CN110745879A - 一种Mg2+掺杂碱式碳酸镍微球的制备方法 - Google Patents
一种Mg2+掺杂碱式碳酸镍微球的制备方法 Download PDFInfo
- Publication number
- CN110745879A CN110745879A CN201810813806.0A CN201810813806A CN110745879A CN 110745879 A CN110745879 A CN 110745879A CN 201810813806 A CN201810813806 A CN 201810813806A CN 110745879 A CN110745879 A CN 110745879A
- Authority
- CN
- China
- Prior art keywords
- carbonate
- nickel
- solution
- basic nickel
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/06—Carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/232—Carbonates
- B01J27/236—Hydroxy carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种Mg2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:1)分别配制碳酸盐溶液和镍盐溶液;2)将上述两种溶液同时加入反应器中,控制体系的pH值为7.9~8.3,并反应1~2h后,对该反应溶液进行浓密处理,获得碱式碳酸镍浆料;3)对上述碱式碳酸镍浆料进行压滤除去母液后,再进行浆化并转移至反应釜中,再加入镁盐的乙醇水溶液,搅拌反应,获得Mg2+掺杂碱式碳酸镍浆料;4)对上述浆料进行洗涤、高温烘干获得目标物。本发明制备过程简单易行,并且由于Mg2+掺杂之后形成晶格缺陷,促进电子分离效率,使得制备获得的Mg2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能。
Description
技术领域
本发明属于碱式碳酸镍微球的制备技术领域,具体涉及一种Mg2+掺杂碱式碳酸镍微球的制备方法。
背景技术
目前国内企业合成碱式碳酸镍有两种方法,一种合成工艺是采用碳酸铵或碳酸氢铵与镍盐进行沉淀反应;另一种为采用纯碱与镍盐溶液进行沉淀反应,此法合成时需要将pH值调至8.5以上,镍才能基本沉淀完全,此时需要的纯碱的量较理论量过量35%以上,且过量的碱基本不能回收利用,物料洗涤干燥后的产品中Na含量在300ppm以上,其操作步骤繁琐,并且这两种方法制备得到的碱式碳酸镍的结构均无其他掺杂元素,这样使得得到的碱式碳酸镍的用途少。
发明内容
有鉴于此,本发明的主要目的在于提供一种Mg2+掺杂碱式碳酸镍微球的制备方法,解决了现有技术获得的碱式碳酸镍在催化过程中催化性能低的问题。
为达到上述目的,本发明的技术方案是这样实现的:一种Mg2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:
步骤1,分别配制碳酸根离子浓度为1.0~2.0mol/L的碳酸盐溶液和镍离子浓度为0.5~2.0mol/L的镍盐溶液;
步骤2,将碳酸盐溶液和镍盐溶液同时加入反应器中,加料的过程中保持镍盐溶液的流量不变,通过调节碳酸盐溶液的流量控制体系的pH值为7.9~8.3,并反应1~2h后,对该反应溶液进行浓密处理继续反应8~18h,获得碱式碳酸镍浆料;
步骤3,对所述步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入镁盐的乙醇水溶液,搅拌反应,获得Mg2+掺杂碱式碳酸镍浆料;
步骤4,对所述步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在高温烘干获得Mg2+掺杂碱式碳酸镍微球。
优选地,所述步骤1中,所述碳酸盐为碳酸钠、碳酸铵、碳酸氢铵中的至少一种;所述镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种。
优选地,所述步骤2中,所述碳酸钠溶液的流量为5~500L/h;所述镍盐溶液的流量为50~500L/h。
优选地,所述步骤3中,所述镁盐的乙醇水溶液中Mg2+离子浓度为0.05~0.2mol/L,所述镁盐的乙醇水溶液中乙醇和水体积比例为1:1。
优选地,所述步骤3中,加入所述镁盐的乙醇水溶液时的流量是加入所述镍盐溶液流量的10~15%。
优选地,所述步骤3中,所述Mg2+掺杂碱式碳酸镍浆料中镁元素的摩尔量占镁元素的摩尔量与镍元素摩尔量之和的0.01-1%。
优选地,所述步骤3中,所述镁盐为硫酸镁、氯化镁、硝酸镁中的至少一种。
优选地,所述步骤3中,所述搅拌反应的温度为50~60℃,搅拌反应的时间为20~25h。
优选地,所述步骤4中,所述烘干时的温度为120~150℃。
优选地,所述步骤4中,所述烘干时的时间为2~5h。
与现有技术相比,本发明操作简易,制备过程简单易行,并且由于Mg2+掺杂之后形成晶格缺陷,促进电子分离效率,使得制备获得的Mg2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能,提高了碱式碳酸镍松装密度和流动性,便于包装和批量输送。
附图说明
图1为本发明实施例1获得的Mg2+掺杂碱式碳酸镍微球的SEM图;
图2为本发明实施例提供的一种制备Mg2+掺杂碱式碳酸镍微球的装置结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供的一种Mg2+掺杂碱式碳酸镍微球的制备方法,该方法通过以下步骤实现:
步骤1,分别配制碳酸根离子浓度为1.0~2.0mol/L的碳酸盐溶液和镍离子浓度为0.5~2.0mol/L的镍盐溶液;其中,碳酸盐为碳酸钠、碳酸铵、碳酸氢铵中的至少一种;镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种;
步骤2,采用蠕动泵进料,将碳酸盐溶液和镍盐溶液同时加入反应器中,进料过程中保持镍盐溶液的流量为50~500L/h不变,通过调节碳酸盐溶液的流量(所述碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为7.9~8.3,并反应1~2h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应8~18h,获得碱式碳酸镍浆料;
步骤3,对所述步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.05~0.2mol/L的镁盐的乙醇水溶液,在50~60℃下搅拌反应20~25h,获得镁元素的摩尔量占镁元素的摩尔量与镍元素摩尔量之和的0.01-1%的Mg2+掺杂碱式碳酸镍浆料;其中,镁盐的乙醇水溶液中乙醇和水体积比例为1:1;加入镁盐的乙醇水溶液时的流量是加入所述镍盐溶液流量的10~15%;镁盐为硫酸镁、氯化镁、硝酸镁中的至少一种;
步骤4,对所述步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在120~150℃的高温下干燥2~5h,获得Mg2+掺杂碱式碳酸镍微球。
本发明实施例还提供了一种Mg2+掺杂碱式碳酸镍微球的制备装置,其包括反应本体1、浓密本体2、旋分分离本体3,反应本体1、浓密本体2、旋分分离本体3通过管道4依次连接且形成回路。
进一步地,反应本体1的下端侧壁上设置有反应液流出口11,浓密本体2的底部设置有反应液流入口21,反应液流出口11与反应液流入口21通过管道连接并且反应液流入口21至水平面的距离高于反应液流出口11至水平面的距离。
进一步地,反应液流出口11与反应液流入口21连接的管道4上设置有第一控制阀门41。
进一步地,浓密本体2内设置有第二搅拌组件22,第二搅拌组件22位于浓密本体2内的中央位置,浓密本体2的上端侧壁上设置有反应液溢出口23。
进一步地,第二搅拌组件22包括第二搅拌电机221、第二搅拌轴222、搅拌单元223,搅拌单元223固接在第二搅拌轴222的下端,第二搅拌电机(221)设置在第二搅拌轴222的上端且驱动第二搅拌轴222和搅拌单元223绕轴线转动。进一步地,搅拌单元223包括至少两个直角梯形搅拌浆叶2231,两个直角梯形搅拌浆叶2231沿垂直方向且对称的固接在第二搅拌轴222的下端,所述两个直角梯形搅拌浆叶2231的短边靠近反应液流入口21设置。
进一步地,两个直角梯形搅拌浆叶2231斜边的形状与浓密本体2下端的形状相适应。
进一步地,旋分分离本体3的上端设置有上清液溢流口31,旋分分离本体3的侧壁上设置有反应液溢入口32,反应液溢入口32通过管道4与浓密本体2的上端侧壁上设置的反应液溢出口23连接;旋分分离本体3的底部设置有含固液流出口33,反应本体1的上端设置有含固液流入口,含固液流出口33通过管道4与含固液流入口连接。
进一步地,反应液溢入口32与反应液溢出口23连接的管道4上设置有气动隔膜泵42。
进一步地,含固液流出口33与含固液流入口连接的管道上设置有第二控制阀门43。
进一步地,反应本体1内设置有碳酸盐进料管12、镍盐料管13、第一搅拌组件14、pH测定组件15,所述第一搅拌组件14位于反应本体1内的中央位置,所述碳酸盐进料管12和镍盐料管13对称的设置在反应本体1内的两侧;所述pH测定组件15设置在反应本体1的下端。
进一步地,第一搅拌组件14包括第一搅拌电机141、第一搅拌轴142、第一搅拌浆叶143,第一搅拌浆叶143固接在第一搅拌轴142的下端,第一搅拌电机141设置在第一搅拌轴142的上端且驱动第一搅拌轴142和第一搅拌浆叶143绕轴线转动。
进一步地,pH测定组件15包括pH测定管道151、pH测定仪152,pH测定仪152通过pH测定管道151与反应本体1相连接。
进一步地,反应本体1的外层设置有真空保温夹套16,真空保温夹套16的底部设置有冷凝水进口161,真空保温夹套16的侧部设置有蒸汽出口162。
进一步地,反应本体1的底部设置有出料口17、排污口18。
进一步地,反应本体1的下方还对称设置有两个固定支架19。
此装置的工作原理为:因重力作用碱式碳酸镍颗粒会沉降下来落到浓密器底部,通过低速搅拌,把粘附在底部的物料返回釜内,同时微小颗粒来不及沉降从反应液溢出口23排出至旋分分离本体3,旋分分离本体3对含固体小颗粒的液体进行旋分分离,上清液从上清液溢流口31排出,含固液返回反应本体1中,这样使釜内浓度不断提高,保证釜内颗粒粒径均匀性和微球形。
实施例1
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸钠溶液和镍离子浓度为1.2mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为200L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应15h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.1mol/L的氯化镁的乙醇水溶液(其中乙醇与水的体积比为1:1,加入氯化镁的乙醇水溶液时的流量是加入氯化镍溶液流量的12%),在55℃下搅拌反应22h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Mg2+掺杂碱式碳酸镍微球。
实施例2
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸钠溶液和镍离子浓度为0.5mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为500L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应8h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.05mol/L的氯化镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入氯化镁的乙醇水溶液时的流量是加入氯化镍溶液流量的10%),在50℃下搅拌反应25h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.01%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Mg2+掺杂碱式碳酸镍微球。
实施例3
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸钠溶液和镍离子浓度为2.0mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为5L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应18h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.2mol/L的氯化镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入氯化镁的乙醇水溶液时的流量是加入氯化镍溶液流量的15%),在60℃下搅拌反应20h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Mg2+掺杂碱式碳酸镍微球。
实施例4
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸钠溶液和镍离子浓度为1.2mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为200L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应15h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.05mol/L的硫酸镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硫酸镁的乙醇水溶液时的流量是加入硫酸镍溶液流量的10%),在50℃下搅拌反应25h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.01%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Mg2+掺杂碱式碳酸镍微球。
实施例5
步骤1,分别配制碳酸根离子浓度为1.5mol/L的碳酸铵溶液和镍离子浓度为1.2mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸铵溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为200L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1.5h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应15h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.2mol/L的氯化镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入氯化镁的乙醇水溶液时的流量是加入氯化镍溶液流量的15%),在60℃下搅拌反应20h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Mg2+掺杂碱式碳酸镍微球。
实施例6
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸铵溶液和镍离子浓度为0.5mol/L的硫酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硫酸镍溶液同时加入反应器中,进料过程中保持硫酸镍溶液的流量为500L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应8h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.1mol/L的硫酸镁的乙醇水溶液(其中乙醇与水的体积比为1:1,加入硫酸镁的乙醇水溶液时的流量是加入硫酸镍溶液流量的12%),在55℃下搅拌反应22h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Mg2+掺杂碱式碳酸镍微球。
实施例7
步骤1,分别配制碳酸根离子浓度为1.0mol/L的碳酸钠溶液和镍离子浓度为0.5mol/L的硝酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸钠溶液和硝酸镍溶液同时加入反应器中,进料过程中保持硝酸镍溶液的流量为500L/h不变,通过调节碳酸钠溶液的流量(碳酸钠溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应1h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应8h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.2mol/L的硝酸镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入硝酸镁的乙醇水溶液时的流量是加入硝酸镍溶液流量的15%),在60℃下搅拌反应20h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在150℃的高温下干燥2h,获得Mg2+掺杂碱式碳酸镍微球。
实施例8
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸铵溶液和镍离子浓度为2.0mol/L的硝酸镍溶液;
步骤2,采用蠕动泵进料,将碳酸铵溶液和硝酸镍溶液同时加入反应器中,进料过程中保持硝酸镍溶液的流量为5L/h不变,通过调节碳酸铵溶液的流量(碳酸铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应18h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.1mol/L的硝酸镁的乙醇水溶液(其中乙醇与水的体积比为1:1,加入硝酸镁的乙醇水溶液时的流量是加入硝酸镍溶液流量的12%),在55℃下搅拌反应22h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.1%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在130℃的高温下干燥3h,获得Mg2+掺杂碱式碳酸镍微球。
实施例9
步骤1,分别配制碳酸根离子浓度为2.0mol/L的碳酸氢铵溶液和镍离子浓度为2.0mol/L的氯化镍溶液;
步骤2,采用蠕动泵进料,将碳酸氢铵溶液和氯化镍溶液同时加入反应器中,进料过程中保持氯化镍溶液的流量为5L/h不变,通过调节碳酸氢铵溶液的流量(碳酸氢铵溶液的流量范围为5~500L/h)控制体系的pH值为8.1±2,并反应2h后,开启浓密器(浓密器搅拌速率为5-10r/min),继续反应18h,获得碱式碳酸镍浆料;
步骤3,对步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入Mg2+离子浓度为0.05mol/L的氯化镁的乙醇水溶液(其中,乙醇与水的体积比为1:1,加入氯化镁的乙醇水溶液时的流量是加入氯化镍溶液流量的10%),在50℃下搅拌反应25h,获得镁元素的摩尔量占镁元素与镍元素的摩尔量之和的0.01%的Mg2+掺杂碱式碳酸镍浆料;
步骤4,对步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在120℃的高温下干燥5h,获得Mg2+掺杂碱式碳酸镍微球。
性能检测实验:
对实施例1至实施例9获得的Mg2+掺杂碱式碳酸镍微球进行性能检测,检测结果如下表:
表1实施例1至实施例9获得的Mg2+掺杂碱式碳酸镍微球对亚甲基蓝溶液的分解率对比数据
亚甲基蓝溶液浓度 | 光降解后亚甲基蓝浓度 | 分解率(%) | |
实施例1 | 10mg/L | 2.1 | 79 |
实施例2 | 10mg/L | 2.4 | 76 |
实施例3 | 10mg/L | 1.8 | 82 |
实施例4 | 10mg/L | 2.0 | 80 |
实施例5 | 10mg/L | 2.2 | 78 |
实施例6 | 10mg/L | 1.9 | 81 |
实施例7 | 10mg/L | 2.3 | 77 |
实施例8 | 10mg/L | 1.6 | 84 |
实施例9 | 10mg/L | 1.7 | 83 |
对比例 | 10mg/L | 7.2 | 28 |
从表1中可以得出:本发明获得的碱式碳酸镍微球的光催化性能优于普通碱式碳酸镍性能,其光催化效率提高了3倍多;
本发明操作简易,制备过程简单易行,并且由于Mg2+掺杂之后形成晶格缺陷,促进电子分离效率,测得其松装密度高达1.2g/cm3以上,同时,使得制备获得的Mg2+掺杂碱式碳酸镍微球具有比普通碱式碳酸镍高3倍以上的光催化性能,同时增加了碱式碳酸镍松装密度和流动性,便于包装和批量输送,另外也延伸了在光催化领域具有较强的光吸收能力,激发光生载流子对,提高光催化性能;并且通过掺杂Mg元素,增加了氧缺位数量,提高了催化性能,同时也增加了碱式碳酸镍在催化及其他方面的应用。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
Claims (10)
1.一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,该方法通过以下步骤实现:
步骤1,分别配制碳酸根离子浓度为1.0~2.0mol/L的碳酸盐溶液和镍离子浓度为0.5~2.0mol/L的镍盐溶液;
步骤2,将碳酸盐溶液和镍盐溶液同时加入反应器中,加料的过程中保持镍盐溶液的流量不变,通过调节碳酸盐溶液的流量控制体系的pH值为7.9~8.3,并反应1~2h后,对该反应溶液进行浓密处理继续反应8~18h,获得碱式碳酸镍浆料;
步骤3,对所述步骤2获得的碱式碳酸镍浆料进行压滤除去母液后,再对其进行浆化并转移至反应釜中,再向反应釜中加入镁盐的乙醇水溶液,搅拌反应,获得Mg2+掺杂碱式碳酸镍浆料;
步骤4,对所述步骤3获得的Mg2+掺杂碱式碳酸镍浆料进行洗涤,再在高温烘干获得Mg2+掺杂碱式碳酸镍微球。
2.根据权利要求1所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤1中,所述碳酸盐为碳酸钠、碳酸铵、碳酸氢铵中的至少一种;所述镍盐为硫酸镍、氯化镍、硝酸镍中的至少一种。
3.根据权利要求2所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤2中,所述碳酸钠溶液的流量为5~500L/h;所述镍盐溶液的流量为50~500L/h。
4.根据权利要求3所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤3中,所述镁盐的乙醇水溶液中Mg2+离子浓度为0.05~0.2mol/L,所述镁盐的乙醇水溶液中乙醇和水体积比例为1:1。
5.根据权利要求4所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤3中,加入所述镁盐的乙醇水溶液时的流量是加入所述镍盐溶液流量的10~15%。
6.根据权利要求5所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤3中,所述Mg2+掺杂碱式碳酸镍浆料中镁元素的摩尔量占镁元素的摩尔量与镍元素摩尔量之和的0.01-1%。
7.根据权利要求6所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤3中,所述镁盐为硫酸镁、氯化镁、硝酸镁中的至少一种。
8.根据权利要求7所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤3中,所述搅拌反应的温度为50~60℃,搅拌反应的时间为20~25h。
9.根据权利要求8所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤4中,所述烘干时的温度为120~150℃。
10.根据权利要求1-9任意一项所述的一种Mg2+掺杂碱式碳酸镍微球的制备方法,其特征在于,所述步骤4中,所述烘干时的时间为2~5h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813806.0A CN110745879A (zh) | 2018-07-23 | 2018-07-23 | 一种Mg2+掺杂碱式碳酸镍微球的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810813806.0A CN110745879A (zh) | 2018-07-23 | 2018-07-23 | 一种Mg2+掺杂碱式碳酸镍微球的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110745879A true CN110745879A (zh) | 2020-02-04 |
Family
ID=69275122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810813806.0A Withdrawn CN110745879A (zh) | 2018-07-23 | 2018-07-23 | 一种Mg2+掺杂碱式碳酸镍微球的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110745879A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101168127A (zh) * | 2007-11-28 | 2008-04-30 | 北京化工大学 | 一种纳米半导体氧化物光催化剂及其制备方法 |
US20110014105A1 (en) * | 2008-03-12 | 2011-01-20 | Johnson Matthey Plc | Desulphurisation materials |
CN104998671A (zh) * | 2015-06-03 | 2015-10-28 | 河南师范大学 | 一种负载型Bi2O2CO3光催化剂及其制备方法 |
CN105384199A (zh) * | 2015-12-17 | 2016-03-09 | 江西核工业兴中新材料有限公司 | 一种二元碱合成碱式碳酸镍的工艺 |
-
2018
- 2018-07-23 CN CN201810813806.0A patent/CN110745879A/zh not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101168127A (zh) * | 2007-11-28 | 2008-04-30 | 北京化工大学 | 一种纳米半导体氧化物光催化剂及其制备方法 |
US20110014105A1 (en) * | 2008-03-12 | 2011-01-20 | Johnson Matthey Plc | Desulphurisation materials |
CN104998671A (zh) * | 2015-06-03 | 2015-10-28 | 河南师范大学 | 一种负载型Bi2O2CO3光催化剂及其制备方法 |
CN105384199A (zh) * | 2015-12-17 | 2016-03-09 | 江西核工业兴中新材料有限公司 | 一种二元碱合成碱式碳酸镍的工艺 |
Non-Patent Citations (1)
Title |
---|
薛继龙: "水滑石材料处理染料废水的研究", 《中国博士学位论文全文数据库 工程科技1刊》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108993376A (zh) | 一种铝盐锂吸附剂及其制备方法与应用 | |
CN104925867B (zh) | 一种纳米钨酸铯粉体及其制备方法与应用 | |
CN103316701B (zh) | 一种制备Bi2S3/BiOCl异质结光催化剂的方法 | |
CN108906050B (zh) | 一种碳纳米管掺杂铜铝复合金属氧化物脱硝催化剂及其制备方法和应用 | |
CN110368933B (zh) | 一种以Ce-Ti复合氧化物为载体的钌基氨合成催化剂及其制备方法 | |
CN107952455A (zh) | 一种具有宏观构架的三维片状BiOI光催化材料及其制备与应用 | |
CN104841437A (zh) | 一种利用微通道反应器制备铜锌催化剂的方法 | |
CN110745875A (zh) | 一种Bi3+掺杂碱式碳酸镍微球的制备方法 | |
CN110745877A (zh) | 一种Mn2+掺杂碱式碳酸镍微球的制备方法 | |
CN101264943B (zh) | 一种节水减排降耗连续生产碳酸镍的装置 | |
CN110745873A (zh) | 一种Mo6+掺杂碱式碳酸镍微球的制备方法 | |
CN110745880A (zh) | 一种Cu2+掺杂碱式碳酸镍微球的制备方法 | |
CN110745879A (zh) | 一种Mg2+掺杂碱式碳酸镍微球的制备方法 | |
CN105585036A (zh) | 一种高纯度高结晶度拟薄水铝石的制备方法 | |
CN102050476A (zh) | 一种纤维状拟薄水铝石及活性氧化铝的制备方法 | |
CN110745878A (zh) | 一种Ce3+掺杂碱式碳酸镍微球的制备方法 | |
CN110745876A (zh) | 一种Cr3+掺杂碱式碳酸镍微球的制备方法 | |
CN110745874A (zh) | 一种Cd2+掺杂碱式碳酸镍微球的制备方法 | |
CN110743587A (zh) | 一种与g-C3N4复合碱式碳酸镍微球的制备方法 | |
CN116212841B (zh) | 一种油柱成型工艺制备氧化铝小球载体的方法 | |
CN104907071A (zh) | 酯加氢催化剂及其制备方法和酯加氢反应的方法 | |
CN103395807B (zh) | 一种撞击流-旋转盘耦合反应装置及其用于合成超细氢氧化镁阻燃剂的方法 | |
CN107096567B (zh) | 合成丙二醇醚的复合催化剂及制备方法 | |
CN106745218B (zh) | 一种高温稳定二氧化钛纳米管粉体的制备方法 | |
CN111807380B (zh) | 一种一锅制备三维多级结构碱式硅酸镍催化剂的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200204 |
|
WW01 | Invention patent application withdrawn after publication |