern precision drive technology puts forward higher requirements for the precision of the drive device. The traditional driving device has low output precision and large overall size, which cannot meet the requirements of micro/nano-level high precision and small size of the driving device in the precision system of modern advanced technology. Piezoelectric drives have the advantages of small size, high displacement resolution, large output load, and high energy conversion rate. They can achieve micro/nano-level output accuracy, and have been increasingly used in micro-positioning and precision ultra-precision machining. middle. The inchworm piezoelectric drive device can ensure high output precision and bearing capacity while obtaining a large output stroke, which has attracted extensive attention of researchers. The inchworm type driving device usually needs to use two clamping units, one driving unit, and multi-channel control, which has the problems of complex structure and difficult control, which is not conducive to the practical application of the inchworm type piezoelectric drive. Therefore, it is necessary to design an inchworm piezoelectric driving device that can simplify the structure and control.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种仿生尺蠖式驱动装置及其激励方法,解决现有技术存在的上述问题。本发明通过电压信号的时序控制,使用一组驱动单元和一组钳位单元交替协同工作,可实现大行程高精度旋转驱动,同时能有效简化装置结构和控制。The purpose of the present invention is to provide a bionic inchworm type driving device and an excitation method thereof to solve the above problems existing in the prior art. Through the time sequence control of the voltage signal, the present invention uses a group of driving units and a group of clamping units to work alternately and cooperatively, so as to realize the large-stroke and high-precision rotary drive, and at the same time, the device structure and control can be effectively simplified.
本发明的上述目的通过以下技术方案实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种仿生尺蠖式驱动装置,包括驱动单元、钳位单元、转子、螺钉和底座,驱动单元和钳位单元通过螺钉安装在底座上;所述装置通过对电压信号时序控制使驱动单元和钳位单元交替协同工作,驱动转子做旋转运动。A bionic inchworm type driving device, comprising a driving unit, a clamping unit, a rotor, a screw and a base, the driving unit and the clamping unit are mounted on the base by screws; The units work together alternately to drive the rotor to rotate.
所述的驱动单元包括压电叠堆、柔性铰链机构、预紧楔块;压电叠堆斜置于柔性铰链机构内,通过预紧楔块进行预紧;柔性铰链机构包含四个薄壁柔性铰链,通过螺钉可调节柔性铰链机构与转子间的初始预紧力,弧形凸起部分与转子接触,压电叠堆得电伸长可推动弧形凸起部分顶紧转子并带动转子旋转。The drive unit includes a piezoelectric stack, a flexible hinge mechanism, and a pre-tightening wedge; the piezoelectric stack is obliquely placed in the flexible hinge mechanism, and pre-tightened by the pre-tightening wedge; the flexible hinge mechanism includes four thin-walled flexible For the hinge, the initial pre-tightening force between the flexible hinge mechanism and the rotor can be adjusted through the screw, the arc-shaped convex part is in contact with the rotor, and the electric extension of the piezoelectric stack can push the arc-shaped convex part to tighten the rotor and drive the rotor to rotate.
所述的钳位单元包括压电叠堆、柔性铰链机构、预紧楔块;压电叠堆安装于柔性铰链机构内,通过预紧楔块进行预紧;柔性铰链机构包含四个薄壁柔性铰链,通过螺钉可调节柔性铰链机构与转子间的初始预紧力,弧形凸起部分与转子接触,压电叠堆得电伸长可推动弧形凸起部分顶住转子实现钳位。The clamping unit includes a piezoelectric stack, a flexible hinge mechanism, and a pre-tightening wedge; the piezoelectric stack is installed in the flexible hinge mechanism, and is pre-tightened by the pre-tightening wedge; the flexible hinge mechanism includes four thin-walled flexible For the hinge, the initial pre-tightening force between the flexible hinge mechanism and the rotor can be adjusted through the screw, the arc-shaped convex part is in contact with the rotor, and the electric extension of the piezoelectric stack can push the arc-shaped convex part against the rotor to achieve clamping.
一种仿生尺蠖式驱动装置的激励方法,包括以下步骤:An excitation method for a bionic inchworm drive device, comprising the following steps:
第①步,初始状态:调节螺钉来控制柔性铰链机构与转子间的初始预紧力;采用两组电压信号分别控制驱动单元、钳位单元;驱动单元和钳位单元的压电叠堆都不带电;Step ①, initial state: adjust the screw to control the initial preload between the flexible hinge mechanism and the rotor; use two sets of voltage signals to control the driving unit and the clamping unit respectively; the piezoelectric stacks of the driving unit and the clamping unit are not charged;
第②步,驱动单元推动转子旋转;
第③步,钳位单元对转子进行钳位;
第④步,驱动单元恢复到初始状态;The fourth step, the drive unit is restored to the initial state;
第⑤步,钳位单元恢复到初始状态,一个运动周期结束;Step ⑤, the clamping unit returns to the initial state, and one movement cycle ends;
第⑥步,重复上述步骤,驱动单元和钳位单元交替工作,该驱动装置可实现大行程高精度旋转运动。In step ⑥, the above steps are repeated, the driving unit and the clamping unit work alternately, and the driving device can realize large-stroke high-precision rotary motion.
本发明的主要优势在于:通过电压信号的时序控制,采用一组驱动单元和一组钳位单元交替协同工作,可实现微纳米级大行程旋转运动,同时可以有效简化装置结构和控制。该装置可应用于精密超精密加工、微操作机器人、微机电系统、大规模集成电路制造、生物技术等重要科学工程领域。The main advantage of the present invention is: through the time sequence control of the voltage signal, a group of driving units and a group of clamping units are used to work alternately and cooperatively, so that the micro-nano level large-stroke rotational motion can be realized, and the device structure and control can be effectively simplified. The device can be applied to important scientific and engineering fields such as precision ultra-precision machining, micro-manipulation robots, micro-electromechanical systems, large-scale integrated circuit manufacturing, and biotechnology.
附图说明Description of drawings
此处附图说明用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings here are used to provide a further understanding of the present invention and constitute a part of the present application. The schematic examples of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention.
图1是本发明的等轴测视示意图;1 is a schematic isometric view of the present invention;
图2是本发明的驱动单元柔性铰链机构示意图;Fig. 2 is the schematic diagram of the flexible hinge mechanism of the drive unit of the present invention;
图3是本发明的钳位单元柔性铰链机构示意图;3 is a schematic diagram of the flexible hinge mechanism of the clamping unit of the present invention;
图4是加载在驱动单元压电叠堆、钳位单元压电叠堆上的电压信号。FIG. 4 is a voltage signal applied to the piezoelectric stack of the driving unit and the piezoelectric stack of the clamping unit.
图中:In the picture:
1.驱动单元; 2.转子; 3.底座;1. Drive unit; 2. Rotor; 3. Base;
4.钳位单元; 5.螺钉; 1-1.压电叠堆I;4. Clamping unit; 5. Screw; 1-1. Piezoelectric stack I;
1-2.预紧楔块I; 1-3.柔性铰链机构I; 4-1.压电叠堆II;1-2. Preload wedge I; 1-3. Flexible hinge mechanism I; 4-1. Piezoelectric stack II;
4-2.预紧楔块II; 4-3.柔性铰链机构II。4-2. Preload wedge II; 4-3. Flexible hinge mechanism II.
具体实施方式Detailed ways
下面结合附图进一步说明本发明的详细内容及其具体实施方式。The details of the present invention and the specific implementations thereof will be further described below with reference to the accompanying drawings.
参见图1至图3所示,一种仿生尺蠖式驱动装置,主要包括驱动单元(1)、钳位单元(4)、转子(2)、螺钉(5)和底座(3),驱动单元(1)和钳位单元(4)通过螺钉(5)安装在底座(3)上;所述装置通过对电压信号时序控制使驱动单元(1)和钳位单元(4)交替协同工作,驱动转子(2)做旋转运动。Referring to Figures 1 to 3, a bionic inchworm driving device mainly includes a driving unit (1), a clamping unit (4), a rotor (2), a screw (5) and a base (3), and the driving unit ( 1) and the clamping unit (4) are mounted on the base (3) through screws (5); the device makes the driving unit (1) and the clamping unit (4) work alternately and cooperatively by controlling the voltage signal sequence to drive the rotor (2) Do a rotating motion.
所述的驱动单元(1)包括柔性铰链机构I(1-3)、预紧楔块I(1-2)、压电叠堆I(1-1);压电叠堆I(1-1)安装于柔性铰链机构I(1-3)内,通过预紧楔块I(1-2)进行预紧;柔性铰链机构I(1-3)包含四个薄壁柔性铰链,通过螺钉(5)可调节柔性铰链机构I(1-3)与转子(2)之间的初始预紧力,弧形凸起部分与转子(2)接触,压电叠堆I(1-1)得电伸长可推动弧形凸起部分顶紧转子(2)并带动转子(2)旋转。The drive unit (1) includes a flexible hinge mechanism I(1-3), a preload wedge I(1-2), a piezoelectric stack I(1-1); the piezoelectric stack I(1-1) ) is installed in the flexible hinge mechanism I (1-3), and is pre-tightened by the pre-tightening wedge I (1-2); ) The initial preload force between the flexible hinge mechanism I (1-3) and the rotor (2) can be adjusted, the arc-shaped convex part is in contact with the rotor (2), and the piezoelectric stack I (1-1) is electrically stretched. The long can push the arc-shaped convex part to press against the rotor (2) and drive the rotor (2) to rotate.
所述的钳位单元(4)包括压电叠堆II(4-1)、预紧楔块II(4-2)、柔性铰链机构II(4-3);压电叠堆II(4-1)安装于柔性铰链机构II(4-3)内,通过预紧楔块II(4-2)进行预紧;柔性铰链机构II(4-3)包含四个薄壁柔性铰链,通过螺钉(5)可调节柔性铰链机构II(4-3)与转子(2)之间的初始预紧力,弧形凸起部分与转子(2)接触,压电叠堆II(4-1)得电伸长可推动弧形凸起部分顶住转子(2)实现钳位。The clamping unit (4) includes a piezoelectric stack II (4-1), a preload wedge II (4-2), a flexible hinge mechanism II (4-3); the piezoelectric stack II (4-2) 1) Installed in the flexible hinge mechanism II (4-3), and pre-tightened by the pre-tightening wedge II (4-2); the flexible hinge mechanism II (4-3) contains four thin-walled flexible hinges, which are 5) The initial preload force between the flexible hinge mechanism II (4-3) and the rotor (2) can be adjusted, the arc-shaped convex part is in contact with the rotor (2), and the piezoelectric stack II (4-1) is energized The elongation can push the arc-shaped convex part against the rotor (2) to realize clamping.
一种仿生尺蠖式驱动装置的激励方法,包括以下步骤:An excitation method for a bionic inchworm drive device, comprising the following steps:
第①步,初始状态:调节螺钉(5)来控制柔性铰链机构I(1-3)、柔性铰链机构II(4-3)与转子(2)间的初始预紧力;采用两组电压信号分别控制驱动单元(1)、钳位单元(4);驱动单元(1)和钳位单元(4)的压电叠堆都不带电;Step ①, initial state: adjust the screw (5) to control the initial preload between the flexible hinge mechanism I (1-3), flexible hinge mechanism II (4-3) and the rotor (2); use two sets of voltage signals The driving unit (1) and the clamping unit (4) are controlled respectively; the piezoelectric stacks of the driving unit (1) and the clamping unit (4) are not charged;
第②步,驱动单元(1)推动转子(2)旋转;
第③步,钳位单元(4)对转子(2)进行钳位;
第④步,驱动单元(1)恢复到初始状态;The fourth step, the drive unit (1) is restored to the initial state;
第⑤步,钳位单元(4)恢复到初始状态,一个运动周期结束;Step ⑤, the clamping unit (4) is restored to the initial state, and one movement cycle ends;
第⑥步,重复上述步骤,驱动单元(1)和钳位单元(4)交替工作,该驱动装置可实现大行程高精度旋转运动。In step ⑥, the above steps are repeated, the driving unit (1) and the clamping unit (4) work alternately, and the driving device can realize large-stroke and high-precision rotary motion.
参见图1至图4所示,本发明的具体工作过程如下:1 to 4, the specific working process of the present invention is as follows:
第①步,初始状态:调节螺钉(5)来控制柔性铰链机构I(1-3)、柔性铰链机构II(4-3)与转子(2)间的初始预紧力。采用两组电压信号U1、U2分别控制驱动单元(1)中的压电叠堆I(1-1)、钳位单元(4)中的压电叠堆II(4-1)。压电叠堆I(1-1)、压电叠堆II(4-1)都不带电;Step ①, initial state: adjust the screw (5) to control the initial preload between the flexible hinge mechanism I (1-3), the flexible hinge mechanism II (4-3) and the rotor (2). Two sets of voltage signals U 1 and U 2 are used to control the piezoelectric stack I (1-1) in the driving unit (1) and the piezoelectric stack II (4-1) in the clamping unit (4), respectively. Piezoelectric stack I (1-1) and piezoelectric stack II (4-1) are not charged;
第②步,U1上升信号,驱动单元(1)动作:当压电叠堆I(1-1)通电后,通过逆压电效应伸长,驱动柔性铰链机构I(1-3)变形,导致柔性铰链机构I(1-3)的弧形凸起顶紧转子(2),同时带动转子(2)旋转;The second step, U1 rises the signal, the driving unit ( 1 ) acts: when the piezoelectric stack I (1-1) is energized, it stretches through the inverse piezoelectric effect to drive the flexible hinge mechanism I (1-3) to deform, Cause the arc-shaped protrusion of the flexible hinge mechanism I (1-3) to press against the rotor (2), and at the same time drive the rotor (2) to rotate;
第③步,U2上升信号,钳位单元(4)动作:在压电叠堆I(1-1)失电回退前,钳位单元(4)的压电叠堆II(4-1)通电,通过逆压电效应伸长,推动柔性铰链机构II(4-3)的弧形凸起顶紧转子(2)进行钳位;
第④步,U1下降信号,驱动单元(1)恢复:压电叠堆I(1-1)失电,恢复到初始状态,柔性铰链机构I(1-3)也恢复到初始状态,转子(2)仍保持在转动一个角度后的位置;Step 4, U1 drops the signal, the drive unit ( 1 ) recovers: the piezoelectric stack I (1-1) loses power and returns to the initial state, the flexible hinge mechanism I (1-3) also returns to the initial state, the rotor (2) remains in the position after turning an angle;
第⑤步,U2下降信号,钳位单元(4)恢复:压电叠堆II(4-1)失电,恢复到初始状态,柔性铰链机构II(4-3)也恢复到初始状态,一个运动周期结束;Step ⑤, U 2 drops the signal, the clamping unit (4) recovers: the piezoelectric stack II (4-1) loses power and returns to the initial state, and the flexible hinge mechanism II (4-3) also returns to the initial state, A motion cycle ends;
重复上述步骤,驱动单元(1)和钳位单元(4)交替工作,该驱动装置可实现大行程高精度旋转运动。By repeating the above steps, the driving unit (1) and the clamping unit (4) work alternately, and the driving device can realize large-stroke and high-precision rotational motion.
本发明涉及的一种仿生尺蠖式驱动装置及其激励方法,通过对电压信号的时序控制,采用一组驱动单元和一组钳位单元交替协同工作,可实现大行程精密旋转驱动,具有发热小、驱动平稳、可靠、高效的特点。The invention relates to a bionic inchworm type driving device and an excitation method thereof. Through the time sequence control of the voltage signal, a group of driving units and a group of clamping units are used to alternately work together, which can realize large-stroke precision rotational driving, and has the advantages of low heat generation and low heat generation. , The drive is stable, reliable and efficient.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010050003.1A CN111384873B (en) | 2020-01-08 | 2020-01-08 | Bionic inchworm type driving device and excitation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010050003.1A CN111384873B (en) | 2020-01-08 | 2020-01-08 | Bionic inchworm type driving device and excitation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111384873A true CN111384873A (en) | 2020-07-07 |
CN111384873B CN111384873B (en) | 2023-09-12 |
Family
ID=71217089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010050003.1A Active CN111384873B (en) | 2020-01-08 | 2020-01-08 | Bionic inchworm type driving device and excitation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111384873B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113162465A (en) * | 2021-04-22 | 2021-07-23 | 燕山大学 | Piezoelectric stack driving stepping type rotating motor |
CN115051595A (en) * | 2022-06-30 | 2022-09-13 | 山东大学 | Single-degree-of-freedom piezoelectric inchworm driver and excitation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110109197A1 (en) * | 2009-11-12 | 2011-05-12 | Casio Computer Co., Ltd. | Drive device |
CN102723893A (en) * | 2012-07-03 | 2012-10-10 | 吉林大学 | Micro-nano simulation rotating drive device |
CN108322090A (en) * | 2018-03-04 | 2018-07-24 | 长春工业大学 | External stirs type rotary piezoelectric stick-slip driver and its driving method |
CN109217717A (en) * | 2018-09-26 | 2019-01-15 | 吉林大学 | Arcuate structure hinge inhibits the apparatus and method of parasitic piezoelectric actuator rollback movement |
CN109713936A (en) * | 2019-03-20 | 2019-05-03 | 杨晓峰 | Elliptical vibration piezoelectric actuator and its driving method |
CN109756148A (en) * | 2019-03-20 | 2019-05-14 | 唐金岩 | The apparatus and method of active suppression parasitic motion principle piezoelectric actuator rollback movement |
CN110048636A (en) * | 2019-04-19 | 2019-07-23 | 西安科技大学 | Piezoelectric supersonic driver and its application method based on longitudinal-shaking sandwich formula energy converter |
-
2020
- 2020-01-08 CN CN202010050003.1A patent/CN111384873B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110109197A1 (en) * | 2009-11-12 | 2011-05-12 | Casio Computer Co., Ltd. | Drive device |
CN102723893A (en) * | 2012-07-03 | 2012-10-10 | 吉林大学 | Micro-nano simulation rotating drive device |
CN108322090A (en) * | 2018-03-04 | 2018-07-24 | 长春工业大学 | External stirs type rotary piezoelectric stick-slip driver and its driving method |
CN109217717A (en) * | 2018-09-26 | 2019-01-15 | 吉林大学 | Arcuate structure hinge inhibits the apparatus and method of parasitic piezoelectric actuator rollback movement |
CN109713936A (en) * | 2019-03-20 | 2019-05-03 | 杨晓峰 | Elliptical vibration piezoelectric actuator and its driving method |
CN109756148A (en) * | 2019-03-20 | 2019-05-14 | 唐金岩 | The apparatus and method of active suppression parasitic motion principle piezoelectric actuator rollback movement |
CN110048636A (en) * | 2019-04-19 | 2019-07-23 | 西安科技大学 | Piezoelectric supersonic driver and its application method based on longitudinal-shaking sandwich formula energy converter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113162465A (en) * | 2021-04-22 | 2021-07-23 | 燕山大学 | Piezoelectric stack driving stepping type rotating motor |
CN115051595A (en) * | 2022-06-30 | 2022-09-13 | 山东大学 | Single-degree-of-freedom piezoelectric inchworm driver and excitation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111384873B (en) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111384872B (en) | Rotary driving platform and control method thereof | |
CN102946210B (en) | Inchworm type multi-degree of freedom piezoelectric driving device | |
CN111162692B (en) | A clamping piezoelectric driving platform and its excitation method | |
CN110752771B (en) | A piezoelectric rotary precision drive platform based on parasitic inertia principle | |
CN110912448B (en) | A Piezoelectric Drive Platform Based on Asymmetric Triangular Flexible Hinge Mechanism | |
CN111130383B (en) | An inchworm-type driving platform and its control method | |
CN111384873B (en) | Bionic inchworm type driving device and excitation method thereof | |
CN110768571B (en) | Bionic creeping type piezoelectric precision driving device based on parasitic inertia principle | |
CN110855179B (en) | Creeping type piezoelectric precision driving device | |
CN110798094B (en) | Piezoelectric linear precision driving device based on parasitic inertia principle | |
CN110912444B (en) | A bionic crawling piezoelectric driver | |
CN111245289B (en) | Piezoelectric-driven rotary motion device and control method thereof | |
CN110829882B (en) | T-shaped piezoelectric driving device | |
CN110855181B (en) | Rotary piezoelectric driving device based on asymmetric triangular hinge mechanism | |
CN111193435A (en) | a rotary actuator | |
CN111162690B (en) | Piezoelectric driving device and control method thereof | |
CN202957767U (en) | Inchworm-type multi-degree-of-freedom piezoelectric actuator | |
CN110768570B (en) | A micro-nano step piezoelectric drive device | |
CN110912447B (en) | Piezoelectric rotary driving platform based on crawling principle | |
CN111181437B (en) | Variable friction driving device | |
CN111162691B (en) | A rotary motion drive device | |
CN110829880B (en) | T-shaped crawling piezoelectric driving platform | |
CN111193436B (en) | Stepping driving device | |
CN111130382A (en) | Driving device with spring mechanism | |
CN210469144U (en) | A Novel High Efficiency Piezoelectric Rotary Precision Drive Platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |