[go: up one dir, main page]

CN110791506B - A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application - Google Patents

A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application Download PDF

Info

Publication number
CN110791506B
CN110791506B CN201911178738.6A CN201911178738A CN110791506B CN 110791506 B CN110791506 B CN 110791506B CN 201911178738 A CN201911178738 A CN 201911178738A CN 110791506 B CN110791506 B CN 110791506B
Authority
CN
China
Prior art keywords
gene
ntcipk11
plants
tanggut
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911178738.6A
Other languages
Chinese (zh)
Other versions
CN110791506A (en
Inventor
陈金慧
陈新颖
鲁路
陆叶
施季森
成铁龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201911178738.6A priority Critical patent/CN110791506B/en
Publication of CN110791506A publication Critical patent/CN110791506A/en
Application granted granted Critical
Publication of CN110791506B publication Critical patent/CN110791506B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种唐古特白刺NtCIPK11基因及其表达蛋白和应用,属于植物基因工程技术领域。本发明公开的唐古特白刺CIPK11基因,其核苷酸序列如SEQ ID NO.1所示,其表达蛋白的氨基酸序列如SEQ ID NO.2所示。本发明根据唐古特白刺的耐盐和抗旱等抗逆特性,利用唐古特白刺的叶片组织,在已有的部分转录组数据的基础上,同源克隆了唐古特白刺抗逆相关的CIPK基因全长,依据拟南芥中的同源基因而命名为NtCIPK11。通过纯合NtCIPK11基因拟南芥植株的耐盐和抗旱分析,证明了唐古特白刺NtCIPK11基因转化植物具备耐盐性和抗旱性,为植物抗逆基因库增加了资源。

Figure 201911178738

The invention discloses a NtCIPK11 gene, an expression protein and an application thereof, belonging to the technical field of plant genetic engineering. For the CIPK11 gene disclosed by the present invention, its nucleotide sequence is shown in SEQ ID NO.1, and the amino acid sequence of its expressed protein is shown in SEQ ID NO.2. According to the stress resistance characteristics such as salt tolerance and drought resistance of T. tangute, the present invention utilizes the leaf tissue of T. tangute, and on the basis of the existing partial transcriptome data, homologously clones the stress-resistance-related strain of T. tangute. The full-length CIPK gene was named NtCIPK11 according to the homologous gene in Arabidopsis. Through the salt tolerance and drought resistance analysis of homozygous NtCIPK11 gene Arabidopsis plants, it was proved that the plants transformed with the NtCIPK11 gene of Tanggut were possessed of salt tolerance and drought resistance, adding resources to the plant stress resistance gene pool.

Figure 201911178738

Description

一种唐古特白刺NtCIPK11基因及其表达蛋白和应用A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application

技术领域technical field

本发明属于植物基因工程技术领域,更具体地说,涉及一种唐古特白刺NtCIPK11基因及其表达蛋白和应用。The invention belongs to the technical field of plant genetic engineering, and more particularly relates to a NtCIPK11 gene of Thorn tanggut and its expression protein and application.

背景技术Background technique

唐古特白刺(Nitraria tangutorum)属于蒺藜科(Zygophyllaceae)白刺属(Nitraria),是一种落叶灌木。唐古特白刺具有喜光,耐寒,耐旱,耐盐碱,耐贫瘠,低立地指数等特点,可用作改善盐碱质土壤,提高土壤肥力,防风固沙,维持绿洲,保护生态平衡。另外研究表明,唐古特白刺鲜果富含氨基酸、维生素、黄酮、皂贰、矿物质元素等成分,具有较高的经济价值和药用价值。由于环境恶化,土壤盐碱化和干旱的环境严重威胁植物的水分运输,从而导致植物生产力的下降和荒漠化的上升。唐古特白刺作为一种耐干旱,耐盐碱的植物逐渐受到关注。目前,对唐古特白刺的研究主要集中在抗旱耐盐生理生化性质,果实营养成分分析以及育种等方面,为唐古特白刺的分子机理研究提供大量的数据支持,为抗性基因及其它功能基因的运用奠定基础。Nitraria tangutorum belongs to the genus Nitraria of the family Zygophyllaceae and is a deciduous shrub. Tanggut white thorn has the characteristics of liking light, cold resistance, drought resistance, salinity resistance, barren resistance, low site index, etc. It can be used to improve saline-alkali soil, improve soil fertility, prevent wind and sand, maintain oasis, and protect ecological balance. In addition, studies have shown that Tanggut white thorn fresh fruit is rich in amino acids, vitamins, flavonoids, soaps, mineral elements and other components, and has high economic and medicinal value. Due to environmental degradation, soil salinization and arid environment seriously threaten the water transport of plants, resulting in a decline in plant productivity and an increase in desertification. As a drought-tolerant and saline-alkali-tolerant plant, Tanggut white thorn has gradually attracted attention. At present, the research on T. tanggut mainly focuses on the physiological and biochemical properties of drought resistance and salt tolerance, the analysis of fruit nutrients and breeding, etc., providing a large amount of data support for the molecular mechanism research of T. tanguticum, and for the resistance genes and other functions. The use of genes lays the foundation.

CIPKs(CBL-interacting protein kinase)是一类能与类钙调磷酸酶B亚基蛋白(calcineurin B-like protein,CBL)相互作用的能够传递Ca2+信号的一种蛋白。这类蛋白在N端含有保守的SNF激酶结构域和C端的NAF结构域。在模式植物拟南芥中有26个CIPK类同源异型盒基因,水稻中有30个CIPK类同源异型盒基因,杨树中有27个CIPK类同源异型基因。另外,到目前为止,还没有在植物以外的物种中发现类似基因,因此CIPK基因是植物所特有的Ca2+信号通路中的Ser/Thr类磷酸蛋白激酶基因。过表达OsCIPK12可以通过积累脯氨酸和可溶性糖的含量来提高水稻对寒冷、干旱和盐胁迫的耐受性。鹰嘴豆中的CaCIPK6介导生长素转运,调节烟草幼苗的耐盐性。BrCIPK1的过表达通过增加水稻脯氨酸的生物合成来增强非生物胁迫耐受性。此外,活性氧清除剂,如过氧化物酶,被CIPKs调控,以提高抗应激能力。此外,还发现CIPKs通过调节离子和水的稳态来介导拟南芥对盐胁迫条件的反应。众多研究表明,植物所特有的CIPK类基因在植物耐盐,耐低钾,抗寒和抗旱等抗逆过程中发挥重要作用。CIPKs (CBL-interacting protein kinase) is a class of proteins that can interact with calcineurin B-like protein (CBL) and can transmit Ca 2+ signals. These proteins contain a conserved SNF kinase domain at the N-terminus and a NAF domain at the C-terminus. There are 26 CIPK-like homeobox genes in the model plant Arabidopsis, 30 CIPK-like homeobox genes in rice, and 27 CIPK-like homeobox genes in poplar. In addition, so far, no similar genes have been found in species other than plants, so the CIPK gene is a Ser/Thr-like phosphoprotein kinase gene in the plant-specific Ca 2+ signaling pathway. Overexpression of OsCIPK12 can improve the tolerance of rice to cold, drought and salt stress by accumulating the content of proline and soluble sugar. CaCIPK6 in chickpea mediates auxin transport and regulates salt tolerance in tobacco seedlings. Overexpression of BrCIPK1 enhances abiotic stress tolerance by increasing proline biosynthesis in rice. In addition, reactive oxygen species scavengers, such as peroxidases, are regulated by CIPKs to improve stress resistance. Furthermore, CIPKs were also found to mediate Arabidopsis responses to salt stress conditions by regulating ion and water homeostasis. Numerous studies have shown that plant-specific CIPK genes play an important role in the stress resistance processes of plants such as salt tolerance, low potassium tolerance, cold resistance and drought resistance.

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的上述问题,本发明所要解决的技术问题在于提供一种唐古特白刺NtCIPK11基因。本发明所要解决的另一技术问题在于提供所述唐古特白刺NtCIPK11基因在提高植物耐盐性或抗旱性中的应用。Aiming at the above-mentioned problems existing in the prior art, the technical problem to be solved by the present invention is to provide a kind of NtCIPK11 gene of T. tanguticum. Another technical problem to be solved by the present invention is to provide the application of the NtCIPK11 gene of T. tanguticum in improving the salt tolerance or drought resistance of plants.

为了解决上述技术问题,本发明所采用的技术方案如下:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is as follows:

一种唐古特白刺NtCIPK11基因,其核苷酸序列如SEQ ID NO.1所示。A tangut white thorn NtCIPK11 gene, the nucleotide sequence of which is shown in SEQ ID NO.1.

所述的唐古特白刺NtCIPK11基因的表达蛋白,其氨基酸序列如SEQ ID NO.2所示。The amino acid sequence of the expressed protein of the NtCIPK11 gene of T. tanguti is shown in SEQ ID NO.2.

含有权利要求1所述的唐古特白刺NtCIPK11基因的载体、重组菌或宿主细胞。A vector, recombinant bacteria or host cell containing the NtCIPK11 gene of T. tanguti according to claim 1.

优选地,所述的唐古特白刺NtCIPK11基因的载体,为植物重组表达载体。Preferably, the vector of the NtCIPK11 gene of T. tanguticum is a plant recombinant expression vector.

优选地,所述的植物重组表达载体,为pBI121+NtCIPK11。Preferably, the plant recombinant expression vector is pBI121+NtCIPK11.

优选地,所述的pBI121+NtCIPK11,NtCIPK11基因的启动子是35S。Preferably, the promoter of the pBI121+NtCIPK11, NtCIPK11 gene is 35S.

所述的唐古特白刺NtCIPK11基因在提高植物耐盐性或抗旱性中的应用。The application of the NtCIPK11 gene of T. tanguti in improving the salt tolerance or drought resistance of plants.

优选地,所述的唐古特白刺NtCIPK11基因在提高植物耐盐性或抗旱性中的应用,包括以下步骤:Preferably, the application of the NtCIPK11 gene of P. tanguensis in improving the salt tolerance or drought resistance of plants comprises the following steps:

1)构建唐古特白刺NtCIPK11基因的重组载体;1) construct the recombinant vector of Tanggut white thorn NtCIPK11 gene;

2)将所构建的唐古特白刺NtCIPK11基因的重组载体转化到植物细胞中;2) transforming the constructed recombinant vector of the NtCIPK11 gene into plant cells;

3)培育筛选,得到具有耐盐性或抗旱性的植株。3) Cultivate and screen to obtain plants with salt tolerance or drought tolerance.

有益效果:相比于现有技术,本发明的优点为:Beneficial effect: Compared with the prior art, the advantages of the present invention are:

本发明在已有的部分转录组数据的基础上,同源克隆了唐古特白刺抗逆相关的CIPK基因全长,依据拟南芥中的同源基因而命名为NtCIPK11,其核苷酸序列如SEQ ID NO.1所示,其表达蛋白的氨基酸序列如SEQ ID NO.2所示。在正常培养环境中,唐古特白刺NtCIPK11基因过表达的拟南芥T3代纯合植株的生长发育与野生型无明显差异。但通过纯合NtCIPK11基因拟南芥植株的耐盐和抗旱分析,显示盐胁迫和干旱胁迫下,过表达NtCIPK11植株比WT植株在同一时期萌发率更高,根更长,叶片数量更多,根的数量也更多,证明了唐古特白刺NtCIPK11基因转化植物具备良好的耐盐性和抗旱性,NtCIPK11基因的公开为植物抗逆基因库增加了资源,对于提高植物的耐盐和耐寒的研究具有重要意义和价值。On the basis of the existing partial transcriptome data, the present invention homologously clones the full length of the CIPK gene related to stress resistance of T. tanggut, and is named NtCIPK11 according to the homologous gene in Arabidopsis thaliana. Its nucleotide sequence As shown in SEQ ID NO.1, the amino acid sequence of the expressed protein is shown in SEQ ID NO.2. In normal culture environment, the growth and development of Arabidopsis thaliana T3 homozygous plants overexpressing NtCIPK11 gene were not significantly different from those of the wild type. However, the salt tolerance and drought resistance analysis of homozygous NtCIPK11 gene Arabidopsis plants showed that under salt stress and drought stress, NtCIPK11 overexpressed plants had higher germination rate, longer roots, more leaves and roots than WT plants in the same period. The number is also more, which proves that the plants transformed with the NtCIPK11 gene of T. tanguensis have good salt tolerance and drought resistance. The disclosure of the NtCIPK11 gene increases the resources for the plant stress resistance gene pool, and is useful for the research on improving the salt tolerance and cold tolerance of plants. significant and valuable.

附图说明Description of drawings

图1是NtCIPK11基因的表达载体图;Fig. 1 is the expression vector map of NtCIPK11 gene;

图2是拟南芥NtCIPK11基因的qPCR分析结果图;Fig. 2 is the qPCR analysis result of Arabidopsis NtCIPK11 gene;

图3是WT和过表达NtCIPK11三个转基因株系(OX-1、OX-2和OX-3)种子萌发情况图;Figure 3 is a graph of seed germination of three transgenic lines (OX-1, OX-2 and OX-3) of WT and overexpressing NtCIPK11;

图4是光照五天后WT和转基因植株种子的萌发率图;Figure 4 is a graph of the germination rate of seeds of WT and transgenic plants after five days of illumination;

图5是WT和转基因植株发芽20天后在不同浓度的盐培养基上的根的长度图;Figure 5 is a graph of root lengths of WT and transgenic plants 20 days after germination on salt medium with different concentrations;

图6是WT和转基因植株发芽20天后在不同浓度的盐培养基上的叶片数量图;Figure 6 is a graph of the number of leaves on different concentrations of salt medium 20 days after germination of WT and transgenic plants;

图7是WT和转基因植株发芽20天后在不同浓度的盐培养基上的根量图;Figure 7 is a graph of root mass of WT and transgenic plants 20 days after germination on salt medium with different concentrations;

图8是NtCIPK11和WT在不同甘露醇处理下种子萌发的图片;Figure 8 is a picture of seed germination of NtCIPK11 and WT under different mannitol treatments;

图9是WT和转基因植株发芽后有两个子叶的幼苗的百分比图;Figure 9 is a graph of the percentage of seedlings with two cotyledons after germination of WT and transgenic plants;

图10是WT和过表达NtCIPK11植株在不同的甘露醇浓度的培养基上培养20天的表型图;Figure 10 is a phenotype diagram of WT and NtCIPK11 overexpressing plants cultured on media with different mannitol concentrations for 20 days;

图11是WT和转基因植株在不同浓度的甘露醇处理下的初生根长度图;Figure 11 is a graph of primary root lengths of WT and transgenic plants treated with different concentrations of mannitol;

图12是干旱胁迫下WT和转基因植株游离脯氨酸含量的变化图。Figure 12 is a graph of changes in free proline content of WT and transgenic plants under drought stress.

具体实施方式Detailed ways

下面结合具体实施例对本发明进一步进行描述。The present invention will be further described below with reference to specific embodiments.

实施例1:Example 1:

唐古特白刺种子放在相对含水量7%、4℃中春化4周。春化后,将种子置于土壤与沙子1∶1的盆中,在湿度为55%~60%、温度为26℃~28℃、16-h-light/8-h-dark的环境中萌发。用500mM NaCl和200mM甘露醇灌溉两个月大的幼苗。处理2小时后取唐古特白刺的叶片,立即冷冻于液氮中,-80℃保存,提取RNA后并反转成cDNA,设计相应引物进行PCR,琼脂糖凝胶电泳后,回收目的条带,与pMD19-T载体连接,转入大肠杆菌,测序并分析。确定为目的序列后,依据该序列设计RACE引物,PCR获取5’和3’序列,测序分析后,拼接得到NtCIPK11全长序列。依据全长序列设计引物,PCR获得全长片段,与pMD19-T载体连接,转入大肠杆菌,再次测序和分析,确定为全长片段后,挑取阳性克隆进行质粒抽提,加入酶切位点后与载体pBI121同时双酶切,在T4连接酶的作用下连接后,转入农杆菌EHA105和GV3101中,待拟南芥适龄后,通过花器官浸泡转化法进行转化,获取T1代和T2代种子,筛选到纯合T3代后,进行盐处理,表型观察和耐盐性分析。Tanggut white thorn seeds were vernalized for 4 weeks in a relative water content of 7% at 4°C. After vernalization, the seeds were placed in soil and sand 1:1 pots and germinated in an environment with a humidity of 55% to 60%, a temperature of 26°C to 28°C, and 16-h-light/8-h-dark. . Two-month-old seedlings were irrigated with 500 mM NaCl and 200 mM mannitol. After 2 hours of treatment, the leaves of Thorn tangut were taken, immediately frozen in liquid nitrogen and stored at -80°C. After RNA was extracted and reversed into cDNA, corresponding primers were designed for PCR, and after agarose gel electrophoresis, the target band was recovered. , ligated with pMD19-T vector, transformed into E. coli, sequenced and analyzed. After the target sequence was determined, RACE primers were designed according to the sequence, and the 5' and 3' sequences were obtained by PCR. After sequencing analysis, the full-length sequence of NtCIPK11 was obtained by splicing. Primers were designed according to the full-length sequence, and the full-length fragment was obtained by PCR, ligated with the pMD19-T vector, transferred into E. coli, sequenced and analyzed again, and after confirming that it was a full-length fragment, positive clones were picked for plasmid extraction, and restriction enzymes were added. After spotting, it was double-enzymatically digested with the vector pBI121. After ligation under the action of T4 ligase, it was transferred into Agrobacterium EHA105 and GV3101. After the Arabidopsis reached the appropriate age, it was transformed by the flower organ soaking transformation method to obtain T1 generation and T2 generation. After the homozygous T3 generation was screened, salt treatment, phenotype observation and salt tolerance analysis were performed.

(1)总RNA的提取(1) Extraction of total RNA

将事先收集的唐古特白刺的叶片,按照NORGEN试剂盒(Norgen Biotek)的操作步骤进行RNA的提取。唐古特白刺叶片总RNA的1%琼脂糖凝胶电泳结果条带清晰;测定总RNA的吸光度,OD260/OD280值为2.13,OD260/OD230为2.05,可见RNA质量较好。The previously collected leaves of Thorn tangut were used for RNA extraction according to the operating procedure of the NORGEN kit (Norgen Biotek). The 1% agarose gel electrophoresis results of the total RNA of T. tanggut leaves were clear; the absorbance of total RNA was measured, the OD 260 /OD 280 value was 2.13, and the OD 260 /OD 230 value was 2.05, indicating that the RNA quality was good.

RNA提取的具体过程如下:The specific process of RNA extraction is as follows:

1)加入800μL Lysis Solution磨样。1) Add 800 μL Lysis Solution to grind the sample.

2)匀浆后将裂解液转移至新管中。2) Transfer the lysate to a new tube after homogenization.

3)混匀2min使其彻底裂解,12000rpm离心2min,上清移至新管中。3) Mix well for 2 min to make it completely lysed, centrifuge at 12000 rpm for 2 min, and transfer the supernatant to a new tube.

4)加入等体积的70%乙醇,涡旋混匀。4) Add an equal volume of 70% ethanol and vortex to mix.

5)将混合液移至柱子中(下接2mL收集管),离心1min,倒掉滤液,放回收集管。5) Transfer the mixture to a column (connected to a 2mL collection tube below), centrifuge for 1 min, pour off the filtrate, and put it back into the collection tube.

6)加入400uL Wash Solution,离心1min,弃滤液,放回收集管。6) Add 400uL Wash Solution, centrifuge for 1 min, discard the filtrate and put it back into the collection tube.

7)加入DNA I工作液,12000rpm离心1min,将滤液吸回柱子上,25℃-30℃静置15min。7) Add DNA I working solution, centrifuge at 12000rpm for 1min, suck the filtrate back onto the column, and let stand at 25°C-30°C for 15min.

8)加入400μL Wash Solution,12000rpm离心1min,弃滤液。8) Add 400 μL Wash Solution, centrifuge at 12000 rpm for 1 min, and discard the filtrate.

9)第三次加入400μL Wash Solution,12000rpm离心1min,弃滤液。9) Add 400 μL Wash Solution for the third time, centrifuge at 12000 rpm for 1 min, and discard the filtrate.

10)将柱子放回收集管,12000rpm离心2min,弃收集管。10) Put the column back into the collection tube, centrifuge at 12,000 rpm for 2 min, and discard the collection tube.

11)将柱子放入1.7mL管子中加入50μL Elution Solution。11) Put the column into a 1.7mL tube and add 50μL of Elution Solution.

12)200~2000rpm离心2min,12000rpm离心1min,体积不足50μL,再用14000rpm离心1min。12) Centrifuge at 200-2000 rpm for 2 min, 12,000 rpm for 1 min, the volume is less than 50 μL, and then centrifuge at 14,000 rpm for 1 min.

(2)cDNA的获得(2) Obtaining cDNA

以所提RNA为模板,反转录获得cDNA,所使用的是Invitrogen公司的

Figure BDA0002290739230000041
III First-Strand Synthesis Kit。实验中的RNA使用量为1μg,具体过程如下:Using the extracted RNA as a template, reverse transcription was used to obtain cDNA, which was obtained by Invitrogen.
Figure BDA0002290739230000041
III First-Strand Synthesis Kit. The amount of RNA used in the experiment is 1 μg, and the specific process is as follows:

1)按如下顺序配置反应液,短暂低速离心后,65℃5min,立即置于冰上1~2mm。1) Prepare the reaction solution in the following order, after a brief low-speed centrifugation, 65°C for 5 min, and immediately place it on ice for 1-2 mm.

反应液:1μL RNA(≤5μg),1μL Primer(Oligo dT),1μL 10mM dNTP mix,DEPC-Treated Water补足10μL。Reaction solution: 1 μL RNA (≤5 μg), 1 μL Primer (Oligo dT), 1 μL 10 mM dNTP mix, and DEPC-Treated Water to make up 10 μL.

2)向上一步的管中按以下顺序加入相应试剂,置于PCR仪上,反应程序为50℃50min,85℃ 5min。加入试剂顺序:2μL 10×RT Buffer,4μL25mM MgCl2,2μL 0.1M DTT,1μLRNaseOUT(40U/μl),1μL SuperScript III RT。2) Add the corresponding reagents in the following order to the tube in the previous step, place it on the PCR machine, and the reaction program is 50°C for 50 minutes and 85°C for 5 minutes. The order of adding reagents: 2 μL 10×RT Buffer, 4 μL 25mM MgCl 2 , 2 μL 0.1M DTT, 1 μL RNaseOUT (40 U/μl), 1 μL SuperScript III RT.

3)将上一步的反应液离心,每管中加入1μL的RNase H,37℃20min。3) Centrifuge the reaction solution in the previous step, add 1 μL of RNase H to each tube, and set it at 37°C for 20 min.

(3)目的基因的同源克隆(3) Homologous cloning of the target gene

根据唐古特白刺的部分转录组数据,通过NCBI Blast进行保守的特异性序列分析,利用Oligo7设计引物,克隆NtCIPK11基因片段,然后进行连接转化测序和序列分析,确定为目的基因。克隆引物、PCR体系和PCR程序如下所示。According to the partial transcriptome data of Tanggut white thorn, conservative specific sequence analysis was carried out by NCBI Blast, primers were designed by Oligo7, NtCIPK11 gene fragment was cloned, and then ligation transformation sequencing and sequence analysis were carried out to determine the target gene. Cloning primers, PCR systems and PCR procedures are shown below.

NtCIPK11片段克隆引物为:The NtCIPK11 fragment cloning primers are:

Figure BDA0002290739230000051
Figure BDA0002290739230000051

PCR反应体系(20μL)为:2μL 10×PCR Buffer、1.2μL Mg2+(25mM/L)、0.4μL 10×dNTP、0.1μL Tag(5.0U/μL)、1μL Forward primer(10μM/L)、1μL Reverse primer(10μM/L)、1μL Template cDNA(100ng/μL)、13.3μL ddH2O。PCR reaction system (20μL): 2μL 10×PCR Buffer, 1.2μL Mg 2+ (25mM/L), 0.4μL 10×dNTP, 0.1μL Tag (5.0U/μL), 1μL Forward primer (10μM/L), 1 μL Reverse primer (10 μM/L), 1 μL Template cDNA (100 ng/μL), 13.3 μL ddH 2 O.

PCR反应程序为:95℃变性5min,55℃退火30s,72℃延长1min,35个循环。The PCR reaction program was: denaturation at 95 °C for 5 min, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min, for 35 cycles.

(4)目的基因5’端和3’端序列克隆(4) Sequence cloning of the 5' and 3' ends of the target gene

利用Oligo7设计RACE引物,进行CIPK9基因3’末端和5’末端的克隆,切胶回收获得目的片段,然后与载体pMD19-T连接,转化大肠杆菌,挑取单克隆,测序和序列分析,确定获得NtCIPK9基因的两个末端序列后,拼接得到NtCIPK9基因全长序列。RACE引物,PCR反应体系和程序如下所示。Use Oligo7 to design RACE primers, clone the 3' end and 5' end of CIPK9 gene, cut the gel to recover the target fragment, and then ligate it with the vector pMD19-T, transform E. After the two end sequences of the NtCIPK9 gene, the full-length sequence of the NtCIPK9 gene was obtained by splicing. RACE primers, PCR reaction systems and procedures are shown below.

RACE引物为:The RACE primers are:

Figure BDA0002290739230000052
Figure BDA0002290739230000052

Figure BDA0002290739230000061
Figure BDA0002290739230000061

RACE A item的PCR反应体系(20μL)为:2μL 10×PCR Buffer、1.2μL Mg2+(25mM/L)、0.4μL 10×dNTP、0.1μL Tag(5.0U/μL)、1μL CIPK11:3’/5’race primerA(10μM/L)、1μL10×Universal Primer A Mix、1μL Template cDNA(100ng/μL)、13.3μL ddH2O。The PCR reaction system (20μL) of RACE A item is: 2μL 10×PCR Buffer, 1.2μL Mg 2+ (25mM/L), 0.4μL 10×dNTP, 0.1μL Tag (5.0U/μL), 1μL CIPK11: 3'/5'race primerA (10 μM/L), 1 μL 10×Universal Primer A Mix, 1 μL Template cDNA (100 ng/μL), 13.3 μL ddH 2 O.

RACE A item的PCR反应程序:95℃变性5min,67℃/69℃退火(3’end/5’end)30s,72℃延长(3’end/5’end)40s/35s,35循环。The PCR reaction program of RACE A item: denaturation at 95°C for 5min, annealing at 67°C/69°C (3'end/5'end) for 30s, extension at 72°C (3'end/5'end) for 40s/35s, 35 cycles.

RACE B和C item的PCR反应体系(20μL)为:2μL 10×PCR Buffer、1.2μL Mg2+(25mM/L)、2μL dNTP、0.4μL Kode、0.6μL Universal Primer A Mix、0.6μL CIPK11:3’/5’race primer B/C、1μL Diluent of race A product、12.2μL ddH2O。The PCR reaction system (20μL) of RACE B and C item is: 2μL 10×PCR Buffer, 1.2μL Mg 2+ (25mM/L), 2μL dNTP, 0.4μL Kode, 0.6μL Universal Primer A Mix, 0.6μL CIPK11:3 '/5' race primer B/C, 1 μL Diluent of race A product, 12.2 μL ddH 2 O.

RACE B和C item的PCR反应程序:98℃变性10s,67℃/66℃/68℃/68℃退火(3’race B/3’race C/5’race B/5’race C)30s,72℃延长(3’end/5’end)40s/35s,35循环。PCR reaction program for RACE B and C item: denaturation at 98°C for 10s, annealing at 67°C/66°C/68°C/68°C (3'race B/3'race C/5'race B/5'race C) for 30s, 72°C extension (3'end/5'end) for 40s/35s, 35 cycles.

(5)基因全长获取(5) Obtaining the full length of the gene

根据CIPK11基因全长序列,利用Oligo7设计全长引物,克隆得到NtCIPK11全长基因,切胶回收目的条带,与pMD19-T连接后转入大肠杆菌,经过测序分析,确定CIPK11基因的ORF是完整的。唐古特白刺的CIPK11基因全长为1677bp,命名为NtCIPK11,具体序列如SEQID NO.1所示,所表达的蛋白序列如SEQ ID NO.2所示,包括438个氨基酸的开放阅读框(ORF)。全长基因克隆的引物,PCR反应体系和程序如下所示。According to the full-length sequence of CIPK11 gene, use Oligo7 to design full-length primers, clone the full-length NtCIPK11 gene, cut the gel to recover the target band, connect it with pMD19-T and transfer it into E. coli. After sequencing analysis, it is confirmed that the ORF of the CIPK11 gene is complete of. The full length of CIPK11 gene of Tanggut white thorn is 1677bp, named as NtCIPK11, the specific sequence is shown in SEQ ID NO.1, and the expressed protein sequence is shown in SEQ ID NO.2, including 438 amino acid open reading frame (ORF ). Primers, PCR reaction systems and procedures for full-length gene cloning are shown below.

全长基因克隆引物为:The full-length gene cloning primers are:

Figure BDA0002290739230000062
Figure BDA0002290739230000062

PCR反应体系(20μL)为:2μL 10×PCR Buffer、1.2μL Mg2+(25mM/L)、0.4μL 10×dNTP、0.1μL Tag(5.0U/μL)、1μL Forward primer(10μM/L)、1μL Reverse primer(10μM/L)、1μL Template cDNA(100ng/μL)、13.3μL ddH2O。PCR reaction system (20μL): 2μL 10×PCR Buffer, 1.2μL Mg 2+ (25mM/L), 0.4μL 10×dNTP, 0.1μL Tag (5.0U/μL), 1μL Forward primer (10μM/L), 1 μL Reverse primer (10 μM/L), 1 μL Template cDNA (100 ng/μL), 13.3 μL ddH 2 O.

PCR反应程序:95℃变性5min,63℃退火30s,72℃延长1min30s,35循环。PCR reaction program: denaturation at 95 °C for 5 min, annealing at 63 °C for 30 s, extension at 72 °C for 1 min for 30 s, 35 cycles.

实施例2:唐古特白刺NtCIPK11基因功能验证Example 2: Functional verification of the NtCIPK11 gene of T. tangutei

构建35S:NtCIPK11表达载体,转入野生型哥伦比亚拟南芥中,观察唐古特白刺NtCIPK11基因是否能增强拟南芥的耐盐性和耐旱性,比较转基因拟南芥和野生型拟南芥的表型差异,推测唐古特白刺CIPK11基因的功能。Construct 35S:NtCIPK11 expression vector and transfer it into wild-type Colombian Arabidopsis thaliana to observe whether NtCIPK11 gene can enhance the salt tolerance and drought tolerance of Arabidopsis thaliana, and compare transgenic Arabidopsis thaliana and wild-type Arabidopsis thaliana The phenotypic differences, speculate the function of the CIPK11 gene in T. tangut.

(1)载体的构建(1) Construction of the vector

本发明所用大肠杆菌菌株为E.coli JM109(宝生物工程(大连)有限公司购入);表达载体为pBI 121(Biovector Co.,LTD公司购入)。The Escherichia coli strain used in the present invention is E.coli JM109 (purchased by Bao Bioengineering (Dalian) Co., Ltd.); the expression vector is pBI 121 (purchased by Biovector Co., LTD.).

具体过程如下:The specific process is as follows:

1.通过PCR向CIPK11基因片段上下游分别添加BamH I和SmaI酶切位点,PCR体系及反应条件同全长扩增,引物分别是:1. Add BamH I and SmaI restriction sites to the upstream and downstream of the CIPK11 gene fragment by PCR. The PCR system and reaction conditions are the same as the full-length amplification. The primers are:

Figure BDA0002290739230000071
Figure BDA0002290739230000071

2.测序正确后在T4连接酶的作用下,可进行载体的构建。使用BamH I和Sma I内切酶进行酶切。用同样的酶切反应处理空的pBI 121表达载体。2. After the sequencing is correct, the vector can be constructed under the action of T4 ligase. Digestion was performed using BamHI and Sma I endonucleases. The empty pBI 121 expression vector was treated with the same digestion reaction.

双酶切反应体系(20μL)为:2μL 10×K buffer、0.5μL BamH I、0.5μL SmaI、1μg回收产物、ddH2O补足20μL。The double-enzyme digestion reaction system (20 μL) was: 2 μL of 10×K buffer, 0.5 μL of BamH I, 0.5 μL of SmaI, 1 μg of recovered product, and ddH 2 O to make up 20 μL.

37℃水浴,酶切4h。加入10×终止液停止酶切反应,1%琼脂糖凝胶电泳进行分离。用AxyPrep DNA Gel Extraction Kit(AXYGEN)进行回收并纯化酶切产物,溶于20μL的TE缓冲液中。37°C water bath for 4h digestion. Add 10× stop solution to stop the digestion reaction, and separate by 1% agarose gel electrophoresis. The digestion product was recovered and purified with AxyPrep DNA Gel Extraction Kit (AXYGEN) and dissolved in 20 μL of TE buffer.

3.检测所回收的酶切产物浓度,按连接体系加入各试剂(目的片段分子数∶载体分子数=3∶1~5∶1),16℃过夜连接。连接反应体系为:2.5μL T4 DNA ligase buffer(10×)、5μL酶切的表达载体、15.5μL酶切的PCR产物、2μL T4 DNA ligase、ddH2O补足25μL。3. Detect the concentration of the recovered enzyme cleavage product, add each reagent according to the ligation system (number of target fragment molecules: number of carrier molecules=3:1-5:1), and connect overnight at 16°C. The ligation reaction system was: 2.5 μL T4 DNA ligase buffer (10×), 5 μL digested expression vector, 15.5 μL digested PCR product, 2 μL T4 DNA ligase, and ddH 2 O to make up 25 μL.

4.连接产物转化大肠杆菌JM109超感细胞,挑取单菌落接种到LB液体培养基中,37℃震荡培养过夜;使用全长引物进行菌液PCR,以筛选阳性克隆,之后用AxyPrep PlasmidMiniprepKit(AXYGEN)提取质粒进行酶切验证。同时测序检测载体构建过程中是否发生突变或者缺失现象。构建表达载体如图1所示:4. The ligation product was transformed into E. coli JM109 supersensitive cells, and a single colony was picked and inoculated into LB liquid medium, and incubated overnight at 37°C with shaking; bacterial liquid PCR was performed using full-length primers to screen for positive clones, and then AxyPrep Plasmid Miniprep Kit (AXYGEN ) to extract the plasmid for verification by enzyme digestion. At the same time, sequencing was used to detect whether mutation or deletion occurred during the construction of the vector. The construction of the expression vector is shown in Figure 1:

(2)农杆菌的转化(2) Transformation of Agrobacterium

1.本发明使用的农杆菌菌株为GV3101(Biovector Co.,LTD公司购入)。采用的是液氮冻融法将构建好的NtCIPK11表达载体转入农杆菌。具体过程如下:1. The Agrobacterium strain used in the present invention is GV3101 (purchased from Biovector Co., LTD). The liquid nitrogen freeze-thaw method was used to transfer the constructed NtCIPK11 expression vector into Agrobacterium. The specific process is as follows:

1)冰浴融化GV3101感受态细胞,加入至少100ng回收纯化的表达载体质粒,轻轻混匀,冰浴20~30min;1) Melt the GV3101 competent cells in an ice bath, add at least 100ng of the recovered and purified expression vector plasmid, mix gently, and take an ice bath for 20-30 minutes;

2)液氮速冻1min,37℃热激3min,迅速置于冰上1~2min;2) Quick-freeze in liquid nitrogen for 1 min, heat shock at 37°C for 3 min, and quickly place on ice for 1-2 min;

3)加入800μL无抗生素的LB培养基,28℃,200rpm复苏3.5h;3) Add 800 μL of antibiotic-free LB medium, recover at 28°C and 200rpm for 3.5h;

4)4000rpm离心3min,吸掉培养基;4) Centrifuge at 4000rpm for 3min, and suck off the medium;

5)混匀剩余菌液,涂抹于添加50mg.L-1卡纳霉素的固体LB培基上;5) Mix the remaining bacterial liquid and apply it on the solid LB medium with 50 mg.L -1 kanamycin added;

6)28℃倒置培养30~48h;6) Inverted culture at 28°C for 30-48h;

7)PCR检测阳性克隆,4℃保存备用。7) The positive clones detected by PCR were stored at 4°C for future use.

2.待种植的健康状态的拟南芥生长至开花。将PCR检测的阳性克隆,摇菌至OD0.75时,进行拟南芥花器官浸泡转化。具体过程如下:2. The healthy Arabidopsis to be planted is grown to flowering. When the positive clones detected by PCR were shaken to OD0.75, the Arabidopsis flower organs were immersed and transformed. The specific process is as follows:

1)将菌液5000rpm,5min离心,收集菌体,用5%蔗糖溶液悬浮;1) Centrifuge the bacterial liquid at 5000 rpm for 5 min, collect the bacterial cells, and suspend with 5% sucrose solution;

2)在浸泡前,加入SilwetL-77,浓度为0.05%(500μL/L),晃出泡沫;2) Before soaking, add SilwetL-77, the concentration is 0.05% (500μL/L), and shake out the foam;

3)将拟南芥的地上部分在农杆菌悬浮溶液中浸泡15~30sec,期间轻轻晃动,3) Soak the aerial part of Arabidopsis thaliana in the Agrobacterium suspension solution for 15-30 sec, and shake gently during the period.

4)将浸过的拟南芥平躺在托盘里,用保鲜膜覆盖保湿,锡箔纸密封避光24h;4) The immersed Arabidopsis thaliana was laid flat on the tray, covered with plastic wrap to keep moisture, and sealed with tin foil to protect from light for 24h;

5)揭开锡箔纸,正常条件下培养,当种子成熟时停止浇水;5) Uncover the tin foil, cultivate under normal conditions, and stop watering when the seeds are mature;

3.收获干燥的种子,将T1代种子进行筛选。3. Harvest the dried seeds and screen the T1 generation seeds.

4.再移至土里继续培养,收取T1代拟南芥种子后,将种子继续进行筛选获得T2代植株。然后,收取T2代拟南芥植株后,将种子继续进行筛选,获得纯合筛选出T3代纯合株系。4. Move to the soil to continue culturing, and after collecting the T1 generation Arabidopsis seeds, continue to screen the seeds to obtain the T2 generation plants. Then, after harvesting the T2 generation Arabidopsis plants, the seeds were screened to obtain a homozygous T3 generation homozygous line.

(3)实时荧光定量PCR(3) Real-time fluorescence quantitative PCR

为了确定NtCIPK11对盐和干旱胁迫的响应,采用实时荧光定量PCR(qPCR)技术,使用唐古特白刺根、茎和叶提取总的RNA,使用200mM NaCl和200mM甘露醇处理2小时的NtCIPK11过表达植株和WT进行转录分析。To determine the response of NtCIPK11 to salt and drought stress, real-time quantitative PCR (qPCR) technology was used to extract total RNA from T. tanguensis roots, stems, and leaves, and NtCIPK11 overexpression was treated with 200 mM NaCl and 200 mM mannitol for 2 hours. Plants and WT were subjected to transcriptional analysis.

总RNA逆转录如基因克隆中所述。qPCR使用SYBR-Green PCR母料在

Figure BDA0002290739230000081
480实时PCR检测系统(Roche,Basel,Switzerland)上按照制造商的说明进行。通过管家基因actin基因(NsActin2,编号:AB617805)在拟南芥(Wang et al.,2012)和泛素10(AtUBQ10,编号:At4g05320.2)在拟南芥(Arabidopsis,Norris et al.,1993)中的转录,使靶基因的表达水平正常化。Total RNA was reverse transcribed as described in Gene Cloning. qPCR using SYBR-Green PCR masterbatch in
Figure BDA0002290739230000081
480 real-time PCR detection system (Roche, Basel, Switzerland) according to the manufacturer's instructions. Through the housekeeping gene actin gene (NsActin2, accession: AB617805) in Arabidopsis (Wang et al., 2012) and ubiquitin 10 (AtUBQ10, accession: At4g05320.2) in Arabidopsis (Arabidopsis, Norris et al., 1993) ) to normalize the expression levels of target genes.

1)RT-PCR引物的设计1) Design of RT-PCR primers

根据RT-PCR的要求,设计了NtCIPK11基因的引物According to the requirements of RT-PCR, the primers of NtCIPK11 gene were designed

Figure BDA0002290739230000091
Figure BDA0002290739230000091

2)RT-PCR反应体系2) RT-PCR reaction system

反应体系为20μL:10μL 2×Power SYBR Green PCR Master Mix,1μL ForwardPrimer,1μL Reverse Primer,1μL cDNA,7μL ddH2O.The reaction system was 20 μL: 10 μL 2×Power SYBR Green PCR Master Mix, 1 μL ForwardPrimer, 1 μL Reverse Primer, 1 μL cDNA, 7 μL ddH 2 O.

3)RT-PCR反应条件3) RT-PCR reaction conditions

95℃10min;95℃ 15sec,60℃ 1min,40Cycles。95℃ for 10min; 95℃ for 15sec, 60℃ for 1min, 40Cycles.

4)试验材料4) Test material

使用白刺根、茎和叶提取总的RNA,使用200mM NaCl和200mM甘露醇处理2小时的NtCIPK11过表达植株和WT。Total RNA was extracted from the roots, stems and leaves of Thorn, and NtCIPK11 overexpressing plants and WT were treated with 200 mM NaCl and 200 mM mannitol for 2 hours.

5)试验结果5) Test results

qPCR检测显示(图2),NtCIPK11仅在转基因植物中有较高的表达水平,这证实了该基因存在异位表达。qPCR assay showed (Fig. 2) that NtCIPK11 had a high expression level only in transgenic plants, which confirmed the ectopic expression of this gene.

(4)转NtCIPK11基因拟南芥抗盐性试验(4) Salt tolerance test of NtCIPK11 transgenic Arabidopsis

取4个纯合转基因拟南芥株系和野生型拟南芥各50粒种子分别放在含有0mM,100mM和150mM NaCl的1/2MS培养基上萌发,种子春化2-3天后放于光下萌发,4天后统计萌发率。4个纯合转基因株系和野生型拟南芥株系分别命名为OX-1,OX-2,OX-3,OX-4和WT。六次重复试验同时进行。萌发4天的表型如图3所示,光照5天的萌发率统计结果如图4所示。50 seeds each of 4 homozygous transgenic Arabidopsis lines and wild-type Arabidopsis thaliana were germinated on 1/2MS medium containing 0 mM, 100 mM and 150 mM NaCl, and the seeds were vernalized for 2-3 days and then exposed to light. After germination, the germination rate was counted after 4 days. Four homozygous transgenic lines and wild-type Arabidopsis lines were named OX-1, OX-2, OX-3, OX-4 and WT, respectively. Six replicates were run simultaneously. The phenotype of 4 days of germination is shown in Figure 3, and the statistical results of the germination rate of 5 days of light are shown in Figure 4.

统计结果显示(图4),萌发4天后,在0mM NaCl环境中,转NtCIPK11基因的4个过表达株系的种子萌发率与WT的种子萌发率差异较明显。在100mM NaCl环境中,转基因株系分别比WT的萌发率高43%,呈极显著性差异(P<0.01)。在150mM盐处理条件下,转基因株系分别比WT高20%,其中OX-2和OX-3与WT之间差异极显著(P<0.01)。从盐萌发实验结果可知,NtCIPK11可以提高拟南芥种子在盐胁迫环境中的萌发率。The statistical results (Fig. 4) showed that, after 4 days of germination, in the environment of 0 mM NaCl, the seed germination rate of the four overexpressed lines transfected with the NtCIPK11 gene was significantly different from that of the WT seed. In the 100mM NaCl environment, the germination rate of the transgenic lines was 43% higher than that of the WT, showing a very significant difference (P<0.01). Under 150 mM salt treatment, transgenic lines were 20% higher than WT, respectively, with OX-2 and OX-3 significantly different from WT (P<0.01). From the results of salt germination experiments, NtCIPK11 can improve the germination rate of Arabidopsis seeds under salt stress.

转基因植株和WT种子在1/2MS培养上萌发生长1周后,每个株系取30株转移至分别添加0mM,100mM和150mM NaCl的1/2MS培养基上,观察转基因植株和野生型植株的生长表型。三次重复试验同时进行。观察转基因拟南芥和野生型拟南芥的生长状态,可知NtCIPK11在正常条件下会促进植株的根生长。在100mM和150mM NaCl环境下,NtCIPK11可以促进植物拟南芥叶片及根部的生长,表现出比WT更好的生长状态。After the transgenic plants and WT seeds were germinated and grown on 1/2MS culture for 1 week, 30 plants from each line were transferred to 1/2MS medium supplemented with 0 mM, 100 mM and 150 mM NaCl, respectively. growth phenotype. Three replicates were performed simultaneously. Observing the growth status of transgenic Arabidopsis and wild-type Arabidopsis, it can be seen that NtCIPK11 can promote the root growth of plants under normal conditions. In the environment of 100mM and 150mM NaCl, NtCIPK11 can promote the growth of Arabidopsis leaves and roots, showing a better growth state than WT.

为了进一步分析转基因植物的耐盐碱能力,我们观察到幼苗萌发后20天之后在不同浓度的盐介质中,过表达NtCIPK11植株比WT植株的根更长,叶片数量更多,根的数量也更多,如图5、图6和图7所示,特别是在100mM NaCl处理下,这说明过表达NtCIPK11可以提高拟南芥的耐盐能力。To further analyze the salinity tolerance of transgenic plants, we observed that after 20 days after seedling germination in different concentrations of salt media, plants overexpressing NtCIPK11 had longer roots, more leaves, and more roots than WT plants. More, as shown in Figure 5, Figure 6 and Figure 7, especially under 100 mM NaCl treatment, which indicates that overexpression of NtCIPK11 can improve the salt tolerance of Arabidopsis.

(5)转NtCIPK11基因拟南芥抗旱试验(5) Drought resistance test of Arabidopsis thaliana transgenic NtCIPK11

取4个纯合转基因拟南芥株系和野生型拟南芥各50粒种子分别放在含有0mM,100mM,150mM和200mM甘露醇的1/2MS培养基上萌发,种子春化2-3天后放于光下萌发,4天后统计萌发率。4个纯合转基因株系和野生型拟南芥株系分别命名为OX-1,OX-2,OX-3,OX-4和WT。六次重复试验同时进行。萌发4天的表型如图8所示。50 seeds each of 4 homozygous transgenic Arabidopsis lines and wild-type Arabidopsis thaliana were germinated on 1/2MS medium containing 0mM, 100mM, 150mM and 200mM mannitol, and the seeds were vernalized for 2-3 days. Germination was performed under light, and the germination rate was counted after 4 days. Four homozygous transgenic lines and wild-type Arabidopsis lines were named OX-1, OX-2, OX-3, OX-4 and WT, respectively. Six replicates were run simultaneously. The phenotype at 4 days of germination is shown in Figure 8.

实验研究发现,通过与盐处理相比,甘露醇处理对种子发芽无影响。在不同甘露醇处理下,WT和转基因植株都能够发芽。然而,我们发现WT幼苗的发育速度慢于转基因植物,表型如图8所示。而且,这在两个子叶的幼苗比例上有所体现。如图9所示,在没有甘露醇处理的情况下,转基因植株和WT的在两个子叶的幼苗比例上相差不大;但是放在甘露醇上处理后,差别就开始显现出来,尤其是在200mM的时候。三个转基因植株在100mM,150mM,200mM时候的平均比例分别为91%,87%,70%;要高于野生型的31%,20%和5%,。The experimental study found that mannitol treatment had no effect on seed germination compared with salt treatment. Both WT and transgenic plants were able to germinate under different mannitol treatments. However, we found that WT seedlings developed slower than transgenic plants, and the phenotypes are shown in Figure 8. Moreover, this is reflected in the proportion of seedlings with two cotyledons. As shown in Figure 9, in the absence of mannitol treatment, there was little difference between transgenic plants and WT in the proportion of seedlings in both cotyledons; but after treatment with mannitol, differences began to appear, especially in the 200mM. The average proportions of the three transgenic plants at 100 mM, 150 mM and 200 mM were 91%, 87% and 70%, respectively; they were higher than those of the wild type at 31%, 20% and 5%.

因此,这些结果表明,在甘露醇模拟的干旱胁迫下,NtCIPK11可以促进植物生长早期幼苗的发育,提高植物的抗干旱能力。Therefore, these results suggest that NtCIPK11 can promote the development of early seedlings and improve the drought resistance of plants under mannitol-simulated drought stress.

为了进一步研究NtCIPK11在干旱胁迫下的作用,我们观察了不同甘露醇浓度处理的植株20天的生长情况。如图10所示,在不同甘露醇处理下,过表达NtCIPK11的植株比WT植株生长得更好。图11表明,转基因株系的初生根长于WT株系,尤其在150mM和200mM甘露醇培养皿上。为寻找干旱胁迫下NtCIPK11过表达植株生长的有利因素,我们测定了野生型和转基因植株中游离脯氨酸的含量。正常情况下,转基因株系的脯氨酸含量与野生型无差异,但干旱胁迫增加了野生型和转基因植株的脯氨酸积累。在转基因植株中游离脯氨酸含量明显高于WT植株,如图12所示。这些结果表明,NtCIPK11通过影响植物渗透调节因子的表达,参与干旱和盐胁迫信号通路。To further investigate the role of NtCIPK11 under drought stress, we observed the growth of plants treated with different mannitol concentrations for 20 days. As shown in Figure 10, plants overexpressing NtCIPK11 grew better than WT plants under different mannitol treatments. Figure 11 shows that the primary roots of the transgenic lines were longer than the WT lines, especially on 150 mM and 200 mM mannitol dishes. To find favorable factors for the growth of NtCIPK11-overexpressing plants under drought stress, we determined the content of free proline in wild-type and transgenic plants. Under normal conditions, the proline content of transgenic lines was no different from wild type, but drought stress increased proline accumulation in wild type and transgenic plants. The free proline content in transgenic plants was significantly higher than that in WT plants, as shown in Figure 12. These results suggest that NtCIPK11 is involved in drought and salt stress signaling pathways by affecting the expression of plant osmotic regulators.

序列表 sequence listing

<110> 南京林业大学<110> Nanjing Forestry University

<120> 一种唐古特白刺NtCIPK11基因及其表达蛋白和应用<120> A kind of NtCIPK11 gene of Thorn tangut, its expression protein and application

<130> 100<130> 100

<160> 20<160> 20

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1677<211> 1677

<212> DNA<212> DNA

<213> Nitraria tangutorum<213> Nitraria tangutorum

<400> 1<400> 1

gttgtaaaac gacggccagt gaattcgagc tcggtacccg gggatcctct agagattcta 60gttgtaaaac gacggccagt gaattcgagc tcggtacccg gggatcctct agagattcta 60

atacgactca ctatagggca agcagtggta tcaacgcaga gtacatgggg accttcattt 120atacgactca ctatagggca agcagtggta tcaacgcaga gtacatgggg accttcattt 120

tcgctctcta gtttcagtct tctccattca tatctaaccg agttttccaa ttctgagtta 180tcgctctcta gtttcagtct tctccattca tatctaaccg agttttccaa ttctgagtta 180

catttttcct ttttaatttc cccgcctttc tgtttcgatc tctggccatt tcacttatgc 240catttttcct ttttaatttc cccgcctttc tgtttcgatc tctggccatt tcacttatgc 240

cggagattga acatgtcccc gcggattacg acagcaattg caaagctgcc aacggtgcct 300cggagattga acatgtcccc gcggattacg acagcaattg caaagctgcc aacggtgcct 300

tgtttggaaa gtacgagctc ggcaagctcc tcggctgcgg agccttcgct aaggtatacc 360tgtttggaaa gtacgagctc ggcaagctcc tcggctgcgg agccttcgct aaggtatacc 360

atgcgcgtga cgtccgtacg aaccagagcg tggcgattaa gatcattagc aagaagaaga 420atgcgcgtga cgtccgtacg aaccagagcg tggcgattaa gatcattagc aagaagaaga 420

tcaacgttaa tctgatgtcg aacatcaagc gtgagatctc gatcatgagg cggttgaacc 480tcaacgttaa tctgatgtcg aacatcaagc gtgagatctc gatcatgagg cggttgaacc 480

atcgccatat cgtgaagctc cacgaggttc tggcgtcgaa aacgaagatt tatttcgtcg 540atcgccatat cgtgaagctc cacgaggttc tggcgtcgaa aacgaagatt tatttcgtcg 540

tggagttcgc caagggcggc gagttgttcg ccagggtggc gaaaggaagg ttcagcgagg 600tggagttcgc caagggcggc gagttgttcg ccagggtggc gaaaggaagg ttcagcgagg 600

atctcagcag gaagtacttc cagcagttga tatccgccgt tggttattgc cattcgcgcg 660atctcagcag gaagtacttc cagcagttga tatccgccgt tggttattgc cattcgcgcg 660

gcgtctatca ccgtgatctg aagccggaga atctcctgat cgacgagaac gggaatttga 720gcgtctatca ccgtgatctg aagccggaga atctcctgat cgacgagaac gggaatttga 720

aagtttcaga tttcggactc agcgctctga cggatcagat ccgaaccgac gggttgttgc 780aagtttcaga tttcggactc agcgctctga cggatcagat ccgaaccgac gggttgttgc 780

acacgctgtg tgggacccct gcttacgtgg ccccagagat attgtcgaag aaaggatacg 840acacgctgtg tgggacccct gcttacgtgg ccccagagat attgtcgaag aaaggatacg 840

acggagccaa ggtggatatc tggtcatgcg gcgtcattct gtttgtttta acggccggtt 900acggagccaa ggtggatatc tggtcatgcg gcgtcattct gtttgtttta acggccggtt 900

acctgccgtt taacgacccg aatctcatgg ccatgtacaa gaagatatac aaaggcgaat 960acctgccgtt taacgacccg aatctcatgg ccatgtacaa gaagatatac aaaggcgaat 960

tccggtgtcc gaaatggatg tccaacgatc ttaaacggct gttaaaccgt ctccttcata 1020tccggtgtcc gaaatggatg tccaacgatc ttaaacggct gttaaaccgt ctccttcata 1020

tcaatcctaa tacaaggatt accgtcgatc agattctcgg agatccatgg ttcagaaggg 1080tcaatcctaa tacaaggatt accgtcgatc agatctcgg agatccatgg ttcagaaggg 1080

gcggggtcaa ggaaatcaaa ttccacgacg acgaaaacgc cgccgttccc gataaaaccg 1140gcggggtcaa ggaaatcaaa ttccacgacg acgaaaacgc cgccgttccc gataaaaccg 1140

gtaaggaggg gttcggtgcg aggaatttga acgcgtttga tataatctca ttttcgtccg 1200gtaaggaggg gttcggtgcg aggaatttga acgcgtttga tataatctca ttttcgtccg 1200

gtttggacct gtctggtttg ttcgatacgt cgggcaactc gttcgagaat aatactggcg 1260gtttggacct gtctggtttg ttcgatacgt cgggcaactc gttcgagaat aatactggcg 1260

aacgtttcat ctcgcgagag tcgcctgata atttgttgga gacggtgacg gagttcgcca 1320aacgtttcat ctcgcgagag tcgcctgata atttgttgga gacggtgacg gagttcgcca 1320

aggttgagaa attaaggttg aagacgaaga aagaatgggg ggtggagttg gaagaacaaa 1380aggttgagaa attaaggttg aagacgaaga aagaatgggg ggtggagttg gaagaacaaa 1380

acggtaattt catcatcggg gtggacgttt accggttaac ggaggaacta gtggtcgtgg 1440acggtaattt catcatcggg gtggacgttt accggttaac ggaggaacta gtggtcgtgg 1440

aggccaacag aagagcgggt gacaccgcat gttacactga ggtgtggaag tcgaatctga 1500aggccaacag aagagcgggt gacaccgcat gttacactga ggtgtggaag tcgaatctga 1500

gaccgcaact tcttgtgcgt caacaggaag cttcggtttc tggtaatcat taaaattgta 1560gaccgcaact tcttgtgcgt caacaggaag cttcggtttc tggtaatcat taaaattgta 1560

gagagagaga gagagagaga gagagatagc aattaggagt acaaatcttt aattggattg 1620gagagagaga gagagagaga gagagatagc aattaggagt acaaatcttt aattggattg 1620

ggttttcttt catgaaatta ggatacattc catatgaaaa aaaaaaaaaa aaaaaaa 1677ggttttcttt catgaaatta ggatacattc catatgaaaa aaaaaaaaaa aaaaaaa 1677

<210> 2<210> 2

<211> 438<211> 438

<212> PRT<212> PRT

<213> Nitraria tangutorum<213> Nitraria tangutorum

<400> 2<400> 2

Met Pro Glu Ile Glu His Val Pro Ala Asp Tyr Asp Ser Asn Cys LysMet Pro Glu Ile Glu His Val Pro Ala Asp Tyr Asp Ser Asn Cys Lys

1 5 10 151 5 10 15

Ala Ala Asn Gly Ala Leu Phe Gly Lys Tyr Glu Leu Gly Lys Leu LeuAla Ala Asn Gly Ala Leu Phe Gly Lys Tyr Glu Leu Gly Lys Leu Leu

20 25 30 20 25 30

Gly Cys Gly Ala Phe Ala Lys Val Tyr His Ala Arg Asp Val Arg ThrGly Cys Gly Ala Phe Ala Lys Val Tyr His Ala Arg Asp Val Arg Thr

35 40 45 35 40 45

Asn Gln Ser Val Ala Ile Lys Ile Ile Ser Lys Lys Lys Ile Asn ValAsn Gln Ser Val Ala Ile Lys Ile Ile Ser Lys Lys Lys Ile Asn Val

50 55 60 50 55 60

Asn Leu Met Ser Asn Ile Lys Arg Glu Ile Ser Ile Met Arg Arg LeuAsn Leu Met Ser Asn Ile Lys Arg Glu Ile Ser Ile Met Arg Arg Leu

65 70 75 8065 70 75 80

Asn His Arg His Ile Val Lys Leu His Glu Val Leu Ala Ser Lys ThrAsn His Arg His Ile Val Lys Leu His Glu Val Leu Ala Ser Lys Thr

85 90 95 85 90 95

Lys Ile Tyr Phe Val Val Glu Phe Ala Lys Gly Gly Glu Leu Phe AlaLys Ile Tyr Phe Val Val Glu Phe Ala Lys Gly Gly Glu Leu Phe Ala

100 105 110 100 105 110

Arg Val Ala Lys Gly Arg Phe Ser Glu Asp Leu Ser Arg Lys Tyr PheArg Val Ala Lys Gly Arg Phe Ser Glu Asp Leu Ser Arg Lys Tyr Phe

115 120 125 115 120 125

Gln Gln Leu Ile Ser Ala Val Gly Tyr Cys His Ser Arg Gly Val TyrGln Gln Leu Ile Ser Ala Val Gly Tyr Cys His Ser Arg Gly Val Tyr

130 135 140 130 135 140

His Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp Glu Asn Gly AsnHis Arg Asp Leu Lys Pro Glu Asn Leu Leu Ile Asp Glu Asn Gly Asn

145 150 155 160145 150 155 160

Leu Lys Val Ser Asp Phe Gly Leu Ser Ala Leu Thr Asp Gln Ile ArgLeu Lys Val Ser Asp Phe Gly Leu Ser Ala Leu Thr Asp Gln Ile Arg

165 170 175 165 170 175

Thr Asp Gly Leu Leu His Thr Leu Cys Gly Thr Pro Ala Tyr Val AlaThr Asp Gly Leu Leu His Thr Leu Cys Gly Thr Pro Ala Tyr Val Ala

180 185 190 180 185 190

Pro Glu Ile Leu Ser Lys Lys Gly Tyr Asp Gly Ala Lys Val Asp IlePro Glu Ile Leu Ser Lys Lys Lys Gly Tyr Asp Gly Ala Lys Val Asp Ile

195 200 205 195 200 205

Trp Ser Cys Gly Val Ile Leu Phe Val Leu Thr Ala Gly Tyr Leu ProTrp Ser Cys Gly Val Ile Leu Phe Val Leu Thr Ala Gly Tyr Leu Pro

210 215 220 210 215 220

Phe Asn Asp Pro Asn Leu Met Ala Met Tyr Lys Lys Ile Tyr Lys GlyPhe Asn Asp Pro Asn Leu Met Ala Met Tyr Lys Lys Ile Tyr Lys Gly

225 230 235 240225 230 235 240

Glu Phe Arg Cys Pro Lys Trp Met Ser Asn Asp Leu Lys Arg Leu LeuGlu Phe Arg Cys Pro Lys Trp Met Ser Asn Asp Leu Lys Arg Leu Leu

245 250 255 245 250 255

Asn Arg Leu Leu His Ile Asn Pro Asn Thr Arg Ile Thr Val Asp GlnAsn Arg Leu Leu His Ile Asn Pro Asn Thr Arg Ile Thr Val Asp Gln

260 265 270 260 265 270

Ile Leu Gly Asp Pro Trp Phe Arg Arg Gly Gly Val Lys Glu Ile LysIle Leu Gly Asp Pro Trp Phe Arg Arg Gly Gly Val Lys Glu Ile Lys

275 280 285 275 280 285

Phe His Asp Asp Glu Asn Ala Ala Val Pro Asp Lys Thr Gly Lys GluPhe His Asp Asp Glu Asn Ala Ala Val Pro Asp Lys Thr Gly Lys Glu

290 295 300 290 295 300

Gly Phe Gly Ala Arg Asn Leu Asn Ala Phe Asp Ile Ile Ser Phe SerGly Phe Gly Ala Arg Asn Leu Asn Ala Phe Asp Ile Ile Ser Phe Ser

305 310 315 320305 310 315 320

Ser Gly Leu Asp Leu Ser Gly Leu Phe Asp Thr Ser Gly Asn Ser PheSer Gly Leu Asp Leu Ser Gly Leu Phe Asp Thr Ser Gly Asn Ser Phe

325 330 335 325 330 335

Glu Asn Asn Thr Gly Glu Arg Phe Ile Ser Arg Glu Ser Pro Asp AsnGlu Asn Asn Thr Gly Glu Arg Phe Ile Ser Arg Glu Ser Pro Asp Asn

340 345 350 340 345 350

Leu Leu Glu Thr Val Thr Glu Phe Ala Lys Val Glu Lys Leu Arg LeuLeu Leu Glu Thr Val Thr Glu Phe Ala Lys Val Glu Lys Leu Arg Leu

355 360 365 355 360 365

Lys Thr Lys Lys Glu Trp Gly Val Glu Leu Glu Glu Gln Asn Gly AsnLys Thr Lys Lys Glu Trp Gly Val Glu Leu Glu Glu Gln Asn Gly Asn

370 375 380 370 375 380

Phe Ile Ile Gly Val Asp Val Tyr Arg Leu Thr Glu Glu Leu Val ValPhe Ile Ile Gly Val Asp Val Tyr Arg Leu Thr Glu Glu Leu Val Val

385 390 395 400385 390 395 400

Val Glu Ala Asn Arg Arg Ala Gly Asp Thr Ala Cys Tyr Thr Glu ValVal Glu Ala Asn Arg Arg Ala Gly Asp Thr Ala Cys Tyr Thr Glu Val

405 410 415 405 410 415

Trp Lys Ser Asn Leu Arg Pro Gln Leu Leu Val Arg Gln Gln Glu AlaTrp Lys Ser Asn Leu Arg Pro Gln Leu Leu Val Arg Gln Gln Glu Ala

420 425 430 420 425 430

Ser Val Ser Gly Asn HisSer Val Ser Gly Asn His

435 435

<210> 3<210> 3

<211> 23<211> 23

<212> DNA<212> DNA

<213> CIPK11 forward primer引物序列(Artificial)<213> CIPK11 forward primer primer sequence (Artificial)

<400> 3<400> 3

cgctaaggta taccatgcgc gtg 23cgctaaggta taccatgcgc gtg 23

<210> 4<210> 4

<211> 25<211> 25

<212> DNA<212> DNA

<213> CIPK11 reverse primer引物序列(Artificial)<213> CIPK11 reverse primer primer sequence (Artificial)

<400> 4<400> 4

cttccacacc tcagtgtaac atgcg 25cttccacacc tcagtgtaac atgcg 25

<210> 5<210> 5

<211> 27<211> 27

<212> DNA<212> DNA

<213> CIPK11:3'race primer A引物序列(Artificial)<213> CIPK11: 3'race primer A primer sequence (Artificial)

<400> 5<400> 5

catggttcag aaggggcggg gtcaagg 27catggttcag aaggggcggg gtcaagg 27

<210> 6<210> 6

<211> 28<211> 28

<212> DNA<212> DNA

<213> CIPK11:3'race primer B引物序列(Artificial)<213> CIPK11: 3'race primer B primer sequence (Artificial)

<400> 6<400> 6

acgaagaaag aatggggggt ggagttgg 28acgaagaaag aatggggggt ggagttgg 28

<210> 7<210> 7

<211> 26<211> 26

<212> DNA<212> DNA

<213> CIPK11:3'race primer C引物序列(Artificial)<213> CIPK11: 3'race primer C primer sequence (Artificial)

<400> 7<400> 7

aacggaggaa ctagtggtcg tggagg 26aacggaggaa ctagtggtcg tggagg 26

<210> 8<210> 8

<211> 24<211> 24

<212> DNA<212> DNA

<213> CIPK11:5'race primer A引物序列(Artificial)<213> CIPK11: 5'race primer A primer sequence (Artificial)

<400> 8<400> 8

acgccgcatg accagatatc cacc 24acgccgcatg accagatatc cacc 24

<210> 9<210> 9

<211> 23<211> 23

<212> DNA<212> DNA

<213> CIPK11:5'race primer B引物序列(Artificial)<213> CIPK11: 5'race primer B primer sequence (Artificial)

<400> 9<400> 9

ctgaaccttc ctttcgccac cct 23ctgaaccttc ctttcgccac cct 23

<210> 10<210> 10

<211> 26<211> 26

<212> DNA<212> DNA

<213> CIPK11:5'race primer C引物序列(Artificial)<213> CIPK11:5'race primer C primer sequence (Artificial)

<400> 10<400> 10

tggagcttca cgatatggcg atggtt 26tggagcttca cgatatggcg atggtt 26

<210> 11<210> 11

<211> 28<211> 28

<212> DNA<212> DNA

<213> CIPK11:wl forward primer引物序列(Artificial)<213> CIPK11:wl forward primer primer sequence (Artificial)

<400> 11<400> 11

gctctagaat gccggagatt gaacatgt 28gctctagaat gccggagatt gaacatgt 28

<210> 12<210> 12

<211> 31<211> 31

<212> DNA<212> DNA

<213> CIPK11:wl reverse primer引物序列(Artificial)<213> CIPK11:wl reverse primer primer sequence (Artificial)

<400> 12<400> 12

tcccccggga tgattaccag aaaccgaagc t 31tccccccggga tgattaccag aaaccgaagc t 31

<210> 13<210> 13

<211> 25<211> 25

<212> DNA<212> DNA

<213> NtCIPK11 F+BamH引物序列(Artificial)<213> NtCIPK11 F+BamH primer sequence (Artificial)

<400> 13<400> 13

cggatccgct ctagaatgcc ggaga 25cggatccgct ctagaatgcc ggaga 25

<210> 14<210> 14

<211> 27<211> 27

<212> DNA<212> DNA

<213> NtCIPK11 R+Sma I引物序列(Artificial)<213> NtCIPK11 R+Sma I primer sequence (Artificial)

<400> 14<400> 14

cccgggtccc ccgggacgtg atttctt 27cccgggtccc ccgggacgtg atttctt 27

<210> 15<210> 15

<211> 24<211> 24

<212> DNA<212> DNA

<213> NtCIPK11 F引物序列(Artificial)<213> NtCIPK11 F primer sequence (Artificial)

<400> 15<400> 15

atacaaggat taccgtcgat caga 24atacaaggat taccgtcgat caga 24

<210> 16<210> 16

<211> 21<211> 21

<212> DNA<212> DNA

<213> NtCIPK11 R引物序列(Artificial)<213> NtCIPK11 R primer sequence (Artificial)

<400> 16<400> 16

ttcaaattcc tcgcaccgaa c 21ttcaaattcc tcgcaccgaa c 21

<210> 17<210> 17

<211> 22<211> 22

<212> DNA<212> DNA

<213> NsActin F引物序列(Artificial)<213> NsActin F primer sequence (Artificial)

<400> 17<400> 17

catccctcat cggaatggaa gc 22catccctcat cggaatggaa gc 22

<210> 18<210> 18

<211> 25<211> 25

<212> DNA<212> DNA

<213> NsActin R引物序列(Artificial)<213> NsActin R primer sequence (Artificial)

<400> 18<400> 18

ggtagaccca ccactaagca caatg 25ggtagaccca ccactaagca caatg 25

<210> 19<210> 19

<211> 21<211> 21

<212> DNA<212> DNA

<213> AtUBQ10 F引物序列(Artificial)<213> AtUBQ10 F primer sequence (Artificial)

<400> 19<400> 19

ccggaaagac catcaccctt g 21ccggaaagac catcaccctt g 21

<210> 20<210> 20

<211> 21<211> 21

<212> DNA<212> DNA

<213> AtUBQ10 R引物序列(Artificial)<213> AtUBQ10 R primer sequence (Artificial)

<400> 20<400> 20

tgtagtcggc caaagtacgt c 21tgtagtcggc caaagtacgt c 21

Claims (8)

1.一种唐古特白刺NtCIPK11基因,其核苷酸序列如SEQ ID NO.1所示。1. A Tanggut white thorn NtCIPK11 gene, the nucleotide sequence of which is shown in SEQ ID NO.1. 2.权利要求1所述的唐古特白刺NtCIPK11基因的表达蛋白,其氨基酸序列如SEQ IDNO.2所示。2. The expression protein of the NtCIPK11 gene of T. tanguensis according to claim 1, the amino acid sequence of which is as shown in SEQ ID NO.2. 3.含有权利要求1所述的唐古特白刺NtCIPK11基因的载体或重组菌。3. A carrier or recombinant bacteria containing the NtCIPK11 gene of T. tangutes according to claim 1. 4.根据权利要求3所述的唐古特白刺NtCIPK11基因的载体,其特征在于,所述的载体为植物重组表达载体。4 . The vector of the NtCIPK11 gene of T. tangutei according to claim 3 , wherein the vector is a plant recombinant expression vector. 5 . 5.根据权利要求4所述的植物重组表达载体,其特征在于,所述的载体为pBI121+NtCIPK115. The plant recombinant expression vector according to claim 4, wherein the vector is pBI121+ NtCIPK11 . 6.根据权利要求5所述的植物重组表达载体,其特征在于,NtCIPK11基因的启动子是35S。6. The plant recombinant expression vector according to claim 5, wherein the promoter of the NtCIPK11 gene is 35S. 7.权利要求1所述的唐古特白刺NtCIPK11基因在提高植物耐盐性或抗旱性中的应用。7. The application of the NtCIPK11 gene of Thorn tanguti according to claim 1 in improving the salt tolerance or drought resistance of plants. 8.根据权利要求7所述的唐古特白刺NtCIPK11基因在提高植物耐盐性或抗旱性中的应用,其特征在于,包括以下步骤:8. the application of Tanggut white thorn NtCIPK11 gene according to claim 7 in improving plant salt tolerance or drought resistance, is characterized in that, comprises the following steps: 1)构建唐古特白刺NtCIPK11基因的重组载体;1) Constructing the recombinant vector of NtCIPK11 gene of Tanggut white thorn; 2)将所构建的唐古特白刺NtCIPK11基因的重组载体转化到植物细胞中;2) Transform the constructed recombinant vector of the NtCIPK11 gene into plant cells; 3)培育筛选,得到具有耐盐性或抗旱性的植株。3) Cultivate and screen to obtain plants with salt tolerance or drought tolerance.
CN201911178738.6A 2019-11-27 2019-11-27 A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application Active CN110791506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911178738.6A CN110791506B (en) 2019-11-27 2019-11-27 A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911178738.6A CN110791506B (en) 2019-11-27 2019-11-27 A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application

Publications (2)

Publication Number Publication Date
CN110791506A CN110791506A (en) 2020-02-14
CN110791506B true CN110791506B (en) 2020-12-04

Family

ID=69446323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911178738.6A Active CN110791506B (en) 2019-11-27 2019-11-27 A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application

Country Status (1)

Country Link
CN (1) CN110791506B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875049B (en) * 2022-04-08 2023-07-25 中国科学院昆明植物研究所 Resistance gene SpCIPK25, protein, expression vector and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498514A (en) * 2015-01-20 2015-04-08 南京林业大学 Nitraria tangutorum CBL-interacting protein kinase 9 (NtCIPK9) gene, expressed protein thereof and application thereof
CN106834315A (en) * 2017-03-24 2017-06-13 南京林业大学 One kind is than white thorn NbCIPK25 genes and its expressing protein and the application of undercuting
CN109666681A (en) * 2018-11-07 2019-04-23 北京市农林科学院 Plant drought, salt tolerant protein EeCIPK26 and its encoding gene and application
US20190183952A1 (en) * 2016-08-04 2019-06-20 Beijing Boxin Nature Biotech Ltd. Methods for preparing active extract and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498514A (en) * 2015-01-20 2015-04-08 南京林业大学 Nitraria tangutorum CBL-interacting protein kinase 9 (NtCIPK9) gene, expressed protein thereof and application thereof
US20190183952A1 (en) * 2016-08-04 2019-06-20 Beijing Boxin Nature Biotech Ltd. Methods for preparing active extract and application thereof
CN106834315A (en) * 2017-03-24 2017-06-13 南京林业大学 One kind is than white thorn NbCIPK25 genes and its expressing protein and the application of undercuting
CN109666681A (en) * 2018-11-07 2019-04-23 北京市农林科学院 Plant drought, salt tolerant protein EeCIPK26 and its encoding gene and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Functional characterization of a HD-ZIP IV transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum;Zhong Wang;《Plant Physiology and Biochemistry》;20191121;第146卷;第259-268页 *
Molecular cloning and functional characterization of a novel CBL-interacting protein kinase NtCIPK2 in the halophyte Nitraria tangutorum;Zheng,LL;《GENETICS AND MOLECULAR RESEARCH》;20140702;第13卷(第3期);第4716-4728页 *
唐古特白刺(Nitraria tangutorum)抗旱优良家系的生理特性;柴文敏;《中国沙漠》;20171130;第37卷(第6期);第1158-1170页 *
唐古特白刺蛋白激酶基因NtCIPK2超表达载体构建及紫花苜蓿转化研究;郑琳琳;《草业学报》;20131231;第22卷(第6期);第223-229页 *

Also Published As

Publication number Publication date
CN110791506A (en) 2020-02-14

Similar Documents

Publication Publication Date Title
CN105254726B (en) ERF class transcription factor relevant to plant stress-resistance and its encoding gene and application
EP1945021A2 (en) Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby
CN105189533A (en) Heat-resistant rice gene OsZFP, screening marker and separation method thereof
CN102234318B (en) Plant stress tolerance related protein TaTPRPK1, encoding gene thereof, and application thereof
CN114591969B (en) A Drought Resistance Gene CrWRKY57 and Its Application in Plant Drought Resistance Improvement
CN111499706A (en) Cotton zinc finger protein GhZFPH4 and its encoding gene and application
CN106834315B (en) A kind of NbCIPK25 gene of Nitraria biladia and its expression protein and application
CN106520798A (en) Identification and application of cotton drought-resistance related gene GhDRP1
CN104498514B (en) A kind of Nitraria tangutorum NtCIPK9 gene and its expressing protein and application
CN102719451A (en) Poncirus trifoliata basic helix-loop-helix (PtrbHLH) and application in improving cold resistance of plant
CN110791506B (en) A kind of NtCIPK11 gene of Thorn tanggut and its expression protein and application
CN103172716B (en) Heat-resistant plant gene and application thereof
CN114409753B (en) Low temperature stress resistant gene, protein and application thereof
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN104004772A (en) Liriodendron chinensis LhPIN3 genes and application thereof
CN101144083A (en) Artemisia indica DsCBF gene and its preparation method and application
CN106011148A (en) Shepherd&#39;s purse Ca2+/H+ antiporter gene and its application in improving plant cold resistance
CN107881180B (en) Application of Genes CKX2 and CKX3 in Improving Plant Cold Resistance
CA3017921C (en) Modulating plant abiotic stress responses using the kanghan gene family
CN104561040B (en) Genes For Plant Tolerance hot radical is because of HTT3 and its application
CN101993479B (en) Plant stress tolerance related transcription factor TaWRKY1 as well as coding gene and application thereof
CN111394500A (en) Method for identifying whether plant sample to be detected is derived from SbSNAC1-382 event or progeny thereof
CN104694550B (en) Tamarix hispida ThDof genes, its encoding proteins and its promoter sequence and application
Liu et al. Genome wide identification of cotton C-repeat binding factor (CBF) and overexpression of Gthu17439 (GthCBF4) gene confer cold stress tolerance in Arabidopsis thaliana
CN109628468A (en) A kind of Chunlan CgWRKY53 gene and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200214

Assignee: Nanjing Baikang Biotechnology Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020980008954

Denomination of invention: A ntcipk11 gene from Nitraria tangutorum and its expression protein and Application

Granted publication date: 20201204

License type: Common License

Record date: 20201209

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200214

Assignee: Shanghai Daohong Biotechnology Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020980009098

Denomination of invention: A ntcipk11 gene from Nitraria tangutorum and its expression protein and Application

Granted publication date: 20201204

License type: Common License

Record date: 20201210

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200214

Assignee: Nanjing Zoe Biotechnology Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020980009238

Denomination of invention: A ntcipk11 gene from Nitraria tangutorum and its expression protein and Application

Granted publication date: 20201204

License type: Common License

Record date: 20201214