CN110745880A - A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres - Google Patents
A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres Download PDFInfo
- Publication number
- CN110745880A CN110745880A CN201810813819.8A CN201810813819A CN110745880A CN 110745880 A CN110745880 A CN 110745880A CN 201810813819 A CN201810813819 A CN 201810813819A CN 110745880 A CN110745880 A CN 110745880A
- Authority
- CN
- China
- Prior art keywords
- carbonate
- basic nickel
- nickel
- solution
- nickel carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/06—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种Cu2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:1)分别配制碳酸盐溶液和镍盐溶液;2)将上述两种溶液同时加入反应器中,控制体系的pH值为7.9~8.3,并反应1~2h后,对该反应溶液进行浓密处理,获得碱式碳酸镍浆料;3)对上述碱式碳酸镍浆料进行压滤除去母液后,再进行浆化并转移至反应釜中,再加入铜盐的乙醇水溶液,搅拌反应,获得Cu2+掺杂碱式碳酸镍浆料;4)对上述浆料进行洗涤、高温烘干获得目标物。本发明制备过程简单易行,并且由于Cu2+掺杂之后形成晶格缺陷,促进电子分离效率,使得制备获得的Cu2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能。
The invention discloses a preparation method of Cu 2+ doped basic nickel carbonate microspheres. The method is realized by the following steps: 1) separately preparing a carbonate solution and a nickel salt solution; 2) adding the above two solutions at the same time In the reactor, the pH value of the control system is 7.9-8.3, and after reacting for 1-2 hours, the reaction solution is subjected to dense treatment to obtain basic nickel carbonate slurry; 3) The above basic nickel carbonate slurry is subjected to pressure filtration After removing the mother liquor, it is slurried and transferred to the reaction kettle, and then the ethanol aqueous solution of copper salt is added, and the reaction is stirred to obtain a Cu 2+ doped basic nickel carbonate slurry; 4) washing and drying the above-mentioned slurry at high temperature Dry to get the target. The preparation process of the invention is simple and feasible, and because of the formation of lattice defects after Cu 2+ doping, the electron separation efficiency is promoted, so that the prepared Cu 2+ doped basic nickel carbonate microspheres have 3 higher than ordinary basic nickel carbonate. more than twice the photocatalytic performance.
Description
技术领域technical field
本发明属于碱式碳酸镍微球的制备技术领域,具体涉及一种Cu2+掺杂碱式碳酸镍微球的制备方法。The invention belongs to the technical field of preparation of basic nickel carbonate microspheres, and particularly relates to a preparation method of Cu 2+ doped basic nickel carbonate microspheres.
背景技术Background technique
目前国内企业合成碱式碳酸镍有两种方法,一种合成工艺是采用碳酸铵或碳酸氢铵与镍盐进行沉淀反应;另一种为采用纯碱与镍盐溶液进行沉淀反应,此法合成时需要将pH值调至8.5以上,镍才能基本沉淀完全,此时需要的纯碱的量较理论量过量35%以上,且过量的碱基本不能回收利用,物料洗涤干燥后的产品中Na含量在300ppm以上,其操作步骤繁琐,并且这两种方法制备得到的碱式碳酸镍的结构均无其他掺杂元素,这样使得得到的碱式碳酸镍的用途少。At present, domestic enterprises have two methods for synthesizing basic nickel carbonate. One synthesis method is to use ammonium carbonate or ammonium bicarbonate and nickel salt for precipitation reaction; the other is to use soda ash and nickel salt solution for precipitation reaction. The pH value needs to be adjusted to above 8.5, and the nickel can be basically precipitated completely. At this time, the amount of soda ash required is more than 35% more than the theoretical amount, and the excess alkali can not be recycled basically. The Na content in the product after material washing and drying is 300ppm Above, the operation steps are complicated, and the structure of the basic nickel carbonate prepared by the two methods is free of other doping elements, so that the obtained basic nickel carbonate has few uses.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的主要目的在于提供一种Cu2+掺杂碱式碳酸镍微球的制备方法,解决了现有技术获得的碱式碳酸镍在催化过程中催化性能低的问题。In view of this, the main purpose of the present invention is to provide a preparation method of Cu 2+ doped basic nickel carbonate microspheres, which solves the problem that the basic nickel carbonate obtained in the prior art has low catalytic performance in the catalytic process.
为达到上述目的,本发明的技术方案是这样实现的:一种Cu2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:In order to achieve the above object, the technical scheme of the present invention is achieved as follows: a preparation method of Cu 2+ doped basic nickel carbonate microspheres, the method is realized by the following steps:
步骤1,分别配制碳酸根离子浓度为1.0~2.0mol/L的碳酸盐溶液和镍离子浓度为0.5~2.0mol/L的镍盐溶液;
步骤2,将碳酸盐溶液和镍盐溶液同时加入反应器中,加料的过程中保持镍盐溶液的流量不变,通过调节碳酸盐溶液的流量控制体系的pH值为7.9~8.3,并反应1~2h后,对该反应溶液进行浓密处理继续反应8~18h,获得碱式碳酸镍浆料;In step 2, the carbonate solution and the nickel salt solution are simultaneously added to the reactor, the flow rate of the nickel salt solution is kept constant during the feeding process, and the pH value of the system is controlled to be 7.9-8.3 by adjusting the flow rate of the carbonate solution, and After reacting for 1 to 2 hours, the reaction solution is subjected to intensive treatment to continue the reaction for 8 to 18 hours to obtain basic nickel carbonate slurry;
步骤3,对所述步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入铜盐的乙醇水溶液,搅拌反应,获得Cu2+掺杂碱式碳酸镍浆料;Step 3: After the basic nickel carbonate slurry obtained in the step 2 is subjected to pressure filtration to remove the mother liquor, it is then slurried and transferred to the reactor, and then the ethanol aqueous solution of copper salt is added to the reactor, and the reaction is stirred and reacted. , to obtain Cu 2+ doped basic nickel carbonate slurry;
步骤4,对所述步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在高温烘干获得Cu2+掺杂碱式碳酸镍微球。In
优选地,所述步骤1中,所述碳酸盐为碳酸钠、碳酸铵、碳酸氢铵中的至少一种;所述镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种。Preferably, in the
优选地,所述步骤2中,所述碳酸钠溶液的流量为5~500L/h;所述镍盐溶液的流量为50~500L/h。Preferably, in the step 2, the flow rate of the sodium carbonate solution is 5-500 L/h; the flow rate of the nickel salt solution is 50-500 L/h.
优选地,所述步骤3中,所述铜盐的乙醇水溶液中Cu2+离子浓度为0.05~0.2mol/L,所述铜盐的乙醇水溶液中乙醇和水体积比例为1:1。Preferably, in the
优选地,所述步骤3中,加入所述铜盐的乙醇水溶液时的流量是加入所述镍盐溶液流量的10~15%。Preferably, in the
优选地,所述步骤3中,所述Cu2+掺杂碱式碳酸镍浆料中铜元素的摩尔量占铜元素与镍元素摩尔量之和的0.01-1%。Preferably, in the
优选地,所述步骤3中,所述铜盐为硫酸铜、氯化铜、硝酸铜中的至少一种。Preferably, in the
优选地,所述步骤3中,所述搅拌反应的温度为50~60℃,搅拌反应的时间为20~25h。Preferably, in the
优选地,所述步骤4中,所述烘干时的温度为120~150℃。Preferably, in the
优选地,所述步骤4中,所述烘干时的时间为2~5h。Preferably, in the
与现有技术相比,本发明操作简易,制备过程简单易行,并且由于Cu2+掺杂之后形成晶格缺陷,促进电子分离效率,使得制备获得的Cu2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能,提高了碱式碳酸镍松装密度和流动性,便于包装和批量输送。Compared with the prior art, the present invention has the advantages of simple operation, simple and easy preparation process, and because of the formation of lattice defects after Cu 2+ doping, the electron separation efficiency is promoted, so that the prepared Cu 2+ doped basic nickel carbonate microparticles are prepared. The ball has more than 3 times higher photocatalytic performance than ordinary basic nickel carbonate, improves the bulk density and fluidity of basic nickel carbonate, and is convenient for packaging and batch transportation.
附图说明Description of drawings
图1为本发明实施例1获得的Cu2+掺杂碱式碳酸镍微球的SEM图;Fig. 1 is the SEM image of Cu 2+ doped basic nickel carbonate microspheres obtained in Example 1 of the present invention;
图2为本发明实施例提供的一种制备Cu2+掺杂碱式碳酸镍微球的装置结构示意图。FIG. 2 is a schematic structural diagram of an apparatus for preparing Cu 2+ doped basic nickel carbonate microspheres according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
本发明实施例提供的一种Cu2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:The embodiment of the present invention provides a preparation method of Cu 2+ doped basic nickel carbonate microspheres, and the method is realized by the following steps:
步骤1,分别配制碳酸根离子浓度为1.0~2.0mol/L的碳酸盐溶液和镍离子浓度为0.5~2.0mol/L的镍盐溶液;其中,碳酸盐为碳酸钠、碳酸铵、碳酸氢铵中的至少一种;镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种;
步骤2,采用蠕动泵进料,将碳酸盐溶液和镍盐溶液同时加入反应器中,进料过程中保持镍盐溶液的流量为50~500L/h不变,通过调节碳酸盐溶液的流量(所述碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为7.9~8.3,并反应1~2h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应8~18h,获得碱式碳酸镍浆料;In step 2, the peristaltic pump is used for feeding, and the carbonate solution and the nickel salt solution are added to the reactor at the same time. During the feeding process, the flow rate of the nickel salt solution is kept constant at 50-500 L/h. The pH value of the flow control system (the flow range of the sodium carbonate solution is 5 to 500 L/h) is 7.9 to 8.3, and after 1 to 2 hours of reaction, the thickener is opened (the thickener stirring rate is 5 to 10 r/min), Continue to react for 8-18h to obtain basic nickel carbonate slurry;
步骤3,对所述步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.05~0.2mol/L的铜盐的乙醇水溶液,在50~60℃下搅拌反应20~25h,获得铜元素的摩尔量占铜元素与镍元素摩尔量之和的0.01~1%的Cu2+掺杂碱式碳酸镍浆料;其中,铜盐的乙醇水溶液中乙醇和水体积比例为1:1;加入铜盐的乙醇水溶液时的流量是加入所述镍盐溶液流量的10~15%;铜盐为硫酸铜、氯化铜、硝酸铜中的至少一种;
步骤4,对所述步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在120~150℃的高温下干燥2~5h,获得Cu2+掺杂碱式碳酸镍微球。Step 4: Wash the Cu 2+ doped basic nickel carbonate slurry obtained in the
本发明实施例还提供了制备该Cu2+掺杂碱式碳酸镍微球的装置,其包括反应本体1、浓密本体2、旋分分离本体3,反应本体1、浓密本体2、旋分分离本体3通过管道4依次连接且形成回路。The embodiment of the present invention also provides a device for preparing the Cu 2+ doped basic nickel carbonate microspheres, which includes a
进一步地,反应本体1的下端侧壁上设置有反应液流出口11,浓密本体2的底部设置有反应液流入口21,反应液流出口11与反应液流入口21通过管道连接并且反应液流入口21至水平面的距离高于反应液流出口11至水平面的距离。Further, the lower end sidewall of the
进一步地,反应液流出口11与反应液流入口21连接的管道4上设置有第一控制阀门41。Further, a
进一步地,浓密本体2内设置有第二搅拌组件22,第二搅拌组件22位于浓密本体2内的中央位置,浓密本体2的上端侧壁上设置有反应液溢出口23。Further, the dense body 2 is provided with a
进一步地,第二搅拌组件22包括第二搅拌电机221、第二搅拌轴222、搅拌单元223,搅拌单元223固接在第二搅拌轴222的下端,第二搅拌电机(221)设置在第二搅拌轴222的上端且驱动第二搅拌轴222和搅拌单元223绕轴线转动。进一步地,搅拌单元223包括至少两个直角梯形搅拌浆叶2231,两个直角梯形搅拌浆叶2231沿垂直方向且对称的固接在第二搅拌轴222的下端,所述两个直角梯形搅拌浆叶2231的短边靠近反应液流入口21设置。Further, the
进一步地,两个直角梯形搅拌浆叶2231斜边的形状与浓密本体2下端的形状相适应。Further, the shape of the hypotenuse of the two right-angled
进一步地,旋分分离本体3的上端设置有上清液溢流口31,旋分分离本体3的侧壁上设置有反应液溢入口32,反应液溢入口32通过管道4与浓密本体2的上端侧壁上设置的反应液溢出口23连接;旋分分离本体3的底部设置有含固液流出口33,反应本体1的上端设置有含固液流入口,含固液流出口33通过管道4与含固液流入口连接。Further, the upper end of the
进一步地,反应液溢入口32与反应液溢出口23连接的管道4上设置有气动隔膜泵42。Further, a
进一步地,含固液流出口33与含固液流入口连接的管道上设置有第二控制阀门43。Further, a
进一步地,反应本体1内设置有碳酸盐进料管12、镍盐料管13、第一搅拌组件14、pH测定组件15,所述第一搅拌组件14位于反应本体1内的中央位置,所述碳酸盐进料管12和镍盐料管13对称的设置在反应本体1内的两侧;所述pH测定组件15设置在反应本体1的下端。Further, the
进一步地,第一搅拌组件14包括第一搅拌电机141、第一搅拌轴142、第一搅拌浆叶143,第一搅拌浆叶143固接在第一搅拌轴142的下端,第一搅拌电机141设置在第一搅拌轴142的上端且驱动第一搅拌轴142和第一搅拌浆叶143绕轴线转动。Further, the
进一步地,pH测定组件15包括pH测定管道151、pH测定仪152,pH测定仪152通过pH测定管道151与反应本体1相连接。Further, the pH measuring assembly 15 includes a pH measuring pipeline 151 and a pH measuring
进一步地,反应本体1的外层设置有真空保温夹套16,真空保温夹套16的底部设置有冷凝水进口161,真空保温夹套16的侧部设置有蒸汽出口162。Further, the outer layer of the
进一步地,反应本体1的底部设置有出料口17、排污口18。Further, the bottom of the
进一步地,反应本体1的下方还对称设置有两个固定支架19。Further, two
此装置的工作原理为:因重力作用碱式碳酸镍颗粒会沉降下来落到浓密器底部,通过低速搅拌,把粘附在底部的物料返回釜内,同时微小颗粒来不及沉降从反应液溢出口23排出至旋分分离本体3,旋分分离本体3对含固体小颗粒的液体进行旋分分离,上清液从上清液溢流口31排出,含固液返回反应本体1中,这样使釜内浓度不断提高,保证釜内颗粒粒径均匀性和微球形。The working principle of this device is: due to the action of gravity, the basic nickel carbonate particles will settle down and fall to the bottom of the thickener, and through low-speed stirring, the material adhering to the bottom is returned to the kettle, and the tiny particles have no time to settle out of the reaction
实施例1Example 1
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸钠溶液和镍离子浓度为1.2mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为200L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器,继续反应15h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump to feed, add sodium carbonate solution and nickel sulfate solution to reactor simultaneously, keep the flow rate of nickel sulfate solution to be 200L/h constant in the feeding process, by adjusting the flow rate of sodium carbonate solution (sodium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1 ± 2, and after 1.5 hours of reaction, the thickener is turned on, and the reaction is continued for 15 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.1mol/L的硫酸铜的乙醇水溶液(其中乙醇与水的体积比为1:1,加入硫酸铜的乙醇水溶液时的流量是加入硫酸镍溶液流量的12%),在55℃下搅拌反应22h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.1%的Cu2+掺杂碱式碳酸镍浆料;In
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例2Example 2
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸钠溶液和镍离子浓度为0.5mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为500L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器,继续反应8h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, sodium carbonate solution and nickel sulfate solution are added in the reactor simultaneously, keep the flow rate of nickel sulfate solution to be 500L/h constant in the feeding process, by adjusting the flow rate of sodium carbonate solution (sodium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1±2, and after reacting for 1 hour, the thickener is turned on, and the reaction is continued for 8 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.05mol/L的硫酸铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硫酸铜的乙醇水溶液时的流量是加入硫酸镍溶液流量的10%),在50℃下搅拌反应25h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.01%的Cu2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例3Example 3
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸钠溶液和镍离子浓度为2.0mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为5L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器,继续反应18h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, sodium carbonate solution and nickel sulfate solution are added in the reactor simultaneously, keep the flow rate of nickel sulfate solution to be 5L/h constant in the feeding process, by adjusting the flow rate of sodium carbonate solution (sodium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1 ± 2, and after reacting for 2 hours, the thickener is turned on, and the reaction is continued for 18 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.2mol/L的硫酸铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硫酸铜的乙醇水溶液时的流量是加入硫酸镍溶液流量的15%),在60℃下搅拌反应20h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的1%的Cu2+掺杂碱式碳酸镍浆料;In
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例4Example 4
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸钠溶液和镍离子浓度为1.2mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为200L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器,继续反应15h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, sodium carbonate solution and nickel chloride solution are added in the reactor simultaneously, keep the flow rate of nickel chloride solution to be 200L/h constant in the feeding process, by adjusting the flow rate of sodium carbonate solution ( The flow rate of the sodium carbonate solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1 ± 2, and after the reaction for 1.5 hours, the thickener is turned on, and the reaction is continued for 15 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.05mol/L的氯化铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入氯化铜的乙醇水溶液时的流量是加入氯化镍溶液流量的10%),在50℃下搅拌反应25h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.01%的Cu2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例5Example 5
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸铵溶液和镍离子浓度为1.2mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸铵溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为200L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器,继续反应15h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, add ammonium carbonate solution and nickel sulfate solution into the reactor simultaneously, keep the flow rate of nickel sulfate solution to be 200L/h constant in the feeding process, by adjusting the flow rate of ammonium carbonate solution (ammonium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1 ± 2, and after 1.5 hours of reaction, the thickener is turned on, and the reaction is continued for 15 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.2mol/L的硫酸铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硫酸铜的乙醇水溶液时的流量是加入硫酸镍溶液流量的15%),在60℃下搅拌反应20h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的1%的Cu2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例6Example 6
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸铵溶液和镍离子浓度为0.5mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸铵溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为500L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器,继续反应8h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, ammonium carbonate solution and nickel chloride solution are added in the reactor simultaneously, keep the flow rate of nickel chloride solution to be 500L/h constant in the feeding process, by adjusting the flow rate of ammonium carbonate solution ( The flow range of the ammonium carbonate solution is 5-500L/h) the pH value of the control system is 8.1±2, and after reacting for 1 hour, the thickener is turned on, and the reaction is continued for 8 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.1mol/L的氯化铜的乙醇水溶液(其中乙醇与水的体积比为1:1,加入氯化铜的乙醇水溶液时的流量是加入氯化镍溶液流量的12%),在55℃下搅拌反应22h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.1%的Cu2+掺杂碱式碳酸镍浆料;In
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例7Example 7
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸钠溶液和镍离子浓度为0.5mol/L的硝酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硝酸镍溶液同时加入反应器中,进料过程中保持硝酸镍溶液的流量为500L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器,继续反应8h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, sodium carbonate solution and nickel nitrate solution are added in the reactor simultaneously, keep the flow rate of nickel nitrate solution to be 500L/h constant in the feeding process, by adjusting the flow rate of sodium carbonate solution (sodium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1±2, and after reacting for 1 hour, the thickener is turned on, and the reaction is continued for 8 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.2mol/L的硝酸铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硝酸铜的乙醇水溶液时的流量是加入硝酸镍溶液流量的15%),在60℃下搅拌反应20h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的1%的Cu2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例8Example 8
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸铵溶液和镍离子浓度为2.0mol/L的硝酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸铵溶液和硝酸镍溶液同时加入反应器中,进料过程中保持硝酸镍溶液的流量为5L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器,继续反应18h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, add ammonium carbonate solution and nickel nitrate solution into the reactor simultaneously, keep the flow rate of nickel nitrate solution to be 5L/h constant in the feeding process, by adjusting the flow rate of ammonium carbonate solution (ammonium carbonate The flow rate of the solution ranges from 5 to 500 L/h) the pH value of the control system is 8.1 ± 2, and after reacting for 2 hours, the thickener is turned on, and the reaction is continued for 18 hours to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.1mol/L的硝酸铜的乙醇水溶液(其中乙醇与水的体积比为1:1,加入硝酸铜的乙醇水溶液时的流量是加入硝酸镍溶液流量的12%),在55℃下搅拌反应22h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.1%的Cu2+掺杂碱式碳酸镍浆料;In
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Cu2+掺杂碱式碳酸镍微球。In
实施例9Example 9
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸氢铵溶液和镍离子浓度为2.0mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸氢铵溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为5L/h不变,通过调节碳酸氢铵溶液的流量(碳酸氢铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器,继续反应18h,获得碱式碳酸镍浆料;Step 2, adopt peristaltic pump feeding, ammonium bicarbonate solution and nickel sulfate solution are added in the reactor simultaneously, keep the flow rate of nickel sulfate solution to be 5L/h constant in the feeding process, by adjusting the flow rate of ammonium bicarbonate solution ( The flow range of ammonium bicarbonate solution is 5~500L/h) the pH value of the control system is 8.1±2, and after 2h of reaction, the thickener is turned on, and the reaction is continued for 18h to obtain basic nickel carbonate slurry;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Cu2+离子浓度为0.05mol/L的硫酸铜的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硫酸铜的乙醇水溶液时的流量是加入硫酸镍溶液流量的10%),在50℃下搅拌反应25h,获得铜元素的摩尔量占铜元素与镍元素的摩尔量之和的0.01%的Cu2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Cu2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Cu2+掺杂碱式碳酸镍微球。In
性能检测实验:Performance testing experiment:
对实施例1至实施例9获得的Cu2+掺杂碱式碳酸镍微球进行性能检测,检测结果如下表:The Cu 2+ doped basic nickel carbonate microspheres obtained in Example 1 to Example 9 are tested for performance, and the test results are as follows:
表1实施例1至实施例9获得的Cu2+掺杂碱式碳酸镍微球对亚甲基蓝溶液的分解率对比数据Table 1 Comparative data on the decomposition rate of Cu 2+ doped basic nickel carbonate microspheres to methylene blue solution obtained in Example 1 to Example 9
从表1中可以得出:本发明获得的碱式碳酸镍微球的光催化性能优于普通碱式碳酸镍性能,其光催化效率提高了3倍多;Can draw from Table 1: the photocatalytic performance of the basic nickel carbonate microspheres obtained by the present invention is better than that of ordinary basic nickel carbonate, and its photocatalytic efficiency has improved more than 3 times;
本发明操作简易,制备过程简单易行,并且由于Cu2+掺杂之后形成晶格缺陷,促进电子分离效率,测得其松装密度高达1.2g/cm3以上,同时,使得制备获得的Cu2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能,同时增加了碱式碳酸镍松装密度和流动性,便于包装和批量输送,另外也延伸了在光催化领域具有较强的光吸收能力,激发光生载流子对,提高光催化性能。The invention is easy to operate, the preparation process is simple and feasible, and since the lattice defects are formed after Cu 2+ doping, the electron separation efficiency is promoted, and its loose packing density is measured to be as high as 1.2 g/cm 3 or more, and at the same time, the prepared Cu 2+ Doped basic nickel carbonate microspheres have more than 3 times higher photocatalytic performance than ordinary basic nickel carbonate, and at the same time increase the bulk density and fluidity of basic nickel carbonate, which is convenient for packaging and batch transportation, and also extends the In the field of photocatalysis, it has strong light absorption ability, excites photogenerated carrier pairs, and improves photocatalytic performance.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813819.8A CN110745880A (en) | 2018-07-23 | 2018-07-23 | A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813819.8A CN110745880A (en) | 2018-07-23 | 2018-07-23 | A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110745880A true CN110745880A (en) | 2020-02-04 |
Family
ID=69275120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810813819.8A Withdrawn CN110745880A (en) | 2018-07-23 | 2018-07-23 | A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110745880A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115888718A (en) * | 2022-10-26 | 2023-04-04 | 福州大学 | Preparation and application of a chestnut-shaped hollow NiCu composite material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101168127A (en) * | 2007-11-28 | 2008-04-30 | 北京化工大学 | A kind of nano semiconductor oxide photocatalyst and preparation method thereof |
US20110014105A1 (en) * | 2008-03-12 | 2011-01-20 | Johnson Matthey Plc | Desulphurisation materials |
CN104307549A (en) * | 2014-11-13 | 2015-01-28 | 武汉钢铁(集团)公司 | Copper carbonate loaded titanium dioxide ultraviolet photocatalyst and preparation method thereof |
CN104971754A (en) * | 2015-06-03 | 2015-10-14 | 河南师范大学 | A kind of loaded kaolin/Bi2O2CO3-BiPO4 composite photocatalyst and its preparation method |
CN105384199A (en) * | 2015-12-17 | 2016-03-09 | 江西核工业兴中新材料有限公司 | Process for synthesis of basic nickel carbonate from diacidic base |
-
2018
- 2018-07-23 CN CN201810813819.8A patent/CN110745880A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101168127A (en) * | 2007-11-28 | 2008-04-30 | 北京化工大学 | A kind of nano semiconductor oxide photocatalyst and preparation method thereof |
US20110014105A1 (en) * | 2008-03-12 | 2011-01-20 | Johnson Matthey Plc | Desulphurisation materials |
CN104307549A (en) * | 2014-11-13 | 2015-01-28 | 武汉钢铁(集团)公司 | Copper carbonate loaded titanium dioxide ultraviolet photocatalyst and preparation method thereof |
CN104971754A (en) * | 2015-06-03 | 2015-10-14 | 河南师范大学 | A kind of loaded kaolin/Bi2O2CO3-BiPO4 composite photocatalyst and its preparation method |
CN105384199A (en) * | 2015-12-17 | 2016-03-09 | 江西核工业兴中新材料有限公司 | Process for synthesis of basic nickel carbonate from diacidic base |
Non-Patent Citations (1)
Title |
---|
N. BALIARSINGH ET AL.: ""Effects of Co, Ni, Cu, and Zn on Photophysical and Photocatalytic Properties of Carbonate Intercalated MII/Cr LDHs for Enhanced Photodegradation of Methyl Orange"", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115888718A (en) * | 2022-10-26 | 2023-04-04 | 福州大学 | Preparation and application of a chestnut-shaped hollow NiCu composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108993376A (en) | A kind of aluminium salt lithium adsorbent and the preparation method and application thereof | |
CN108483474B (en) | A kind of preparation method of nanometer spherical alumina | |
CN102407099B (en) | Preparation method of silica gel loaded polyhydroxyl chelating resin for highly effective boron removal | |
KR20120116013A (en) | Spherical copper fine powder and process for production of the same | |
CN113461959B (en) | Method for preparing metal organic framework material by high-pressure homogenization | |
CN104959115A (en) | Preparation method of nanoscale metal-organic framework compound | |
CN104841437A (en) | Method for preparing copper-zinc catalyst by using micro-channel reactor | |
CN110745880A (en) | A kind of preparation method of Cu2+ doped basic nickel carbonate microspheres | |
CN104959091A (en) | Carbonization synthesis system and application of same in preparation of pseudo-boehmite, and preparation method for pseudo-boehmite | |
CN108097277A (en) | A kind of BiOCl/ZnO hetero-junctions high visible light catalytic activity material and preparation method thereof | |
CN101264943B (en) | Water-saving discharge-reducing consume-reducing continuous production device for nickel carbonate | |
CN116081670A (en) | A method for preparing lithium-aluminum adsorbent from brine with low magnesium-lithium ratio | |
CN110745877A (en) | Mn (manganese)2+Preparation method of basic nickel carbonate doped microspheres | |
CN110745873A (en) | A kind of preparation method of Mo6+ doped basic nickel carbonate microspheres | |
CN110745875A (en) | Bi3+Preparation method of basic nickel carbonate doped microspheres | |
CN110745874A (en) | A kind of preparation method of Cd2+ doped basic nickel carbonate microspheres | |
CN110745878A (en) | Ce3+Preparation method of basic nickel carbonate doped microspheres | |
CN110745876A (en) | Cr (chromium)3+Preparation method of basic nickel carbonate doped microspheres | |
CN101624216A (en) | Method for preparing nano nickel oxide | |
CN110743587A (en) | With g-C3N4Preparation method of composite basic nickel carbonate microspheres | |
CN110745879A (en) | A kind of preparation method of Mg2+ doped basic nickel carbonate microspheres | |
CN110947319B (en) | Dynamic and static combined stirring system and process for preparing chromium salt by liquid-phase oxidation of chromite | |
CN116212841B (en) | Method for preparing alumina pellet carrier by oil column forming process | |
CN107096567B (en) | The composite catalyst and preparation method of synthesis of propylene glycol | |
CN106698511A (en) | Yttrium-doped zirconium dioxide mesoscopic crystal and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200204 |