CN111272089B - In-situ gap detection device and detection method - Google Patents
In-situ gap detection device and detection method Download PDFInfo
- Publication number
- CN111272089B CN111272089B CN202010138013.0A CN202010138013A CN111272089B CN 111272089 B CN111272089 B CN 111272089B CN 202010138013 A CN202010138013 A CN 202010138013A CN 111272089 B CN111272089 B CN 111272089B
- Authority
- CN
- China
- Prior art keywords
- situ
- gap
- module
- stage
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 90
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 81
- 230000002093 peripheral effect Effects 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims abstract description 3
- 238000005259 measurement Methods 0.000 claims description 27
- 238000006073 displacement reaction Methods 0.000 claims description 21
- 239000013307 optical fiber Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本发明公开了一种原位间隙检测装置与检测方法。该装置包括:用于支撑整体结构的外围框架;用于精密定位、调平、间隙控制和承载样片的工件台模块;用于装载母板、检测调平精度的承载模块;用于测量原位间隙的原位间隙检测模块;用于数据采集、处理与反馈控制的控制系统。该发明基于白光干涉间隙测量方法,通过外围三点监测母板与样片之间的间隙,并反馈控制工件台模块进行精密调平与间隙控制。同时结合白光干涉间隙测量方法与显微成像方法,对母板与样片中间工作区域进行横向分辨力高、检测精度高的原位间隙检测。
The invention discloses an in-situ gap detection device and a detection method. The device includes: a peripheral frame for supporting the overall structure; a workpiece stage module for precise positioning, leveling, gap control and carrying samples; a carrier module for loading the mother board and testing the leveling accuracy; for measuring the in-situ In-situ gap detection module for gap; control system for data acquisition, processing and feedback control. Based on the white light interference gap measurement method, the invention monitors the gap between the mother board and the sample through three peripheral points, and feeds back and controls the workpiece stage module to perform precise leveling and gap control. At the same time, combined with the white light interference gap measurement method and the microscopic imaging method, the in-situ gap detection with high lateral resolution and high detection accuracy is performed on the working area between the mother board and the sample.
Description
技术领域technical field
本发明属于精密检测技术领域,具体涉及一种母板与样片之间原位间隙检测装置与检测方法。The invention belongs to the technical field of precision detection, and in particular relates to an in-situ gap detection device and a detection method between a mother board and a sample.
背景技术Background technique
随着技术的发展,很多领域都需要对母板和样片进行精密间隙检测与控制,但是往往检测位置都只能在非工作区域。由于母板与样片加工面形偏差、装配变形等原因,通过工作区域外围的检测数据,控制工作区域的间隙分布往往是不可行的。如何实现既不破坏工作区域状态,又能检测工作区域间隙分布的工作成为了一个重要研究方向。With the development of technology, many fields require precise clearance detection and control of motherboards and samples, but often the detection position can only be in the non-working area. Due to the deviation of the processing surface shape of the mother board and the sample, assembly deformation, etc., it is often not feasible to control the clearance distribution of the working area through the detection data of the periphery of the working area. How to realize the work of not destroying the state of the working area and detecting the distribution of the gap in the working area has become an important research direction.
对原位间隙进行检测有几个要求十分关键:一是非接触测量,不破坏工作区域状态;二是检测横向分辨力要小,最大限度检测原位间隙分布状态;三是检测完成后不影响正常工作的开展。There are several critical requirements for the detection of the in-situ gap: first, non-contact measurement, without destroying the state of the working area; second, the detection lateral resolution should be small, and the distribution of the in-situ gap should be detected to the maximum extent; third, after the detection is completed, it will not affect the normal development of work.
本发明是一种原位间隙检测装置与检测方法,结合白光干涉间隙测量方法与显微成像方法,可对母板与样片中间工作区域进行横向分辨力高、检测精度高的原位间隙检测。The invention is an in-situ gap detection device and detection method, which combines the white light interference gap measurement method and the microscopic imaging method, and can perform in-situ gap detection with high lateral resolution and high detection accuracy in the working area between the mother board and the sample.
发明内容SUMMARY OF THE INVENTION
本发明需要解决的技术问题是:提出一种原位间隙检测装置与检测方法,该发明基于白光干涉间隙测量方法,通过外围三点监测母板与样片之间的间隙,并反馈控制工件台模块进行精密调平与间隙控制。同时结合白光干涉间隙测量方法与显微成像方法,对母板与样片中间工作区域进行横向分辨力高、检测精度高的原位间隙检测。The technical problem to be solved by the present invention is to propose an in-situ gap detection device and a detection method. The invention is based on a white light interference gap measurement method, monitors the gap between the mother board and the sample through three peripheral points, and feeds back and controls the workpiece stage module. Perform precise leveling and clearance control. At the same time, combined with the white light interference gap measurement method and the microscopic imaging method, the in-situ gap detection with high lateral resolution and high detection accuracy is performed on the working area between the mother board and the sample.
本发明解决上述技术问题采用的技术方案是:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is:
一种原位间隙检测装置,该装置包括An in-situ gap detection device, the device includes
用于支撑整体结构的外围框架;A perimeter frame for supporting the overall structure;
用于精密定位、调平、间隙控制和承载样片的工件台模块;Workpiece stage modules for precise positioning, leveling, gap control and sample loading;
用于装载母板、检测调平精度的承载模块;A carrier module for loading the motherboard and testing the leveling accuracy;
用于测量原位间隙的原位间隙检测模块;In-situ gap detection module for measuring in-situ gap;
用于数据采集、处理与反馈控制的控制系统。Control system for data acquisition, processing and feedback control.
其中,所述的外围框架应具有较好的强度与刚度,同时应安装有隔震平台以最大程度隔离外界扰动。Among them, the peripheral frame should have good strength and rigidity, and at the same time, a vibration isolation platform should be installed to isolate the external disturbance to the greatest extent.
其中,所述工作台模块安装在外围框架的下基板上,所述工作台模块包括:六轴精密位移台、六轴纳米位移台、承片台和样片。其中六轴精密位移台用于样片大行程范围的定位与姿态调整;六轴纳米位移台用于高精度的定位与姿态调整,主要包括精密定位、调平和间隙控制。Wherein, the worktable module is installed on the lower substrate of the peripheral frame, and the worktable module includes: a six-axis precision displacement stage, a six-axis nano-displacement stage, a wafer-bearing stage and a sample. Among them, the six-axis precision displacement stage is used for positioning and attitude adjustment of the large stroke range of the sample; the six-axis nano-displacement stage is used for high-precision positioning and attitude adjustment, mainly including precise positioning, leveling and gap control.
其中,所述的承载模块安装在外围框架的上基板上。所述的承载模块包括:母板、三路测量光纤和固定框架。其中三路测量光纤垂直于母板,安装在固定框架上,三路测量光纤应安装在非工作区域,呈三角形分布,用于总体监测母板与样片之间的间隙;母板采用真空吸附的方式安装在固定框架上。Wherein, the carrying module is mounted on the upper substrate of the peripheral frame. The carrying module includes: a motherboard, a three-way measurement optical fiber and a fixed frame. Among them, the three-way measuring fibers are perpendicular to the mother board and are installed on the fixed frame. The three-way measuring fibers should be installed in the non-working area and distributed in a triangular shape for overall monitoring of the gap between the mother board and the sample; the mother board is vacuum-adsorbed. mounted on the fixed frame.
其中,所述的原位间隙检测模块安装在外围框架的上基板上。所述的原位间隙检测模块包括:三轴精密位移台、物镜、安装板、显微成像主体、原位检测模块。其中三轴精密位移台包含X/Y水平移动轴和Z垂直升降轴,用于调节检测位置和检测焦点,同时通过大行程的三轴精密位移台还可以将原位间隙检测模块移开工作区域,从而不影响母板与样片正常工作;物镜应根据横向分辨力和工作距离限制进行选择。Wherein, the in-situ gap detection module is installed on the upper substrate of the peripheral frame. The in-situ gap detection module includes: a three-axis precision displacement stage, an objective lens, a mounting plate, a microscopic imaging body, and an in-situ detection module. Among them, the three-axis precision stage includes X/Y horizontal movement axis and Z vertical lift axis, which are used to adjust the detection position and detection focus. At the same time, the in-situ gap detection module can be moved out of the working area through the large-stroke three-axis precision stage. , so as not to affect the normal operation of the mother board and the sample; the objective lens should be selected according to the lateral resolution and working distance constraints.
其中,所述的原位检测模块安装原位间隙检测模块的显微成像主体上,所述的原位检测模块包括:转接头、光纤头和测量光纤。测量光纤可以是单路耦合进入原位检测模块进行单点测量,也可以是多路耦合进入原位检测模块进行多点测量。Wherein, the in-situ detection module is installed on the microscopic imaging main body of the in-situ gap detection module, and the in-situ detection module includes an adapter, an optical fiber head and a measurement optical fiber. The measurement fiber can be single-channel coupled into the in-situ detection module for single-point measurement, or multi-channel coupled into the in-situ detection module for multi-point measurement.
一种原位间隙检测方法,利用上述的装置,包括:An in-situ gap detection method, using the above-mentioned device, comprising:
步骤(a)、将母板吸附安装在固定框架上,样片吸附安装在承片台上,通过控制系统控制工作台模块定位到检测区域。In step (a), the mother board is adsorbed and installed on the fixed frame, the sample is adsorbed and mounted on the support table, and the worktable module is controlled by the control system to be positioned to the detection area.
步骤(b)、控制系统采集三路测量光纤信号,分析处理出间隙值,并反馈控制工作台模块进行总体调平与间隙控制。In step (b), the control system collects three-way measurement optical fiber signals, analyzes and processes the gap value, and feeds back the control table module to perform overall leveling and gap control.
步骤(c)、原位间隙检测模块对中间工作区域进行小视场、高精度原位间隙检测,通过三轴精密位移台可以扫描测量整个工作区域的原位间隙分布情况。通过扫描测量数据或者多点测量数据可以控制工件台模块对调平状态和间隙进行修正,以确保原位间隙分布满足工作需求。In step (c), the in-situ gap detection module performs a small field of view and high-precision in-situ gap detection on the intermediate working area, and the in-situ gap distribution of the entire working area can be scanned and measured through the three-axis precision displacement stage. By scanning measurement data or multi-point measurement data, the workpiece table module can be controlled to correct the leveling state and clearance to ensure that the in-situ clearance distribution meets the work requirements.
步骤(d)、原位间隙检测与修正完成后可以通过大行程的三轴精密位移台将原位间隙检测模块移开工作区域,从而不影响母板与样片正常工作。In step (d), after the in-situ clearance detection and correction are completed, the in-situ clearance detection module can be moved out of the working area through a large-stroke three-axis precision displacement stage, so as to not affect the normal operation of the motherboard and the sample.
本发明原理在于:The principle of the present invention is:
1、基于白光干涉间隙测量方法,通过外围三点监测母板与样片之间的间隙,并反馈控制工件台模块进行精密调平与间隙控制。1. Based on the white light interference gap measurement method, the gap between the motherboard and the sample is monitored through three peripheral points, and the workpiece stage module is fed back to control the precision leveling and gap control.
2、结合白光干涉间隙测量方法与显微成像方法,对母板与样片中间工作区域进行横向分辨力高、检测精度高的原位间隙检测。2. Combined with the white light interference gap measurement method and the microscopic imaging method, the in-situ gap detection with high lateral resolution and high detection accuracy is performed on the working area between the mother board and the sample.
本发明的有益效果是:The beneficial effects of the present invention are:
1、实现对中间工作区域进行小视场、高精度原位间隙检测,可以通过扫描或者多点测量方式测量整个工作区域的原位间隙分布情况。1. Realize the small field of view and high-precision in-situ gap detection in the middle working area, and the in-situ gap distribution of the entire working area can be measured by scanning or multi-point measurement.
2、可以通过扫描测量数据或者多点测量数据对调平状态和间隙进行修正,以确保原位间隙分布满足工作需求。2. The leveling state and clearance can be corrected by scanning measurement data or multi-point measurement data to ensure that the in-situ clearance distribution meets the work requirements.
3、检测完成后可以将原位间隙检测模块移开工作区域,从而不影响母板与样片正常工作。3. After the detection is completed, the in-situ gap detection module can be removed from the working area, so as not to affect the normal operation of the motherboard and the sample.
附图说明Description of drawings
图1为本发明的一种原位间隙检测装置的结构示意图;1 is a schematic structural diagram of an in-situ gap detection device according to the present invention;
图2为本发明外围框架结构示意图;Fig. 2 is the schematic diagram of the peripheral frame structure of the present invention;
图3为本发明工件台模块结构示意图;3 is a schematic structural diagram of a workpiece table module of the present invention;
图4为本发明承载模块结构示意图;4 is a schematic structural diagram of a bearing module of the present invention;
图5为本发明原位间隙检测模块结构示意图;5 is a schematic structural diagram of an in-situ gap detection module of the present invention;
图6为本发明原位检测模块的两种实施方式示意图。FIG. 6 is a schematic diagram of two embodiments of the in-situ detection module of the present invention.
附图标记:Reference number:
1 是外围框架1 is the peripheral frame
2 是工件台模块2 is the workpiece table module
3 是承载模块3 is the carrier module
4 是原位间隙检测模块4 is the in-situ gap detection module
5 是控制系统5 is the control system
6 是隔震平台6 is the isolation platform
7 是下基板7 is the lower substrate
8 是立柱8 is the column
9 是上基板9 is the upper substrate
10 是六轴精密位移台10 is a six-axis precision stage
11 是六轴纳米位移台11 is a six-axis nanostage
12 是承片台12 is the stage
13 是样片13 is a sample
14 是母板14 is the motherboard
15 是三路测量光纤15 is a three-way measurement fiber
16 是固定框架16 is the fixed frame
17 是三轴精密位移台17 is a three-axis precision stage
18 是物镜18 is the objective lens
19 是安装板19 is the mounting plate
20 是显微成像主体20 is the microscopic imaging subject
21 是原位检测模块21 is the in-situ detection module
21a 是单路原位检测模块21a is a single-channel in-situ detection module
21b 是三路原位检测模块21b is a three-way in-situ detection module
22 是转接头22 is the adapter
23 是光纤头23 is the fiber head
24a 是测量光纤(单路)24a is measuring fiber (single)
24b 是测量光纤(三路)24b is measuring fiber (three-way)
具体实施方式Detailed ways
为使本发明的目的、技术方案和装置等的优点更加清楚,以下结合附图对本发明做进一步详细说明。In order to make the objectives, technical solutions and advantages of the device of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings.
参照图1、图2,一种原位间隙检测装置包括用于支撑整体结构的外围框架1;用于精密定位、调平、间隙控制和承载样片的工件台模块2;用于装载母板、检测调平精度的承载模块3;用于测量原位间隙的原位间隙检测模块4;用于数据采集、处理与反馈控制的控制系统5。其中外围框架1应具有较好的强度与刚度,同时应安装有隔震平台6以最大程度隔离外界扰动。Referring to Figures 1 and 2, an in-situ gap detection device includes a peripheral frame 1 for supporting the overall structure; a
参照图3,工作台模块2安装在外围框架1的下基板7上,包括:六轴精密位移台10、六轴纳米位移台11、承片台12和样片13。其中六轴精密位移台10用于样片13大行程范围的定位与姿态调整;六轴纳米位移台11用于高精度的定位与姿态调整,主要包括精密定位、调平和间隙控制。3 , the
参照图4,承载模块3安装在外围框架1的上基板9上。包括:母板14、三路测量光纤15和固定框架16。其中三路测量光纤15垂直于母板14,安装在固定框架16上,三路测量光纤15应安装在非工作区域,呈三角形分布,用于总体监测母板与样片之间的间隙;母板14采用真空吸附的方式安装在固定框架16上。Referring to FIG. 4 , the carrier module 3 is mounted on the
参照图5,原位间隙检测模块4安装在外围框架1的上基板9上。包括:三轴精密位移台17、物镜18、安装板19、显微成像主体20、原位检测模块21。其中三轴精密位移台17包含X/Y水平移动轴和Z垂直升降轴,用于调节检测位置和检测焦点,同时通过大行程的三轴精密位移台17还可以将原位间隙检测模块移开工作区域,从而不影响母板与样片正常工作;物镜18应根据横向分辨力和工作距离限制进行选择。Referring to FIG. 5 , the in-situ
参照图6,所示的原位检测模块21安装原位间隙检测模块4的显微成像主体20上,包括:转接头22、光纤头23和测量光纤24。测量光纤24可以是单路耦合进入原位检测模块21进行单点测量,也可以是多路耦合进入原位检测模块21进行多点测量。6 , the shown in-
参照图1、图4、图5,利用上述的装置,一种原位间隙检测方法包括:Referring to FIG. 1, FIG. 4, and FIG. 5, using the above-mentioned device, an in-situ gap detection method includes:
(a)将母板14吸附安装在固定框架16上,样片13吸附安装在承片台12上,通过控制系统5控制工作台模块2定位到检测区域。(a) The
(b)控制系统5采集三路测量光纤15信号,分析处理出间隙值,并反馈控制工作台模块2进行总体调平与间隙控制。(b) The
(c)原位间隙检测模块4对中间工作区域进行小视场、高精度原位间隙检测,通过三轴精密位移台17可以扫描测量整个工作区域的原位间隙分布情况。通过扫描测量数据或者多点测量数据可以控制工件台模块2对调平状态和间隙进行修正,以确保原位间隙分布满足工作需求。(c) The in-situ
(d)原位间隙检测与修正完成后可以通过大行程的三轴精密位移台17将原位间隙检测模块移开工作区域,从而不影响母板与样片正常工作。(d) After the in-situ gap detection and correction are completed, the in-situ gap detection module can be moved out of the working area through the large-stroke three-axis
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010138013.0A CN111272089B (en) | 2020-03-03 | 2020-03-03 | In-situ gap detection device and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010138013.0A CN111272089B (en) | 2020-03-03 | 2020-03-03 | In-situ gap detection device and detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111272089A CN111272089A (en) | 2020-06-12 |
CN111272089B true CN111272089B (en) | 2022-06-28 |
Family
ID=70997500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010138013.0A Active CN111272089B (en) | 2020-03-03 | 2020-03-03 | In-situ gap detection device and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111272089B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115981109A (en) * | 2022-12-23 | 2023-04-18 | 中国科学院光电技术研究所 | Gap detection system and method and focal plane correction method |
CN116000812B (en) * | 2022-12-30 | 2024-07-19 | 中国科学院光电技术研究所 | Device and method for regulating and controlling middle gap and measuring polishing force in non-contact polishing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003297814A1 (en) * | 2002-12-09 | 2004-06-30 | Acm Research, Inc. | Measuring alignment between a wafer chuck and polishing/plating receptacle |
EP2818927B1 (en) * | 2007-07-18 | 2016-04-27 | Nikon Corporation | Measurement method, stage apparatus, and exposure apparatus |
KR102378672B1 (en) * | 2017-05-17 | 2022-03-24 | 이매진 코퍼레이션 | High-precision shadow mask deposition system and method therefor |
CN107817654B (en) * | 2017-12-12 | 2020-03-20 | 中国科学院光电技术研究所 | Vacuum surface plasma photoetching device |
CN108037640A (en) * | 2017-12-14 | 2018-05-15 | 中国科学院光电技术研究所 | Separated near-field micro-nano photoetching method and device based on white light interference gap detection and ultra-precise alignment overlay technology |
-
2020
- 2020-03-03 CN CN202010138013.0A patent/CN111272089B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111272089A (en) | 2020-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108225213B (en) | Method and device for non-contact dimensionality reduction error separation detection of free-form surface | |
US9851645B2 (en) | Device and method for aligning substrates | |
TW528881B (en) | Position measuring apparatus | |
US7468611B2 (en) | Continuous linear scanning of large flat panel media | |
CN110057337B (en) | Freeform surface measurement method and device based on datum plane comparison measurement | |
KR102245707B1 (en) | Positioning device in gantry type of construction | |
CN111272089B (en) | In-situ gap detection device and detection method | |
CN113834438B (en) | High-precision free-form surface profiling measurement device and method based on three-dimensional measurement frame | |
CN105408991A (en) | Substrate holding method, substrate holding apparatus, exposure method, and exposure apparatus | |
CN108362221B (en) | Nano-precision detection method and device for free-form surface morphology | |
KR20080014794A (en) | Method and apparatus for measuring dimensional change of transparent substrate | |
US11408554B2 (en) | Gantry-type positioning device | |
CN110954019B (en) | Measurement method and device for large-inclination free-form surface based on datum plane comparison measurement | |
CN101793499A (en) | Multi-measuring-head measuring method and device for micro/nano coordinate measurement | |
JP4050459B2 (en) | Device for detecting the position of two objects | |
KR20190029697A (en) | Device and method for bonding alignment | |
TW201606309A (en) | System and method of performing scanning probe microscopy on a substrate surface | |
CN113624136B (en) | Part detection device and part detection device calibration method | |
CN111174714A (en) | Multi-degree-of-freedom displacement measurement system based on two-dimensional grating | |
CN110954020B (en) | Free-form surface measuring method and device based on liquid reference plane comparison measurement | |
JP2012133122A (en) | Proximity exposing device and gap measuring method therefor | |
CN211668441U (en) | Multi-degree-of-freedom displacement measurement system based on two-dimensional grating | |
JP2009177166A (en) | Inspection device | |
JP2002228411A (en) | 2D measuring device | |
CN110394686A (en) | An active locating and calibrating installation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |