[go: up one dir, main page]

CN111162179B - A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method - Google Patents

A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method Download PDF

Info

Publication number
CN111162179B
CN111162179B CN201911391505.4A CN201911391505A CN111162179B CN 111162179 B CN111162179 B CN 111162179B CN 201911391505 A CN201911391505 A CN 201911391505A CN 111162179 B CN111162179 B CN 111162179B
Authority
CN
China
Prior art keywords
layer
reflection film
perovskite
solar cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911391505.4A
Other languages
Chinese (zh)
Other versions
CN111162179A (en
Inventor
于军胜
吴梦鸽
杨根杰
侯思辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911391505.4A priority Critical patent/CN111162179B/en
Publication of CN111162179A publication Critical patent/CN111162179A/en
Application granted granted Critical
Publication of CN111162179B publication Critical patent/CN111162179B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高反膜覆盖的半透明钙钛矿太阳能电池及其制备方法,所述的太阳能电池包括依次设置的衬底、阳极、空穴传输层、钙钛矿光活性层、电子传输层、阴极以及高反膜覆盖层,所述的阳极与阴极之间通过外加电源连接。本方案通过在半透明钙钛矿太阳能电池超薄阴极后面引入高反射层,高反射层能将由于阴极过薄投射出去的光再反射回器件内部,使钙钛矿层进行两次光吸收,进而增加光生电流,同时,通过高反射层起到封装的作用,隔绝空气中水、氧对钙钛矿层的侵蚀,防止金属电极被氧化,提高器件的运行稳定性和存储稳定性。

Figure 201911391505

The invention discloses a translucent perovskite solar cell covered with a high reflection film and a preparation method thereof. The solar cell comprises a substrate, an anode, a hole transport layer, a perovskite photoactive layer, an electronic The transmission layer, the cathode and the high-reflection film covering layer, the anode and the cathode are connected through an external power supply. This scheme introduces a high reflective layer behind the ultra-thin cathode of the translucent perovskite solar cell. The high reflective layer can reflect the light projected due to the thin cathode back to the inside of the device, so that the perovskite layer can absorb light twice, and then To increase the photogenerated current, at the same time, the high reflective layer acts as a package to isolate the erosion of the perovskite layer by water and oxygen in the air, prevent the metal electrodes from being oxidized, and improve the operational stability and storage stability of the device.

Figure 201911391505

Description

一种高反膜覆盖的半透明钙钛矿太阳能电池及其制备方法A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method

技术领域technical field

本发明涉及光伏器件领域,尤其涉及一种高反膜覆盖的半透明钙钛矿太阳能电池及其制备方法。The invention relates to the field of photovoltaic devices, in particular to a translucent perovskite solar cell covered with a high reflection film and a preparation method thereof.

背景技术Background technique

钙钛矿材料因为其优异的光电性质,如吸收系数高、禁带宽度可调节、电子迁移率和空穴迁移率高、激子结合能低、载流子扩散长度长、材料价格低廉以及兼容溶液法等,已经被广泛用于发光二极管、太阳能电池、激光器、探测器等光电器件领域。Perovskite materials are due to their excellent optoelectronic properties, such as high absorption coefficient, adjustable band gap, high electron mobility and hole mobility, low exciton binding energy, long carrier diffusion length, low material cost and compatible The solution method has been widely used in the fields of light-emitting diodes, solar cells, lasers, detectors and other optoelectronic devices.

半透明电池由于能用作建筑的玻璃,因而引起广泛关注。但是,常规半透明器件中金属电极的厚度较薄,造成器件的二次吸收(由于金属电极反射入射光引起的光吸收)减弱,最终导致器件性能下降明显,不能与非半透明器件媲美。同时,空气中的水、氧气会造成钙钛矿晶体降解,金属电极在空气中易氧化,造成器件的存储稳定性和运行稳定性较差。Semitransparent cells have attracted a lot of attention due to their use as glass in buildings. However, the thickness of metal electrodes in conventional translucent devices is thinner, which weakens the secondary absorption of the device (light absorption caused by the reflection of incident light by the metal electrodes), and finally leads to a significant decline in device performance, which cannot be compared with non-transparent devices. At the same time, water and oxygen in the air will cause the degradation of perovskite crystals, and the metal electrodes are easily oxidized in the air, resulting in poor storage and operation stability of the device.

发明内容Contents of the invention

本发明的目的在于:提供一种高反膜覆盖的半透明钙钛矿太阳能电池及其制备方法,在超薄阴极后面引入多层高低折射率材料构建的高反膜,主要用来解决半透明器件中由于阴极过薄导致的光吸收减小,以及器件不稳定的问题。The object of the present invention is to provide a semi-transparent perovskite solar cell covered with a high-reflection film and its preparation method. A high-reflection film constructed of multiple layers of high and low refractive index materials is introduced behind the ultra-thin cathode, which is mainly used to solve the problem of translucency. In the device, the light absorption is reduced due to the thin cathode, and the problem of device instability.

本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:

一种高反膜覆盖的半透明钙钛矿太阳能电池,所述的太阳能电池包括依次设置的衬底、阳极、空穴传输层、钙钛矿光活性层、电子传输层、阴极以及高反膜覆盖层,所述的阳极与阴极之间通过外加电源连接。相较于传统的太阳能电池,该方案通过钙钛矿活性层及高反模覆盖层的设置,能够将阴极出光反射至钙钛矿活性层,使其进行两次光吸收,从而增加光生电流,提高器件性能,同时,高反模覆盖层还能够隔绝电池内部与外界,避免空气中的水、氧气等对电池的内部结构造成影响,提高器件的稳定性。A translucent perovskite solar cell covered by a high reflection film, the solar cell comprising a substrate, an anode, a hole transport layer, a perovskite photoactive layer, an electron transport layer, a cathode and a high reflection film arranged in sequence The covering layer, the anode and the cathode are connected through an external power supply. Compared with traditional solar cells, this solution can reflect the cathode light to the perovskite active layer through the setting of the perovskite active layer and the high anti-mode covering layer, so that it can absorb light twice, thereby increasing the photogenerated current. Improve the performance of the device. At the same time, the high anti-mold covering layer can also isolate the inside of the battery from the outside world, avoiding the impact of water and oxygen in the air on the internal structure of the battery, and improving the stability of the device.

优选的,所述钙钛矿光活性层,材料为有机、无机杂化ABX3型立方晶系结构。其中A为有机胺基团(例如CH3NH3 +1(MA+1)、CH(NH2)2 +1、Cs+1等的一元或多元组合);B为第四主族金属;X为一元卤族元素或多元卤族元素的组合。Preferably, the material of the perovskite photoactive layer is an organic-inorganic hybrid ABX 3 type cubic crystal structure. Among them, A is an organic amine group (such as CH 3 NH 3 +1 (MA +1 ), CH(NH2) 2 +1 , Cs +1, etc., a single or multiple combination); B is the fourth main group metal; X is A combination of monovalent halogen elements or multiple halogen elements.

优选的,所述空穴传输层厚度为40-80nm,钙钛矿光活性层厚度为200-500nm,电子传输层厚度为40-80nm,阴极厚度为5-20nm,高反膜覆盖层厚度为100-200nm。Preferably, the thickness of the hole transport layer is 40-80nm, the thickness of the perovskite photoactive layer is 200-500nm, the thickness of the electron transport layer is 40-80nm, the thickness of the cathode is 5-20nm, and the thickness of the high reflection film covering layer is 100-200nm.

值得一提的是,本方案中,阳极采用金属薄膜或金属氧化物薄膜,该金属氧化物薄膜可以是ITO薄膜或者氧化锌薄膜或氧化锡薄膜,该金属薄膜可以是金、铜、银等金属薄膜。本发明优选ITO薄膜作为阳极,导电性足够强、逸出功足够大、化学稳定性好,能将空穴注入到空穴传输层的电极。It is worth mentioning that in this solution, the anode uses a metal film or a metal oxide film. The metal oxide film can be an ITO film or a zinc oxide film or a tin oxide film. The metal film can be a metal such as gold, copper, or silver. film. In the present invention, the ITO thin film is preferably used as the anode, which has sufficient conductivity, large enough work function and good chemical stability, and can inject holes into the electrode of the hole transport layer.

空穴传输层,需采用空穴传输特性良好化学、稳定性好的有机聚合物材料,例如4,4'-亚环己基双[N,N-二(对甲苯基)苯胺](TAPC)、聚[(9,9-二正辛基芴基-2,7-二基)-alt-(4,4'-(N-(4-正丁基)苯基)-二苯胺)](TFB)、聚[双(4-苯基)(4-丁基苯基)胺](poly-TPD)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT:PSS)等的一种或多种组合。本发明空穴传输材料优选4,4'-亚环己基双[N,N-二(对甲苯基)苯胺](TAPC)。The hole transport layer needs to use organic polymer materials with good hole transport characteristics and good chemical stability, such as 4,4'-cyclohexylene bis[N,N-di(p-tolyl)aniline] (TAPC), Poly[(9,9-Di-n-octylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-n-butyl)phenyl)-diphenylamine)](TFB ), poly[bis(4-phenyl)(4-butylphenyl)amine](poly-TPD), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine ](PTAA), polyethylenedioxythiophene-poly(styrene sulfonate) (PEDOT:PSS) and the like. The hole transport material of the present invention is preferably 4,4'-cyclohexylene bis[N,N-di(p-tolyl)aniline] (TAPC).

电子传输层,采用电子传输特性良好,电子亲和势成膜性较低和化学稳定性好的电子传输材料,例如金属氧化物(ZnO,TiO2,SnO2),富勒烯C60、C70,富勒烯衍生物等如[6,6]-苯基C61丁酸甲酯(PC61BM),[6,6]-苯基C71丁酸甲酯(PC71BM)的任意一种或者多种的组合,本发明电子传输材料优选[6,6]-苯基C61丁酸甲酯(PC61BM)。The electron transport layer adopts electron transport materials with good electron transport characteristics, low electron affinity film formation and good chemical stability, such as metal oxides (ZnO, TiO 2 , SnO 2 ), fullerenes C60, C70, Fullerene derivatives such as [6,6]-phenyl C61 butyric acid methyl ester (PC 61 BM), any one of [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) or Various combinations, the electron transport material of the present invention is preferably [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM).

阴极,采用导电性足够强,逸出功足够小,化学稳定性好,能将电子注入到电子传输层的电极,优选功函数较低的材料,通常采用金属氧化物薄膜(如氧化铟锡ITO、氧化锌、氧化锡锌)或者金属薄膜(锂、镁、钙、锶、铝、铟或者铜、金、银等金属的合金),本发明阴极材料优选Au。The cathode adopts an electrode with strong enough conductivity, small enough work function, good chemical stability, and the ability to inject electrons into the electron transport layer, preferably a material with a low work function, usually using a metal oxide film (such as indium tin oxide ITO , zinc oxide, tin-zinc oxide) or metal film (alloy of metals such as lithium, magnesium, calcium, strontium, aluminum, indium or copper, gold, silver), the cathode material of the present invention is preferably Au.

高反膜覆盖层7,采用光透过性较强的、消光系数较小的物理化学性质稳定的材料进行高低折射率薄膜进行奇数次叠加,其中高折射率材料通常采用金属氧化物材料如MoO3、MgO、WO3,低折射率材料通常选用LiF、CsF。The high-reflection film covering layer 7 is made of a material with strong light transmission and stable physical and chemical properties with a small extinction coefficient to carry out odd-numbered superposition of high and low refractive index films, and the high refractive index material is usually a metal oxide material such as MoO 3. MgO, WO 3 , LiF, CsF are usually used as low refractive index materials.

此外,本发明还公开了一种高反膜覆盖的半透明钙钛矿太阳能电池的制备方法,包括以下步骤:In addition, the present invention also discloses a method for preparing a translucent perovskite solar cell covered by a high reflection film, comprising the following steps:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对衬底进行清洗。Step 1: Clean the substrate with detergent, acetone, deionized water and isopropanol solution in sequence.

步骤2:在干燥处理后衬底上旋涂空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat the hole transport layer on the substrate after the drying treatment, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿光活性层,然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box, spin-coat the perovskite photoactive layer at a speed of 3000 rpm, and then anneal at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层,然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀超薄金属阴极和高反膜覆盖层。Step 5: Transfer the annealed substrate into a vacuum evaporation chamber to evaporate an ultra-thin metal cathode and a high-reflection film covering layer sequentially according to the diode device structure.

综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, owing to adopting above-mentioned technical scheme, the beneficial effect of the present invention is:

1.本发明中,在半透明钙钛矿太阳能电池超薄阴极后面引入高反射层,高反射层能将由于阴极过薄投射出去的光再反射回器件内部,使钙钛矿层进行两次光吸收,进而增加光生电流。1. In the present invention, a high-reflection layer is introduced behind the ultra-thin cathode of the translucent perovskite solar cell. The high-reflection layer can reflect the light projected due to the thin cathode back to the inside of the device, so that the perovskite layer undergoes two light absorption, thereby increasing the photogenerated current.

2.本发明中,引入的高反膜是利用相邻膜层之间的折射率不同以增强入射光的反射,并不会损害半透明器件的透光性。2. In the present invention, the introduced high-reflection film utilizes the difference in refractive index between adjacent film layers to enhance the reflection of incident light without impairing the light transmittance of the translucent device.

3.本发明中,高反膜能起到封装的作用。不仅能隔绝空气中水、氧对钙钛矿层的侵蚀,更主要的是能防止金属电极被氧化,提高器件的运行稳定性和存储稳定性。3. In the present invention, the high reflection film can play the role of encapsulation. Not only can it isolate the erosion of the perovskite layer by water and oxygen in the air, but more importantly, it can prevent the metal electrode from being oxidized, and improve the operation stability and storage stability of the device.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention, and thus It should be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings based on these drawings without creative work.

图1为本发明中半透明钙钛矿太阳能的结构示意图。Figure 1 is a schematic diagram of the structure of the semi-transparent perovskite solar energy in the present invention.

图2为本发明实施例1(对照组)和实施例2、实施例3的透光性对比图。Fig. 2 is a comparison chart of light transmittance of Example 1 (control group) and Example 2 and Example 3 of the present invention.

图3为本发明实施例1(对照组)和实施例2、实施例3的光电转换效率对比图。Fig. 3 is a comparison chart of photoelectric conversion efficiency between Example 1 (control group) and Example 2 and Example 3 of the present invention.

图4为本发明实施例1(对照组)和实施例2、实施例3的性能衰减对比图。Fig. 4 is a comparison chart of performance attenuation of Example 1 (control group) and Example 2 and Example 3 of the present invention.

图5为本发明实施例4(对照组)和实施例5、实施例6的透光性对比图。Fig. 5 is a comparison chart of light transmittance of Example 4 (control group) and Example 5 and Example 6 of the present invention.

图6为本发明实施例4(对照组)和实施例5、实施例6的光电转换效率对比图。Fig. 6 is a comparison chart of photoelectric conversion efficiency between Example 4 (control group) and Example 5 and Example 6 of the present invention.

图7为本发明实施例4(对照组)和实施例5、实施例6的性能衰减对比图。Fig. 7 is a comparison chart of performance attenuation of Example 4 (control group) and Example 5 and Example 6 of the present invention.

图中标记:1-衬底,2-阳极,3-空穴传输层,4-钙钛矿光活性层,5-电子传输层,6-阴极,7-高反膜覆盖层,8-外加电源。Marks in the figure: 1-substrate, 2-anode, 3-hole transport layer, 4-perovskite photoactive layer, 5-electron transport layer, 6-cathode, 7-high reflection film covering layer, 8-additional power supply.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, and are not intended to limit the present invention, that is, the described embodiments are only some of the embodiments of the present invention, but not all of the embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.

需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that relative terms such as the terms "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.

如图1所示,一种高反膜覆盖的半透明钙钛矿太阳能电池,所述的太阳能电池包括依次设置的衬底、阳极、空穴传输层3、钙钛矿光活性层4、电子传输层5、阴极6以及高反膜覆盖层7,所述的阳极与阴极6之间通过外加电源8连接。As shown in Figure 1, a translucent perovskite solar cell covered by a high-reflection film, the solar cell includes a substrate, an anode, a hole transport layer 3, a perovskite photoactive layer 4, and an electronic The transmission layer 5 , the cathode 6 and the high reflection film covering layer 7 , the anode and the cathode 6 are connected through an external power source 8 .

具体的,如图1所示,所述钙钛矿光活性层4,材料为有机、无机杂化ABX3型立方晶系结构。Specifically, as shown in FIG. 1 , the material of the perovskite photoactive layer 4 is an organic-inorganic hybrid ABX 3 type cubic crystal structure.

具体的,如图1所示,所述空穴传输层3厚度为40-80nm,钙钛矿光活性层4厚度为200-500nm,电子传输层5厚度为40-80nm,阴极6厚度为5-20nm,高反膜覆盖层7厚度为100-200nm。Specifically, as shown in Figure 1, the thickness of the hole transport layer 3 is 40-80nm, the thickness of the perovskite photoactive layer 4 is 200-500nm, the thickness of the electron transport layer 5 is 40-80nm, and the thickness of the cathode 6 is 5 nm. -20nm, the thickness of the high reflection coating layer 7 is 100-200nm.

本发明提出了上述一种高反膜覆盖的半透明钙钛矿太阳能电池的制备方法,包括以下步骤:The present invention proposes a method for preparing a translucent perovskite solar cell covered by the above-mentioned high reflection film, comprising the following steps:

步骤1:采用洗涤剂、去离子水、丙酮、异丙醇对ITO玻璃衬底1进行清洗后,然后进行干燥处理;Step 1: Clean the ITO glass substrate 1 with detergent, deionized water, acetone, and isopropanol, and then dry it;

步骤2:在干燥处理后的ITO玻璃衬底1上旋涂空穴传输层3TAPC(8mg/ml,溶解在氯苯里),然后进行退火处理;Step 2: Spin-coat the hole transport layer 3TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate 1, and then perform annealing treatment;

步骤3:将冷却后的基片放入手套箱中,在基片上旋涂钙钛矿光活性层4CH3NH3PbI3(MAPbI3,1.2mol/ml,溶解在二甲基甲酰胺和二甲基亚砜混合溶剂中),然后进行退火处理;Step 3: Put the cooled substrate into the glove box, and spin-coat the perovskite photoactive layer 4CH 3 NH 3 PbI 3 (MAPbI 3 , 1.2mol/ml, dissolved in dimethylformamide and di in a mixed solvent of methyl sulfoxide), and then annealed;

步骤4:在钙钛矿光活性层4上旋涂电子传输层5(PC61BM,20mg/ml),然后进行退火处理;Step 4: Spin-coat the electron transport layer 5 (PC 61 BM, 20mg/ml) on the perovskite photoactive layer 4, and then perform annealing treatment;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二级管器件结构蒸镀超薄金属阴极6和高反膜覆盖层7。Step 5: Transfer the annealed substrate into the vacuum evaporation chamber to evaporate and deposit the ultra-thin metal cathode 6 and the high reflection film covering layer 7 sequentially according to the structure of the diode device.

实施例一:(作为实施例2和实施例3的对照组)Embodiment one: (as the control group of embodiment 2 and embodiment 3)

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/MAPbI3(300nm)/PC61BM(40nm)/Au(10nm)ITO/TAPC(40nm)/MAPbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.2mol的MAPbI3溶解在700μL的二甲基甲酰胺和300μL的二甲基亚砜),旋涂过程中以200微升的氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.2 mol of MAPbI3 dissolved in 700 μL of dimethylformamide and 300 μL of dimethylformamide sulfoxide), and the perovskite was washed with 200 μl of chlorobenzene as anti-solvent during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极。Step 5: Transfer the annealed substrate into a vacuum evaporation chamber and sequentially vapor-deposit 10 nm of Au as the cathode according to the diode device structure.

实施例1制备的为器件1(Device 1)。Device 1 (Device 1) was prepared in Example 1.

实施例二:Embodiment two:

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/MAPbI3(300nm)/PC61BM(40nm)/Au(10nm)/[LiF(80nm)/MoO3(40nm)/LiF(80nm)]ITO/TAPC(40nm)/MAPbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)/[LiF(80nm)/MoO 3 (40nm)/LiF(80nm)]

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.2mol的MAPbI3溶解在700μL的二甲基甲酰胺和300μL的二甲基亚砜),旋涂过程中以200微升的氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.2 mol of MAPbI3 dissolved in 700 μL of dimethylformamide and 300 μL of dimethylformamide sulfoxide), and the perovskite was washed with 200 μl of chlorobenzene as anti-solvent during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极和LiF(80nm)/MoO3(40nm)/LiF(80nm)作为高反膜覆盖层。Step 5: Transfer the annealed substrate into the vacuum evaporation chamber to vapor-deposit 10nm Au as the cathode and LiF(80nm)/MoO 3 (40nm)/LiF(80nm) as the high-reflection film covering layer sequentially according to the diode device structure.

实施例2制备的为器件2(Device 2)。Device 2 (Device 2) was prepared in Example 2.

实施例3:Example 3:

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/MAPbI3(300nm)/PC61BM(40nm)/Au(10nm)/[LiF(50nm)/MoO3(25nm)/LiF(50nm)/MoO3(25nm)/LiF(50nm)]ITO/TAPC(40nm)/MAPbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)/[LiF(50nm)/MoO 3 (25nm)/LiF(50nm)/MoO 3 (25nm)/LiF( 50nm)]

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.2mol的MAPbI3溶解在700L的二甲基甲酰胺和300L的二甲基亚砜),旋涂过程中以200微升的氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.2mol of MAPbI 3 dissolved in 700L of dimethylformamide and 300L of dimethylformamide sulfoxide), and the perovskite was washed with 200 μl of chlorobenzene as anti-solvent during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极和LiF(50nm)/MoO3(25nm)/LiF(50nm)/MoO3(25nm)/LiF(50nm)作为高反膜覆盖层。Step 5: Transfer the annealed substrate into the vacuum evaporation chamber to vapor-deposit 10nm Au as the cathode and LiF(50nm)/MoO 3 (25nm)/LiF(50nm)/MoO 3 (25nm)/ LiF (50nm) is used as a high reflection film covering layer.

实施例3制备的为器件3(Device 3)。Device 3 (Device 3) was prepared in Example 3.

实施例4:(作为实施例5和实施例6的对照组)Embodiment 4: (as the control group of embodiment 5 and embodiment 6)

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/Cs0.1FA0.8MA0.1PbI3(300nm)/PC61BM(40nm)/Au(10nm)ITO/TAPC(40nm)/Cs 0.1 FA 0.8 MA 0.1 PbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.58mol的Cs0.1FA0.8MA0.1PbI3溶解在0.7ml的二甲基甲酰胺中和0.3ml的二甲基亚砜中),旋涂过程中以200微升的氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box, and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.58mol of Cs0.1FA0.8MA0.1PbI3 dissolved in 0.7ml of dimethyl formazan Amide and 0.3ml of dimethyl sulfoxide), and 200 microliters of chlorobenzene was used as an anti-solvent to wash the perovskite during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极。Step 5: Transfer the annealed substrate into a vacuum evaporation chamber and sequentially vapor-deposit 10 nm of Au as the cathode according to the diode device structure.

实施例4制备的为器件4(Device 4)。Device 4 (Device 4) was prepared in Example 4.

实施例5:Example 5:

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/Cs0.1FA0.8MA0.1PbI3(300nm)/PC61BM(40nm)/Au(10nm)/LiF(80nm)/WO3(40nm)/LiF(80nm)ITO/TAPC(40nm)/Cs 0.1 FA 0.8 MA 0.1 PbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)/LiF(80nm)/WO 3 (40nm)/LiF(80nm)

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.58mol的Cs0.1FA0.8MA0.1PbI3溶解在0.7ml的二甲基甲酰胺中和0.3ml的二甲基亚砜中),旋涂过程中以200微升氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.58mol of Cs 0.1 FA 0.8 MA 0.1 PbI 3 dissolved in 0.7ml of dimethyl formamide and 0.3ml of dimethyl sulfoxide), and 200 microliters of chlorobenzene was used as an antisolvent to wash the perovskite during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极以及LiF(80nm)/WO3(40nm)/LiF(80nm)作为高反膜覆盖层。Step 5: Transfer the annealed substrate into the vacuum evaporation chamber and vapor-deposit 10nm Au as the cathode and LiF(80nm)/WO 3 (40nm)/LiF(80nm) as the high-reflection film covering layer sequentially according to the diode device structure.

实施例5制备的为器件5(Device 5)。Device 5 (Device 5) was prepared in Example 5.

实施例6:Embodiment 6:

二极管器件结构从下至上依次为:The diode device structure from bottom to top is as follows:

ITO/TAPC(40nm)/Cs0.1FA0.8MA0.1PbI3(300nm)/PC61BM(40nm)/Au(10nm)/LiF(50nm)/WO3(25nm)/LiF(50nm)/WO3(25nm)/LiF(50nm)ITO/TAPC(40nm)/Cs 0.1 FA 0.8 MA 0.1 PbI 3 (300nm)/PC 61 BM(40nm)/Au(10nm)/LiF(50nm)/WO 3 (25nm)/LiF(50nm)/WO 3 ( 25nm)/LiF(50nm)

制备方法步骤如下:The preparation method steps are as follows:

步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对柔性衬底进行超声清洗。Step 1: Clean the flexible substrate ultrasonically using detergent, acetone, deionized water and isopropanol in sequence.

步骤2:在干燥处理后的ITO玻璃衬底上旋涂TAPC(8mg/ml,溶解在氯苯里)作为空穴传输层,然后在120摄氏度下退火处理20分钟;Step 2: spin-coat TAPC (8 mg/ml, dissolved in chlorobenzene) on the dried ITO glass substrate as a hole transport layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿前驱体40秒(1.58mol的MAPbI3溶解在0.7ml的二甲基甲酰胺中和0.3ml的二甲基亚砜中),旋涂过程中以200微升的氯苯作为反溶剂冲洗钙钛矿。然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box, and spin-coat the perovskite precursor at 3000 rpm for 40 seconds (1.58mol of MAPbI3 dissolved in 0.7ml of dimethylformamide and 0.3ml dimethyl sulfoxide), and the perovskite was washed with 200 μl of chlorobenzene as anti-solvent during spin coating. Then annealing at 120 degrees Celsius for 10 minutes;

步骤4:在钙钛矿光活性层上旋涂电子传输层PC61BM(以20mg/ml的浓度溶解在氯苯里),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer PC 61 BM (dissolved in chlorobenzene at a concentration of 20 mg/ml) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes;

步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀10nm的Au作为阴极以及LiF(50nm)/WO3(25nm)/LiF(50nm)/WO3(25nm)/LiF(50nm)。Step 5: Transfer the annealed substrate into the vacuum evaporation chamber to vapor-deposit 10nm Au as the cathode and LiF(50nm)/WO 3 (25nm)/LiF(50nm)/WO 3 (25nm)/ LiF (50nm).

实施例6制备的为器件6(Device 6)。Device 6 (Device 6) was prepared in Example 6.

通过上述实施例及对应附图可知,本发明相较于传统的太阳能电池,能够显著提升其透光性和光电转换效率,同时,能够减少性能衰减,实用性强。It can be seen from the above embodiments and corresponding drawings that, compared with traditional solar cells, the present invention can significantly improve its light transmittance and photoelectric conversion efficiency, and at the same time, can reduce performance attenuation and has strong practicability.

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.

Claims (3)

1.一种高反膜覆盖的半透明钙钛矿太阳能电池,其特征在于,所述的太阳能电池包括依次设置的衬底(1)、阳极(2)、空穴传输层(3)、钙钛矿光活性层(4)、电子传输层(5)、阴极(6)以及高反膜覆盖层(7),其中:1. A translucent perovskite solar cell covered by a high-reflection film, characterized in that, the solar cell comprises a substrate (1), an anode (2), a hole transport layer (3), a calcium Titanium ore photoactive layer (4), electron transport layer (5), cathode (6) and high reflection coating layer (7), wherein: 所述的阳极与阴极(6)之间通过外加电源(8)连接;The anode and the cathode (6) are connected by an external power supply (8); 所述的高反膜覆盖层(7)包括奇数次叠合的高折射率材料与低折射率材料;The high-reflection film covering layer (7) includes odd-numbered high-refractive-index materials and low-refractive-index materials; 其中,所述高反膜覆盖的半透明钙钛矿太阳能电池的制备方法,包括以下步骤:Wherein, the preparation method of the translucent perovskite solar cell covered by the high reflection film comprises the following steps: 步骤1:依次采用洗涤剂、丙酮、去离子水以及异丙醇溶液对衬底(1)进行清洗;Step 1: cleaning the substrate (1) with detergent, acetone, deionized water and isopropanol solution in sequence; 步骤2:在干燥处理后衬底上旋涂空穴传输层(3),然后在120摄氏度下退火处理20分钟;Step 2: Spin-coat the hole transport layer (3) on the substrate after the drying treatment, and then anneal at 120 degrees Celsius for 20 minutes; 步骤3:将冷却后的基片放入手套箱,以3000转每分的转速旋涂钙钛矿光活性层(4),然后在120摄氏度下退火处理10分钟;Step 3: Put the cooled substrate into the glove box, spin-coat the perovskite photoactive layer (4) at a speed of 3000 rpm, and then anneal at 120 degrees Celsius for 10 minutes; 步骤4:在钙钛矿光活性层上旋涂电子传输层(5),然后在120摄氏度下退火处理20分钟;Step 4: Spin-coat the electron transport layer (5) on the perovskite photoactive layer, and then anneal at 120 degrees Celsius for 20 minutes; 步骤5:将退火处理后的基片传入真空蒸发室依次按照二极管器件结构蒸镀超薄金属阴极(6)和高反膜覆盖层(7)。Step 5: Transfer the annealed substrate into a vacuum evaporation chamber to vapor-deposit an ultra-thin metal cathode (6) and a high-reflection film covering layer (7) sequentially according to the diode device structure. 2.根据权利要求1所述的一种高反膜覆盖的半透明钙钛矿太阳能电池,其特征在于,所述钙钛矿光活性层(4)的材料为有机、无机杂化ABX3型立方晶系结构。2. the translucent perovskite solar cell covered by a kind of high reflection film according to claim 1, is characterized in that, the material of described perovskite photoactive layer (4) is organic, inorganic hybridization ABX 3 type Cubic crystal structure. 3.根据权利要求1所述的一种高反膜覆盖的半透明钙钛矿太阳能电池,其特征在于,所述空穴传输层(3)厚度为40-80nm,钙钛矿光活性层(4)厚度为200-500nm,电子传输层(5)厚度为40-80nm,阴极(6)厚度为5-20nm,高反膜覆盖层(7)厚度为100-200nm。3. the translucent perovskite solar cell covered by a kind of high reflection film according to claim 1, is characterized in that, described hole transport layer (3) thickness is 40-80nm, perovskite photoactive layer ( 4) The thickness is 200-500nm, the thickness of the electron transport layer (5) is 40-80nm, the thickness of the cathode (6) is 5-20nm, and the thickness of the high reflection film covering layer (7) is 100-200nm.
CN201911391505.4A 2019-12-30 2019-12-30 A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method Active CN111162179B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911391505.4A CN111162179B (en) 2019-12-30 2019-12-30 A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911391505.4A CN111162179B (en) 2019-12-30 2019-12-30 A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method

Publications (2)

Publication Number Publication Date
CN111162179A CN111162179A (en) 2020-05-15
CN111162179B true CN111162179B (en) 2023-01-31

Family

ID=70558914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911391505.4A Active CN111162179B (en) 2019-12-30 2019-12-30 A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method

Country Status (1)

Country Link
CN (1) CN111162179B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904512B2 (en) * 2002-12-24 2007-04-11 シャープ株式会社 SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE PROVIDED WITH SEMICONDUCTOR DEVICE
JP2009032779A (en) * 2007-07-25 2009-02-12 Toray Ind Inc Thin-film solar cell module
CN103000811A (en) * 2012-12-14 2013-03-27 吉林大学 One-dimensional photonic crystal back reflecting mirror based inverted semitransparent polymer solar cell and preparation method thereof
CN105038156A (en) * 2015-08-28 2015-11-11 佛山杜邦鸿基薄膜有限公司 Solar cell backboard polyester film with high reflectivity and preparing method of solar cell backboard polyester film
TWI559511B (en) * 2016-03-03 2016-11-21 友達光電股份有限公司 Conductive element substrate, method of manufacturing conductive element substrate, and display panel
CN105591030B (en) * 2016-03-11 2017-09-26 华中科技大学 A kind of translucent perovskite solar cell and preparation method thereof
CN106058058A (en) * 2016-08-12 2016-10-26 中国科学院重庆绿色智能技术研究院 Semi-transparent perovskite solar cell
CN106252428B (en) * 2016-09-28 2017-11-03 上海造孚新材料科技有限公司 A kind of solar cell light retroreflecting is to electrode and preparation method thereof
CN107565027B (en) * 2017-08-30 2019-05-28 电子科技大学 Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer
CN108767125B (en) * 2018-05-21 2019-07-05 电子科技大学 A QD-3D-QD light-emitting layer perovskite light-emitting diode and preparation method thereof
CN109037397A (en) * 2018-06-29 2018-12-18 南开大学 A kind of preparation method and stacked solar cell, cascade solar cell of antireflective coating
CN109148688A (en) * 2018-07-11 2019-01-04 复旦大学 A kind of efficient perovskite solar battery and preparation method thereof
CN109471285B (en) * 2018-11-26 2020-09-01 惠州市华星光电技术有限公司 Flexible substrate, flexible display panel and display device

Also Published As

Publication number Publication date
CN111162179A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
Liu et al. Toward see‐through optoelectronics: Transparent light‐emitting diodes and solar cells
US9431621B2 (en) Metal oxide charge transport material doped with organic molecules
US20110265877A1 (en) Organic thin-film photoelectric conversion element and method of manufacturing the same
CN111129315A (en) Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof
JP6626482B2 (en) Semiconductor device and method of manufacturing the same
CN106129254A (en) A kind of bulk-heterojunction perovskite solaode and preparation method thereof
CN101710610A (en) Organic light emitting diode of alkali metal carbonate-doped organic electron injecting layer
JP4985929B2 (en) Organic thin film device and tandem photoelectric conversion device
Chen et al. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells
CN102201536B (en) Organic thin-film solar battery and fabrication method thereof
KR101047396B1 (en) Organic solar cell and its manufacturing method
JP5359255B2 (en) Organic photoelectric conversion element
JP2015532524A (en) Polymer solar cell and manufacturing method thereof
JP5888691B2 (en) Organic thin film solar cell
CN111162179B (en) A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method
CN111162174A (en) Perovskite solar cell based on organic bulk heterojunction and preparation method thereof
KR101087903B1 (en) Double sided light receiving organic solar cell
JP2019220701A (en) Method for manufacturing semiconductor device
CN114195958B (en) A kind of interface barrier material and preparation method thereof, multilayer perovskite solar cell
CN113285035B (en) Composite functional film based on conjugated polymer doping and its preparation method and application
CN104993064A (en) Short-circuit-preventing transparent OLED device and preparing method thereof
CN104347801A (en) Organic electroluminescence appliance and preparing method of organic electroluminescence appliance
CN104124343A (en) Organic light-emitting device and preparation method thereof
CN103427025B (en) A kind of organic electroluminescence device and preparation method thereof
KR20240077174A (en) Composition for coating electron transport layer of perovskite solar cell and perovskite solar cell manufactured using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant