[go: up one dir, main page]

CN107565027B - Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer - Google Patents

Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer Download PDF

Info

Publication number
CN107565027B
CN107565027B CN201710762014.0A CN201710762014A CN107565027B CN 107565027 B CN107565027 B CN 107565027B CN 201710762014 A CN201710762014 A CN 201710762014A CN 107565027 B CN107565027 B CN 107565027B
Authority
CN
China
Prior art keywords
layer
nano
transport layer
perovskite
electron transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710762014.0A
Other languages
Chinese (zh)
Other versions
CN107565027A (en
Inventor
于军胜
郑丁
范谱
侯思辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710762014.0A priority Critical patent/CN107565027B/en
Publication of CN107565027A publication Critical patent/CN107565027A/en
Application granted granted Critical
Publication of CN107565027B publication Critical patent/CN107565027B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池,该太阳能电池采用正型结构,包括从下往上依次设置的衬底层、ITO透明导电阳极层、空穴传输层、钙钛矿光活性层、复合电子传输层及金属阴极层;复合电子传输层为PC61BM材料和纳米洋葱碳材料按比例混合构成的固态复合层结构;复合层结构中纳米洋葱碳材料和PC61BM材料的质量百分比分别为:纳米洋葱碳1%~10%;PC61BM 99%~90%。本发明有效地降低了器件的串联电阻,降低了电子在电子传输层/光活性层界面的复合几率,提高了器件的填充因子;同时提高了电子传输到阴极的数量,提升了载流子传输速率。

The invention relates to a perovskite solar cell based on a nano-onion carbon: PC 61 BM composite electron transport layer. The solar cell adopts a positive structure and comprises a substrate layer, an ITO transparent conductive anode layer, an empty conductive layer and a hollow layer arranged in sequence from bottom to top. Hole transport layer, perovskite photoactive layer, composite electron transport layer and metal cathode layer; the composite electron transport layer is a solid composite layer structure composed of PC61BM material and nano onion carbon material in proportion; nano onion carbon material in the composite layer structure The mass percentages of the material and PC61BM are respectively: nano-onion carbon 1%-10%; PC61BM 99%-90%. The invention effectively reduces the series resistance of the device, reduces the recombination probability of electrons at the interface of the electron transport layer/photoactive layer, and improves the filling factor of the device; at the same time, the quantity of electrons transferred to the cathode is increased, and the carrier transport is improved rate.

Description

基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池Perovskite solar cells based on nanoonion carbon: PC61BM composite electron transport layer

技术领域technical field

本发明涉及一种太阳能电池,属于新能源太阳能电池领域;具体涉及一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池。The invention relates to a solar cell, belonging to the field of new energy solar cells, and in particular to a perovskite solar cell based on a nano-onion carbon: PC 61 BM composite electron transport layer.

背景技术Background technique

随着全球能源需求量的逐年增加,对可再生能源的有效利用成为亟待解决的问题。目前世界上使用的能源大多数来自于矿物燃料的开采,其中包括石油,天然气和煤等。然而,这些资源是有限的。占地球总能量99%以上的太阳能具有取之不尽,用之不竭,没有污染的特点,因而成为各国科学家开发和利用的新能源之一。钙钛矿(perovskite)是德国矿物学家古斯塔夫·罗斯(Gustav Rose)在1839年,于俄罗斯中部境内的乌拉尔山脉上发现钙钛矿岩石样本,决定以他心中伟大的地质学家Lev Perovski来命名这种矿石。该矿石是普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3)。后来人们所指的钙钛矿电池,并不是用他发现的这种矿石材料制成的,而是使用了与钙钛矿晶体结构相似的化合物。2009 年时,桐荫横浜大学的宫坂力率先通过将薄薄的一层钙钛矿当做吸光层应用于染料敏化太阳能电池,制造出了钙钛矿太阳能电池。当时的光电转换率为3.8%。后来研究者对电池进行了改进,转换效率一下翻了一倍。虽然转换效率提高了,但还要面对一个致命问题——钙钛矿中的金属卤化物容易被电池的液体电解质破坏,导致电池稳定性低,寿命短。With the global energy demand increasing year by year, the effective use of renewable energy has become an urgent problem to be solved. Most of the energy currently used in the world comes from the extraction of fossil fuels, including oil, natural gas and coal. However, these resources are limited. Solar energy, which accounts for more than 99% of the earth's total energy, is inexhaustible, inexhaustible, and pollution-free, so it has become one of the new energy sources developed and utilized by scientists from all over the world. Perovskite is a perovskite rock sample discovered by German mineralogist Gustav Rose in the Ural Mountains in central Russia in 1839, and decided to use the great geologist Lev in his heart. Perovski to name this ore. The ore is a common metal organic compound crystal, the main component is calcium titanate (CaTiO3). The perovskite cells that people later referred to were not made of the ore material he discovered, but compounds with a crystal structure similar to that of perovskite. In 2009, Miyasaka Li of Toin Yokohama University was the first to create perovskite solar cells by applying a thin layer of perovskite as a light-absorbing layer to dye-sensitized solar cells. The photoelectric conversion rate at that time was 3.8%. Later, researchers improved the battery, and the conversion efficiency doubled. Although the conversion efficiency has been improved, it still faces a fatal problem - the metal halide in the perovskite is easily destroyed by the liquid electrolyte of the battery, resulting in low battery stability and short lifespan.

2012年8月,由格拉兹尔(Gr tzel)领导的韩国成均馆大学与洛桑理工学院实验室将一种固态的空穴传输材料(hole transport materials,HTM)引入太阳能电池,使电池效率一下提高到了10%,而且也解决了电池不稳定的问题,新型的钙钛矿太阳能电池比以前用液体电解液时更容易封装了。这之后,钙钛矿太阳能电池成为了新的研究热点。In August 2012, the laboratory of Sungkyunkwan University and EPFL, led by Gr tzel, introduced a solid-state hole transport material (HTM) into solar cells to make the cell more efficient. This has been increased to 10%, and the problem of cell instability has also been solved, and the new perovskite solar cells are easier to encapsulate than before with liquid electrolytes. Since then, perovskite solar cells have become a new research hotspot.

在层出不穷的钙钛矿太阳能电池相关研究中,科学家还发现,钙钛矿不仅吸光性好,也是不错的电荷运输材料。他们不断对钙钛矿材料和结构进行改善,以提高钙钛矿电池的光电转换率。于是就在同年,牛津大学的亨利·司奈斯将电池中的TiO2用铝材进行了代替,这样钙钛矿在电池片中就不仅是光的吸收层,也同样可作为传输电荷的半导体材料。由此,钙钛矿电池的转换效率一下攀升到15%。2015年8月,加州大学洛杉矶分校的华裔科学家杨阳领导的研究团队,在《科学》(Science)期刊上发表最新研究论文称,他们通过改进钙钛矿结构层,选择更适合传输电荷的材料,让电池两端的电极能收集更多的电。这次研究中,钙钛矿太阳能电池的转换效率最高达到了19.3%,成为该领域之最。In the endless research related to perovskite solar cells, scientists also found that perovskite not only has good light absorption, but also is a good charge transport material. They continue to improve perovskite materials and structures to improve the photoelectric conversion rate of perovskite cells. So in the same year, Henry Sinais of Oxford University replaced the TiO2 in the battery with aluminum, so that the perovskite in the battery is not only a light absorbing layer, but also a semiconductor material that transmits charges. . As a result, the conversion efficiency of perovskite cells climbed to 15%. In August 2015, a research team led by Yang Yang, a Chinese scientist at the University of California, Los Angeles, published the latest research paper in the journal Science, saying that they selected materials more suitable for transporting charges by improving the perovskite structure layer. Allow the electrodes at both ends of the battery to collect more electricity. In this study, the conversion efficiency of perovskite solar cells reached a maximum of 19.3%, the highest in the field.

然而,钙钛矿太阳能电池虽然其光电转换效率较高,但是其钙钛矿结构极其不稳定,在水氧环境下容易分解,且钙钛矿电池由于其特殊的电荷传输机理,容易出现性能迟滞,也就是加正向电压和反向电压时,性能差异较大。上述缺点导致了钙钛矿电池距离其实用化还尚需时日。目前,世界各国研究组通过制备合适的电子及其空穴传输层来提高钙钛矿太阳电池的光电转换效率,增加其稳定性,减少性能迟滞。传统的平面结构钙钛矿太阳能电池器件普遍使用PC61BM作为其电子传输层,使得钙钛矿太阳能电池的效率获得明显的提升。但由于PC61BM导电率不高,且空气稳定性差,使得器件在空气中的稳定性较差,器件寿命较短。并且,大部分采用PC61BM电子传输层的平面结构钙钛矿太阳能电池性能迟滞较为明显,也是亟待解决的科研问题。However, although perovskite solar cells have high photoelectric conversion efficiency, their perovskite structure is extremely unstable and easily decomposed in a water-oxygen environment, and perovskite cells are prone to performance hysteresis due to their special charge transport mechanism. , that is, when the forward voltage and reverse voltage are applied, the performance difference is large. The above shortcomings lead to the fact that perovskite batteries still need time to be practical. At present, research groups around the world have improved the photoelectric conversion efficiency of perovskite solar cells by preparing suitable electron and hole transport layers, increasing their stability and reducing performance hysteresis. Conventional planar-structure perovskite solar cell devices generally use PC 61 BM as their electron transport layer, which significantly improves the efficiency of perovskite solar cells. However, due to the low conductivity and poor air stability of PC 61 BM, the stability of the device in the air is poor, and the device life is short. In addition, most of the planar structure perovskite solar cells using the PC 61 BM electron transport layer have obvious performance hysteresis, which is also an urgent scientific research problem to be solved.

纳米洋葱碳(Carbon Onions,CNOs)是纳米洋葱状富勒烯的简称,它是由若干层同心球状的石墨壳层组成的较大的碳原子团簇,最内层是由60个碳原子组成的C60,每一壳层的碳原子数都可以按照60n2(n为层数)来计算。纳米洋葱碳是套球状全碳分子,相当于长径比近似等于1:1的碳纳米管,是碳纳米管的一种特殊形式。纳米洋葱碳作为一种新型的碳材料,具有超高的导电性,透明,以及稳定性强等特点。此后,对于碳纳米洋葱这类特殊的富勒烯物质的研究便开始悄然兴起,成为研究的热点。Carbon Onions (CNOs) is the abbreviation of nano-onion-like fullerenes. It is a large carbon atom cluster composed of several layers of concentric spherical graphite shells, and the innermost layer is composed of 60 carbon atoms. C 60 , the number of carbon atoms in each shell can be calculated as 60n 2 (n is the number of layers). Nano onion carbon is a set of spherical full carbon molecules, which is equivalent to carbon nanotubes with an aspect ratio of approximately 1:1, and is a special form of carbon nanotubes. As a new type of carbon material, nano-onion carbon has the characteristics of ultra-high conductivity, transparency, and strong stability. Since then, research on special fullerene substances such as carbon nano onions has begun to emerge quietly and has become a research hotspot.

通过将多种有机无机材料相结合的方式,研究如何优化电子传输层是提高钙钛矿太阳能电池光电转换效率,降低性能迟滞,提高稳定性的关键,也是目前此领域研究的重点及难点。By combining a variety of organic and inorganic materials, studying how to optimize the electron transport layer is the key to improving the photoelectric conversion efficiency of perovskite solar cells, reducing performance hysteresis, and improving stability, and is also the focus and difficulty of current research in this field.

发明内容SUMMARY OF THE INVENTION

基于以上技术问题,本发明提供了一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池,从而解决了以往钙钛矿太阳能电池载流子传输速度慢、性能迟滞及稳定性差的技术问题。Based on the above technical problems, the present invention provides a perovskite solar cell based on nano-onion carbon: PC 61 BM composite electron transport layer, thereby solving the problems of slow carrier transport speed, hysteresis and stability of performance in previous perovskite solar cells Poor technical issues.

为解决以上技术问题,本发明采用的技术方案如下:For solving the above technical problems, the technical scheme adopted in the present invention is as follows:

一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池,该太阳能电池采用正型结构,包括从下往上依次设置的衬底层、ITO透明导电阳极层、空穴传输层、钙钛矿光活性层、复合电子传输层及金属阴极层;A perovskite solar cell based on nano-onion carbon: PC 61 BM composite electron transport layer, the solar cell adopts a positive structure and includes a substrate layer, an ITO transparent conductive anode layer and a hole transport layer arranged in sequence from bottom to top , perovskite photoactive layer, composite electron transport layer and metal cathode layer;

其中,in,

复合电子传输层为PC61BM材料和纳米洋葱碳材料按比例混合构成的固态复合层结构;The composite electron transport layer is a solid-state composite layer structure composed of PC 61 BM material and nano-onion carbon material mixed in proportion;

复合层结构中纳米洋葱碳材料和PC61BM材料的质量百分比分别为:The mass percentages of nano-onion carbon material and PC 61 BM material in the composite layer structure are:

纳米洋葱碳1%~10%;Nano onion carbon 1% to 10%;

PC61BM 99%~90%。PC 61 BM 99% to 90%.

基于以上技术方案,所述空穴传输层由PEDOT:PSS的水分散液制备而成的固体薄膜,水分散液浓度为0.5~2mg/ml。Based on the above technical solutions, the hole transport layer is a solid film prepared from an aqueous dispersion of PEDOT:PSS, and the concentration of the aqueous dispersion is 0.5-2 mg/ml.

基于以上技术方案,所述钙钛矿光活性层为CH3NH3PbI3钙钛矿结构薄膜,厚度为240~ 300nm。Based on the above technical solutions, the perovskite photoactive layer is a CH 3 NH 3 PbI 3 perovskite structure film, and the thickness is 240-300 nm.

基于以上技术方案,所述复合电子传输层厚度为5~20nm。Based on the above technical solutions, the thickness of the composite electron transport layer is 5-20 nm.

基于以上技术方案,所述纳米洋葱碳材料为纳米洋葱碳分散液制备而成,粒径为20~ 40nm,浓度为1~5mg/ml。Based on the above technical solutions, the nano onion carbon material is prepared from nano onion carbon dispersion liquid, the particle size is 20-40 nm, and the concentration is 1-5 mg/ml.

基于以上技术方案,所述金属阴极层的金属材料为Ag、Al、Cu中的一种或两种以上的混合物,金属阴极层厚度范围为100~200nm。Based on the above technical solutions, the metal material of the metal cathode layer is one or a mixture of two or more of Ag, Al, and Cu, and the thickness of the metal cathode layer ranges from 100 to 200 nm.

基于以上技术方案,所述衬底层材料为玻璃或透明聚合物,所述透明聚合物材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂、聚丙烯酸的一种或两种以上的混合物。Based on the above technical solutions, the substrate layer material is glass or transparent polymer, and the transparent polymer material is polyethylene, polymethyl methacrylate, polycarbonate, polyurethane, polyimide, chlorine One or more mixtures of vinegar resin and polyacrylic acid.

综上所述,由于采用了上述技术方案,本发明的有益效果是:To sum up, due to the adoption of the above-mentioned technical solutions, the beneficial effects of the present invention are:

1、本发明通过混合纳米洋葱碳填充PC61BM与钙钛矿薄膜间的间隙,优化界面接触,利于载流子的传输,而纳米洋葱碳本身的电荷迟滞效应能够抵消钙钛矿电池的迟滞效应,从而减少电池整体的性能迟滞。1. The present invention fills the gap between the PC 61 BM and the perovskite thin film by mixing nano-onion carbon to optimize the interface contact, which is beneficial to the transport of carriers, and the charge hysteresis effect of the nano-onion carbon itself can offset the hysteresis of the perovskite battery. effect, thereby reducing the overall performance hysteresis of the battery.

2、本发明通过引入高导电率的纳米洋葱碳,有效地降低了器件的串联电阻,降低了电子在电子传输层/光活性层界面的复合几率,提高了器件的填充因子;同时提高了电子传输到阴极的数量,提升了载流子传输速率,从而提升器件的短路电流。2. The present invention effectively reduces the series resistance of the device by introducing high-conductivity nano-onion carbon, reduces the recombination probability of electrons at the interface of the electron transport layer/photoactive layer, and improves the filling factor of the device; The amount transferred to the cathode increases the carrier transfer rate, thereby increasing the short-circuit current of the device.

3、通过混合稳定的纳米洋葱碳颗粒,将PC61BM薄膜当中的空隙及其空洞进行填充,有效的提升了电子传输层隔绝水氧的能力,避免了由于水氧进入到钙钛矿光活性层导致钙钛矿结构分解,隔提高器件的水氧稳定性。3. By mixing the stable nano-onion carbon particles, the voids and voids in the PC 61 BM film are filled, which effectively improves the ability of the electron transport layer to isolate water and oxygen, and avoids the entry of water and oxygen into the photoactivity of the perovskite. The layer leads to the decomposition of the perovskite structure, which improves the water-oxygen stability of the device.

附图说明Description of drawings

图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;

图中标记:1、衬底层;2、ITO透明导电阳极层;3、空穴传输层;4、钙钛矿光活性层;5、复合电子传输层;6、金属阴极层。Labels in the figure: 1, substrate layer; 2, ITO transparent conductive anode layer; 3, hole transport layer; 4, perovskite photoactive layer; 5, composite electron transport layer; 6, metal cathode layer.

具体实施方式Detailed ways

下面结合附图对本发明作进一步的说明。本发明的实施方式包括但不限于下列实施例。The present invention will be further described below in conjunction with the accompanying drawings. Embodiments of the present invention include, but are not limited to, the following examples.

实施例Example

如图1所示,一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池,该太阳能电池采用正型结构,包括从下往上依次设置的衬底层1、ITO透明导电阳极层2(ITO,英文名Indium Tin Oxides,即氧化铟锡)、空穴传输层3、钙钛矿光活性层4、复合电子传输层5及金属阴极层6;As shown in Figure 1, a perovskite solar cell based on nano-onion carbon: PC 61 BM composite electron transport layer, the solar cell adopts a positive structure, including a substrate layer 1, ITO transparent conductive layer arranged from bottom to top in order Anode layer 2 (ITO, English name Indium Tin Oxides, namely indium tin oxide), hole transport layer 3, perovskite photoactive layer 4, composite electron transport layer 5 and metal cathode layer 6;

其中,in,

复合电子传输层5为PC61BM材料和纳米洋葱碳材料按比例混合构成的固态复合层结构;The composite electron transport layer 5 is a solid composite layer structure composed of PC 61 BM material and nano onion carbon material mixed in proportion;

复合层结构中纳米洋葱碳材料和PC61BM材料的质量百分比分别为:The mass percentages of nano-onion carbon material and PC 61 BM material in the composite layer structure are:

纳米洋葱碳1%~10%;Nano onion carbon 1% to 10%;

PC61BM 99%~90%。PC 61 BM 99% to 90%.

以上实施例中,所述ITO透明导电阳极层2厚度范围为20~40nm。In the above embodiments, the thickness of the ITO transparent conductive anode layer 2 ranges from 20 to 40 nm.

优选的,所述空穴传输层3由PEDOT:PSS的水分散液制备而成的固体薄膜,水分散液浓度为0.5~2mg/ml。Preferably, the hole transport layer 3 is a solid film prepared from an aqueous dispersion of PEDOT:PSS, and the concentration of the aqueous dispersion is 0.5-2 mg/ml.

优选的,所述钙钛矿光活性层4为CH3NH3PbI3钙钛矿结构薄膜,厚度为240~300nm。Preferably, the perovskite photoactive layer 4 is a CH 3 NH 3 PbI 3 perovskite structure film with a thickness of 240-300 nm.

优选的,所述复合电子传输层5厚度为5~20nm。Preferably, the composite electron transport layer 5 has a thickness of 5-20 nm.

优选的,所述纳米洋葱碳材料为纳米洋葱碳分散液制备而成,粒径为20~40nm,浓度为1~5mg/ml。Preferably, the nano onion carbon material is prepared from nano onion carbon dispersion liquid, the particle size is 20-40 nm, and the concentration is 1-5 mg/ml.

优选的,所述金属阴极层6的金属材料为Ag、Al、Cu中的一种或两种以上的混合物,金属阴极层厚度范围为100~200nm。Preferably, the metal material of the metal cathode layer 6 is one or a mixture of two or more of Ag, Al, and Cu, and the thickness of the metal cathode layer ranges from 100 to 200 nm.

优选的,所述衬底层1材料为玻璃或透明聚合物,所述透明聚合物材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂、聚丙烯酸的一种或两种以上的混合物。Preferably, the material of the substrate layer 1 is glass or transparent polymer, and the transparent polymer material is polyethylene, polymethyl methacrylate, polycarbonate, polyurethane, polyimide, chloroacetate One or more mixtures of resin and polyacrylic acid.

本实施例通过混合纳米洋葱碳填充PC61BM与钙钛矿薄膜间的间隙,优化界面接触,利于载流子的传输,而纳米洋葱碳本身的电荷迟滞效应能够抵消钙钛矿电池的迟滞效应,从而减少电池整体的性能迟滞;通过引入高导电率的纳米洋葱碳,有效地降低了器件的串联电阻,降低了电子在电子传输层/光活性层界面的复合几率,提高了器件的填充因子;同时提高了电子传输到阴极的数量,提升了载流子传输速率,从而提升器件的短路电流;通过混合稳定的纳米洋葱碳颗粒,将PC61BM薄膜当中的空隙及其空洞进行填充,有效的提升了电子传输层隔绝水氧的能力,避免了由于水氧进入到钙钛矿光活性层导致钙钛矿结构分解,隔提高器件的水氧稳定性。In this example, the gap between the PC 61 BM and the perovskite film is filled by mixing nano-onion carbon to optimize the interface contact and facilitate the transport of carriers, and the charge hysteresis effect of the nano-onion carbon itself can offset the hysteresis effect of the perovskite battery. , thereby reducing the overall performance hysteresis of the battery; by introducing high-conductivity nano-onion carbon, the series resistance of the device is effectively reduced, the recombination probability of electrons at the electron transport layer/photoactive layer interface is reduced, and the fill factor of the device is improved. ; At the same time, the number of electrons transferred to the cathode is increased, and the carrier transfer rate is increased, thereby increasing the short-circuit current of the device; by mixing stable nano-onion carbon particles, the voids and voids in the PC 61 BM film are filled, effectively It improves the ability of the electron transport layer to isolate water and oxygen, avoids the decomposition of the perovskite structure due to the entry of water and oxygen into the perovskite photoactive layer, and improves the water and oxygen stability of the device.

下面,结合具体数据列举具体实施例对本发明做进一步解释和说明。Hereinafter, the present invention will be further explained and illustrated by listing specific examples in conjunction with specific data.

具体实施例specific embodiment

对照组1control group 1

对表面粗糙度小于1nm的由衬底层1及ITO透明导电阳极层2所组成的基板进行清洗,清洗后用氮气吹干;在ITO透明导电阳极层2表面旋转涂覆PEDOT:PSS溶液(工作参数:转速3000rpm,时间40s)制备空穴传输层3;并将所形成的薄膜进行烘烤(工作参数:温度135℃,时间30min);在ITO透明导电阳极层2上旋涂制备钙钛矿光活性层4 (厚度250nm);在钙钛矿光活性层4表面旋涂制备纳米洋葱碳制备复合电子传输层 5(厚度20nm;在金属阴极层6上蒸镀金属阴极Ag(厚度100nm,构成钙钛矿太阳能电池器件。Clean the substrate composed of the substrate layer 1 and the ITO transparent conductive anode layer 2 with a surface roughness of less than 1 nm, and dry it with nitrogen after cleaning; spin-coat the PEDOT:PSS solution on the surface of the ITO transparent conductive anode layer 2 (working parameters). : rotating speed 3000rpm, time 40s) to prepare hole transport layer 3; bake the formed film (working parameters: temperature 135°C, time 30min); spin coating on ITO transparent conductive anode layer 2 to prepare perovskite light Active layer 4 (thickness 250nm); spin coating on the surface of perovskite photoactive layer 4 to prepare nano-onion carbon to prepare composite electron transport layer 5 (thickness 20nm; metal cathode Ag (thickness 100nm) is evaporated on metal cathode layer 6, forming calcium Titanite solar cell devices.

在标准测试条件下:大气质量AM 1.5,光强度100mW/cm2,则该电池的性能参数数据如表一所示:Under standard test conditions: air quality AM 1.5, light intensity 100mW/cm 2 , the performance parameters of the battery are shown in Table 1:

表一对照组1构成的电池的性能参数Table 1 Performance parameters of batteries composed of control group 1

通过表一可以看出,混入纳米洋葱碳和PC61BM的复合电子传输层4,能够有效提升钙钛矿太阳能电池的填充因子,短路电流,从而提升其光电转换效率。It can be seen from Table 1 that the composite electron transport layer 4 mixed with nano-onion carbon and PC 61 BM can effectively improve the fill factor and short-circuit current of the perovskite solar cell, thereby improving its photoelectric conversion efficiency.

其次,该电池的正反扫填充因子及其光电转换效率数据如表二所示:Secondly, the forward and reverse scan fill factor of the battery and its photoelectric conversion efficiency data are shown in Table 2:

表二对照组1构成的电池的正反扫填充因子及其光电转换效率Table 2 Positive and negative scan fill factors and photoelectric conversion efficiencies of cells composed of control group 1

通过表2可以看出,混入纳米洋葱碳和PC61BM的复合电子传输层4,能够有效降低钙钛矿太阳能电池的性能迟滞。It can be seen from Table 2 that the composite electron transport layer 4 mixed with nano-onion carbon and PC 61 BM can effectively reduce the performance hysteresis of perovskite solar cells.

最后,该电池在空气中存放时的性能衰减数据如表三所示:Finally, the performance attenuation data of the battery when stored in air are shown in Table 3:

表三对照组1构成的电池在空气中存放时的性能衰减Table 3 Performance attenuation of the battery composed of control group 1 when stored in air

通过表三可以看出,混入纳米洋葱碳和PC61BM的复合电子传输层4,能够有效提升钙钛矿太阳能电池在空气中的稳定性。It can be seen from Table 3 that the composite electron transport layer 4 mixed with nano-onion carbon and PC 61 BM can effectively improve the stability of perovskite solar cells in air.

如上所述即为本发明的实施例。前文所述为本发明的各个优选实施例,各个优选实施例中的优选实施方式如果不是明显自相矛盾或以某一优选实施方式为前提,各个优选实施方式都可以任意叠加组合使用,所述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above are the embodiments of the present invention. The foregoing are various preferred embodiments of the present invention. If the preferred embodiments in each preferred embodiment are not obviously self-contradictory or are premised on a certain preferred embodiment, each preferred embodiment can be used in any combination. The examples and the specific parameters in the examples are only for the purpose of clearly describing the inventor's invention verification process, not for limiting the scope of patent protection of the present invention. The scope of patent protection of the present invention is still based on the claims. Equivalent structural changes made in the contents of the description and drawings of the invention shall be included within the protection scope of the present invention.

Claims (7)

1.一种基于纳米洋葱碳:PC61BM复合电子传输层的钙钛矿太阳能电池,其特征在于,该太阳能电池采用正型结构,包括从下往上依次设置的衬底层、ITO透明导电阳极层、空穴传输层、钙钛矿光活性层、复合电子传输层及金属阴极层;1. based on nano onion carbon: the perovskite solar cell of PC 61 BM composite electron transport layer, it is characterized in that, this solar cell adopts positive type structure, comprises the substrate layer that is arranged sequentially from bottom to top, ITO transparent conductive anode layer, hole transport layer, perovskite photoactive layer, composite electron transport layer and metal cathode layer; 其中,in, 复合电子传输层为PC61BM材料和纳米洋葱碳材料按比例混合构成的固态复合层结构;The composite electron transport layer is a solid-state composite layer structure composed of PC 61 BM material and nano-onion carbon material mixed in proportion; 复合层结构中纳米洋葱碳材料和PC61BM材料的质量百分比分别为:The mass percentages of nano-onion carbon material and PC 61 BM material in the composite layer structure are: 纳米洋葱碳1%~10%;Nano onion carbon 1% to 10%; PC61BM 99%~90%。PC 61 BM 99% to 90%. 2.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述空穴传输层由PEDOT:PSS的水分散液制备而成的固体薄膜,水分散液浓度为0.5~2mg/ml。2. The perovskite solar cell according to claim 1, wherein the hole transport layer is a solid film prepared from an aqueous dispersion of PEDOT:PSS, and the aqueous dispersion has a concentration of 0.5 to 2 mg/ml . 3.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿光活性层为CH3NH3PbI3钙钛矿结构薄膜,厚度为240~300nm。3 . The perovskite solar cell according to claim 1 , wherein the perovskite photoactive layer is a CH 3 NH 3 PbI 3 perovskite structure film with a thickness of 240-300 nm. 4 . 4.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述复合电子传输层厚度为5~20nm。4 . The perovskite solar cell according to claim 1 , wherein the composite electron transport layer has a thickness of 5-20 nm. 5 . 5.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述纳米洋葱碳材料为纳米洋葱碳分散液制备而成,粒径为20~40nm,浓度为1~5mg/ml。5 . The perovskite solar cell according to claim 1 , wherein the nano-onion carbon material is prepared from nano-onion carbon dispersion, the particle size is 20-40 nm, and the concentration is 1-5 mg/ml. 6 . 6.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述金属阴极层的金属材料为Ag、Al、Cu中的一种或两种以上的混合物,金属阴极层厚度范围为100~200nm。6. The perovskite solar cell according to claim 1, wherein the metal material of the metal cathode layer is one or more mixtures of Ag, Al, and Cu, and the thickness of the metal cathode layer is in the range of 100~200nm. 7.根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述衬底层材料为玻璃或透明聚合物,所述透明聚合物材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂、聚丙烯酸的一种或两种以上的混合物。7. The perovskite solar cell according to claim 1, wherein the substrate layer material is glass or transparent polymer, and the transparent polymer material is polyethylene, polymethyl methacrylate, polycarbonate One or a mixture of two or more of ester, polyurethane, polyimide, vinyl acetate resin and polyacrylic acid.
CN201710762014.0A 2017-08-30 2017-08-30 Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer Expired - Fee Related CN107565027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710762014.0A CN107565027B (en) 2017-08-30 2017-08-30 Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710762014.0A CN107565027B (en) 2017-08-30 2017-08-30 Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer

Publications (2)

Publication Number Publication Date
CN107565027A CN107565027A (en) 2018-01-09
CN107565027B true CN107565027B (en) 2019-05-28

Family

ID=60977916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710762014.0A Expired - Fee Related CN107565027B (en) 2017-08-30 2017-08-30 Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer

Country Status (1)

Country Link
CN (1) CN107565027B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360896A (en) * 2018-09-30 2019-02-19 王浩兰 A kind of novel perovskite preparation method of solar battery
CN111162179B (en) * 2019-12-30 2023-01-31 电子科技大学 A semi-transparent perovskite solar cell covered by a high reflection film and its preparation method
CN113421974B (en) * 2021-07-09 2022-08-23 合肥工业大学 Perovskite solar cell and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098944A (en) * 2016-07-13 2016-11-09 电子科技大学 A kind of solaode based on nano-onions carbon composite anode cushion
CN106960908A (en) * 2017-03-23 2017-07-18 华南师范大学 A kind of cathodic modification type plane perovskite solar cell and preparation method thereof
CN107068865A (en) * 2016-12-12 2017-08-18 苏州大学 Perovskite solar cell and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098944A (en) * 2016-07-13 2016-11-09 电子科技大学 A kind of solaode based on nano-onions carbon composite anode cushion
CN107068865A (en) * 2016-12-12 2017-08-18 苏州大学 Perovskite solar cell and preparation method thereof
CN106960908A (en) * 2017-03-23 2017-07-18 华南师范大学 A kind of cathodic modification type plane perovskite solar cell and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"New PCBM/carbon based electron transport layer for perovskite solar cells";Abduliah Al Mamun等;《ROYAL SOCIETY OF Chemistry》;20170622;第19卷;第17960-17966页 *

Also Published As

Publication number Publication date
CN107565027A (en) 2018-01-09

Similar Documents

Publication Publication Date Title
Duan et al. Recent advances in critical materials for quantum dot-sensitized solar cells: a review
Zhao et al. Improved charge extraction with N-doped carbon quantum dots in dye-sensitized solar cells
CN111180587B (en) Special doped perovskite solar cell and preparation method thereof
CN103904224B (en) A kind of organic photovoltaic battery based on inorganic-quantum-dot and preparation method
CN107946466B (en) Perovskite type solar cell and modification method of PEDOT (polymer doped tin oxide) PSS (patterned sapphire substrate) layer thereof
CN107565027B (en) Based on nano-onions carbon: PC61The perovskite solar battery of BM composite electron transport layer
CN106098944B (en) A kind of solar battery based on nano-onions carbon composite anode buffer layer
CN105470398A (en) Ternary-composite cathode buffer layer-based organic thin film solar cell and preparation method thereof
CN109378385A (en) An organic perovskite-organic-bonded solar cell based on full-spectrum absorption
CN104167293B (en) Dye-sensitized solar cell photoanode and producing method thereof
Shen et al. Interfacial Engineering for Quantum‐Dot‐Sensitized Solar Cells
Liu et al. Optimizing the performance of Ge-based perovskite solar cells by doping CsGeI3 instead of charge transport layer
CN111223989B (en) Amphoteric molecule modified perovskite photovoltaic device and preparation method and application thereof
CN111081883A (en) A high-efficiency and stable planar heterojunction perovskite solar cell and preparation method
CN108346742A (en) Perovskite battery and its preparation of photovoltaic performance are improved based on polystyrene boundary layer
CN102347383B (en) Solar energy cell and preparation method thereof
CN109216554B (en) Perovskite solar cell with P3 HT/graphene as hole transport layer and preparation method thereof
CN111261783A (en) A novel electron transport layer perovskite solar cell and preparation method thereof
CN106373784B (en) A kind of perovskite solar cell and preparation method thereof
Shi et al. Asymmetric ZnO Panel‐Like Hierarchical Architectures with Highly Interconnected Pathways for Free‐Electron Transport and Photovoltaic Improvements
CN101262019B (en) Photoelectrical chemical solar battery for silicon nano line
CN204927356U (en) An improved nano-zinc oxide flake array perovskite solar cell
CN105261704A (en) High-stability organic film solar cell coated by carbon skeleton, and method for preparing the same
CN105489383A (en) Preparation method of quantum dot sensitized solar cell light cathode
CN105304818A (en) High-efficiency perovskite solar cell and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190528