CN110853047B - 智能图像分割及分类方法、装置及计算机可读存储介质 - Google Patents
智能图像分割及分类方法、装置及计算机可读存储介质 Download PDFInfo
- Publication number
- CN110853047B CN110853047B CN201910972271.6A CN201910972271A CN110853047B CN 110853047 B CN110853047 B CN 110853047B CN 201910972271 A CN201910972271 A CN 201910972271A CN 110853047 B CN110853047 B CN 110853047B
- Authority
- CN
- China
- Prior art keywords
- image
- original
- fourier transform
- classification
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003709 image segmentation Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000006870 function Effects 0.000 claims abstract description 107
- 230000009467 reduction Effects 0.000 claims abstract description 55
- 230000011218 segmentation Effects 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000006835 compression Effects 0.000 claims abstract description 10
- 238000007906 compression Methods 0.000 claims abstract description 10
- 230000015556 catabolic process Effects 0.000 claims description 27
- 238000006731 degradation reaction Methods 0.000 claims description 27
- 230000009466 transformation Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 7
- 238000011946 reduction process Methods 0.000 claims 1
- 238000013507 mapping Methods 0.000 abstract description 7
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 238000003672 processing method Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 235000002566 Capsicum Nutrition 0.000 description 2
- 239000006002 Pepper Substances 0.000 description 2
- 241000722363 Piper Species 0.000 description 2
- 235000016761 Piper aduncum Nutrition 0.000 description 2
- 235000017804 Piper guineense Nutrition 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010063385 Intellectualisation Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种人工智能技术,揭露了一种智能图像分割及分类方法,包括:接收原始图像和图像分类数,对所述原始图像进行傅里叶变换、降噪处理、编码压缩、线性拉伸、图像增强及区域检测处理得到图像相似度集合,将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集,提取所述分割图像集的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出分类结果。本发明还提出一种智能图像分割及分类装置以及一种计算机可读存储介质。本发明可以实现精准的智能图像分割及分类功能。
Description
技术领域
本发明涉及人工智能技术领域,尤其涉及一种智能图像分割及分类的方法、装置及计算机可读存储介质。
背景技术
图像分割及分类是采用计算机对图像进行一系列分析后,得到将图片分割并以预设特征分类为多个图像的效果,现有的图像分割及分类方法多以预先设定的规则为前提,如预先设定以人为分割分类规则将图像分割分类为含有人的图像和不含人的图像,因此无法达到智能化的目的。
发明内容
本发明提供一种智能图像分割及分类方法、装置及计算机可读存储介质,其主要目的在于提供一种不需人为操作的、智能化的智能图像分割及分类方案。
为实现上述目的,本发明提供的一种智能图像分割及分类方法,包括:
接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像;
计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像;
将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合;
将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集;
提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果。
可选地,所述傅里叶变换包括:
遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数;
根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数;
将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像。
可选地,所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与/>分别为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
可选地,所述基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:
求解所述变换图像的像素方差和噪声方差;
根据所述退化函数、所述像素方差和所述噪声方差利用下述方法得到降噪图像:
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
可选地,所述预先构建的目标函数为:
E(A)=ρR(A)+B(A)
其中,E(A)为分割图像集,A表示像素集合的二进制向量,ρ为调节参数,R(A)为像素标签,Rp(Ap)表示像素p分配给像素二进制向量A的代价,B(A)表示所述无向图的边界项,Bp,q为像素p,q之间的不连续代价值,Ap表示像素p的区域项,为像素p的区域项与像素q的区域项相同的概率函数。
此外,为实现上述目的,本发明还提供一种智能图像分割及分类装置,该装置包括存储器和处理器,所述存储器中存储有可在所述处理器上运行的智能图像分割及分类程序,所述智能图像分割及分类程序被所述处理器执行时实现如下步骤:
接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像;
计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像;
将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合;
将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集;
提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果。
可选地,所述傅里叶变换包括:
遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数;
根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数;
将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像。
可选地,所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与/>分别为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
可选地,所述基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:
求解所述变换图像的像素方差和噪声方差;
根据所述退化函数、所述像素方差和所述噪声方差利用下述方法得到降噪图像:
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有智能图像分割及分类程序,所述智能图像分割及分类程序可被一个或者多个处理器执行,以实现如上所述的智能图像分割及分类方法的步骤。
本发明将接受的原始图像和图像分类数进行傅里叶变换和退化函数处理,提高了数据的纯洁性,同时通过编码压缩及图像增强放大图像特征,并基于区域检测处理和阈值分割分离多种图像特征,提高对图像特征的利用率,并根据分类概率模型达到最终分类目的。因此本发明提出的智能图像分割及分类方法、装置及计算机可读存储介质,可以实现高准确率的图像分割及分类目的。
附图说明
图1为本发明一实施例提供的智能图像分割及分类方法的流程示意图;
图2为本发明一实施例提供的智能图像分割及分类装置的内部结构示意图;
图3为本发明一实施例提供的智能图像分割及分类装置中智能图像分割及分类程序的模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种智能图像分割及分类方法。参照图1所示,为本发明一实施例提供的智能图像分割及分类方法的流程示意图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,智能图像分割及分类方法包括:
S1、接收用户输入的原始图像,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像。
较佳地,所述原始图像由若干个像素点组成,所述原始图像的内容包括各个场景,如山水、宠物嬉戏、NBA体育竞赛等。
本发明较佳实施例中,所述傅里叶变换包括:遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数,根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数,将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像。
进一步地,所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与/>分别称为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
所述降噪处理是为了去除原始图像的噪点(如高斯噪点,椒盐噪点等),最大可能的保护图像细节。
优选地,基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:求解所述变换图像的像素方差和噪声方差,根据所述退化函数、所述像素方差和所述噪声方差,利用下述方法求解得到降噪图像。
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
S2、计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像。
优选地,计算所述降噪图像的灰度概率,包括:遍历所述降噪图像每个像素点的灰度值得到灰度值集,遍历所述灰度值集中每个灰度值出现的次数得到灰度值与出现次数的对应表,将所述对应表中每个出现次数除以所述降噪图像的像素点个数得到灰度概率表。比如:所述降噪图像有6个像素点A、B、C、D、E、F,所述像素点A、B、C、D、E、F对应的灰度值分别为2、3、6、7、2、2,则灰度值为2的灰度概率为:
较佳地,本发明所述根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像,包括:将所述灰度概率表内的灰度概率由大到小进行排序,将灰度概率最小的两个值相加得到新的灰度概率,依次类推直到所述灰度概率表的灰度概率达到指定数量阈值时,根据所述灰度概率表重新分配所述降噪图像的灰度值得到所述压缩图像。
S3、将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合。
较佳地,所述线性拉伸是为了扩大所述压缩图像的对比度,所述线性拉伸的方法包括:
Dl=a*Dn+b
其中,Dn为所述压缩图像,Dl为所述线性拉伸后的图像,a为所述线性拉伸的斜率,b为所述线性拉伸的截距,当所述a>1,此时所述线性拉伸后的图像对比度相比所述压缩图像是增强的,当所述a≤1,此时所述线性拉伸后的图像对比度相比所述压缩图像是削弱的。
优选地,本发明较佳实施例中所述图像增强采用多阈值亮度增强法。所述图像增强包括:预设一个或多个亮度阈值段,遍历所述压缩图像的每个亮度点,判断所述每个亮度点属于的阈值段,并根据所述属于的阈值段预设的增强处理方法进行增强处理,直至所述遍历完成得到增强图像。
如所述亮度阈值段分为[0,20],[20,40],[40,80],[80,120],[120,无穷大],若所述压缩图像的亮度点为27,则在[20,40]段,若[20,40]段的增强处理方法为放大2倍,因此所述亮度点为27变为了54。
优选地,所述区域检测处理包括:将所述增强图像随机分成s个尺寸相同的小图像块,依次计算所述s个小图像块的中心点像素值得到中心像素值集合,基于颜色特征和欧式距离计算所述中心点像素值集合的相似度得到图像相似度集合。
S4、将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集。
优选地,所述阈值分割包括:基于预设相似度阈值从所述相似度集合中去除大于所述预设相似度阈值的相似度数值,根据去除后的相似度集合提取出对应的小图像块得到分割图像集。
进一步地,本发明所述计算所述s个小图像块的中心点像素值可采用平均值法,中心点扩大法等。所述平均值法即将小图像块中所有的像素值相加后取平均值,所述平均值即为中心点像素值;所述中心点扩大法即选取小图像块的位置中心点,距离所述中心点越近的像素点权重越大,直到所述中心点最大的权重,根据各个权重再取平均值得到中心点像素值。
较佳地,所述基于颜色特征计算所述中心点像素值集合的相似度根据如下方法:
其中,pi,pj分别表示小图像块和j小图像块的中心点像素值,d(pi,pj)为所述i小图像块和所述j小图像块的相似度,c相似度调节参数,dposition(pi,pj)表示所述i小图像块和所述j小图像块的欧式距离,dcolor(pi,pj)表示所述i小图像块颜色特征和所述j小图像块颜色特征的差值,所述颜色特征即为小图像块的RGB像素值经过预设处理方法得到。
优选地,所述原始分割图像集映射成无向图集包括:遍历所述原始分割图像集内每个原始分割图像,随机选取所述原始分割图像的两个相邻像素,构建所述两个相邻像素的连接线,基于所述连接线得到分割后的图像,所述分割后的图像称为无向图。
更进一步地,所述目标函数为:
E(A)=ρR(A)+B(A)
其中,E(A)为分割图像集,A表示像素集合的二进制向量,ρ为调节参数,R(A)为像素标签,Rp(Ap)表示像素p分配给像素二进制向量A的代价,B(A)表示所述无向图的边界项,Bp,q为像素p,q之间的不连续代价值,Ap表示像素p的区域项,为像素p的区域项与像素q的区域项相同的概率函数。
S5、提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型完成所述分割图像集的分类。
较佳地,所述提取所述分割图像集内各分割图像的边界特征得到特征集,包括:依次遍历所述分割图像集内的分割图像,从所述分割图像的图像边缘位置中随机选择一点作为坐标原点,从所述坐标原点开始,将水平方向坐标和垂直方向坐标分成等间隔的网格,然后计算每个网格中的像素值均值,按照预设规则(如逆时针或顺时针方向)依次将所述像素值均值连接起来得到所述边界特征,当遍历所述分割图像集完成后得到与所述分割图像集对应的特征集。
本发明较佳实施例中,所述分类概率模型为:
其中,P(wi|x)为所述分类概率模型,wi为所述图像分类数,i为图像分类数标号,x为分割图像k的边界特征,d为所述特征集的特征个数。
发明还提供一种智能图像分割及分类装置。参照图2所示,为本发明一实施例提供的智能图像分割及分类装置的内部结构示意图。
在本实施例中,所述智能图像分割及分类装置1可以是PC(Personal Computer,个人电脑),或者是智能手机、平板电脑、便携计算机等终端设备,也可以是一种服务器等。该智能图像分割及分类装置1至少包括存储器11、处理器12,通信总线13,以及网络接口14。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是智能图像分割及分类装置1的内部存储单元,例如该智能图像分割及分类装置1的硬盘。存储器11在另一些实施例中也可以是智能图像分割及分类装置1的外部存储设备,例如智能图像分割及分类装置1上配备的插接式硬盘,智能存储卡(SmartMedia Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括智能图像分割及分类装置1的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于智能图像分割及分类装置1的应用软件及各类数据,例如智能图像分割及分类程序01的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行智能图像分割及分类程序01等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该装置1与其他电子设备之间建立通信连接。
可选地,该装置1还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在智能图像分割及分类装置1中处理的信息以及用于显示可视化的用户界面。
图2仅示出了具有组件11-14以及智能图像分割及分类程序01的智能图像分割及分类装置1,本领域技术人员可以理解的是,图1示出的结构并不构成对智能图像分割及分类装置1的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
在图2所示的装置1实施例中,存储器11中存储有智能图像分割及分类程序01;处理器12执行存储器11中存储的智能图像分割及分类程序01时实现如下步骤:
步骤一、接收用户输入的原始图像,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像。
较佳地,所述原始图像由若干个像素点组成,所述原始图像的内容包括各个场景,如山水、宠物嬉戏、NBA体育竞赛等。
本发明较佳实施例中,所述傅里叶变换包括:遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数,根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数,将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像。
进一步地,所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与/>分别称为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
所述降噪处理是为了去除原始图像的噪点(如高斯噪点,椒盐噪点等),最大可能的保护图像细节。
优选地,基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:求解所述变换图像的像素方差和噪声方差,根据所述退化函数、所述像素方差和所述噪声方差,利用下述方法求解得到降噪图像。
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
步骤二、计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像。
优选地,计算所述降噪图像的灰度概率,包括:遍历所述降噪图像每个像素点的灰度值得到灰度值集,遍历所述灰度值集中每个灰度值出现的次数得到灰度值与出现次数的对应表,将所述对应表中每个出现次数除以所述降噪图像的像素点个数得到灰度概率表。比如:所述降噪图像有6个像素点A、B、C、D、E、F,所述像素点A、B、C、D、E、F对应的灰度值分别为2、3、6、7、2、2,则灰度值为2的灰度概率为:
较佳地,本发明所述根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像,包括:将所述灰度概率表内的灰度概率由大到小进行排序,将灰度概率最小的两个值相加得到新的灰度概率,依次类推直到所述灰度概率表的灰度概率达到指定数量阈值时,根据所述灰度概率表重新分配所述降噪图像的灰度值得到所述压缩图像。
步骤三、将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合。
较佳地,所述线性拉伸是为了扩大所述压缩图像的对比度,所述线性拉伸的方法包括:
Dl=a*Dn+b
其中,Dn为所述压缩图像,Dl为所述线性拉伸后的图像,a为所述线性拉伸的斜率,b为所述线性拉伸的截距,当所述a>1,此时所述线性拉伸后的图像对比度相比所述压缩图像是增强的,当所述a≤1,此时所述线性拉伸后的图像对比度相比所述压缩图像是削弱的。
优选地,本发明较佳实施例中所述图像增强采用多阈值亮度增强法。所述图像增强包括:预设一个或多个亮度阈值段,遍历所述压缩图像的每个亮度点,判断所述每个亮度点属于的阈值段,并根据所述属于的阈值段预设的增强处理方法进行增强处理,直至所述遍历完成得到增强图像。
如所述亮度阈值段分为[0,20],[20,40],[40,80],[80,120],[120,无穷大],若所述压缩图像的亮度点为27,则在[20,40]段,若[20,40]段的增强处理方法为放大2倍,因此所述亮度点为27变为了54。
优选地,所述区域检测处理包括:将所述增强图像随机分成s个尺寸相同的小图像块,依次计算所述s个小图像块的中心点像素值得到中心像素值集合,基于颜色特征和欧式距离计算所述中心点像素值集合的相似度得到图像相似度集合。
步骤四、将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集。
优选地,所述阈值分割包括:基于预设相似度阈值从所述相似度集合中去除大于所述预设相似度阈值的相似度数值,根据去除后的相似度集合提取出对应的小图像块得到分割图像集。
进一步地,本发明所述计算所述s个小图像块的中心点像素值可采用平均值法,中心点扩大法等。所述平均值法即将小图像块中所有的像素值相加后取平均值,所述平均值即为中心点像素值;所述中心点扩大法即选取小图像块的位置中心点,距离所述中心点越近的像素点权重越大,直到所述中心点最大的权重,根据各个权重再取平均值得到中心点像素值。
较佳地,所述基于颜色特征计算所述中心点像素值集合的相似度根据如下方法:
其中,pi,pj分别表示小图像块和j小图像块的中心点像素值,d(pi,pj)为所述i小图像块和所述j小图像块的相似度,c相似度调节参数,dposition(pi,pj)表示所述i小图像块和所述j小图像块的欧式距离,dcolor(pi,pj)表示所述i小图像块颜色特征和所述j小图像块颜色特征的差值,所述颜色特征即为小图像块的RGB像素值经过预设处理方法得到。
优选地,所述原始分割图像集映射成无向图集包括:遍历所述原始分割图像集内每个原始分割图像,随机选取所述原始分割图像的两个相邻像素,构建所述两个相邻像素的连接线,基于所述连接线得到分割后的图像,所述分割后的图像称为无向图。
更进一步地,所述目标函数为:
E(A)=ρR(A)+B(A)
其中,E(A)为分割图像集,A表示像素集合的二进制向量,ρ为调节参数,R(A)为像素标签,Rp(Ap)表示像素p分配给像素二进制向量A的代价,B(A)表示所述无向图的边界项,Bp,q为像素p,q之间的不连续代价值,Ap表示像素p的区域项,为像素p的区域项与像素q的区域项相同的概率函数。
步骤五、提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型完成所述分割图像集的分类。
较佳地,所述提取所述分割图像集内各分割图像的边界特征得到特征集,包括:依次遍历所述分割图像集内的分割图像,从所述分割图像的图像边缘位置中随机选择一点作为坐标原点,从所述坐标原点开始,将水平方向坐标和垂直方向坐标分成等间隔的网格,然后计算每个网格中的像素值均值,按照预设规则(如逆时针或顺时针方向)依次将所述像素值均值连接起来得到所述边界特征,当遍历所述分割图像集完成后得到与所述分割图像集对应的特征集。
本发明较佳实施例中,所述分类概率模型为:
其中,P(wi|x)为所述分类概率模型,wi为所述图像分类数,i为图像分类数标号,x为分割图像k的边界特征,d为所述特征集的特征个数。
可选地,在其他实施例中,智能图像分割及分类程序还可以被分割为一个或者多个模块,一个或者多个模块被存储于存储器11中,并由一个或多个处理器(本实施例为处理器12)所执行以完成本发明,本发明所称的模块是指能够完成特定功能的一系列计算机程序指令段,用于描述智能图像分割及分类程序在智能图像分割及分类装置中的执行过程。
例如,参照图3所示,为本发明智能图像分割及分类装置一实施例中的智能图像分割及分类程序的程序模块示意图,该实施例中,所述智能图像分割及分类程序可以被分割为图像数据接收及处理模块10、图像增强模块20、阈值分割模块30、图像的分类结果输出模块40示例性地:
所述图像数据接收及处理模块10用于:接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像。
所述请求图像增强模块20用于:计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像,将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合。
所述阈值分割模块30用于:将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集。
所述图像的分类结果输出40用于:提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果。
上述图像数据接收及处理模块10、图像增强模块20、阈值分割模块30、图像的分类结果输出模块40等程序模块被执行时所实现的功能或操作步骤与上述实施例大体相同,在此不再赘述。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有智能图像分割及分类程序,所述智能图像分割及分类程序可被一个或多个处理器执行,以实现如下操作:
接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像。
计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像,将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合。
将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集。
提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果。
需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (6)
1.一种智能图像分割及分类方法,其特征在于,所述方法包括:
接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像;
计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像;
将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合;
将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集;
提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果;
其中,所述傅里叶变换包括:遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数;根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数;将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像;
所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与分别为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
2.如权利要求1所述的智能图像分割及分类方法,其特征在于,所述基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:
求解所述变换图像的像素方差和噪声方差;
根据所述退化函数、所述像素方差和所述噪声方差利用下述方法得到降噪图像:
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
3.如权利要求1所述的智能图像分割及分类方法,其特征在于,所述预先构建的目标函数为:
E(A)=ρR(A)+B(A)
其中,E(A)为分割图像集,A表示像素集合的二进制向量,ρ为调节参数,R(A)为像素标签,Rp(Ap)表示像素p分配给像素二进制向量A的代价,B(A)表示所述无向图的边界项,Bp,q为像素p,q之间的不连续代价值,Ap表示像素p的区域项,为像素p的区域项与像素q的区域项相同的概率函数。
4.一种智能图像分割及分类装置,其特征在于,所述装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的智能图像分割及分类程序,所述智能图像分割及分类程序被所述处理器执行时实现如下步骤:
接收用户输入的原始图像和图像分类数,对所述原始图像进行傅里叶变换得到变换图像,并基于退化函数对所述变换图像进行降噪处理得到降噪图像;
计算所述降噪图像的灰度概率,根据所述灰度概率将所述降噪图像进行编码压缩得到压缩图像;
将所述压缩图像进行线性拉伸、图像增强及区域检测处理得到图像相似度集合;
将所述图像相似度集合进行阈值分割得到原始分割图像集,将所述原始分割图像集映射成无向图集,根据预先构建的目标函数优化所述无向图集得到分割图像集;
提取所述分割图像集内各分割图像的边界特征得到特征集,基于所述特征集和所述图像分类数建立分类概率模型,根据所述分类概率模型对所述分割图像集进行分类并输出所述原始图像的分类结果;
其中,所述傅里叶变换包括:遍历所述原始图像的原始像素点,计算所述原始像素点的二维离散傅里叶变换函数;根据所述二维离散傅里叶变换函数求解所述原始图像的傅里叶逆变换函数;将所述傅里叶逆变换函数的函数值替换所述原始像素点得到所述变换图像;
所述二维离散傅里叶变换函数包括:
所述傅里叶逆变换函数包括:
其中,F(u,v)为所述二维离散傅里叶变换函数,f(x,y)为所述傅里叶逆变换函数,(u,v)为所述原始像素点的坐标,(x,y)为所述傅里叶变换后的像素点坐标,与分别为变换核和逆变换核,j为预设调节系数,M,N为所述原始图像的图像规格。
5.如权利要求4中所述的智能图像分割及分类装置,其特征在于,所述基于退化函数对所述变换图像进行降噪处理得到降噪图像,包括:
求解所述变换图像的像素方差和噪声方差;
根据所述退化函数、所述像素方差和所述噪声方差利用下述方法得到降噪图像:
其中,t(x’,y’)为所述降噪图像,(x’,y’)为所述降噪图像的像素点,f(x,y)为所述傅里叶逆变换函数,为所述退化函数,δ2为所述像素方差,/>为所述噪声方差,/>为所述傅里叶变换后的原始图像的像素灰度均值。
6.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有智能图像分割及分类程序,所述智能图像分割及分类程序可被一个或者多个处理器执行,以实现如权利要求1至3中任一项所述的智能图像分割及分类方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972271.6A CN110853047B (zh) | 2019-10-12 | 2019-10-12 | 智能图像分割及分类方法、装置及计算机可读存储介质 |
PCT/CN2019/117343 WO2021068330A1 (zh) | 2019-10-12 | 2019-11-12 | 智能图像分割及分类方法、装置及计算机可读存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972271.6A CN110853047B (zh) | 2019-10-12 | 2019-10-12 | 智能图像分割及分类方法、装置及计算机可读存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110853047A CN110853047A (zh) | 2020-02-28 |
CN110853047B true CN110853047B (zh) | 2023-09-15 |
Family
ID=69596254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910972271.6A Active CN110853047B (zh) | 2019-10-12 | 2019-10-12 | 智能图像分割及分类方法、装置及计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110853047B (zh) |
WO (1) | WO2021068330A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111476760B (zh) * | 2020-03-17 | 2024-05-10 | 平安科技(深圳)有限公司 | 医学图像的生成方法、装置、电子设备及介质 |
CN111815535B (zh) * | 2020-07-14 | 2023-11-10 | 抖音视界有限公司 | 图像处理方法、装置、电子设备和计算机可读介质 |
CN113177592B (zh) * | 2021-04-28 | 2022-07-08 | 上海硕恩网络科技股份有限公司 | 一种图像分割方法、装置、计算机设备及存储介质 |
CN113221919B (zh) * | 2021-05-19 | 2023-12-26 | 神华神东煤炭集团有限责任公司 | 一种煤泥颗粒图像的特征提取方法及电子设备 |
CN113553938B (zh) * | 2021-07-19 | 2024-05-14 | 黑芝麻智能科技(上海)有限公司 | 安全带检测方法、装置、计算机设备和存储介质 |
CN113887737B (zh) * | 2021-09-23 | 2024-05-17 | 北京工商大学 | 一种基于机器学习的样本集自动生成方法 |
CN113689435B (zh) * | 2021-09-28 | 2023-06-20 | 平安科技(深圳)有限公司 | 图像分割方法、装置、电子设备及存储介质 |
CN114283155B (zh) * | 2021-11-23 | 2023-07-04 | 赣州好朋友科技有限公司 | 矿石图像的分割方法、装置及计算机可读存储介质 |
CN114298985B (zh) * | 2021-12-16 | 2023-12-22 | 苏州凌云光工业智能技术有限公司 | 缺陷检测方法、装置、设备及存储介质 |
CN114581673A (zh) * | 2022-03-11 | 2022-06-03 | 中国科学院西安光学精密机械研究所 | 一种钟表指针图像识别预处理方法 |
CN114581345B (zh) * | 2022-05-07 | 2022-07-05 | 广州骏天科技有限公司 | 一种基于自适应线性灰度化的图像增强方法及系统 |
CN115908458B (zh) * | 2023-03-09 | 2023-05-12 | 国家海洋局南海标准计量中心 | 一种深海区域干涉条纹提取方法、装置及存储介质 |
CN116758010B (zh) * | 2023-05-24 | 2024-06-07 | 成都飞机工业(集团)有限责任公司 | 一种飞机蒙皮表面缺陷识别方法、系统、设备及介质 |
CN116612138B (zh) * | 2023-07-14 | 2023-09-19 | 威海职业学院(威海市技术学院) | 基于图像处理的电气设备在线监测方法 |
CN116760952B (zh) * | 2023-08-17 | 2023-10-20 | 山东欣晖电力科技有限公司 | 基于无人机的电力铁塔维护巡检方法 |
CN117237383B (zh) * | 2023-11-15 | 2024-02-02 | 山东智赢门窗科技有限公司 | 一种基于室内环境的智能门窗控制方法及系统 |
CN117314940B (zh) * | 2023-11-30 | 2024-02-02 | 诺伯特智能装备(山东)有限公司 | 基于人工智能的激光切割零件轮廓快速分割方法 |
CN117392465B (zh) * | 2023-12-08 | 2024-03-22 | 聚真宝(山东)技术有限公司 | 一种基于视觉的垃圾分类数字化管理方法 |
CN117474913B (zh) * | 2023-12-27 | 2024-09-10 | 江西省兆驰光电有限公司 | 一种针痕检测机台判定方法、系统、存储介质及计算机 |
CN118379386B (zh) * | 2024-06-21 | 2024-09-06 | 济南科汛智能科技有限公司 | 一种基于核磁共振的显像优化方法 |
CN118892082A (zh) * | 2024-08-28 | 2024-11-05 | 河南众粮科技有限公司 | 一种红薯种苗组培的优化方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000311180A (ja) * | 1999-03-11 | 2000-11-07 | Fuji Xerox Co Ltd | 特徴セット選択方法、ビデオ画像クラス統計モデルの生成方法、ビデオフレームの分類及びセグメント化方法、ビデオフレームの類似性決定方法、およびコンピュータ可読媒体、並びにコンピュータシステム |
JP2005141453A (ja) * | 2003-11-06 | 2005-06-02 | Nippon Telegr & Teleph Corp <Ntt> | 指紋画像処理方法,指紋画像処理装置,指紋画像処理プログラム記録媒体および指紋画像処理プログラム |
JP2006031390A (ja) * | 2004-07-15 | 2006-02-02 | Hitachi Software Eng Co Ltd | 画像分割処理システム |
JP2006039658A (ja) * | 2004-07-22 | 2006-02-09 | Hitachi Software Eng Co Ltd | 画像分類学習処理システム及び画像識別処理システム |
CN108288265A (zh) * | 2018-01-09 | 2018-07-17 | 东北大学 | 一种面向hcc病理图像细胞核的分割与分类方法 |
CN110222571A (zh) * | 2019-05-06 | 2019-09-10 | 平安科技(深圳)有限公司 | 黑眼圈智能判断方法、装置及计算机可读存储介质 |
CN110309709A (zh) * | 2019-05-20 | 2019-10-08 | 平安科技(深圳)有限公司 | 人脸识别方法、装置及计算机可读存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69329380T2 (de) * | 1993-06-30 | 2001-03-01 | International Business Machines Corp., Armonk | Verfahren zum Segmentieren von Bildern und Klassifizieren von Bildelementen zur Dokumentverarbeitung |
US9679389B2 (en) * | 2009-05-19 | 2017-06-13 | Algotec Systems Ltd. | Method and system for blood vessel segmentation and classification |
US8503801B2 (en) * | 2010-09-21 | 2013-08-06 | Adobe Systems Incorporated | System and method for classifying the blur state of digital image pixels |
CN103985114B (zh) * | 2014-03-21 | 2016-08-24 | 南京大学 | 一种监控视频人物前景分割与分类的方法 |
CN109214428B (zh) * | 2018-08-13 | 2023-12-26 | 平安科技(深圳)有限公司 | 图像分割方法、装置、计算机设备及计算机存储介质 |
CN109886273B (zh) * | 2019-02-26 | 2022-12-16 | 四川大学华西医院 | 一种cmr图像分割分类系统 |
-
2019
- 2019-10-12 CN CN201910972271.6A patent/CN110853047B/zh active Active
- 2019-11-12 WO PCT/CN2019/117343 patent/WO2021068330A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000311180A (ja) * | 1999-03-11 | 2000-11-07 | Fuji Xerox Co Ltd | 特徴セット選択方法、ビデオ画像クラス統計モデルの生成方法、ビデオフレームの分類及びセグメント化方法、ビデオフレームの類似性決定方法、およびコンピュータ可読媒体、並びにコンピュータシステム |
JP2005141453A (ja) * | 2003-11-06 | 2005-06-02 | Nippon Telegr & Teleph Corp <Ntt> | 指紋画像処理方法,指紋画像処理装置,指紋画像処理プログラム記録媒体および指紋画像処理プログラム |
JP2006031390A (ja) * | 2004-07-15 | 2006-02-02 | Hitachi Software Eng Co Ltd | 画像分割処理システム |
JP2006039658A (ja) * | 2004-07-22 | 2006-02-09 | Hitachi Software Eng Co Ltd | 画像分類学習処理システム及び画像識別処理システム |
CN108288265A (zh) * | 2018-01-09 | 2018-07-17 | 东北大学 | 一种面向hcc病理图像细胞核的分割与分类方法 |
CN110222571A (zh) * | 2019-05-06 | 2019-09-10 | 平安科技(深圳)有限公司 | 黑眼圈智能判断方法、装置及计算机可读存储介质 |
CN110309709A (zh) * | 2019-05-20 | 2019-10-08 | 平安科技(深圳)有限公司 | 人脸识别方法、装置及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
WO2021068330A1 (zh) | 2021-04-15 |
CN110853047A (zh) | 2020-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110853047B (zh) | 智能图像分割及分类方法、装置及计算机可读存储介质 | |
CN110517283B (zh) | 姿态跟踪方法、装置及计算机可读存储介质 | |
CN110738203B (zh) | 字段结构化输出方法、装置及计算机可读存储介质 | |
CN111899270B (zh) | 卡片边框检测方法、装置、设备及可读存储介质 | |
CN110363747B (zh) | 智能化异常细胞判断方法、装置及计算机可读存储介质 | |
CN110717497B (zh) | 图像相似度匹配方法、装置及计算机可读存储介质 | |
CN106845331A (zh) | 一种图像处理方法及终端 | |
CN111260655B (zh) | 基于深度神经网络模型的图像生成方法与装置 | |
CN112651953A (zh) | 图片相似度计算方法、装置、计算机设备及存储介质 | |
CN113012068A (zh) | 图像去噪方法、装置、电子设备及计算机可读存储介质 | |
CN114494775A (zh) | 视频切分方法、装置、设备及存储介质 | |
CN112163443A (zh) | 一种扫码方法、扫码装置及移动终端 | |
CN110929561B (zh) | 表格文本智能过滤方法、装置及计算机可读存储介质 | |
CN113963009A (zh) | 基于可形变划块的局部自注意力的图像处理方法和模型 | |
CN113222921A (zh) | 一种图像处理方法及系统 | |
CN111935487B (zh) | 一种基于视频流检测的图像压缩方法及系统 | |
CN111080665B (zh) | 图像边框识别方法、装置、设备和计算机存储介质 | |
CN110705547B (zh) | 图像内文字识别方法、装置及计算机可读存储介质 | |
CN112084874A (zh) | 一种物体检测方法、装置及终端设备 | |
CN110176015B (zh) | 基于深度学习的图像处理方法、装置及存储介质 | |
CN114511862B (zh) | 表格识别方法、装置及电子设备 | |
CN111311573A (zh) | 枝条确定方法、装置及电子设备 | |
CN110705546B (zh) | 文本图像角度纠偏方法、装置及计算机可读存储介质 | |
CN111160336B (zh) | 目标检测方法、装置及计算机可读存储介质 | |
CN111508045B (zh) | 一种图片合成的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40020156 Country of ref document: HK |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |