CN111394500A - Method for identifying whether plant sample to be detected is derived from SbSNAC1-382 event or progeny thereof - Google Patents
Method for identifying whether plant sample to be detected is derived from SbSNAC1-382 event or progeny thereof Download PDFInfo
- Publication number
- CN111394500A CN111394500A CN202010320879.3A CN202010320879A CN111394500A CN 111394500 A CN111394500 A CN 111394500A CN 202010320879 A CN202010320879 A CN 202010320879A CN 111394500 A CN111394500 A CN 111394500A
- Authority
- CN
- China
- Prior art keywords
- sbsnac1
- sequence
- primer
- event
- primer pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种用于鉴定待测植物样品是否来源于SbSNAC1‑382事件或其后代的方法。本发明的发明人将SbSNAC1基因通过农杆菌介导的方法转入到玉米自交系郑58的基因组中,获得了一个转基因玉米事件SbSANC1‑382,简称SbSNAC1‑382事件。抗旱性鉴定显示,SbSNAC1‑382事件较玉米自交系郑58的抗旱性显著提高。此外,经检测,T3代‑T5代SbSNAC1‑382事件具有遗传稳定性,可在不同世代间稳定遗传。因此,SbSNAC1‑382事件有可能进入商业化种植。SbSNAC1‑382事件已于2019年04月04日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC No.17493。本发明提供的鉴定植物样品是否来源于SbSNAC1‑382事件或其后代的方法,可以对SbSNAC1‑382事件进行特异性检测,更好的对SbSNAC1‑382事件进行监督管理。本发明具有重要的应用价值。The invention discloses a method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny. The inventors of the present invention transferred the SbSNAC1 gene into the genome of the maize inbred line Zheng 58 by the method mediated by Agrobacterium, and obtained a transgenic maize event SbSANC1-382, referred to as the SbSNAC1-382 event. The drought resistance identification showed that the drought resistance of the SbSNAC1‑382 event was significantly higher than that of the maize inbred line Zheng 58. In addition, after testing, the SbSNAC1-382 event in the T 3rd -T 5th generation has genetic stability and can be stably inherited between different generations. Therefore, the SbSNAC1‑382 event has the potential to enter commercial cultivation. The SbSNAC1‑382 incident has been deposited in the General Microbiology Center of the China Microorganism Culture Collection Management Committee (abbreviated as CGMCC, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing) on April 4, 2019, and the deposit number is CGMCC No. .17493. The method for identifying whether a plant sample is derived from the SbSNAC1-382 event or its progeny provided by the present invention can specifically detect the SbSNAC1-382 event, and better supervise and manage the SbSNAC1-382 event. The invention has important application value.
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种用于鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代的方法。The invention belongs to the field of biotechnology, and in particular relates to a method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny.
背景技术Background technique
水资源短缺严重地影响了世界粮食生产,每年因水资源短缺造成的粮食减产占作物减产的50%以上,所带来的直接经济损失难以估计。我国干旱、半干旱地区面积约占全国国土面积二分之一以上。据统计,我国常年旱灾面积达到耕地总面积的20%左右,近40年来每年仅因干旱造成的粮食减产达就达1000亿公斤以上。玉米是世界上最重要的粮食、饲料和相关工业原料兼用作物之一。在我国,自2009年玉米已经成为第一大粮食作物。传统的玉米遗传育种对玉米抗旱性的改良起到了一定的作用,但很难突破种间的遗传限制而显著提高玉米的抗旱性。转基因技术可打破物种界限,对基因进行定向改造和重组转移,对现有品种的抗旱性进行改良,可以极大地提高玉米的抗旱性。发达国家,特别是美国培育、推广转基因玉米的实践也已经证明,转基因技术培育新品种可显著提高玉米抗旱能力,是大幅度提高产量和改善品质的最现实有效的途径,已经成为国际玉米育种发展的主要方向。2011年12月,美国农业部动植物卫生检疫局(APHIS)正式批准了孟山都转基因抗旱玉米MON87460,这意味着世界第一个转基因抗旱玉米可以在生产中大规模推广和利用。该抗旱玉米所转基因为CspB基因(CspB基因来自枯草芽孢杆菌,编码一种RNA伴侣蛋白),在逆境条件下,该基因可以增强植物细胞的功能,在水分缺乏的条件下减少产量的损失。在干旱的情况下,转该基因的玉米自交系和杂交种可以显著地提高玉米的生物量和产量,在美国西部干旱地区的抗旱玉米田间试验已经达到甚至超过了6%至10%的增产目标。Water shortage has seriously affected the world's food production. The annual reduction of food production due to water shortage accounts for more than 50% of crop production reduction, and the direct economic losses caused are difficult to estimate. my country's arid and semi-arid regions account for more than half of the country's land area. According to statistics, the perennial drought-affected area in my country accounts for about 20% of the total cultivated land area. In the past 40 years, the annual decrease in grain production due to drought alone has reached more than 100 billion kilograms. Corn is one of the most important food, feed and related industrial raw materials in the world. In my country, corn has become the largest food crop since 2009. The traditional maize genetics and breeding have played a certain role in improving the drought resistance of maize, but it is difficult to break through the genetic restriction between species and significantly improve the drought resistance of maize. Transgenic technology can break the boundaries of species, carry out directional transformation and recombination transfer of genes, and improve the drought resistance of existing varieties, which can greatly improve the drought resistance of maize. The practice of cultivating and promoting genetically modified corn in developed countries, especially in the United States, has also proved that the cultivation of new varieties with genetically modified technology can significantly improve the drought resistance of corn, and is the most realistic and effective way to greatly increase yield and improve quality. It has become an international corn breeding development. the main direction. In December 2011, the U.S. Department of Agriculture's Animal and Plant Health Inspection Service (APHIS) officially approved Monsanto's genetically modified drought-resistant corn MON87460, which means that the world's first genetically modified drought-resistant corn can be promoted and utilized on a large scale in production. The drought-resistant maize is transgenic for CspB gene (CspB gene is from Bacillus subtilis, encoding an RNA chaperone protein), which can enhance the function of plant cells under adverse conditions and reduce yield loss under water-deficient conditions. Under drought conditions, maize inbreds and hybrids transgenic for this gene can significantly increase maize biomass and yield, and field trials of drought-resistant maize in arid regions of the western United States have achieved or even exceeded 6% to 10% increase in yield Target.
SbSNAC1基因是中国农业科学院作物科学研究所从新疆一个耐旱的地方高粱品种XGL-1中克隆出的NAC家族基因。该基因在拟南芥中过量表达可以显著提高转基因拟南芥植株的耐旱性(Lu et al.,2013)。The SbSNAC1 gene is a NAC family gene cloned from XGL-1, a drought-tolerant local sorghum cultivar in Xinjiang, by the Institute of Crop Science, Chinese Academy of Agricultural Sciences. Overexpression of this gene in Arabidopsis can significantly improve the drought tolerance of transgenic Arabidopsis plants (Lu et al., 2013).
发明内容SUMMARY OF THE INVENTION
本发明的目的是鉴定植物样品是否来源于SbSNAC1-382事件或其后代,SbSNAC1-382事件为玉米Zea mays SbSNAC1-382CGMCC No.17493。植物样品可为植物叶片、种子等等。The purpose of the present invention is to identify whether a plant sample is derived from the SbSNAC1-382 event or its progeny, the SbSNAC1-382 event being Zea mays SbSNAC1-382CGMCC No.17493. Plant samples can be plant leaves, seeds, and the like.
本发明首先保护用于鉴定植物样品是否来源于SbSNAC1-382事件或其后代的方法,可包括如下步骤:检测待测植物样品的基因组DNA中是否含有DNA片段A和/或DNA片段B;然后进行如下判断:如果待测植物样品的基因组DNA含有DNA片段A和/或DNA片段B,则待测植物样品来源于SbSNAC1-382事件或其后代;如果待测植物样品的基因组DNA不含有DNA片段A和/或DNA片段B,则待测植物样品不来源于SbSNAC1-382事件或其后代;The present invention first protects a method for identifying whether a plant sample is derived from the SbSNAC1-382 event or its progeny, which may include the following steps: detecting whether the genomic DNA of the plant sample to be tested contains DNA fragment A and/or DNA fragment B; Judgment as follows: if the genomic DNA of the plant sample to be tested contains DNA fragment A and/or DNA fragment B, the plant sample to be tested is derived from the SbSNAC1-382 event or its descendants; if the genomic DNA of the plant sample to be tested does not contain DNA fragment A and/or DNA fragment B, the plant sample to be tested is not derived from the SbSNAC1-382 event or its progeny;
DNA片段A的核苷酸序列如序列表中序列3所示;The nucleotide sequence of DNA fragment A is shown in
DNA片段B的核苷酸序列如序列表中序列4所示;The nucleotide sequence of DNA fragment B is shown in
SbSNAC1-382事件为玉米Zea mays SbSNAC1-382CGMCC No.17493。The SbSNAC1-382 event is maize Zea mays SbSNAC1-382 CGMCC No. 17493.
上述方法中,所述“检测待测植物样品的基因组DNA中是否含有DNA片段A和/或DNA片段B”的方法可为S1)或S2)或S3)。In the above method, the method of "detecting whether the genomic DNA of the plant sample to be tested contains DNA fragment A and/or DNA fragment B" may be S1) or S2) or S3).
S1)直接测序。S1) Direct sequencing.
S2)用引物对X和/或引物对Y对待测植物样品的基因组DNA进行PCR扩增,然后进行如下判断:如果得到目的扩增产物,则待测植物样品来源于SbSNAC1-382事件或其后代;如果没有得到目的扩增产物,则待测植物样品不来源于SbSNAC1-382事件或其后代;S2) use primer pair X and/or primer pair Y to carry out PCR amplification of the genomic DNA of the plant sample to be tested, and then judge as follows: if the target amplification product is obtained, the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny ; If the target amplification product is not obtained, the plant sample to be tested is not derived from the SbSNAC1-382 event or its progeny;
引物对X由上游引物FX和下游引物RX组成;上游引物FX为序列表中序列3自5’末端起第1-451位所示的DNA分子的一部分;下游引物RX为序列表中序列3自5’末端起第452-933位所示的DNA分子的一部分的反向互补序列;引物对X的目的扩增产物为DNA分子X;Primer pair X consists of an upstream primer FX and a downstream primer RX; the upstream primer FX is a part of the DNA molecule shown in the 1-451 position from the 5' end of the
引物对Y由上游引物FY和下游引物RY组成;上游引物FY为序列表中序列4自5’末端起第1-352位所示的DNA分子的一部分;下游引物RY为序列表中序列4自5’末端起第353-547位所示的DNA分子的一部分的反向互补序列;引物对Y的目的扩增产物为DNA分子Y。Primer pair Y consists of an upstream primer FY and a downstream primer RY; the upstream primer FY is a part of the DNA molecule shown in the 1-352 position from the 5' end of the
S3)用能特异结合所述DNA分子X的探针甲和/或用能特异结合所述DNA分子Y的探针乙对待测植物样品的基因组DNA进行Southern杂交,然后进行如下判断:如果得到杂交片段,则待测植物样品来源于SbSNAC1-382事件或其后代;若不能得到杂交片段,则待测植物样品不来源于SbSNAC1-382事件或其后代。S3) Perform Southern hybridization on the genomic DNA of the plant sample to be tested with probe A that can specifically bind to the DNA molecule X and/or probe B that can specifically bind to the DNA molecule Y, and then judge as follows: if the hybridization is obtained If the hybrid fragment cannot be obtained, the plant sample to be tested is not derived from the SbSNAC1-382 event or its progeny.
所述引物对X可为引物对X1、引物对X2和引物对X3中的至少一个。The primer pair X may be at least one of primer pair X1, primer pair X2, and primer pair X3.
引物对X1可由引物P1和引物P2组成。Primer pair X1 may consist of primer P1 and primer P2.
引物对X2可由引物P3和引物P4组成。Primer pair X2 may consist of primer P3 and primer P4.
引物对X3可由引物P1和引物P4组成。Primer pair X3 may consist of primer P1 and primer P4.
引物P1的核苷酸序列可如序列表中序列5所示。The nucleotide sequence of primer P1 can be shown in SEQ ID NO: 5 in the sequence listing.
引物P2的核苷酸序列可如序列表中序列6所示。The nucleotide sequence of primer P2 can be shown as SEQ ID NO: 6 in the sequence listing.
引物P3的核苷酸序列可如序列表中序列7所示。The nucleotide sequence of primer P3 can be shown as
引物P4的核苷酸序列可如序列表中序列8所示。The nucleotide sequence of primer P4 can be shown as SEQ ID NO: 8 in the sequence listing.
所述引物对Y可为引物对Y1、引物对Y2、引物对Y3和引物对Y4中的至少一个。The primer pair Y may be at least one of a primer pair Y1, a primer pair Y2, a primer pair Y3, and a primer pair Y4.
引物对Y1可由引物S1和引物S3组成。Primer pair Y1 may consist of primer S1 and primer S3.
引物对Y2可由引物S2和引物S3组成。Primer pair Y2 may consist of primer S2 and primer S3.
引物对Y3可由引物S1和引物S4组成。Primer pair Y3 may consist of primer S1 and primer S4.
引物对Y4可由引物S2和引物S4组成。Primer pair Y4 may consist of primer S2 and primer S4.
引物S1的核苷酸序列可如序列表中序列9所示。The nucleotide sequence of primer S1 can be shown as SEQ ID NO: 9 in the sequence listing.
引物S2的核苷酸序列可如序列表中序列10所示。The nucleotide sequence of primer S2 can be shown as
引物S3的核苷酸序列可如序列表中序列11所示。The nucleotide sequence of primer S3 can be shown as
引物S4的核苷酸序列可如序列表中序列12所示。The nucleotide sequence of primer S4 can be shown as
引物对X1的目的扩增产物(即DNA分子X)的核苷酸序列可如序列表中序列3自5’末端起第215-525位所示。The nucleotide sequence of the target amplification product (that is, DNA molecule X) of the primer pair X1 can be shown as the 215-525th position from the 5' end of
引物对X2的目的扩增产物(即DNA分子X)的核苷酸序列可如序列表中序列3自5’末端起第323-564位所示。The nucleotide sequence of the target amplification product (that is, DNA molecule X) of the primer pair X2 can be shown as the 323-564th position from the 5' end of
引物对X3的目的扩增产物(即DNA分子X)的核苷酸序列可如序列表中序列3自5’末端起第215-564位所示。The nucleotide sequence of the target amplification product (that is, DNA molecule X) of the primer pair X3 can be shown as the 215-564th position from the 5' end of
引物对Y1的目的扩增产物(即DNA分子Y)的核苷酸序列可如序列表中序列4自5’末端起第45-547位所示。The nucleotide sequence of the target amplification product of primer pair Y1 (that is, DNA molecule Y) can be shown as the 45-547th position from the 5' end of
引物对Y2的目的扩增产物(即DNA分子Y)的核苷酸序列可如序列表中序列4自5’末端起第1-547位所示。The nucleotide sequence of the target amplification product of primer pair Y2 (that is, DNA molecule Y) can be shown as the 1-547th position from the 5' end of
引物对Y3的目的扩增产物(即DNA分子Y)的核苷酸序列可如序列表中序列4自5’末端起第215-436位所示。The nucleotide sequence of the target amplification product of primer pair Y3 (that is, DNA molecule Y) can be shown as the 215-436th position from the 5' end of
引物对Y4的目的扩增产物(即DNA分子Y)的核苷酸序列可如序列表中序列4自5’末端起第1-436位所示。The nucleotide sequence of the target amplification product of primer pair Y4 (that is, DNA molecule Y) can be shown as the 1-436th position from the 5' end of
本发明还保护用于鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代的试剂盒。The present invention also protects a kit for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny.
本发明所保护的用于鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代的试剂盒具体可为试剂盒甲;所述试剂盒甲可包括上述任一所述引物对X和/或引物对Y;SbSNAC1-382事件可为玉米Zea mays SbSNAC1-382CGMCC No.17493。The kit for identifying whether the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny protected by the present invention may specifically be kit A; the kit A may include any one of the above-mentioned primer pairs X and/or Primer pair Y; the SbSNAC1-382 event may be Zea mays SbSNAC1-382 CGMCC No. 17493 of maize.
所述试剂盒甲具体可由上述任一所述引物对X和/或引物对Y组成。The kit A can specifically consist of any one of the primer pair X and/or primer pair Y described above.
本发明所保护的用于鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代的试剂盒具体可为试剂盒乙;所述试剂盒乙可包括上述任一所述能特异结合DNA分子X的探针甲和/或上述任一所述能特异结合DNA分子Y的探针乙;SbSNAC1-382事件可为玉米Zea maysSbSNAC1-382CGMCC No.17493。The kit protected by the present invention for identifying whether the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny can be specifically kit B; the kit B can include any of the above-mentioned DNA molecules X that can specifically bind Probe A and/or any of the above-mentioned probe B that can specifically bind to DNA molecule Y; the SbSNAC1-382 event can be Zea mays SbSNAC1-382 CGMCC No.17493.
所述试剂盒乙具体可由上述任一所述探针甲和/或上述任一所述探针乙组成。The kit B can specifically be composed of any of the above-mentioned probes A and/or any of the above-mentioned probes B.
上述任一所述引物对X和/或上述任一所述引物对Y在鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代中的应用也属于本发明的保护范围;SbSNAC1-382事件可为玉米Zea mays SbSNAC1-382CGMCC No.17493。The application of any of the above-mentioned primer pairs X and/or any of the above-mentioned primer pairs Y in identifying whether the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny also belongs to the protection scope of the present invention; the SbSNAC1-382 event It may be Zea mays SbSNAC1-382 CGMCC No. 17493 of corn.
上述任一所述能特异结合DNA分子X的探针甲和/或上述任一所述能特异结合DNA分子Y的探针乙在鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代中的应用也属于本发明的保护范围;SbSNAC1-382事件可为玉米Zea mays SbSNAC1-382CGMCC No.17493。Any of the above-mentioned probe A that can specifically bind to DNA molecule X and/or any of the above-mentioned probe B that can specifically bind to DNA molecule Y is used in identifying whether the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny. The application of SbSNAC1-382 also falls within the protection scope of the present invention; the SbSNAC1-382 event can be Zea mays SbSNAC1-382CGMCC No.17493.
DNA片段A和/或DNA片段B在鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代中的应用也属于本发明的保护范围;SbSNAC1-382事件可为玉米Zea mays SbSNAC1-382CGMCC No.17493;The application of DNA fragment A and/or DNA fragment B in identifying whether the plant sample to be tested is derived from the SbSNAC1-382 event or its progeny also belongs to the protection scope of the present invention; the SbSNAC1-382 event can be Zea mays SbSNAC1-382CGMCC No. 17493;
DNA片段A的核苷酸序列可如序列表中序列3所示;The nucleotide sequence of DNA fragment A can be shown as
DNA片段B的核苷酸序列可如序列表中序列4所示。The nucleotide sequence of DNA fragment B can be shown in SEQ ID NO: 4 in the Sequence Listing.
本发明还保护DNA片段A和/或DNA片段B;The present invention also protects DNA fragment A and/or DNA fragment B;
DNA片段A的核苷酸序列可如序列表中序列3所示;The nucleotide sequence of DNA fragment A can be shown as
DNA片段B的核苷酸序列可如序列表中序列4所示。The nucleotide sequence of DNA fragment B can be shown in SEQ ID NO: 4 in the Sequence Listing.
本发明的发明人将SbSNAC1基因通过农杆菌介导的方法转入到玉米自交系郑58的基因组中,获得了一个转基因玉米事件SbSANC1-382(简称SbSNAC1-382事件)。抗旱性鉴定显示,SbSNAC1-382事件较对照玉米(即玉米自交系郑58)的抗旱性显著提高。此外,经检测,T3代-T5代SbSNAC1-382事件具有遗传稳定性,可在不同世代间稳定遗传。因此,SbSNAC1-382事件有可能进入商业化种植,SbSNAC1-382事件已于2019年04月04日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC No.17493。本发明提供的鉴定植物样品是否来源于SbSNAC1-382事件或其后代的方法,可以对SbSNAC1-382事件进行特异性检测,更好的对SbSNAC1-382事件进行监督管理。本发明具有重要的应用价值。The inventors of the present invention transferred the SbSNAC1 gene into the genome of the maize inbred line Zheng 58 by the method mediated by Agrobacterium, and obtained a transgenic maize event SbSANC1-382 (SbSNAC1-382 event for short). The drought resistance identification showed that the drought resistance of the SbSNAC1-382 event was significantly improved compared with the control maize (ie, the maize inbred line Zheng 58). In addition, after testing, the T 3 generation-T 5 generation SbSNAC1-382 event has genetic stability and can be stably inherited between different generations. Therefore, the SbSNAC1-382 event is likely to enter commercial cultivation. The SbSNAC1-382 event has been deposited in the General Microbiology Center of the China Microorganism Culture Collection Management Committee (CGMCC for short) on April 4, 2019. The address is: Beichen West, Chaoyang District, Beijing Road No. 1 Courtyard No. 3), the preservation number is CGMCC No.17493. The method for identifying whether a plant sample is derived from the SbSNAC1-382 event or its progeny provided by the present invention can specifically detect the SbSNAC1-382 event and better supervise and manage the SbSNAC1-382 event. The invention has important application value.
附图说明Description of drawings
图1为实施例1中步骤三的琼脂糖凝胶电泳结果。Fig. 1 is the agarose gel electrophoresis result of
图2为实施例1中步骤五2的结果。Fig. 2 is the result of step five 2 in
图3为实施例1中步骤五3的结果。FIG. 3 is the result of step 53 in Example 1.
图4为实施例1中步骤七的结果。FIG. 4 is the result of
图5为实施例1中步骤八灌浆期观测结果。Fig. 5 is the observation result of the eighth grain filling period in Example 1.
图6为实施例1中步骤八收获后测产结果。Fig. 6 is the result of measuring yield after the eighth step in Example 1 after harvesting.
图7为重组质粒35S::SbSNAC1的载体示意图。Figure 7 is a schematic diagram of the vector of the
图8为实施例2中步骤一的实验结果。FIG. 8 is the experimental result of
图9为实施例2中步骤二的实验结果。FIG. 9 is the experimental result of
图10为实施例2中步骤三的实验结果。FIG. 10 is the experimental result of
图11为实施例2中步骤四的实验结果。FIG. 11 is the experimental result of
图12为实施例3中步骤一的实验结果。FIG. 12 is the experimental result of
图13为实施例3中步骤二的实验结果。13 is the experimental result of
具体实施方式Detailed ways
以下的实施例便于更好地理解本发明,但并不限定本发明。The following examples facilitate a better understanding of the present invention, but do not limit the present invention.
下述实施例中的实验方法,如无特殊说明,均为常规方法。The experimental methods in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。The test materials used in the following examples were purchased from conventional biochemical reagent stores unless otherwise specified.
以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The quantitative tests in the following examples are all set to repeat the experiments three times, and the results are averaged.
质粒pCAMBIA3301为Cambia公司的产品。Plasmid pCAMBIA3301 is a product of Cambia Company.
实施例1、转SbSNAC1基因玉米的获得和抗旱性鉴定Example 1. Acquisition and drought resistance identification of transgenic SbSNAC1 maize
一、SbSNAC1基因的克隆1. Cloning of SbSNAC1 gene
1、取高粱品种XGL-1(由新疆农业科学院粮食作物研究所提供)的叶片和根系,混合,作为材料。1. Take the leaves and roots of sorghum variety XGL-1 (provided by the Institute of Food Crops, Xinjiang Academy of Agricultural Sciences), mix them, and use them as materials.
2、完成步骤1后,取所述材料,先提取总RNA,再反转录,得到高粱品种XGL-1的cDNA。2. After completing
3、完成步骤3后,以高粱品种XGL-1的cDNA为模板,采用5’-TTTCCATGGGATTGCCGGTGAT-3’(下划线为限制性内切酶NcoI的识别位点)和5’-TTTGGTGACCAGCCTCAGAATGGCCCCAAC-3’(下划线为限制性内切酶BstE II的识别位点)组成的引物对进行PCR扩增,得到约985bp的PCR扩增产物。3. After completing
4、将步骤3得到的PCR扩增产物和PMD18-T载体进行连接,得到重组质粒PMD18-SbSNAC1。4. Connect the PCR amplification product obtained in
将重组质粒PMD18-SbSNAC1进行测序。测序结果表明,重组质粒PMD18-SbSNAC1中含有序列表中序列1自5’末端起第1至966位所示的DNA分子。The recombinant plasmid PMD18-SbSNAC1 was sequenced. Sequencing results showed that the recombinant plasmid PMD18-SbSNAC1 contained the DNA molecules shown in the
二、重组质粒35S::SbSNAC1的构建2. Construction of
1、用限制性内切酶NcoI和BstE II双酶切重组质粒PMD18-SbSNAC1,回收约980bp的DNA片段。1. The recombinant plasmid PMD18-SbSNAC1 was digested with restriction enzymes NcoI and BstE II, and a DNA fragment of about 980 bp was recovered.
2、用限制性内切酶NcoI和BstE II双酶切质粒pCAMBIA3301,回收约9250bp的载体骨架。2. The plasmid pCAMBIA3301 was digested with the restriction enzymes NcoI and BstE II, and the vector backbone of about 9250bp was recovered.
3、将步骤1回收的DNA片段和步骤2回收的载体骨架进行连接,得到重组质粒35S::SbSNAC1。3. Connect the DNA fragment recovered in
将重组质粒35S::SbSNAC1进行测序。根据测序结果,对重组质粒35S::SbSNAC1进行结构描述如下:将质粒pCAMBIA3301的限制性内切酶NcoI和BstE II识别序列间的小片段替换为序列表中序列1自5’末端起第5至970位所示的DNA分子。重组质粒35S::SbSNAC1表达序列表中序列2所示的蛋白质SbSNAC1。The
三、阳性重组农杆菌的获得Third, the acquisition of positive recombinant Agrobacterium
1、采用冻融法将重组质粒35S::SbSNAC1转化根癌农杆菌EH105,得到重组农杆菌。1. The
2、完成步骤1后,将各个重组农杆菌的单克隆分别接种至YEB液体培养基,28℃、200rpm培养16h,得到农杆菌菌液。2. After completing
3、完成步骤2后,分别以各个农杆菌菌液、水和重组质粒35S::SbSNAC1为模板,以5'-TTTCCATGGGATTGCCGGTGAT-3'和5'-TTTGGTGACCAGCCTCAGAATGGCCCCAAC-3'为引物进行PCR扩增,得到PCR扩增产物。重组质粒35S::SbSNAC1作为阳性对照。水作为阴性对照。3. After completing
4、完成步骤3后,将PCR扩增产物进行1%(m/v)琼脂糖凝胶电泳,根据电泳结果进行如下判断:如果某个重组农杆菌的PCR扩增产物中含有约985bp的DNA片段,则该重组农杆菌为阳性重组农杆菌。4. After completing
琼脂糖凝胶电泳见图1(“+”为阳性对照,“-”为阴性对照,泳道1至7均为重组农杆菌)。Agarose gel electrophoresis is shown in Figure 1 ("+" is a positive control, "-" is a negative control, and
四、T0代拟转SbSNAC1基因玉米的获得4. The acquisition of SbSNAC1 gene transgenic maize in T 0 generation
1、将步骤三获得的阳性重组农杆菌的单克隆接种至YEB液体培养基,28℃、200rpm培养,得到OD550nm为0.3-0.4的农杆菌菌液。1. Inoculate the single clone of the positive recombinant Agrobacterium obtained in
2、完成步骤1后,取农杆菌菌液,4℃、10000rpm离心10min,收集菌体。2. After completing
3、取步骤2收集的菌体,加入侵染培养基(含有100μM乙酰丁香酮的MS培养基)进行重悬,得到OD550nm为0.3-0.4的侵染液。取授粉11-12天、大小为1.0-1.5mm的玉米自交系郑58的幼胚,在黑暗条件下用侵染液侵染(即浸泡)5min,然后置于共培养培养基上,用透气胶带密封,20℃暗培养3天。3. Take the bacterial cells collected in
4、完成步骤3后,取玉米自交系郑58的幼胚,置于静息培养基,28℃培养7天。4. After
5、完成步骤4后,取玉米自交系郑58的幼胚,先置于选择培养基1上,28℃培养14天;再置于选择培养基2上,28℃培养14天,得到抗性愈伤。5. After completing
6、完成步骤5后,取抗性愈伤,置于再生培养基1,25℃暗培养14天,得到成熟的体细胞胚。6. After completing
7、完成步骤6后,将成熟的体细胞胚转移到再生培养基2上,25℃、光暗交替培养7-10天,得到抗性苗。光暗交替培养即16h光照培养和8h暗培养,光照培养时的光照强度为80-100μE/m2/s。7. After
8、完成步骤7后,将抗性苗移栽土中,得到T0代拟转SbSNAC1基因玉米。8. After completing
共培养培养基、静息培养基、选择培养基1(含1.5mg/L双丙胺膦的选择培养基)、选择培养基2(含3mg/L双丙胺膦的选择培养基)、再生培养基1和再生培养基2均记载于如下文献中:Frame et al.,2011。Co-cultivation medium, resting medium, selective medium 1 (selective medium containing 1.5 mg/L bialaphos), selective medium 2 (selective medium containing 3 mg/L bialaphos), regeneration medium Both 1 and
五、T0代拟转SbSNAC1基因玉米的鉴定5. Identification of the SbSNAC1 gene-transformed maize in T 0 generation
1、喷施Basta1. Spray Basta
分别向T0代拟转SbSNAC1基因玉米的植株的叶片喷施Basta(浓度为2‰),5-7天后观察叶片。如果某T0代拟转SbSNAC1基因玉米的叶片没有出现枯萎,则该T0代拟转SbSNAC1基因玉米初步鉴定为T0代转SbSNAC1基因玉米。Basta (2‰) was sprayed on the leaves of the plants of the T 0 generation to be transfected with SbSNAC1 gene, and the leaves were observed after 5-7 days. If the leaves of a certain T 0 generation of SbSNAC1 transgenic maize did not wither, the T 0 generation of SbSNAC1 transgenic maize was preliminarily identified as a T 0 generation of SbSNAC1 transgenic maize.
将通过喷施Basta初步鉴定为T0代转SbSNAC1基因玉米的7个株系分别命名为SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471和SbSNAC1-474。Seven lines of maize that were preliminarily identified as SbSNAC1 gene transgenic T 0 generation by spraying Basta were named as SbSNC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 and SbSNAC1-474, respectively. .
2、SbSNAC1基因的PCR检测2. PCR detection of SbSNAC1 gene
(1)分别提取T0代转SbSNAC1基因玉米(SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471或SbSNAC1-474)叶片的基因组DNA并以其作为模板,采用扩增SbSNAC1基因的特异引物对(由SbSNAC1-F:5’-GACCGCAAGTACCCAAACGG-3’和SbSNAC1-R:5’-CACCCAGTCATCCAGCCTGAG-3’组成,其中SbSNAC1-F跨越两个外显子)进行PCR扩增,得到PCR扩增产物。(1) The genomic DNA of the leaves of the SbSNAC1 gene transgenic maize (SbSNC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 or SbSNAC1-474) of the T 0 generation were extracted and used as a template , using a specific primer pair for amplifying the SbSNAC1 gene (composed of SbSNAC1-F: 5'-GACCGCAAGTACCCAAACGG-3' and SbSNAC1-R: 5'-CACCCAGTCATCCAGCCTGAG-3', where SbSNAC1-F spans two exons) to carry out PCR Amplification to obtain PCR amplification products.
按照上述步骤,将模板替换为玉米自交系郑58叶片的基因组DNA,其它步骤均不变,作为阴性对照。According to the above steps, the template was replaced with the genomic DNA of the leaves of the maize inbred line Zheng 58, and other steps remained unchanged, which was used as a negative control.
按照上述步骤,将模板替换为水,其它步骤均不变,作为水对照。According to the above steps, the template was replaced with water, and other steps remained unchanged, which was used as a water control.
按照上述步骤,将模板替换为重组质粒35S::SbSNAC1,其它步骤均不变,作为阳性对照。According to the above steps, the template was replaced with the
反应条件:95℃,5min;95℃30s,60℃30s,72℃30s,34个循环;72℃5min;15℃保存。Reaction conditions: 95°C, 5 min; 95°C for 30s, 60°C for 30s, 72°C for 30s, 34 cycles; 72°C for 5 min; storage at 15°C.
(2)将各个PCR扩增产物进行1%(m/v)琼脂糖凝胶电泳,根据电泳结果进行如下判断:如果某株系的PCR扩增产物中含有约249bp的DNA片段,则该株系再次鉴定为T0代转SbSNAC1基因玉米。(2) Carry out 1% (m/v) agarose gel electrophoresis on each PCR amplification product, and judge according to the electrophoresis results as follows: if the PCR amplification product of a certain strain contains a DNA fragment of about 249 bp, then the strain The line was re-identified as T 0 generation transgenic maize with SbSNAC1 gene.
琼脂糖凝胶电泳结果见图2(Marker为DNA Marker,1至7依次为SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471和SbSNAC1-474)。The results of agarose gel electrophoresis are shown in Figure 2 (Marker is DNA Marker, 1 to 7 are SbSNAC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 and SbSNAC1-474 in sequence).
3、Bar基因的PCR检测3. PCR detection of Bar gene
(1)提取T0代转SbSNAC1基因玉米(SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471或SbSNAC1-474)叶片的基因组DNA并以其作为模板,采用扩增Bar基因的特异引物对(由5’-GAAGTCCAGCTGCCAGAAAC-3’和5’-GTCTGCACCATCGTCAACC-3’组成)进行PCR扩增,得到PCR扩增产物。(1) Extract the genomic DNA of the leaves of the T 0 generation transgenic SbSNAC1 gene maize (SbSNC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 or SbSNAC1-474) and use it as a template, A specific primer pair for amplifying the Bar gene (consisting of 5'-GAAGTCCAGCTGCCAGAAAC-3' and 5'-GTCTGCACCATCGTCAACC-3') was used for PCR amplification to obtain PCR amplification products.
按照上述步骤,将模板替换为玉米自交系郑58叶片的基因组DNA,其它步骤均不变,作为阴性对照。According to the above steps, the template was replaced with the genomic DNA of the leaves of the maize inbred line Zheng 58, and other steps remained unchanged, which was used as a negative control.
按照上述步骤,将模板替换为水,其它步骤均不变,作为空白对照。According to the above steps, the template was replaced with water, and other steps remained unchanged, which was used as a blank control.
按照上述步骤,将模板替换为重组质粒35S::SbSNAC1,其它步骤均不变,作为阳性对照。According to the above steps, the template was replaced with the
反应条件:95℃,5min;95℃30s,60℃30s,72℃30s,34个循环;72℃5min;15℃保存。Reaction conditions: 95°C, 5 min; 95°C for 30s, 60°C for 30s, 72°C for 30s, 34 cycles; 72°C for 5 min; storage at 15°C.
(2)将各个PCR扩增产物进行1%(m/v)琼脂糖凝胶电泳,根据电泳结果进行如下判断:如果某株系的PCR扩增产物中含有约444bp的DNA片段,则该株系再次鉴定为T0代转SbSNAC1基因玉米。(2) Perform 1% (m/v) agarose gel electrophoresis on each PCR amplification product, and judge according to the electrophoresis results as follows: if the PCR amplification product of a certain strain contains a DNA fragment of about 444 bp, then the strain The line was re-identified as T 0 generation transgenic maize with SbSNAC1 gene.
部分琼脂糖凝胶电泳结果见图3(Marker为DNA Marker,泳道1至7依次为SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471和SbSNAC1-474,泳道11为阳性对照,泳道12为阴性对照)。Part of the agarose gel electrophoresis results are shown in Figure 3 (Marker is DNA Marker,
上述结果表明,SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471和SbSNAC1-474均为T0代转SbSNAC1基因玉米。The above results showed that SbSNC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 and SbSNAC1-474 were all T 0 generation transgenic SbSNAC1 maize.
六、T1代-T5代SbSNAC1-382的获得6. Acquisition of T 1st generation-T 5th generation SbSNAC1-382
取T0代转SbSNAC1基因玉米的种子,自交,得到T1代转SbSNAC1基因玉米的种子。T1代转SbSNAC1基因玉米的种子连续自交,依次得到T2代转SbSNAC1基因玉米的种子、T3代转SbSNAC1基因玉米的种子、T4代转SbSNAC1基因玉米的种子和T5代转SbSNAC1基因玉米的种子。The seeds of the T 0 generation transgenic maize with SbSNAC1 gene were taken and self-crossed to obtain the seeds of the T 1 generation transgenic maize with SbSNAC1 gene. The seeds of the T 1 -generation SbSNAC1 transgenic maize were continuously selfed to obtain the T 2 -generation SbSNAC1-transgenic maize seeds, the T 3 -generation SbSNAC1-transgenic maize seeds, the T 4 -generation SbSNAC1-transgenic maize seeds and the T 5 -generation SbSNAC1-transgenic maize seeds. Genetic corn seeds.
选择T1代转SbSNAC1基因玉米-T5代转SbSNAC1基因玉米进行后续实验。The T 1 generation transgenic maize with SbSNAC1 gene and the T 5 generation transgenic maize with SbSNAC1 gene were selected for follow-up experiments.
七、T1代-T5代转SbSNAC1基因玉米的温室内抗旱性鉴定7. Identification of drought resistance in greenhouse of SbSNAC1 transgenic maize from T 1 generation to T 5 generation
待测玉米为T1代-T5代转SbSNAC1基因玉米(SbSNC1-382、SbSNAC1-383、SbSNAC1-389、SbSNAC1-466、SbSNAC1-467、SbSNAC1-471或SbSNAC1-474)或玉米自交系郑58。玉米自交系郑58作为对照。The maize to be tested is T 1 generation-T 5 generation transgenic maize with SbSNAC1 gene (SbSNC1-382, SbSNAC1-383, SbSNAC1-389, SbSNAC1-466, SbSNAC1-467, SbSNAC1-471 or SbSNAC1-474) or maize inbred line Zheng 58. The maize inbred line Zheng 58 was used as a control.
(1)将3株待测玉米种植于花盆中,每个株系种植5个重复;然后置于温室,常规管理。(1)
(2)完成步骤(1)后,待待测玉米生长至玉米可见叶达到4叶1心时停止浇水,连续干旱21天。观察待测玉米的生长状态。(2) After completing step (1), stop watering when the corn to be tested grows until the visible leaves of the
部分待测玉米的生长状态见图4(SbSNC1-382为T5代SbSNC1-382,郑58为玉米自交系郑58)。结果表明,玉米自交系郑58的叶片卷曲、出现萎蔫现象,而T1代-T5代转SbSNAC1基因玉米的叶片伸展、仍然保持绿色。由此可见,与玉米自交系郑58相比,T1代-T5代转SbSNAC1基因玉米的抗旱性显著提高。The growth state of some corn to be tested is shown in Figure 4 (SbSNC1-382 is the T 5 generation SbSNC1-382, and Zheng 58 is a corn inbred line Zheng 58). The results showed that the leaves of the maize inbred line Zheng 58 were curled and wilted, while the leaves of the T 1 -T 5 -generation SbSNAC1 transgenic maize were stretched and remained green. It can be seen that compared with the maize inbred line Zheng 58, the drought resistance of SbSNAC1 gene transgenic maize from T 1 to T 5 generations was significantly improved.
八、T3代-T5代SbSNC1-382的田间抗旱性鉴定8. Field drought resistance identification of T 3 generation-T 5 generation SbSNC1-382
2015年,将T3代SbSNC1-382和玉米自交系郑58进行田间抗旱性鉴定。In 2015, the T 3 generation SbSNC1-382 and the maize inbred line Zheng 58 were identified for drought resistance in the field.
2016年,将T4代SbSNC1-382和玉米自交系郑58进行田间抗旱性鉴定。In 2016, the T 4 generation SbSNC1-382 and the maize inbred line Zheng 58 were identified for drought resistance in the field.
2017年,将T5代SbSNC1-382和玉米自交系郑58进行田间抗旱性鉴定。In 2017, the T 5 generation SbSNC1-382 and the maize inbred line Zheng 58 were identified for drought resistance in the field.
抗旱性鉴定设置水、旱两个处理,每个材料种植6行,行长5米,重复3次,水处理滴灌7次,水量350方/亩,旱处理浇水150方/亩。Two treatments of water and drought were set for drought resistance identification. Each material was planted in 6 rows with a row length of 5 meters, repeated 3 times.
进行抗旱性鉴定的玉米均种植于新疆乌鲁木齐安宁渠试验场。观测灌浆期的生长状态和产量。The maize for drought resistance identification was planted in the Anningqu test field in Urumqi, Xinjiang. The growth status and yield at the grain filling stage were observed.
试验结果如下:The test results are as follows:
1、灌浆期观测结果显示(图5,SbSNC1-382为T3代SbSNC1-382):在旱区,与T3代SbSNC1-382、T4代SbSNC1-382或T5代SbSNC1-382相比,玉米自交系郑58的株高明显下降,叶色明显退绿发黄;1. The observation results at the grain filling stage (Fig. 5, SbSNC1-382 is T 3 generation SbSNC1-382): in arid regions, compared with T 3 generation SbSNC1-382, T 4 generation SbSNC1-382 or T 5 generation SbSNC1-382 , the plant height of the maize inbred line Zheng 58 decreased significantly, and the leaf color was obviously turned green and yellow;
2、收获后测产显示(表1和图6),在旱区,T3代SbSNC1-382、T4代SbSNC1-382或T5代SbSNC1-382较玉米自交系郑58的产量明显增加。2. The yield test after harvest showed (Table 1 and Figure 6) that in arid regions, the yield of T 3 generation SbSNC1-382, T 4 generation SbSNC1-382 or T 5 generation SbSNC1-382 was significantly higher than that of the maize inbred line Zheng 58 .
表1.SbSNAC1-382在水区和旱区的平均单株产量Table 1. Average yield per plant of SbSNAC1-382 in water and arid regions
注:表中数据为平均值±标准误差;平均单株产量为籽粒产量(水份14%)。Note: The data in the table is the mean ± standard error; the average yield per plant is the grain yield (water 14%).
试验结果表明,与玉米自交系郑58相比,T3代SbSNC1-382、T4代SbSNC1-382或T5代SbSNC1-382的抗旱性显著提高。The test results showed that compared with the maize inbred line Zheng 58, the drought resistance of T 3 generation SbSNC1-382, T 4 generation SbSNC1-382 or T 5 generation SbSNC1-382 was significantly improved.
实施例2、T3代-T5代SbSNAC1-382的遗传稳定性检测
重组质粒35S::SbSNAC1的载体示意图见图7。重组质粒35S::SbSNAC1的大小为10.24kb,在该载体上只有一个限制性内切酶HindIII和一个EcoRI的酶切位点,因此分别利用这两个酶进行单酶切,可以得到一个10.24kb的线性片段。另外,该载体上没有限制性内切酶BglII和DraI的酶切位点。The vector diagram of the
分别用限制性内切酶HindIII和EcoRI对SbSNC1-382事件或玉米自交系郑58的基因组DNA进行单酶切,使用SbSNAC1基因和Bar基因的特异性探针分别进行杂交。结果显示SbSNAC1-382事件含有2个拷贝SbSNAC1基因和Bar基因,并且这两个拷贝在转基因T3、T4和T5代都可以稳定遗传。因此,这2个拷贝很可能插入到玉米基因组的同一个位置。为了验证这个假设,利用插入序列(T-DNA)内没有酶切位点的限制性内切酶BglII和DraI,分别对SbSNAC1-382事件和玉米自交系郑58的基因组DNA进行酶切,从而确定插入位点数(玉米基因组内T-DNA的整合位点数)。Southern杂交结果显示,SbSNAC1-382事件(即T3代-T5代SbSNAC1-382)中T-DNA在玉米基因组上是单一位点插入2个拷贝的SbSNAC1和Bar基因,并可在不同世代间稳定遗传。具体结果如下:The genomic DNA of the SbSNC1-382 event or the maize inbred line Zheng 58 was digested with restriction endonucleases HindIII and EcoRI, respectively, and the specific probes for the SbSNAC1 gene and the Bar gene were used for hybridization, respectively. The results showed that the SbSNAC1-382 event contained two copies of the SbSNAC1 gene and the Bar gene, and these two copies were stably inherited in the transgenic T 3 , T 4 and T 5 generations. Therefore, it is likely that the two copies were inserted into the same location in the maize genome. In order to test this hypothesis, the SbSNAC1-382 event and the genomic DNA of the maize inbred line Zheng 58 were digested with restriction enzymes BglII and DraI without restriction sites in the inserted sequence (T-DNA), respectively. The number of insertion sites (the number of T-DNA integration sites within the maize genome) was determined. The results of Southern hybridization showed that the T-DNA in the SbSNAC1-382 event (ie T 3 generation-T 5 generation SbSNAC1-382) was inserted into two copies of SbSNAC1 and Bar genes at a single site in the maize genome, and could be transferred between different generations stable inheritance. The specific results are as follows:
一、利用SbSNAC1基因探针、限制性内切酶HindIII和EcoRI进行Southern杂交的结果1. The results of Southern hybridization using SbSNAC1 gene probe, restriction enzymes HindIII and EcoRI
1、以重组质粒35S::SbSNAC1为模板,以5’-CGCGTGGGGTCAAGACGGACTG-3’和5’-GGGAACGAGTCCAGCTCCGGGAAC-3’为引物进行PCR扩增,得到约386bp的DNA片段。该片段即为SbSNAC1基因探针。1. Using the
2、用限制性内切酶HindIII和EcoRI分别对T3代SbSNAC1-382、T4代SbSNAC1-382、T5代SbSNAC1-382或玉米自交系郑58的基因组DNA进行酶切,以步骤1获得的SbSNAC1基因探针进行杂交。2. Use restriction endonucleases HindIII and EcoRI to digest the genomic DNA of T 3 generation SbSNAC1-382, T 4 generation SbSNAC1-382, T 5 generation SbSNAC1-382 or the inbred line Zheng 58 of maize, respectively.
用限制性内切酶HindIII对重组质粒35S::SbSNAC1进行酶切,以步骤1获得的SbSNAC1基因探针进行杂交。作为阳性对照。The
实验结果见图8(泳道1为限制性内切酶HindIII酶切的T3代SbSNAC1-382的基因组DNA,泳道2为限制性内切酶HindIII酶切的T4代SbSNAC1-382的基因组DNA,泳道3为限制性内切酶HindIII酶切的T5代SbSNAC1-382的基因组DNA,泳道4为限制性内切酶HindIII酶切的玉米自交系郑58的基因组DNA,泳道5为限制性内切酶EcoRI酶切的T3代SbSNAC1-382的基因组DNA,泳道6为限制性内切酶EcoRI酶切的T4代SbSNAC1-382的基因组DNA,泳道7为限制性内切酶EcoRI酶切的T5代SbSNAC1-382的基因组DNA,泳道8为限制性内切酶EcoRI酶切的玉米自交系郑58的基因组DNA,泳道9为限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1,泳道10为Takara DL15kb DNA marker)。结果表明,用限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1杂交出10.24kb的片段;用限制性内切酶HindIII酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在2.5-5kb之间有2条特异杂交条带,玉米自交系郑58存在内源性背景杂交条带,这些信号是由于SbSNAC1基因探针与玉米基因组内同源序列的非特异性杂交产生,与插入无关,相同的杂交条带在SbSNAC1-382事件中也可观察到,因此为内源性背景杂交条带;用限制性内切酶EcoRI酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在2.5-5kb之间有2条特异杂交条带,玉米自交系郑58存在内源性背景杂交条带,这些信号是由于SbSNAC1基因探针与玉米基因组内同源序列的非特异性杂交产生,与插入无关,相同的杂交条带在SbSNAC1-382事件中也可观察到,因此为内源性背景杂交条带。由于重组质粒35S::SbSNAC1中只有一个限制性内切酶HindIII和一个EcoRI的酶切位点,因此转基因玉米基因组DNA分别用这两种酶进行酶切杂交的得到的特异条代数就代表插入的拷贝数。杂交结果显示SbSNAC1-382事件的插入序列有2个拷贝的SbSNAC1基因。The experimental results are shown in Figure 8 (
二、利用Bar基因探针、限制性内切酶HindIII和EcoRI进行Southern杂交的结果2. The results of Southern hybridization using Bar gene probe, restriction enzymes HindIII and EcoRI
1、以重组质粒35S::SbSNAC1为模板,以5’-ATGAGCCCAGAACGACGCCCG-3’和5’-TCAAATCTCGGTGACGGGCAGGAC-3’为引物进行PCR扩增,得到约552bp的DNA片段。该片段即为Bar基因探针。1. The
2、用限制性内切酶HindIII和EcoRI分别对T3代SbSNAC1-382、T4代SbSNAC1-382、T5代SbSNAC1-382或玉米自交系郑58的基因组DNA进行酶切,以步骤1获得的Bar基因探针进行杂交。2. Use restriction endonucleases HindIII and EcoRI to digest the genomic DNA of T 3 generation SbSNAC1-382, T 4 generation SbSNAC1-382, T 5 generation SbSNAC1-382 or the inbred line Zheng 58 of maize, respectively.
用限制性内切酶HindIII对重组质粒35S::SbSNAC1进行酶切,以步骤1获得的Bar基因探针进行杂交。作为阳性对照。The
实验结果见图9(泳道1为限制性内切酶HindIII酶切的T3代SbSNAC1-382的基因组DNA,泳道2为限制性内切酶HindIII酶切的T4代SbSNAC1-382的基因组DNA,泳道3为限制性内切酶HindIII酶切的T5代SbSNAC1-382的基因组DNA,泳道4为限制性内切酶HindIII酶切的玉米自交系郑58的基因组DNA,泳道5为限制性内切酶EcoRI酶切的T3代SbSNAC1-382的基因组DNA,泳道6为限制性内切酶EcoRI酶切的T4代SbSNAC1-382的基因组DNA,泳道7为限制性内切酶EcoRI酶切的T5代SbSNAC1-382的基因组DNA,泳道8为限制性内切酶EcoRI酶切的玉米自交系郑58的基因组DNA,泳道9为限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1,泳道10为Takara DL15kb DNA marker)。结果表明,用限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1杂交出10.24kb的片段(由于质粒上样量较低,导致杂交条带较弱);用限制性内切酶HindIII酶切后,T3代-T5代SbSNAC1-382在2.5kb和4kb附近各有一条条带,玉米自交系郑58中没有出现条带;用限制性内切酶EcoRI酶切后,T3代-T5代SbSNAC1-382在4kb和5kb附近各有一条条带,玉米自交系郑58中没有出现条带;由于重组质粒35S::SbSNAC1中只有一个限制性内切酶HindIII和一个EcoRI的酶切位点,因此转基因玉米基因组DNA分别用这两种酶进行酶切杂交的得到的特异条代数就代表插入的拷贝数。杂交结果显示SbSNAC1-382事件的插入序列有2个拷贝的Bar基因。The experimental results are shown in Figure 9 (
三、利用SbSNAC1基因探针、限制性内切酶BglII和DraI进行Southern杂交的结果3. The results of Southern hybridization using SbSNAC1 gene probe, restriction enzymes BglII and DraI
1、同步骤一中1。1. Same as 1 in
2、用限制性内切酶BglII和DraI分别对T3代SbSNAC1-382、T4代SbSNAC1-382、T5代SbSNAC1-382或玉米自交系郑58的基因组DNA进行酶切,以步骤1获得的SbSNAC1基因探针进行杂交。2. The genomic DNA of T 3 generation SbSNAC1-382, T 4 generation SbSNAC1-382, T 5 generation SbSNAC1-382 or maize inbred line Zheng 58 was digested with restriction enzymes BglII and DraI, respectively, with
用限制性内切酶DraI对重组质粒35S::SbSNAC1进行酶切,以步骤1获得的SbSNAC1基因探针进行杂交。作为阳性对照。The
实验结果见图10(泳道1为限制性内切酶BglII酶切的T3代SbSNAC1-382的基因组DNA,泳道2为限制性内切酶BglII酶切的T4代SbSNAC1-382的基因组DNA,泳道3为限制性内切酶BglII酶切的T5代SbSNAC1-382的基因组DNA,泳道4为限制性内切酶BglII酶切的玉米自交系郑58的基因组DNA,泳道5为限制性内切酶DraI酶切的T3代SbSNAC1-382的基因组DNA,泳道6为限制性内切酶DraI酶切的T4代SbSNAC1-382的基因组DNA,泳道7为限制性内切酶DraI酶切的T5代SbSNAC1-382的基因组DNA,泳道8为限制性内切酶DraI酶切的玉米自交系郑58的基因组DNA,泳道9为限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1,泳道10为Takara DL 15kb DNA marker)。结果表明,用限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1杂交出10.24kb的片段;用限制性内切酶BglII酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在大于15kb位置有1条特异杂交条带,玉米自交系郑58存在内源性背景杂交条带,这些信号是由于SbSNAC1基因探针与玉米基因组内同源序列的非特异性杂交产生,与插入无关,相同的杂交条带在SbSNAC1-382事件中也可观察到,因此为内源性背景杂交条带;用限制性内切酶DraI酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在10-15kb之间有1条特异杂交条带,玉米自交系郑58存在内源性背景杂交条带,这些信号是由于SbSNAC1基因探针与玉米基因组内同源序列的非特异性杂交产生,与插入无关,相同的杂交条带在SbSNAC1-382事件中也可观察到,因此为内源性背景杂交条带。杂交结果显示SbSNAC1-382事件2个拷贝的SbSNAC1基因在基因组上是单一位点插入。The experimental results are shown in Figure 10 (
四、利用Bar基因探针、限制性内切酶BglII和DraI进行Southern杂交的结果4. The results of Southern hybridization using Bar gene probe, restriction enzymes BglII and DraI
1、同步骤二中1。1. Same as 1 in
2、用限制性内切酶BglII和DraI分别对T3代SbSNAC1-382、T4代SbSNAC1-382、T5代SbSNAC1-382或玉米自交系郑58的基因组DNA进行酶切,以步骤1获得的Bar基因探针进行杂交。2. The genomic DNA of T 3 generation SbSNAC1-382, T 4 generation SbSNAC1-382, T 5 generation SbSNAC1-382 or maize inbred line Zheng 58 was digested with restriction enzymes BglII and DraI, respectively, with
用限制性内切酶HindIII对重组质粒35S::SbSNAC1进行酶切,以步骤1获得的Bar基因探针进行杂交。作为阳性对照。The
实验结果见图11(泳道1为限制性内切酶BglII酶切的T3代SbSNAC1-382的基因组DNA,泳道2为限制性内切酶BglII酶切的T4代SbSNAC1-382的基因组DNA,泳道3为限制性内切酶BglII酶切的T5代SbSNAC1-382的基因组DNA,泳道4为限制性内切酶BglII酶切的玉米自交系郑58的基因组DNA,泳道5为限制性内切酶DraI酶切的T3代SbSNAC1-382的基因组DNA,泳道6为限制性内切酶DraI酶切的T4代SbSNAC1-382的基因组DNA,泳道7为限制性内切酶DraI酶切的T5代SbSNAC1-382的基因组DNA,泳道8为限制性内切酶DraI酶切的玉米自交系郑58的基因组DNA,泳道9为限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1,泳道10为Takara DL15kb DNA marker)。The experimental results are shown in Figure 11 (
结果表明,用限制性内切酶HindIII酶切的重组质粒35S::SbSNAC1杂交出10.24kb的片段;用限制性内切酶BglII酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在大于15kb位置有1条特异杂交条带,这与利用SbSNAC1基因探针杂交的结果一致(利用SbSNAC1基因探针和Bar基因探针杂交的特异条带大小一致);用限制性内切酶DraI酶切后,T3代-T5代SbSNAC1-382相对于玉米自交系郑58在10-15kb之间有1条特异杂交条带,这与利用SbSNAC1基因探针杂交的结果一致(利用SbSNAC1基因探针和Bar基因探针杂交的特异条带大小一致)。杂交结果显示SbSNAC1-382事件2个拷贝的Bar基因在基因组上是单一位点插入。The results showed that the
上述Southern杂交结果表明,SbSNAC1-382事件T-DNA片段在玉米基因组上是单一位点插入,插入位点上有2个拷贝的SbSNAC1基因和Bar基因,并可在不同世代间稳定遗传。The above Southern hybridization results showed that the T-DNA fragment of the SbSNAC1-382 event was inserted at a single site in the maize genome, and there were two copies of the SbSNAC1 gene and the Bar gene at the insertion site, which could be stably inherited between different generations.
SbSNAC1-382事件已于2019年04月04日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCCNo.17493。SbSNAC1-382事件的全称为玉米Zea mays SbSNAC1-382CGMCC No.17493,简称为SbSNAC1-382事件。The SbSNAC1-382 incident has been deposited in the General Microbiology Center of the China Microorganism Culture Collection Management Committee (abbreviated as CGMCC, address: No. 3,
实施例3、SbSNAC1-382事件插入位点的外源插入片段5’端旁侧序列和3’端旁侧序列的确定Example 3. Determination of the 5'-end flanking sequences and 3'-end flanking sequences of the exogenous insert at the SbSNAC1-382 event insertion site
特定的转基因事件其旁侧序列是特异的。因此,应用旁侧序列可以特异的检测转基因事件。如用包含至少部分旁侧序列和至少部分外源插入片段的探针进行杂交,或设计用于特异性扩增包含至少部分旁侧序列和至少部分外源插入片段的引物,进行PCR扩增,检测特异性条带等。可以根据在5’旁侧序列设计上游特异性引物,根据外源插入片段设计下游特异性引物,扩增特异性片段;或可以根据外源插入片段设计上游特异性引物,根据3’端旁侧序列设计下游特异性引物,扩增特异性片段。The flanking sequences are specific for a particular transgenic event. Therefore, the use of flanking sequences can specifically detect transgenic events. PCR amplification, such as by hybridization with a probe comprising at least a portion of the flanking sequence and at least a portion of the exogenous insert, or a primer designed to specifically amplify a primer comprising at least a portion of the flanking sequence and at least a portion of the foreign insert, Detection of specific bands, etc. The upstream specific primer can be designed according to the sequence flanking the 5', the downstream specific primer can be designed according to the exogenous insert, and the specific fragment can be amplified; Sequence design of downstream specific primers to amplify specific fragments.
一、5’端旁侧序列的获得和验证1. Acquisition and verification of the flanking sequence at the 5' end
1、提取T5代SbSNAC1-382叶片的基因组DNA并以其作为模板,以特异性引物GSP1:5’-TATCCCTGGCTCGTCGCCGA-3’、特异性引物GSP2:5’-AGGGCTTCAAGAGCGTGGTCGCT-3’、特异性引物GSP3:5’-CCGTCACCGAGATTTGACTCGAGTTTC-3’和随机引物(Genome walking Kit中的组件;Genome walking Kit为TaKaRa公司的产品,货号为6108)进行TAIL-PCR反应,获得外源基因在玉米基因组整合位点的左边界的序列。该序列长933bp,具体如序列表中序列3所示。其中,序列表中序列3自5’末端起第1-451位为玉米基因组序列,第452-933位为载体序列。1. Extract the genomic DNA of T 5th generation SbSNAC1-382 leaves and use it as a template, with specific primer GSP1: 5'-TATCCCTGGCTCGTCGCCGA-3', specific primer GSP2: 5'-AGGGCTTCAAGAGCGTGGTCGCT-3', specific primer GSP3 : 5'-CCGTCACCGAGATTTGACTCGAGTTTC-3' and random primers (components in the Genome walking Kit; Genome walking Kit is a product of TaKaRa company, the item number is 6108) to carry out TAIL-PCR reaction to obtain the left side of the integration site of the foreign gene in the maize genome. sequence of boundaries. The sequence is 933 bp long, as shown in
根据序列表中序列3自5’末端起第1-451位所示的DNA分子,设计并合成特异性上游引物P1:5’-AGAATCATACACCAGTAACAAGCC-3’和P3:5’-GGAATGAACCTCATCCCAATGA-3’。根据序列表中序列3自5’末端起第452-933位所示的DNA分子,设计并合成下游鉴定引物P2:5’-CAGTACATTAAAAACGTCCGCA-3’和P4:5’-ACTAAAATCCAGATCCCCCGAA-3’。Specific upstream primers P1: 5'-AGAATCATACACCAGTAACAAGCC-3' and P3: 5'-GGAATGAACCTCATCCCAATGA-3' were designed and synthesized according to the DNA molecules shown at positions 1-451 from the 5' end of
2、以SbSNAC1-382叶片的基因组DNA、水、玉米自交系郑58叶片的基因组DNA或SbSNAC1-383叶片的基因组DNA为模板,采用引物对甲(由P1和P2组成)、引物对乙(由P3和P4组成)或引物对丙(由P1和P4组成)进行PCR扩增,得到PCR扩增产物。2. Using the genomic DNA of the leaves of SbSNAC1-382, water, the genomic DNA of the leaves of the maize inbred line Zheng 58 or the genomic DNA of the leaves of SbSNAC1-383 as templates, primer pair A (composed of P1 and P2), primer pair B ( Composed of P3 and P4) or primer pair C (composed of P1 and P4) for PCR amplification to obtain PCR amplification products.
反应体系为20μL,由2μL 10×PCR缓冲液、0.5μL dNTP(浓度为10mmol/L)、0.5μLTaq酶(浓度为5U/μL)、1.0μL模板(如果为玉米叶片的基因组DNA,则浓度为50ng/μL)、0.5μL上游引物(浓度为10μmol/L)、0.5μL下游引物(浓度为10μmol/L)和15μL ddH2O。The reaction system is 20 μL, consisting of 2 μL 10× PCR buffer, 0.5 μL dNTP (concentration of 10 mmol/L), 0.5 μL Taq enzyme (concentration of 5 U/μL), 1.0 μL template (if it is the genomic DNA of corn leaves, the concentration is 50 ng/μL), 0.5 μL upstream primer (10 μmol/L concentration), 0.5 μL downstream primer (10 μmol/L concentration), and 15 μL ddH 2 O.
反应程序为:95℃5min;95℃30s,60℃30s,72℃1min,35个循环;72℃5min;15℃保存。The reaction program was: 95°C for 5 min; 95°C for 30 s, 60°C for 30 s, 72°C for 1 min, 35 cycles; 72°C for 5 min; storage at 15°C.
3、将PCR扩增产物进行1%(m/v)琼脂糖凝胶电泳。3. Perform 1% (m/v) agarose gel electrophoresis on the PCR amplification products.
琼脂糖凝胶电泳结果见图12(泳道5至8为引物对甲,泳道1至4为引物对乙,泳道9至12为引物对丙,泳道1、5、9为SbSNAC1-382叶片的基因组DNA,泳道2、6、10为水,泳道3、7、11为玉米自交系郑58叶片的基因组DNA,泳道4、8、12为SbSNAC1-383叶片的基因组DNA)。结果表明,以SbSNAC1-382叶片的基因组DNA为模板,采用引物对甲可以得到约311bp的DNA片段,采用引物对乙可以得到约242bp的DNA片段,采用引物对丙可以得到约350bp的DNA片段。The results of agarose gel electrophoresis are shown in Figure 12 (
二、3’端旁侧序列的获得和验证2. Acquisition and verification of the flanking sequence at the 3' end
1、提取T5代SbSNAC1-382叶片的基因组DNA构建Fosmid文库(TakaraBiotechnology(Dalian)Co.,Ltd),然后以SbSNAC1基因特异性引物5’-GACCGCAAGTACCCAAACGG-3’和5’-CACCCAGTCATCCAGCCTGAG-3’进行PCR扩增(反应条件:95℃,5min;95℃变性30s,60℃退火30s,72℃延伸30s,34个循环;72℃延伸5min;15℃保存),筛选到阳性单克隆,并利用PacBio RSII进行测序(武汉未来组生物科技有限公司)。根据测序结果,获得外源基因在玉米基因组整合位点的右边界的序列。该序列长547bp,具体如序列表中序列4所示。其中,序列表中序列4自5’末端起第1-352位为玉米基因组序列,第353-547位为载体序列。1. The genomic DNA of T 5 generation SbSNAC1-382 leaves was extracted to construct a Fosmid library (Takara Biotechnology (Dalian) Co., Ltd), and then the SbSNAC1 gene-specific primers 5'-GACCGCAAGTACCCAAACGG-3' and 5'-CACCCAGTCATCCAGCCTGAG-3' were used. PCR amplification (reaction conditions: 95°C, 5 min; denaturation at 95°C for 30s, annealing at 60°C for 30s, extension at 72°C for 30s, 34 cycles; extension at 72°C for 5 min; storage at 15°C), positive single clones were screened, and PacBio was used RSII was sequenced (Wuhan Future Group Biotechnology Co., Ltd.). According to the sequencing results, the sequence of the exogenous gene at the right border of the integration site of the maize genome was obtained. The sequence is 547 bp long, as shown in
根据序列表中序列4自5’末端起第1-352位所示的DNA分子,设计并合成特异性引物S1:5’-AGTGCACATTGCAATCCTACAAGC-3’和S2:5’-CCTAAGTTCATGCAACTAGAGGTTTCA-3’。根据序列表中序列4自5’末端起第353-547位所示的DNA分子,设计并合成S3:5’-GGTTTCGCTCATGTGTTGAGC-3’和S4:5’-TCCAGATCCCCCGAATTAATTCG-3’。Specific primers S1: 5'-AGTGCACATTGCAATCCTACAAGC-3' and S2: 5'-CCTAAGTTCATGCAACTAGAGGTTTCA-3' were designed and synthesized according to the DNA molecules shown at positions 1-352 from the 5' end of
2、以SbSNAC1-382叶片的基因组DNA为模板,采用引物对1(由S1和S3组成)、引物对2(由S2和S3组成)、引物对3(由S1和S4组成)、引物对4(由S2和S4组成)或引物对5(由5’-GACCGCAAGTACCCAAACGG-3’和5’-CACCCAGTCATCCAGCCTGAG-3’组成)进行PCR扩增,得到PCR扩增产物。2. Using the genomic DNA of SbSNAC1-382 leaves as the template, primer pair 1 (composed of S1 and S3), primer pair 2 (composed of S2 and S3), primer pair 3 (composed of S1 and S4),
以水为模板,采用引物对5进行PCR扩增,得到PCR扩增产物。作为阴性对照。Using water as a template,
反应体系为20μL,由2μL 10×PCR缓冲液、0.5μL dNTP(浓度为10mmol/L)、0.5μLTaq酶(浓度为5U/μL)、1.0μL模板(如果为玉米叶片的基因组DNA,则浓度为50ng/μL)、0.5μL上游引物(浓度为10μmol/L)、0.5μL下游引物(浓度为10μmol/L)和15μL ddH2O。The reaction system is 20 μL, consisting of 2 μL 10× PCR buffer, 0.5 μL dNTP (concentration of 10 mmol/L), 0.5 μL Taq enzyme (concentration of 5 U/μL), 1.0 μL template (if it is the genomic DNA of corn leaves, the concentration is 50 ng/μL), 0.5 μL upstream primer (10 μmol/L concentration), 0.5 μL downstream primer (10 μmol/L concentration), and 15 μL ddH 2 O.
反应程序为:95℃5min;95℃30s,60℃30s,72℃1min,35个循环;72℃5min;15℃保存。The reaction program was: 95°C for 5 min; 95°C for 30 s, 60°C for 30 s, 72°C for 1 min, 35 cycles; 72°C for 5 min; storage at 15°C.
3、将PCR扩增产物进行1%(m/v)琼脂糖凝胶电泳。3. Perform 1% (m/v) agarose gel electrophoresis on the PCR amplification products.
琼脂糖凝胶电泳结果见图13(泳道1至5为SbSNAC1-382叶片的基因组DNA,泳道6为水,泳道1和6为引物对1,泳道2为引物对2,泳道3为引物对3,泳道4为引物对4,泳道5为引物对5)。结果表明,以SbSNAC1-382叶片的基因组DNA为模板,采用引物对1可以得到约503bp的DNA片段,采用引物对2可以得到约547bp的DNA片段,采用引物对3可以得到约392bp的DNA片段,采用引物对4可以得到约436bp的DNA片段,采用引物对5可以得到约249bp的DNA片段。The results of agarose gel electrophoresis are shown in Figure 13 (
<110> 中国农业科学院作物科学研究所<110> Institute of Crop Science, Chinese Academy of Agricultural Sciences
<120> 一种用于鉴定待测植物样品是否来源于SbSNAC1-382事件或其后代的方法<120> A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny
<160> 12<160> 12
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 970<211> 970
<212> DNA<212> DNA
<213> Sorghum bicolor(L.)Moench<213> Sorghum bicolor (L.) Moench
<400> 1<400> 1
atgggattgc cggtgatgag gagggagagg gacgcggagg cggagctgaa cctgccgccg 60atgggattgc cggtgatgag gagggagagg gacgcggagg cggagctgaa cctgccgccg 60
gggttccggt tccaccccac agacgacgag ctggtggagc actacctgtg ccggaaagcg 120gggttccggt tccaccccac agacgacgag ctggtggagc actacctgtg ccggaaagcg 120
gcggggcagc gcctcccggt gcccatcatc gcggaggtgg acctatacaa gttcgacccc 180gcggggcagc gcctcccggt gcccatcatc gcggaggtgg acctatacaa gttcgacccc 180
tgggacctgc cggagcgcgc gctgttcggg gtcagggagt ggtacttctt cacgcccagg 240tgggacctgc cggagcgcgc gctgttcggg gtcagggagt ggtacttctt cacgcccagg 240
gaccgcaagt acccaaacgg gtcccgcccc aaccgcgccg ccggcaacgg gtactggaag 300gaccgcaagt acccaaacgg gtcccgcccc aaccgcgccg ccggcaacgg gtactggaag 300
gccaccggcg ccgacaagcc cgtcgcgccg cggggccgca cgctcgggat caagaaggcg 360gccaccggcg ccgacaagcc cgtcgcgccg cggggccgca cgctcgggat caagaaggcg 360
ctcgtcttct acgccgggaa ggcgccgcgt ggggtcaaga cggactggat catgcacgag 420ctcgtcttct acgccgggaa ggcgccgcgt ggggtcaaga cggactggat catgcacgag 420
tacaggctcg cggacgccgg ccgcgcagcc gcctccaaga agggatcgct caggctggat 480tacaggctcg cggacgccgg ccgcgcagcc gcctccaaga agggatcgct caggctggat 480
gactgggtgc tgtgccgcct gtacaataag aagaacgagt gggagaagat gcagctgggg 540gactgggtgc tgtgccgcct gtacaataag aagaacgagt gggagaagat gcagctgggg 540
aaggagtccg ccgccggcgt cggcaccgcc aaggaggagg cgatggacat gaccacctcg 600aaggagtccg ccgccggcgt cggcaccgcc aaggaggagg cgatggacat gaccacctcg 600
cactcgcact cccactcgca gtcgcactcg cactcgcact cgtggggcga gacgcgcacg 660cactcgcact cccactcgca gtcgcactcg cactcgcact cgtggggcga gacgcgcacg 660
ccggagtcgg agatcgtgga caacgacccg ttcccggagc tggactcgtt cccggcgttc 720ccggagtcgg agatcgtgga caacgacccg ttcccggagc tggactcgtt cccggcgttc 720
caggacccgg cggcggcgat gatgatggtg cccaagaagg agcaggtgga cgacggcagc 780caggacccgg cggcggcgat gatgatggtg cccaagaagg agcaggtgga cgacggcagc 780
gccgccgcca acgccgccaa gagcagcgac ctgttcgtgg accttagcta cgacgacatc 840gccgccgcca acgccgccaa gagcagcgac ctgttcgtgg accttagcta cgacgacatc 840
cagggcatgt acagcggcct cgacatgctg cccccgccag gggaggactt cttctcctcg 900cagggcatgt acagcggcct cgacatgctg cccccgccag gggaggactt cttctcctcg 900
ctcttcgcgt cgcccagggt caaggggaac cagcccgccg gagccgccgg gttggggcca 960ctcttcgcgt cgcccagggt caaggggaac cagcccgccg gagccgccgg gttggggcca 960
ttctgaggct 970ttctgaggct 970
<210> 2<210> 2
<211> 321<211> 321
<212> PRT<212> PRT
<213> Sorghum bicolor(L.)Moench<213> Sorghum bicolor (L.) Moench
<400> 2<400> 2
Met Gly Leu Pro Val Met Arg Arg Glu Arg Asp Ala Glu Ala Glu LeuMet Gly Leu Pro Val Met Arg Arg Glu Arg Asp Ala Glu Ala Glu Leu
1 5 10 151 5 10 15
Asn Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Asp Glu Leu ValAsn Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Asp Glu Leu Val
20 25 30 20 25 30
Glu His Tyr Leu Cys Arg Lys Ala Ala Gly Gln Arg Leu Pro Val ProGlu His Tyr Leu Cys Arg Lys Ala Ala Gly Gln Arg Leu Pro Val Pro
35 40 45 35 40 45
Ile Ile Ala Glu Val Asp Leu Tyr Lys Phe Asp Pro Trp Asp Leu ProIle Ile Ala Glu Val Asp Leu Tyr Lys Phe Asp Pro Trp Asp Leu Pro
50 55 60 50 55 60
Glu Arg Ala Leu Phe Gly Val Arg Glu Trp Tyr Phe Phe Thr Pro ArgGlu Arg Ala Leu Phe Gly Val Arg Glu Trp Tyr Phe Phe Thr Pro Arg
65 70 75 8065 70 75 80
Asp Arg Lys Tyr Pro Asn Gly Ser Arg Pro Asn Arg Ala Ala Gly AsnAsp Arg Lys Tyr Pro Asn Gly Ser Arg Pro Asn Arg Ala Ala Gly Asn
85 90 95 85 90 95
Gly Tyr Trp Lys Ala Thr Gly Ala Asp Lys Pro Val Ala Pro Arg GlyGly Tyr Trp Lys Ala Thr Gly Ala Asp Lys Pro Val Ala Pro Arg Gly
100 105 110 100 105 110
Arg Thr Leu Gly Ile Lys Lys Ala Leu Val Phe Tyr Ala Gly Lys AlaArg Thr Leu Gly Ile Lys Lys Ala Leu Val Phe Tyr Ala Gly Lys Ala
115 120 125 115 120 125
Pro Arg Gly Val Lys Thr Asp Trp Ile Met His Glu Tyr Arg Leu AlaPro Arg Gly Val Lys Thr Asp Trp Ile Met His Glu Tyr Arg Leu Ala
130 135 140 130 135 140
Asp Ala Gly Arg Ala Ala Ala Ser Lys Lys Gly Ser Leu Arg Leu AspAsp Ala Gly Arg Ala Ala Ala Ser Lys Lys Gly Ser Leu Arg Leu Asp
145 150 155 160145 150 155 160
Asp Trp Val Leu Cys Arg Leu Tyr Asn Lys Lys Asn Glu Trp Glu LysAsp Trp Val Leu Cys Arg Leu Tyr Asn Lys Lys Asn Glu Trp Glu Lys
165 170 175 165 170 175
Met Gln Leu Gly Lys Glu Ser Ala Ala Gly Val Gly Thr Ala Lys GluMet Gln Leu Gly Lys Glu Ser Ala Ala Gly Val Gly Thr Ala Lys Glu
180 185 190 180 185 190
Glu Ala Met Asp Met Thr Thr Ser His Ser His Ser His Ser Gln SerGlu Ala Met Asp Met Thr Thr Ser His Ser His Ser His Ser Gln Ser
195 200 205 195 200 205
His Ser His Ser His Ser Trp Gly Glu Thr Arg Thr Pro Glu Ser GluHis Ser His Ser His Ser Trp Gly Glu Thr Arg Thr Pro Glu Ser Glu
210 215 220 210 215 220
Ile Val Asp Asn Asp Pro Phe Pro Glu Leu Asp Ser Phe Pro Ala PheIle Val Asp Asn Asp Pro Phe Pro Glu Leu Asp Ser Phe Pro Ala Phe
225 230 235 240225 230 235 240
Gln Asp Pro Ala Ala Ala Met Met Met Val Pro Lys Lys Glu Gln ValGln Asp Pro Ala Ala Ala Met Met Met Val Pro Lys Lys Glu Gln Val
245 250 255 245 250 255
Asp Asp Gly Ser Ala Ala Ala Asn Ala Ala Lys Ser Ser Asp Leu PheAsp Asp Gly Ser Ala Ala Ala Asn Ala Ala Lys Ser Ser Asp Leu Phe
260 265 270 260 265 270
Val Asp Leu Ser Tyr Asp Asp Ile Gln Gly Met Tyr Ser Gly Leu AspVal Asp Leu Ser Tyr Asp Asp Ile Gln Gly Met Tyr Ser Gly Leu Asp
275 280 285 275 280 285
Met Leu Pro Pro Pro Gly Glu Asp Phe Phe Ser Ser Leu Phe Ala SerMet Leu Pro Pro Pro Gly Glu Asp Phe Phe Ser Ser Leu Phe Ala Ser
290 295 300 290 295 300
Pro Arg Val Lys Gly Asn Gln Pro Ala Gly Ala Ala Gly Leu Gly ProPro Arg Val Lys Gly Asn Gln Pro Ala Gly Ala Ala Gly Leu Gly Pro
305 310 315 320305 310 315 320
PhePhe
<210> 3<210> 3
<211> 933<211> 933
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 3<400> 3
agtgtagtat cataggaaaa gaattaaaag gtattaatga ctagaaattt gtatcaagtc 60agtgtagtat cataggaaaa gaattaaaag gtattaatga ctagaaattt gtatcaagtc 60
atgttataac acctaaaagc cagcaaaaat gagttttaga gaattaccca ctgttaaata 120atgttataac acctaaaagc cagcaaaaat gagttttaga gaattaccca ctgttaaata 120
atagctgtag ttcaaagtac cccttctgcc ctaaaatttg gtaattttgt ccagagaaaa 180atagctgtag ttcaaagtac cccttctgcc ctaaaatttg gtaattttgt ccagagaaaa 180
ccattcactt tctgaccccc aaattttgag gcagagaatc atacaccagt aacaagccac 240ccattcactt tctgaccccc aaattttgag gcagagaatc atacaccagt aacaagccac 240
tgtaattttt ggaattttat aaaagcaact tgtagttcaa acctactcca aaacattaaa 300tgtaattttt ggaattttat aaaagcaact tgtagttcaa acctactcca aaacattaaa 300
agaataaaag aaaaggaaag aaggaatgaa cctcatccca atgagtctaa cttgagaact 360agaataaaag aaaaggaaag aaggaatgaa cctcatccca atgagtctaa cttgagaact 360
tatcaattct ccctaagact taaaaataat tcagtagaaa cccaaaaata aacctaccac 420tatcaattct ccctaagact taaaaataat tcagtagaaa cccaaaaata aacctaccac 420
ttaccttagc taagtttaac ccaatttacc aaggatatat tgtggtgtaa acaaattgac 480ttaccttagc taagtttaac ccaatttacc aaggatat tgtggtgtaa acaaattgac 480
gcttagacaa cttaataaca cattgcggac gtttttaatg tactgaatta acgccgaatt 540gcttagacaa cttaataaca cattgcggac gtttttaatg tactgaatta acgccgaatt 540
aattcggggg atctggattt tagtactgga ttttggtttt aggaattaga aattttattg 600aattcggggg atctggattt tagtactgga ttttggtttt aggaattaga aattttattg 600
atagaagtat tttacaaata caaatacata ctaagggttt cttatatgcc caacacatga 660atagaagtat tttacaaata caaatacata ctaagggttt cttatatgcc caacacatga 660
gcgaaaccct ataggaaccc taattccctt atctgggaac tactcacaca ttattatgga 720gcgaaaccct ataggaaccc taattccctt atctgggaac tactcacaca ttattatgga 720
gaaactcgag tcaaatctcg gtgacgggca ggaccggacg gggcggtacc ggcaggctga 780gaaactcgag tcaaatctcg gtgacgggca ggaccggacg gggcggtacc ggcaggctga 780
agtccagctg ccagaaaccc acgtcatgcc agttcccgtg cttgaagccg gccgcccgca 840agtccagctg ccagaaaccc acgtcatgcc agttcccgtg cttgaagccg gccgcccgca 840
gcatgccgcg gggggcatat ccgagcgcct cgtgcatgcg cacgctcggg tcgttgggca 900gcatgccgcg gggggcatat ccgagcgcct cgtgcatgcg cacgctcggg tcgttgggca 900
gcccgatgac agcgaccacg ctcttgaagc cct 933gcccgatgac agcgaccacg ctcttgaagc cct 933
<210> 4<210> 4
<211> 547<211> 547
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 4<400> 4
cctaagttca tgcaactaga ggtttcaagc aactcctaca cttaagtgca cattgcaatc 60cctaagttca tgcaactaga ggtttcaagc aactcctaca cttaagtgca cattgcaatc 60
ctacaagcat taagtgtagt aaagtagcat ataataatac ggttatgcat aaaaccgggg 120ctacaagcat taagtgtagt aaagtagcat ataataatac ggttatgcat aaaaccgggg 120
cttgccttca attgctgggg ctgcggggag atcctcaata gcagcctctg aagcctgctc 180cttgccttca attgctgggg ctgcggggag atcctcaata gcagcctctg aagcctgctc 180
ctggtcctcc tcttggacag gtccttgctc ggggatgagc acgtactctc cgtcggcaag 240ctggtcctcc tcttggacag gtccttgctc ggggatgagc acgtactctc cgtcggcaag 240
attacaatct aatgaaggca atgcgtaaga tatatgcatg atatgatatg tgcttttaga 300attacaatct aatgaaggca atgcgtaaga tatatgcatg atatgatatg tgcttttaga 300
aattacaact ttaaaggggt atgatctttt gagtttaaac aagttaacgc cgaattgacg 360aattacaact ttaaaggggt atgatctttt gagtttaaac aagttaacgc cgaattgacg 360
cttagacaac ttaataacac attgcggacg tttttaatgt actgaattaa cgccgaatta 420cttagacaac ttaataacac attgcggacg ttttttaatgt actgaattaa cgccgaatta 420
attcggggga tctggatttt agtactggat tttggtttta ggaattagaa attttattga 480attcggggga tctggatttt agtactggat tttggtttta ggaattagaa attttattga 480
tagaagtatt ttacaaatac aaatacatac taagggtttc ttatatgctc aacacatgag 540tagaagtatt ttacaaatac aaatacatac taagggtttc ttatatgctc aacacatgag 540
cgaaacc 547cgaaacc 547
<210> 5<210> 5
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 5<400> 5
agaatcatac accagtaaca agcc 24agaatcatac accagtaaca agcc 24
<210> 6<210> 6
<211> 22<211> 22
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 6<400> 6
cagtacatta aaaacgtccg ca 22cagtacatta aaaacgtccg ca 22
<210> 7<210> 7
<211> 22<211> 22
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 7<400> 7
ggaatgaacc tcatcccaat ga 22ggaatgaacc tcatcccaat ga 22
<210> 8<210> 8
<211> 22<211> 22
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 8<400> 8
actaaaatcc agatcccccg aa 22actaaaatcc agatcccccg aa 22
<210> 9<210> 9
<211> 24<211> 24
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 9<400> 9
agtgcacatt gcaatcctac aagc 24agtgcacatt gcaatcctac aagc 24
<210> 10<210> 10
<211> 27<211> 27
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 10<400> 10
cctaagttca tgcaactaga ggtttca 27cctaagttca tgcaactaga ggtttca 27
<210> 11<210> 11
<211> 21<211> 21
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 11<400> 11
ggtttcgctc atgtgttgag c 21ggtttcgctc atgtgttgag c 21
<210> 12<210> 12
<211> 23<211> 23
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 12<400> 12
tccagatccc ccgaattaat tcg 23tccagatccc ccgaattaat tcg 23
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010320879.3A CN111394500B (en) | 2020-04-22 | 2020-04-22 | A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010320879.3A CN111394500B (en) | 2020-04-22 | 2020-04-22 | A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111394500A true CN111394500A (en) | 2020-07-10 |
CN111394500B CN111394500B (en) | 2024-05-07 |
Family
ID=71427997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010320879.3A Active CN111394500B (en) | 2020-04-22 | 2020-04-22 | A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111394500B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042888A (en) * | 2022-09-06 | 2023-05-02 | 中国农业科学院饲料研究所 | Primer composition for identifying or assisting in identifying plant energy raw material components and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102453083A (en) * | 2010-10-29 | 2012-05-16 | 中国农业科学院作物科学研究所 | Protein ZmPMP3 related to plant stress tolerance and its coding gene and application |
CN104177482A (en) * | 2013-05-24 | 2014-12-03 | 中国农业科学院作物科学研究所 | Plant stress-resistance related SbSNAC1 protein, and coding gene and application thereof |
WO2016188332A1 (en) * | 2015-05-22 | 2016-12-01 | 杭州瑞丰生物科技有限公司 | Corn transformation event and specificity identification method and use thereof |
CN109536490A (en) * | 2018-11-09 | 2019-03-29 | 中国农业科学院作物科学研究所 | Transgenic pest-resistant herbicide-resistant corn C M8101 external source Insert Fragment flanking sequence and its application |
-
2020
- 2020-04-22 CN CN202010320879.3A patent/CN111394500B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102453083A (en) * | 2010-10-29 | 2012-05-16 | 中国农业科学院作物科学研究所 | Protein ZmPMP3 related to plant stress tolerance and its coding gene and application |
CN104177482A (en) * | 2013-05-24 | 2014-12-03 | 中国农业科学院作物科学研究所 | Plant stress-resistance related SbSNAC1 protein, and coding gene and application thereof |
WO2016188332A1 (en) * | 2015-05-22 | 2016-12-01 | 杭州瑞丰生物科技有限公司 | Corn transformation event and specificity identification method and use thereof |
CN109536490A (en) * | 2018-11-09 | 2019-03-29 | 中国农业科学院作物科学研究所 | Transgenic pest-resistant herbicide-resistant corn C M8101 external source Insert Fragment flanking sequence and its application |
Non-Patent Citations (4)
Title |
---|
TINGRU ZENG等: ""Identification of genomic insertion and flanking sequences of the transgenic drought tolerant maize line "SbSNAC1-382"using the single-molecule real-time(SMRT)sequencing method"", 《PLOS ONE》 * |
TINGRU ZENG等: ""Identification of genomic insertion and flanking sequences of the transgenic drought tolerant maize line "SbSNAC1-382"using the single-molecule real-time(SMRT)sequencing method"", 《PLOS ONE》, vol. 15, no. 4, 10 April 2020 (2020-04-10), pages 5 - 9 * |
易小平 等: "定性PCR方法检测转基因玉米MON810转化事件的研究", 热带作物学报, vol. 35, no. 12, 25 December 2014 (2014-12-25), pages 2384 - 2390 * |
瞿勇 等: "转基因玉米MON88017转化事件特异性定性PCR检测方法及其标准化", 农业生物技术学报, vol. 18, no. 06, 28 December 2010 (2010-12-28), pages 1208 - 1214 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042888A (en) * | 2022-09-06 | 2023-05-02 | 中国农业科学院饲料研究所 | Primer composition for identifying or assisting in identifying plant energy raw material components and application thereof |
CN116042888B (en) * | 2022-09-06 | 2025-04-01 | 中国农业科学院饲料研究所 | Primer composition for identifying or assisting in identifying plant energy raw material components and its application |
Also Published As
Publication number | Publication date |
---|---|
CN111394500B (en) | 2024-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110819607B (en) | Application of CsLYK gene and coding protein thereof in improving citrus canker resistance | |
CN103215237B (en) | Set of paddy rice anti-brown-planthopper genes, coded protein thereof, and application thereof | |
CN101914147B (en) | Plant disease resistance-related protein and coding gene and application thereof | |
CN109312350B (en) | Abiotic stress tolerant plants and methods | |
CN101921321A (en) | Protein IPA1 related to plant type and its coding gene and application | |
CN109971880B (en) | Nucleic acid sequence for detection of maize plant DBN9508 and detection method thereof | |
CN103290027A (en) | Protein for regulating and controlling chloroplast growth and gene and application thereof | |
WO2023065966A1 (en) | Application of bfne gene in tomato plant type improvement and biological yield increase | |
CN111718914A (en) | Application of protein ZmTIP1 in regulating plant drought resistance | |
CN101412751B (en) | Protein related to cold resistance of plant, coding genes and application thereof | |
CN109609516B (en) | Application of a disease resistance gene in rice smut resistance improvement | |
CN111295445B (en) | Plants having increased abiotic stress tolerance, polynucleotides and methods for increasing abiotic stress tolerance in plants | |
CN101942458B (en) | Gene families of cabbage type rape, parental species Chinese cabbage and cabbage AHA10 thereof and applications thereof | |
CN111394500B (en) | A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny | |
CN101942457A (en) | Cabbage-type rape as well as parent species Chinese cabbage and cabbage TT8 gene families and applications thereof | |
CN111154767B (en) | Root length regulatory gene LOGL5, corresponding construct and application thereof | |
CN112280786A (en) | A kind of high-efficiency nutrient utilization herbicide-tolerant corn even HH2823 transformation event and its specific identification method and application | |
CN104140462B (en) | Plant salt endurance associated protein GhSnRK2-6 and encoding gene thereof and application | |
CN103172714B (en) | Rice leaf rolling-associated protein OsMYB103L as well as encoding gene and application thereof | |
CN117089552A (en) | Application of BnaMYB100 gene in Brassica napus in regulating the flowering of rapeseed | |
CN107033229B (en) | Wheat powdery mildew resistance-related protein TaEDS1-D1 and its encoding gene and application | |
CN104650204B (en) | The albumen related to rice ATP transports and Development of Chloroplasts and its encoding gene and application | |
CN104805062B (en) | A kind of resistant gene in plant and its application | |
CN102731634B (en) | Pleiotropic gene associated protein from wheat, encoding gene thereof and application | |
CN101280008B (en) | Protein related to cold resistance of plant, coding genes and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |