CN110602651B - Positioning method based on WIFI position fingerprint and positioning system of robot - Google Patents
Positioning method based on WIFI position fingerprint and positioning system of robot Download PDFInfo
- Publication number
- CN110602651B CN110602651B CN201910894093.XA CN201910894093A CN110602651B CN 110602651 B CN110602651 B CN 110602651B CN 201910894093 A CN201910894093 A CN 201910894093A CN 110602651 B CN110602651 B CN 110602651B
- Authority
- CN
- China
- Prior art keywords
- wireless access
- access point
- data
- module
- wifi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明是关于通信技术领域,特别是关于一种基于WIFI位置指纹的定位方法以及机器人的定位系统。The present invention relates to the field of communication technology, in particular to a positioning method based on a WIFI location fingerprint and a positioning system for a robot.
背景技术Background technique
无线定位,顾名思义就是利用收到的各种类型的信号来确定出定位终端的地理位置。Wireless positioning, as the name implies, uses various types of signals received to determine the geographic location of the positioning terminal.
GPS(全球定位系统)和我国的北斗导航系统在较宽敞的区域内已经达到了精度很高的定位。在室内场景下也有一些定位方法,如红外线定位、超声波定位、蓝牙定位、基于WIFI指纹信息定位等方法,这些方法都存在自身的优劣。目前随着互联网和移动通信的飞速发展,很多场合都布置了大量的WIFI节点,而且移动终端普遍自带WIFI模块,使得基于WIFI指纹信息定位方法的研究得到了很好的发展。GPS (Global Positioning System) and my country's Beidou navigation system have achieved high-precision positioning in a relatively spacious area. There are also some positioning methods in indoor scenarios, such as infrared positioning, ultrasonic positioning, Bluetooth positioning, and WIFI-based fingerprint information positioning. These methods have their own advantages and disadvantages. At present, with the rapid development of the Internet and mobile communication, a large number of WIFI nodes are arranged in many occasions, and mobile terminals generally have their own WIFI modules, which makes the research on the positioning method based on WIFI fingerprint information have been well developed.
基于WIFI的指纹定位技术主要是利用空间信息与无线信号的RSSI(接收的信号强度指示)的相关特性,将待测位置上收集到WIFI无线信息与地理位置信息进行相互匹配。在实际定位环境中,将待测点接受到的n个无线访问接入点的RSSI值形成一组n维向量与二维地理位置之间形成逐一映射关系,不同的n维RSSI向量对应的不同的地理位置,然后汇集这些n维RSSI向量构成指纹数据库,数据库中的每一组数据称为位置指纹。最后可以根据采集到无线访问接入点的RSSI信号强度的变化,使用当时测量到的一组RSSI值上传到定位服务器,通过与指纹数据库的位置指纹进行匹配,选取相似度最佳的位置指纹所对应的地理位置作为估计位置。The WIFI-based fingerprint positioning technology mainly uses the correlation between spatial information and the RSSI (Received Signal Strength Indication) of the wireless signal to match the WIFI wireless information collected at the location to be measured with the geographic location information. In the actual positioning environment, the RSSI values of the n wireless access points received by the point to be measured are formed into a set of n-dimensional vectors and the two-dimensional geographic location to form a one-by-one mapping relationship. Different n-dimensional RSSI vectors correspond to different Then, these n-dimensional RSSI vectors are aggregated to form a fingerprint database, and each group of data in the database is called a location fingerprint. Finally, according to the change of RSSI signal strength of the collected wireless access point, a set of RSSI values measured at that time can be used to upload to the positioning server, and by matching with the location fingerprints of the fingerprint database, the location fingerprint with the best similarity can be selected. The corresponding geographic location serves as the estimated location.
目前基于WIFI指纹的定位算法包括两个阶段,离线训练阶段和实时定位阶段。离线训练阶段的主要工作是工作人员在待测区域内选取若干个参考点的位置,并在每一个参考点同时采集多个来自不同无线访问接入点的信号强度值,然后再将各个参考点的接收到的各个无线访问接入点的RSSI值、MAC地址以及参考点的地理位置信息组成一组相关联的三元数据组保存在数据库中,其中数据库中的每一组数据就是一个位置指纹。实时定位阶段中,用户在定位区域内通过终端设备采集所有无线访问接入点的WIFI信息,并将无线访问接入点的MAC地址和RSSI值组成一个二元组,作为指纹定位算法的输入内容,通过逐一比对,找出最相近的条目,再利用最接近的一组或几组位置指纹对应的地理位置坐标进行相关的计算,进而来估计待测点的位置。The current positioning algorithm based on WIFI fingerprint includes two stages, offline training stage and real-time positioning stage. The main work of the offline training phase is that the staff selects the positions of several reference points in the area to be tested, and simultaneously collects multiple signal strength values from different wireless access points at each reference point, and then compares each reference point. The received RSSI value of each wireless access point, the MAC address and the geographic location information of the reference point form a set of associated triple data groups and are stored in the database, where each group of data in the database is a location fingerprint . In the real-time positioning stage, the user collects the WIFI information of all wireless access points in the positioning area through the terminal device, and forms a two-tuple with the MAC address and RSSI value of the wireless access point as the input content of the fingerprint positioning algorithm. , by comparing one by one, find the closest entry, and then use the geographical coordinates corresponding to the closest group or groups of location fingerprints to perform related calculations, and then estimate the location of the point to be measured.
发明人对目前的基于WIFI指纹的定位算法进行研究后发现其存在以下问题:在线定位阶段中,当指纹库较小时,逐条比较就能够进行很快匹配,但是随着指纹库的数据量很大时,这种操作将会耗费大量的时间,从而影响定位的效率,同时也会对定位服务器产生大量的重复运算操作。因此,在保证定位精度的情况下,改进指纹匹配算法,提高定位系统的定位实时性,降低服务器的功耗,也是一个非常大的挑战。After researching the current positioning algorithm based on WIFI fingerprints, the inventor found that it has the following problems: in the online positioning stage, when the fingerprint database is small, the comparison can be quickly matched one by one, but with the large amount of data in the fingerprint database. , this operation will consume a lot of time, thus affecting the efficiency of positioning, and will also generate a large number of repeated operations on the positioning server. Therefore, it is also a very big challenge to improve the fingerprint matching algorithm, improve the positioning real-time performance of the positioning system, and reduce the power consumption of the server under the condition of ensuring the positioning accuracy.
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person of ordinary skill in the art.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于WIFI位置指纹的定位方法以及机器人的定位系统,其能够提高运算效率,提供定位系统的定位实时性以及降低服务器的功耗。The purpose of the present invention is to provide a positioning method based on a WIFI location fingerprint and a positioning system of a robot, which can improve the computing efficiency, provide the positioning real-time performance of the positioning system and reduce the power consumption of the server.
为实现上述目的,本发明提供了一种基于WIFI位置指纹的定位方法,待定位物体设有WIFI模块,所述待定位物体通过所述WIFI模块与多个无线访问接入点建立通信,所述WIFI模块能够检测接收到的每个无线访问接入点的RSSI值,该基于WIFI位置指纹的定位方法包括:In order to achieve the above object, the present invention provides a positioning method based on WIFI location fingerprints. The object to be located is provided with a WIFI module, and the object to be located establishes communication with multiple wireless access points through the WIFI module. The WIFI module can detect the received RSSI value of each wireless access point, and the positioning method based on the WIFI location fingerprint includes:
获取所述待定位物体在待测区域的每个位置的WIFI位置指纹数据并存储至预先建立的WIFI位置指纹数据库;Acquire the WIFI location fingerprint data of each position of the object to be located in the area to be measured and store it in a pre-established WIFI location fingerprint database;
采用K均值聚类划分方法对所述WIFI位置指纹数据库的数据进行分类从而划分为K个类;The data of the WIFI location fingerprint database is classified into K classes by using the K-means clustering method;
获取所述待定位物体在当前位置接收的每个无线访问接入点的RSSI值并从中去除信号强度小于预设阈值的无线访问接入点的RSSI值,计算剩余每个RSSI值组成的采样数据与所述K个类的欧式距离,在所述欧式距离值最小的类中采用加权K近邻法进行匹配定位从而获得所述待定位物体的定位结果。Obtain the RSSI value of each wireless access point received by the object to be located at the current position, remove the RSSI value of the wireless access point whose signal strength is less than the preset threshold, and calculate the remaining sample data composed of each RSSI value For the Euclidean distances from the K classes, in the class with the smallest Euclidean distance value, the weighted K-nearest neighbor method is used to perform matching and positioning to obtain the positioning result of the object to be located.
在本发明的一实施方式中,获取所述待定位物体在某一位置的WIFI位置指纹数据包括:In an embodiment of the present invention, acquiring the WIFI location fingerprint data of the object to be located at a certain location includes:
对所述待定位物体在该位置接收的每个无线访问接入点的RSSI值进行采样;sampling the RSSI value of each wireless access point received by the object to be positioned at the position;
结合采样数据并且以无线访问接入点的稳定性和信号质量为选择因素筛选出一部分无线访问接入点;Combine the sampling data and filter out a part of the wireless access points based on the stability and signal quality of the wireless access points;
对所选择出的该部分的每个无线访问接入点的RSSI值数组进行高斯滤波,并对过滤后的每个无线访问接入点的RSSI值数组求取平均值,将所述平均值组成的集合作为该位置的WIFI位置指纹数据进行存储。Gaussian filtering is performed on the RSSI value array of each wireless access point in the selected part, and an average value is obtained for the filtered RSSI value array of each wireless access point, and the average value is composed of The collection is stored as the WIFI location fingerprint data of the location.
在本发明的一实施方式中,所述结合采样数据并且以无线访问接入点的稳定性和信号质量为选择因素筛选出一部分无线访问接入点包括:计算所述采样数据中每个无线访问接入点的采样数据出现的频率,将各个频率值降序排列,将前Q个频率值所对应的Q个无线访问接入点组成第一无线访问接入点集合;计算所述采样数据中每个无线访问接入点的采样数据的平均值,将各个平均值降序排列,将前Q个平均值所对应的Q个无线访问接入点组成第二无线访问接入点集合;计算所述采样数据中每个无线访问接入点的采样数据的标准差,将各个标准差值升序排列,将前Q个标准差值所对应的Q个无线访问接入点组成第三无线访问接入点集合;对所述第一无线访问接入点集合、所述第二无线访问接入点集合以及所述第三无线访问接入点集合求交集,在该交集中选择出所述一部分稳定性和信号质量均较佳的无线访问接入点。In an embodiment of the present invention, the combining the sampled data and filtering out a part of the wireless access points with the stability and signal quality of the wireless access points as selection factors includes: calculating each wireless access point in the sampled data The frequency of occurrence of the sampling data of the access point, the frequency values are arranged in descending order, and the Q wireless access points corresponding to the first Q frequency values are formed into the first wireless access point set; The average value of the sampled data of the wireless access points, the average values are arranged in descending order, and the Q wireless access points corresponding to the first Q average values are formed into a second wireless access point set; calculate the sampling The standard deviation of the sampled data of each wireless access point in the data, the standard deviation values are arranged in ascending order, and the Q wireless access points corresponding to the first Q standard deviation values are formed into a third wireless access point set ; Find an intersection for the first set of wireless access points, the second set of wireless access points and the third set of wireless access points, and select the part of the stability and signal in the intersection set Wireless access points with better quality.
本发明还提供了一种机器人的定位系统,其包括:机器人、机器人控制器以及服务器。机器人其具有WIFI模块,所述机器人通过所述WIFI模块接入多个无线访问接入点,所述WIFI模块能够检测接收的每个无线访问接入点的RSSI值。机器人控制器与所述多个无线访问接入点通信,用于接收所述WIFI模块检测的每个无线访问接入点的RSSI值。服务器与所述机器人控制器通信,所述服务器包括:WIFI位置指纹数据库建立模块、聚类模块以及定位模块,所述WIFI位置指纹数据库建立模块用于获取所述机器人在待测区域的每个位置的WIFI位置指纹数据并存储至预先建立的WIFI位置指纹数据库;所述聚类模块与所述WIFI位置指纹数据库建立模块相耦合,用于采用K均值聚类划分方法对所述WIFI位置指纹数据库的数据进行分类从而划分为K个类;所述定位模块与所述聚类模块相耦合,用于在对所述机器人定位时,获取所述WIFI模块在所述机器人当前位置检测的每个无线访问接入点的RSSI数据,并从中去除信号强度小于预设阈值的无线访问接入点的RSSI值,计算剩余每个RSSI值组成的采样数据与所述K个类的欧式距离,在所述欧式距离值最小的类中采用加权K近邻法进行匹配定位从而获得机器人的定位结果。The present invention also provides a positioning system for a robot, which includes a robot, a robot controller and a server. The robot has a WIFI module, the robot accesses multiple wireless access points through the WIFI module, and the WIFI module can detect the received RSSI value of each wireless access point. The robot controller communicates with the plurality of wireless access points, and is configured to receive the RSSI value of each wireless access point detected by the WIFI module. The server communicates with the robot controller, and the server includes: a WIFI location fingerprint database establishment module, a clustering module and a positioning module, and the WIFI location fingerprint database establishment module is used to obtain each position of the robot in the area to be measured The WIFI location fingerprint data is stored in the pre-established WIFI location fingerprint database; the clustering module is coupled with the WIFI location fingerprint database establishment module, and is used to use the K-means clustering method to classify the WIFI location fingerprint database. The data is classified to be divided into K categories; the positioning module is coupled with the clustering module, and is used to obtain each wireless access detected by the WIFI module at the current position of the robot when positioning the robot. RSSI data of the access point, and remove the RSSI value of the wireless access point whose signal strength is less than the preset threshold, calculate the Euclidean distance between the sampled data composed of each remaining RSSI value and the K classes, in the Euclidean In the class with the smallest distance value, the weighted K-nearest neighbor method is used for matching and positioning to obtain the positioning result of the robot.
在本发明的一实施方式中,所述WIFI位置指纹数据库建立模块包括:采样模块、无线访问接入点选取模块以及WIFI位置指纹数据生成模块。In an embodiment of the present invention, the WIFI location fingerprint database establishment module includes: a sampling module, a wireless access point selection module, and a WIFI location fingerprint data generation module.
采样模块,用于对机器人在某一位置接收的每个无线访问接入点的RSSI值进行采样;The sampling module is used to sample the RSSI value of each wireless access point received by the robot at a certain position;
无线访问接入点选取模块,与所述采样模块相耦合,用于结合所述采样模块的采样数据并且以无线访问接入点的稳定性和信号质量为选择因素筛选出一部分无线访问接入点;A wireless access point selection module, coupled with the sampling module, used for combining the sampling data of the sampling module and screening out a part of the wireless access points with the stability and signal quality of the wireless access points as selection factors ;
WIFI位置指纹数据生成模块,与所述无线访问接入点选取模块相耦合,用于对所述无线访问接入点选取模块所选择出的每个无线访问接入点的RSSI值数组进行高斯滤波,并对过滤后的每个无线访问接入点的的RSSI值数组求取平均值,将所述平均值组成的集合作为该位置的WIFI位置指纹数据进行存储。The WIFI location fingerprint data generation module, coupled with the wireless access point selection module, is used to perform Gaussian filtering on the RSSI value array of each wireless access point selected by the wireless access point selection module , and calculate the average value of the filtered RSSI value array of each wireless access point, and store the set formed by the average value as the WIFI location fingerprint data of the location.
在本发明的一实施方式中,所述无线访问接入点选取模块包括:第一无线访问接入点选取模块、第二无线访问接入点选取模块、第三无线访问接入点选取模块以及交集求取模块。第一无线访问接入点选取模块用于计算所述采样模块的采样数据中每个无线访问接入点的采样数据出现的频率,将各个频率值降序排列,将前Q个频率值所对应的Q个无线访问接入点组成第一无线访问接入点集合。第二无线访问接入点选取模块用于计算所述采样数据中每个无线访问接入点的采样数据的平均值,将各个平均值降序排列,将前Q个平均值所对应的Q个无线访问接入点组成第二无线访问接入点集合。第三无线访问接入点选取模块用于计算所述采样数据中每个无线访问接入点的采样数据的标准差,将各个标准差值升序排列,将前Q个标准差值所对应的Q个无线访问接入点组成第三无线访问接入点集合。交集求取模块与所述第一无线访问接入点选取模块、所述第二无线访问接入点选取模块、所述第三无线访问接入点选取模块均相耦合,用于对所述第一无线访问接入点集合、所述第二无线访问接入点集合以及所述第三无线访问接入点集合求交集,并在该交集中选择出所述一部分稳定性和信号质量均较佳的无线访问接入点。In an embodiment of the present invention, the wireless access point selection module includes: a first wireless access point selection module, a second wireless access point selection module, a third wireless access point selection module, and Intersection seeking module. The first wireless access point selection module is used to calculate the frequency of occurrence of the sampled data of each wireless access point in the sampled data of the sampling module, arrange each frequency value in descending order, and select the corresponding frequency values of the first Q frequency values. The Q wireless access points form a first wireless access point set. The second wireless access point selection module is configured to calculate the average value of the sampled data of each wireless access point in the sampled data, arrange the average values in descending order, and select the Q wireless access points corresponding to the first Q average values. The access points form a second set of wireless access points. The third wireless access point selection module is configured to calculate the standard deviation of the sampled data of each wireless access point in the sampled data, arrange the standard deviation values in ascending order, and select the Q corresponding to the first Q standard deviation values. The wireless access points form a third wireless access point set. The intersection obtaining module is coupled with the first wireless access point selection module, the second wireless access point selection module, and the third wireless access point selection module, and is used for the first wireless access point selection module. An intersection of a set of wireless access points, the second set of wireless access points, and the third set of wireless access points is obtained, and the part is selected from the intersection with good stability and signal quality wireless access point.
在本发明的一实施方式中,所述服务器还包括定位校正模块。定位校正模块与所述定位模块以及所述机器人控制器相耦合,所述机器人控制器还用于获取所述机器人电机转速;所述定位校正模块用于计算前一次定位的位置与本次定位的位置之间的第一距离;还用于根据所述机器人电机转速计算机器人在前一次定位到本次定位的过程中所移动的第二距离;还用于比较所述第一距离和第二距离,若两者之差大于阈值,则判定本次定位结果不正确,发送消息至所述机器人控制器进行重新检测数据,否则判定本次定位结果正确并将该定位结果发送至所述机器人控制器。In an embodiment of the present invention, the server further includes a positioning correction module. The positioning correction module is coupled with the positioning module and the robot controller, and the robot controller is also used to obtain the rotational speed of the robot motor; the positioning correction module is used to calculate the position of the previous positioning and the position of the current positioning. The first distance between the positions; it is also used to calculate the second distance moved by the robot in the process from the previous positioning to the current positioning according to the rotational speed of the robot motor; it is also used to compare the first distance and the second distance , if the difference between the two is greater than the threshold, it is determined that the positioning result is incorrect, and a message is sent to the robot controller to re-detect the data, otherwise it is determined that the positioning result is correct and the positioning result is sent to the robot controller .
本发明还提供了一种服务器,用于对物体基于WIFI位置指纹进行定位,所述服务器包括:The present invention also provides a server for locating objects based on WIFI location fingerprints, the server comprising:
WIFI位置指纹数据库建立模块,用于获取待定位物体在待测区域的每个位置的WIFI位置指纹数据并存储至预先建立的WIFI位置指纹数据库;The WIFI location fingerprint database establishment module is used to obtain the WIFI location fingerprint data of each position of the object to be located in the to-be-measured area and store it in the pre-established WIFI location fingerprint database;
聚类模块,与所述WIFI位置指纹数据库建立模块相耦合,用于采用K均值聚类划分方法对所述WIFI位置指纹数据库的数据进行分类从而划分为K个类;A clustering module, coupled with the WIFI location fingerprint database establishment module, is used for classifying the data of the WIFI location fingerprint database by adopting the K-means clustering division method so as to be divided into K classes;
定位模块,与所述聚类模块相耦合,用于在对所述待定位物体定位时,获取所述待定位物体当前位置的每个无线访问接入点的RSSI数据,并从中去除信号强度小于阈值的无线访问接入点的RSSI值,计算剩余每个RSSI值组成的采样数据与所述K个类的欧式距离,在所述欧式距离值最小的类中采用加权K近邻法进行匹配定位从而获得所述待定位物体的定位结果。The positioning module, coupled with the clustering module, is used to obtain the RSSI data of each wireless access point of the current position of the object to be located when positioning the object to be located, and remove the signal strength less than The RSSI value of the wireless access point with the threshold value, calculate the Euclidean distance between the sampled data composed of each remaining RSSI value and the K classes, and use the weighted K-nearest neighbor method for matching and positioning in the class with the smallest Euclidean distance value. Obtain the positioning result of the object to be positioned.
在本发明的一实施方式中,所述WIFI位置指纹数据库建立模块包括:In an embodiment of the present invention, the WIFI location fingerprint database establishment module includes:
采样模块,用于对所述待定位物体在某一位置接收的每个无线访问接入点的RSSI值进行采样;a sampling module, configured to sample the RSSI value of each wireless access point received by the object to be located at a certain position;
无线访问接入点选取模块,与所述采样模块相耦合,用于结合所述采样模块的采样数据并且以无线访问接入点的稳定性和信号质量为选择因素筛选出一部分无线访问接入点;A wireless access point selection module, coupled with the sampling module, used for combining the sampling data of the sampling module and screening out a part of the wireless access points with the stability and signal quality of the wireless access points as selection factors ;
WIFI位置指纹数据生成模块,与所述无线访问接入点选取模块相耦合,用于对所述无线访问接入点选取模块所选择出的每个无线访问接入点的RSSI值数组进行高斯滤波,并对过滤后的每个无线访问接入点的的RSSI值数组求取平均值,将所述平均值组成的集合作为该位置的WIFI位置指纹数据进行存储。The WIFI location fingerprint data generation module, coupled with the wireless access point selection module, is used to perform Gaussian filtering on the RSSI value array of each wireless access point selected by the wireless access point selection module , and calculate the average value of the filtered RSSI value array of each wireless access point, and store the set formed by the average value as the WIFI location fingerprint data of the location.
在本发明的一实施方式中,所述无线访问接入点选取模块包括:In an embodiment of the present invention, the wireless access point selection module includes:
第一无线访问接入点选取模块,用于计算所述采样模块的采样数据中每个无线访问接入点的采样数据出现的频率,将各个频率值降序排列,将前Q个频率值所对应的Q个无线访问接入点组成第一无线访问接入点集合;The first wireless access point selection module is used to calculate the frequency of occurrence of the sampled data of each wireless access point in the sampled data of the sampling module, arrange each frequency value in descending order, and set the corresponding frequency values of the first Q The Q wireless access points form the first wireless access point set;
第二无线访问接入点选取模块,用于计算所述采样数据中每个无线访问接入点的采样数据的平均值,将各个平均值降序排列,将前Q个平均值所对应的Q个无线访问接入点组成第二无线访问接入点集合;The second wireless access point selection module is configured to calculate the average value of the sampled data of each wireless access point in the sampled data, arrange the average values in descending order, and select the Q corresponding to the first Q average values. The wireless access points form a second wireless access point set;
第三无线访问接入点选取模块,用于计算所述采样数据中每个无线访问接入点的采样数据的标准差,将各个标准差值升序排列,将前Q个标准差值所对应的Q个无线访问接入点组成第三无线访问接入点集合;The third wireless access point selection module is configured to calculate the standard deviation of the sampled data of each wireless access point in the sampled data, arrange each standard deviation value in ascending order, and select the corresponding standard deviation values of the first Q The Q wireless access points form a third wireless access point set;
交集求取模块,与所述第一无线访问接入点选取模块、所述第二无线访问接入点选取模块、所述第三无线访问接入点选取模块均相耦合,用于对所述第一无线访问接入点集合、所述第二无线访问接入点集合以及所述第三无线访问接入点集合求交集,并在该交集中选择出所述一部分无线访问接入点。The intersection obtaining module is coupled with the first wireless access point selection module, the second wireless access point selection module, and the third wireless access point selection module, and is used for the An intersection of the first wireless access point set, the second wireless access point set, and the third wireless access point set is obtained, and the part of the wireless access points is selected from the intersection.
与现有技术相比,根据本发明的基于WIFI位置指纹的定位方法以及机器人的定位系统、服务器,使用了K均值聚类算法对指纹数据进行了分类,在定位阶段,可以有效加快数据匹配速度,能够有效提高运算效率、降低服务器功耗,提高定位实时性。Compared with the prior art, according to the positioning method based on WIFI location fingerprint, the positioning system and the server of the robot of the present invention, the K-means clustering algorithm is used to classify the fingerprint data, and in the positioning stage, the data matching speed can be effectively accelerated. , which can effectively improve computing efficiency, reduce server power consumption, and improve positioning real-time performance.
附图说明Description of drawings
图1是根据本发明一实施方式的基于WIFI位置指纹的定位方法的步骤组成;FIG. 1 is a step composition of a positioning method based on a WIFI location fingerprint according to an embodiment of the present invention;
图2是根据本发明一实施方式的K均值聚类划分方法的步骤组成;Fig. 2 is the step composition of the K-means clustering method according to an embodiment of the present invention;
图3是根据本发明一实施方式的机器人的定位系统的网络拓扑示意图;3 is a schematic diagram of a network topology of a positioning system of a robot according to an embodiment of the present invention;
图4是根据本发明一实施方式的机器人的定位系统的结构组成。FIG. 4 is a structural composition of a positioning system of a robot according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprising" or its conjugations such as "comprising" or "comprising" and the like will be understood to include the stated elements or components, and Other elements or other components are not excluded.
为了克服现有技术中的问题,本发明提供一种基于WIFI位置指纹的定位方法以及机器人的定位系统、服务器,在建立WIFI位置指纹数据库的过程中,对接受到的信号信息进行了预处理工作,主要包括无线访问接入点的选择和RSSI信号的平滑处理,使用了K均值聚类算法对指纹数据进行了分类,在定位阶段,可以有效加快数据匹配速度,能够有效提高运算效率、降低服务器功耗,提高定位实时性和定位精度。In order to overcome the problems in the prior art, the present invention provides a positioning method based on a WIFI location fingerprint, a positioning system and a server for a robot. In the process of establishing the WIFI location fingerprint database, the received signal information is preprocessed, It mainly includes the selection of wireless access points and the smoothing of RSSI signals. The K-means clustering algorithm is used to classify the fingerprint data. In the positioning stage, it can effectively speed up the data matching speed, effectively improve the computing efficiency and reduce the server power. It can improve the real-time performance and positioning accuracy of positioning.
实施例1Example 1
图1是根据本发明一实施方式的基于WIFI位置指纹的定位方法的流程。待定位物体设有WIFI模块,待定位物体通过WIFI模块与多个无线访问接入点建立通信,WIFI模块能够检测接收到的每个无线访问接入点的RSSI值。该基于WIFI位置指纹的定位方法包括:步骤S1~步骤S3。FIG. 1 is a flowchart of a positioning method based on a WIFI location fingerprint according to an embodiment of the present invention. The object to be located is provided with a WIFI module, the object to be located establishes communication with multiple wireless access points through the WIFI module, and the WIFI module can detect the received RSSI value of each wireless access point. The positioning method based on the WIFI location fingerprint includes steps S1 to S3.
在步骤S1中获取待定位物体在待测区域的每个位置的WIFI位置指纹数据从而建立WIFI位置指纹数据库。具体而言,获取待定位物体在某一位置的WIFI位置指纹数据包括:对待定位物体在该位置接收的每个无线访问接入点的RSSI值进行采样,并且在该位置采样多次;结合采样数据选择出一部分稳定性和信号质量均较佳的无线访问接入点;对所选择出的该部分的每个无线访问接入点的RSSI值数组进行高斯滤波从而去除一些RSSI值,并对每个无线访问接入点的过滤后的RSSI值数组求取平均值,将求取出的每个无线访问接入点的平均值组成的集合作为该位置的WIFI位置指纹数据进行存储。In step S1, the WIFI location fingerprint data of each position of the object to be located in the area to be measured is acquired to establish a WIFI location fingerprint database. Specifically, acquiring the WIFI location fingerprint data of the object to be located at a certain location includes: sampling the RSSI value of each wireless access point received by the object to be located at the location, and sampling multiple times at the location; combining sampling A part of the wireless access points with better stability and signal quality is selected from the data; Gaussian filtering is performed on the RSSI value array of each wireless access point in the selected part to remove some RSSI values, and each RSSI value is removed. The average value of the filtered RSSI value array of each wireless access point is obtained, and the set consisting of the obtained average value of each wireless access point is stored as the WIFI location fingerprint data of the location.
其中,结合采样数据选择出一部分稳定性和信号质量均较佳的无线访问接入点包括计算采样数据中每个无线访问接入点的采样数据出现的频率,将各个频率值降序排列,将前K个频率值所对应的K个无线访问接入点组成第一无线访问接入点集合;计算采样数据中每个无线访问接入点的采样数据的平均值,将各个平均值降序排列,将前K个平均值所对应的K个无线访问接入点组成第二无线访问接入点集合;计算采样数据中每个无线访问接入点的采样数据的标准差,将各个标准差值升序排列,将前K个标准差值所对应的K个无线访问接入点组成第三无线访问接入点集合;对第一无线访问接入点集合、第二无线访问接入点集合以及第三无线访问接入点集合求交集。从上述交集中的各个无线访问接入点中根据实际情况选择出的一部分稳定性和信号质量均较佳的无线访问接入点。Wherein, selecting a part of the wireless access points with better stability and signal quality in combination with the sampled data includes calculating the frequency of occurrence of the sampled data of each wireless access point in the sampled data, arranging the respective frequency values in descending order, The K wireless access points corresponding to the K frequency values form the first wireless access point set; calculate the average value of the sampled data of each wireless access point in the sampled data, arrange the average values in descending order, and set the The K wireless access points corresponding to the first K average values form the second wireless access point set; calculate the standard deviation of the sampled data of each wireless access point in the sampled data, and arrange each standard deviation value in ascending order , the K wireless access points corresponding to the first K standard deviation values are formed into a third wireless access point set; for the first wireless access point set, the second wireless access point set and the third wireless access point set Access the set of access points to find the intersection. A part of the wireless access points with better stability and signal quality are selected from each wireless access point in the above-mentioned intersection set according to the actual situation.
具体而言,在待测区域内,假设采样点L收到你n个无线访问接入点的集合,其可表示为{AP1,AP2,…APn},然后在该点进行M次采样,考虑每个无线访问接入点在整个采样样本出现的频率,如式子1所示:Specifically, in the area to be tested, suppose the sampling point L receives a set of n wireless access points, which can be expressed as {AP 1 , AP 2 ,...AP n }, and then perform M times at this point. Sampling, consider the frequency of each wireless access point in the entire sampling sample, as shown in Equation 1:
式子1中,M(APi)表示采样中无线访问接入点APi出现的样本数,M表示采样的总样本数。然后对Fre(APi)进行降序排列,选择前Q个无线访问接入点作为选择结果,表示为Q1。In
并且考虑样本中无线访问接入点的信号强度,每个无线访问接入点的M次测量信号强度求平均值,如式子2所示:And considering the signal strength of the wireless access points in the sample, the average value of the M times of measured signal strengths of each wireless access point is calculated, as shown in Equation 2:
式子2中,RSSIi表示某个无线访问接入点的第i次测量值。可以表示该无线访问接入点的信号质量,对采样点L的N个无线访问接入点按照降序排列,选择前Q个作为选择结果,表示为Q2。In Equation 2, RSSI i represents the i-th measurement value of a certain wireless access point. It can represent the signal quality of the wireless access point. For the N wireless access points of the sampling point L, according to Sort in descending order, and select the top Q as the selection result, denoted as Q 2 .
同时还要考虑标准差,在采样点L经过M次采样,无线访问接入点AP1接受到M1组采样样本,其数据为{RSSI1,RSSI2,…,RSSIm1},则此无线访问接入点的波动的标准差,如式子3所示。At the same time, the standard deviation should also be considered. After M sampling at the sampling point L, the wireless access point AP 1 receives M 1 sets of sampling samples, and the data is {RSSI 1 , RSSI 2 ,..., RSSI m1 }, then the wireless
式子3中,表示M1次采样样本的平均值。标准差σ可以反映出该无线访问接入点的波动幅度,对采样点L的N个无线访问接入点按照标准差σ进行升序排列,同样选择前Q个无线访问接入点作为选择结果,表示为Q3。In Equation 3, Represents the average value of M 1 sampling samples. The standard deviation σ can reflect the fluctuation range of the wireless access point. The N wireless access points of the sampling point L are arranged in ascending order according to the standard deviation σ, and the first Q wireless access points are also selected as the selection result. Denoted as Q 3 .
对上述求出的Q1,Q2,Q3求交集,如式子4所示。The intersection of Q 1 , Q 2 , and Q 3 obtained above is obtained, as shown in Equation 4.
Q=Q1∩Q2∩Q2 (4)Q=Q 1 ∩Q 2 ∩Q 2 (4)
通常待测点能够接收大于5个无线访问接入点的RSSI样本,就能达到很好的定位精度,可以将Q值根据实际待测环境无线访问接入点的数目设置为大于5即可。如果接受到的无线访问接入点的数量比较少,则根据实际情况有选择的采取上述的方案。Usually, the point to be tested can receive RSSI samples of more than 5 wireless access points, which can achieve good positioning accuracy. The Q value can be set to be greater than 5 according to the number of wireless access points in the actual environment to be tested. If the number of received wireless access points is relatively small, the above scheme is selectively adopted according to the actual situation.
对于经过选择的无线访问接入点,由于在测量时人员流动、物体遮挡,还是不可避免的出现一些小概率的值。为了提高最终定位结果的精确度,本实施方式使用高斯滤波模型来排除这些小概率的值,对所选择出的该部分的每个无线访问接入点的RSSI值数组进行高斯滤波从而去除一些RSSI值,并对每个无线访问接入点的过滤后的RSSI值数组求取平均值。For the selected wireless access point, due to the flow of people and the occlusion of objects during the measurement, some small probability values inevitably appear. In order to improve the accuracy of the final positioning result, this embodiment uses a Gaussian filter model to exclude these low probability values, and performs Gaussian filtering on the selected RSSI value array of each wireless access point in this part to remove some RSSIs value, and averages the filtered array of RSSI values for each AP.
具体算法如下:首先假设用{RSSI1,RSSI2,…,RSSIn}来表示在一个样本点来自某一无线访问接入点的n次采样值,那么用正态模型可以表示这些RSSI值,如式子5所示。The specific algorithm is as follows: First, suppose that {RSSI 1 , RSSI 2 ,...,RSSI n } is used to represent the n sampling values from a wireless access point at a sample point, then these RSSI values can be represented by a normal model, As shown in Equation 5.
其中:in:
式子5中,x表示RSSI信号强度值。In Equation 5, x represents the RSSI signal strength value.
然后取u-3σ<x≤u+3σ之间的RSSI的值,去除范围之外的值,并将其保存为{RSSI1,RSSI2,…,RSSIn1}。Then take the value of RSSI between u-3σ<x≤u+3σ, remove the value outside the range, and save it as {RSSI 1 ,RSSI 2 ,...,RSSI n1 }.
最后根据式子8求取选出的RSSI值的平均值,该平均值为计算出的该样本点来自该无线访问接入点的RSSI信号强度值R。Finally, the average value of the selected RSSI values is obtained according to formula 8, and the average value is the calculated RSSI signal strength value R of the sample point from the wireless access point.
式子8中,n1表示过滤后的样本总数。In Equation 8, n 1 represents the total number of filtered samples.
在步骤S2中采用K均值聚类划分方法对WIFI位置指纹数据库进行分类从而划分为K个类。In step S2, the K-means clustering method is used to classify the WIFI location fingerprint database so as to be divided into K classes.
具体而言,如图2所示,K均值聚类划分方法包括步骤S20~步骤S24。Specifically, as shown in FIG. 2 , the K-means clustering method includes steps S20 to S24 .
WIFI位置指纹数据集X={x1,x2,…,xn}作为输入,其中包含N个数据对象,聚类中心的个数为K,聚类准则阈值为ε。划分为K簇的数据集设为输出。The WIFI location fingerprint dataset X={x 1 , x 2 ,...,x n } is used as input, which contains N data objects, the number of cluster centers is K, and the clustering criterion threshold is ε. The dataset divided into K clusters is set as output.
在步骤S20中,从数据集合X中任意选出K个聚类中心M={m1 (1),m2 (1),…mK (1)}。In step S20, K cluster centers M={m 1 (1) , m 2 (1) , . . . m K (1) } are arbitrarily selected from the data set X.
在步骤S21中,计算剩下的每个数据xi(i=1,2,…,N-K)到K个聚类中心M的欧氏距离,用D(i,r)表示,n为定位区域内所有的无线访问接入点个数,xi(RSSIj)表示第i个数据对象接受到的第j个无线访问接入点的信号强度值,mr (1)(RSSIj)表示第r个聚类中心接收到第j个无线访问接入点的信号强度值,如果数据对象xi没有接收到第j个无线访问接入点的信号时,则用一个无限小的数值代替,则D(i,r)的算法采用式子9。In step S21, calculate the Euclidean distance from each remaining data x i (i=1,2,...,NK) to the K cluster centers M, denoted by D(i,r), and n is the positioning area The number of all wireless access points in the network, xi (RSSI j ) represents the signal strength value of the jth wireless access point received by the ith data object, m r (1) (RSSI j ) represents the th The r cluster centers receive the signal strength value of the jth wireless access point. If the data object x i does not receive the signal of the jth wireless access point, it is replaced by an infinitely small value, then The algorithm of D(i,r) adopts Equation 9.
在步骤S22中,将xi分配到离其欧氏距离最短的聚类中心中。In step S22, xi is assigned to the cluster center with the shortest Euclidean distance.
在步骤S23中计算每个类所有对象的平均值,并把它作为新的聚类中心点,如式子10所示。In step S23, the average value of all objects in each class is calculated and used as the new cluster center point, as shown in
其中,式子10中,Cr表示第j类包含的数据,Nr表示第j类数据的个数。Wherein, in
在步骤S24重复上述三个步骤,将剩余xi逐个分类,当聚类中心不再变化或者mr (p)的波动小于给定的阈值的时候,输出K个类的中心,算法结束。In step S24, the above three steps are repeated, and the remaining xi are classified one by one. When the cluster center does not change or the fluctuation of m r (p) is less than the given threshold, the center of K classes is output, and the algorithm ends.
在步骤S3中采用加权K近邻法进行匹配定位。具体地,获取待定位物体在当前位置接收的每个无线访问接入点的RSSI值并从中去除一些信号强度较差的无线访问接入点的RSSI值,计算剩余每个RSSI值组成的采样数据与K个类的欧式距离,在欧式距离值最小的类中采用加权K近邻法进行匹配定位从而获得待定位物体的定位结果。In step S3, the weighted K-nearest neighbor method is used for matching and positioning. Specifically, obtain the RSSI value of each wireless access point received by the object to be located at the current position, remove the RSSI value of some wireless access points with poor signal strength, and calculate the remaining sampled data composed of each RSSI value For the Euclidean distance from K classes, in the class with the smallest Euclidean distance value, the weighted K-nearest neighbor method is used to perform matching and positioning to obtain the positioning result of the object to be located.
实施例2Example 2
基于同样的发明构思,本发明还提供一种机器人的定位系统,下面进行说明。Based on the same inventive concept, the present invention also provides a positioning system for a robot, which will be described below.
图3是该机器人的定位系统的网络拓扑示意图。图4是一实施方式的机器人的定位系统的结构组成。其包括:机器人1、机器人控制器2、服务器3。FIG. 3 is a schematic diagram of the network topology of the positioning system of the robot. 4 is a configuration diagram of a positioning system of a robot according to an embodiment. It includes: a
机器人1具有WIFI模块10,机器人1通过WIFI模块10接入多个无线访问接入点,WIFI模块10能够检测接收的每个无线访问接入点的RSSI值。机器人1还具有摄像头11、单片机12以及电机13等。机器人控制器2与多个无线访问接入点通信,用于接收WIFI模块10检测的每个无线访问接入点的RSSI值。可选地,机器人1的WIFI模块10中设置OpenWrt路由器10a,通过OpenWrt路由器10a可以与机器人控制器2之间进行数据交互,例如在OpenWrt路由器10a运行视频服务软件,可以将机器人1的摄像头11采集的图像进行编码,在机器人控制端2可以看到来自机器人1的视频。也可以通过OpenWrt路由器10a进行串口和网口的转换,机器人控制端2的控制数据可以发送至机器人1的单片机12,单片机12发送指令从控制机器人1的电机13动作。The
服务器3与机器人控制器2通信。服务器3包括:WIFI位置指纹数据库建立模块31、聚类模块32以及定位模块33。The server 3 communicates with the robot controller 2 . The server 3 includes: a WIFI location fingerprint
WIFI位置指纹数据库建立模块31用于获取机器人1在待测区域的每个位置的WIFI位置指纹数据从而建立WIFI位置指纹数据库。The WIFI location fingerprint
具体地,WIFI位置指纹数据库建立模块31包括:采样模块311、无线访问接入点选取模块312、WIFI位置指纹数据生成模块313。采样模块311用于对机器人在某一位置接收的每个无线访问接入点的RSSI值进行采样,并且在该位置采样多次。无线访问接入点选取模块312与采样模块311相耦合,用于结合采样模块311的采样数据选择出一部分稳定性和信号质量均较佳的无线访问接入点。WIFI位置指纹数据生成模块313与无线访问接入点选取模块312相耦合,用于对无线访问接入点选取模块312所选择出的每个无线访问接入点的RSSI值数组进行高斯滤波从而去除一些RSSI值,并对每个无线访问接入点的过滤后的RSSI值数组求取平均值,将求取出的每个无线访问接入点的平均值组成的集合作为该位置的WIFI位置指纹数据进行存储。Specifically, the WIFI location fingerprint
其中,无线访问接入点选取模块312包括:第一无线访问接入点选取模块312a、第二无线访问接入点选取模块312b、第三无线访问接入点选取模块312c以及交集求取模块312d。The wireless access
第一无线访问接入点选取模块312a用于计算采样模块的采样数据中每个无线访问接入点的采样数据出现的频率,将各个频率值降序排列,将前K个频率值所对应的K个无线访问接入点组成第一无线访问接入点集合。第二无线访问接入点选取模块312b用于计算采样数据中每个无线访问接入点的采样数据的平均值,将各个平均值降序排列,将前K个平均值所对应的K个无线访问接入点组成第二无线访问接入点集合。第三无线访问接入点选取模块312c用于计算采样数据中每个无线访问接入点的采样数据的标准差,将各个标准差值升序排列,将前K个标准差值所对应的K个无线访问接入点组成第三无线访问接入点集合。交集求取模块312d用于对第一无线访问接入点集合312a、第二无线访问接入点集合312b以及第三无线访问接入点集合312c求交集,其中,该交集中的各个无线访问接入点为选择出的一部分稳定性和信号质量均较佳的无线访问接入点。The first wireless access
聚类模块32与WIFI位置指纹数据库建立模块31相耦合,用于采用K均值聚类划分方法对WIFI位置指纹数据库进行分类从而划分为K个类。The
定位模块33与聚类模块32相耦合,用于在对机器人定位时,获取WIFI模块10在机器人1当前位置检测的每个无线访问接入点的RSSI数据,并从中去除一些信号强度较差的无线访问接入点的RSSI值,计算剩余每个RSSI值组成的采样数据与K个类的欧式距离,在欧式距离值最小的类中采用加权K近邻法进行匹配定位从而获得机器人的定位结果。The
在本实施方式中,为了进一步提高定位精度,在服务器3中还设置了定位校正模块34。其与定位模块33以及机器人控制器2相耦合,机器人控制器2还用于获取机器人电机13的转速。定位校正模块34用于计算前一次定位的位置与本次定位的位置之间的第一距离;还用于根据机器人电机13的转速计算机器人1在前一次定位到本次定位的过程中所移动的第二距离,其中,这个过程的时间可以通过计时器计算得出;还用于比较第一距离和第二距离,若两者之差大于阈值,则判定本次定位结果不正确,发送消息至机器人控制器2进行重新检测数据,否则判定本次定位结果正确并将该定位结果发送至机器人控制器2。机器人控制器2可以通过界面进行显示。In this embodiment, in order to further improve the positioning accuracy, a
综上所述,根据本实施方式的基于WIFI位置指纹的定位方法以及机器人的定位系统,在建立WIFI位置指纹数据库阶段,对无线访问接入点的稳定性和信号质量进行了双重考量来选择合适的无线访问接入点,提高了精度,避免了无效的无线访问接入点;并对RSSI值进行了高斯滤波,使得其数值明显变得平滑,去除了小概率的杂乱数据;而且使用了K均值聚类算法对指纹数据进行了分类,在后续定位阶段的数据匹配过程中可以加快匹配速度,提高定位实时性;另外在机器人的定位系统中还对定位结果进行了矫正,进一步提高了定位结果的精度。To sum up, according to the positioning method based on the WIFI location fingerprint and the positioning system of the robot in this embodiment, in the stage of establishing the WIFI location fingerprint database, the stability and signal quality of the wireless access point are double considered to select the appropriate location. It improves the accuracy and avoids invalid wireless access points; Gaussian filtering is performed on the RSSI value, which makes the value significantly smoother, and the cluttered data with small probability is removed; and K The mean clustering algorithm classifies the fingerprint data, which can speed up the matching speed and improve the real-time positioning in the data matching process in the subsequent positioning stage; in addition, the positioning results are corrected in the positioning system of the robot, which further improves the positioning results. accuracy.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and modifications are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and their practical applications, to thereby enable one skilled in the art to make and utilize various exemplary embodiments and various different aspects of the invention. Choose and change. The scope of the invention is intended to be defined by the claims and their equivalents.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894093.XA CN110602651B (en) | 2019-09-20 | 2019-09-20 | Positioning method based on WIFI position fingerprint and positioning system of robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894093.XA CN110602651B (en) | 2019-09-20 | 2019-09-20 | Positioning method based on WIFI position fingerprint and positioning system of robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110602651A CN110602651A (en) | 2019-12-20 |
CN110602651B true CN110602651B (en) | 2022-02-01 |
Family
ID=68861919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910894093.XA Active CN110602651B (en) | 2019-09-20 | 2019-09-20 | Positioning method based on WIFI position fingerprint and positioning system of robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110602651B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110891241A (en) * | 2020-01-08 | 2020-03-17 | 北京理工大学重庆创新中心 | Fingerprint positioning method based on long-time memory network model and access point selection strategy |
WO2021243504A1 (en) * | 2020-06-01 | 2021-12-09 | 蜂图志科技控股有限公司 | Signal map building method and apparatus, device, and readable storage medium |
CN111726860B (en) * | 2020-06-09 | 2022-04-08 | 北京无限向溯科技有限公司 | Positioning method, device, equipment and storage medium based on POI space distance |
CN111711985B (en) * | 2020-06-16 | 2021-06-18 | 南京林业大学 | Bluetooth RSSI value noise elimination method and Bluetooth positioning method |
CN112040415A (en) * | 2020-08-10 | 2020-12-04 | 国网上海市电力公司 | Indoor hybrid positioning method for transformer substation robot based on WIFI and RFID |
TWI774199B (en) * | 2021-01-19 | 2022-08-11 | 緯創資通股份有限公司 | Channel state information representation method related receiving apparatus |
CN112665578A (en) * | 2021-03-16 | 2021-04-16 | 湖南承希科技有限公司 | Inspection positioning method and system based on tunnel inspection robot |
CN115460687A (en) * | 2021-06-07 | 2022-12-09 | 中移物联网有限公司 | Positioning method, positioning device and related equipment |
CN115515068A (en) * | 2021-06-23 | 2022-12-23 | 华为技术有限公司 | Electronic device, distributed implementation method thereof, and medium |
CN114245307A (en) * | 2021-12-21 | 2022-03-25 | 北京云迹科技股份有限公司 | A positioning method, device, electronic device and storage medium for robot |
CN115226027A (en) * | 2022-07-26 | 2022-10-21 | 内蒙古大学 | A WiFi indoor fingerprint positioning method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103916820A (en) * | 2014-03-31 | 2014-07-09 | 浙江大学 | Wireless indoor locating method based on access point stability degree |
CN105933975A (en) * | 2016-04-11 | 2016-09-07 | 南京邮电大学 | WiFi fingerprint-based accuracy improved indoor positioning method |
CN106093852A (en) * | 2016-05-27 | 2016-11-09 | 东华大学 | A kind of method improving WiFi fingerprint location precision and efficiency |
CN106646338A (en) * | 2016-12-07 | 2017-05-10 | 华南理工大学 | Rapidly accurate indoor location method |
WO2017086561A1 (en) * | 2015-11-20 | 2017-05-26 | Samsung Electronics Co., Ltd. | Landmark location determination |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109511085B (en) * | 2018-10-29 | 2020-09-22 | 中国矿业大学 | A UWB Fingerprint Location Method Based on MeanShift and Weighted k-Nearest Neighbor Algorithm |
CN110166930A (en) * | 2019-04-03 | 2019-08-23 | 华中科技大学 | A kind of indoor orientation method and system based on WiFi signal |
-
2019
- 2019-09-20 CN CN201910894093.XA patent/CN110602651B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103916820A (en) * | 2014-03-31 | 2014-07-09 | 浙江大学 | Wireless indoor locating method based on access point stability degree |
WO2017086561A1 (en) * | 2015-11-20 | 2017-05-26 | Samsung Electronics Co., Ltd. | Landmark location determination |
CN105933975A (en) * | 2016-04-11 | 2016-09-07 | 南京邮电大学 | WiFi fingerprint-based accuracy improved indoor positioning method |
CN106093852A (en) * | 2016-05-27 | 2016-11-09 | 东华大学 | A kind of method improving WiFi fingerprint location precision and efficiency |
CN106646338A (en) * | 2016-12-07 | 2017-05-10 | 华南理工大学 | Rapidly accurate indoor location method |
Also Published As
Publication number | Publication date |
---|---|
CN110602651A (en) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110602651B (en) | Positioning method based on WIFI position fingerprint and positioning system of robot | |
CN106851573B (en) | Log path loss model-based joint weighting K nearest neighbor indoor positioning method | |
CN110166930A (en) | A kind of indoor orientation method and system based on WiFi signal | |
CN108540929B (en) | Indoor fingerprint positioning method based on RSSI signal strength sequencing | |
CN104185275B (en) | A kind of indoor orientation method based on WLAN | |
CN106646339A (en) | Online matching and positioning method in wireless position fingerprint indoor positioning | |
CN107703480B (en) | A hybrid kernel function indoor localization method based on machine learning | |
CN103916820B (en) | Wireless indoor location method based on access point stability | |
CN108174343B (en) | Wireless positioning method and system for power indoor communication operation and maintenance scene | |
CN105044662A (en) | Fingerprint clustering multi-point joint indoor positioning method based on WIFI signal intensity | |
CN105120479B (en) | Signal strength difference correction method for Wi-Fi signals between terminals | |
CN112135248B (en) | WIFI fingerprint positioning method based on K-means optimal estimation | |
CN110366244B (en) | WiFi fingerprint indoor positioning method | |
CN111368900A (en) | Image target object identification method | |
CN110300372A (en) | A kind of WIFI indoor orientation method based on location fingerprint | |
CN109738863A (en) | A WiFi Fingerprint Indoor Localization Algorithm and System Based on Confidence | |
CN110147833A (en) | Facial image processing method, apparatus, system and readable storage medium storing program for executing | |
CN108627798A (en) | WLAN indoor positioning algorithms based on linear discriminant analysis and gradient boosted tree | |
CN112801268A (en) | Positioning method based on graph convolution and multilayer perceptron hybrid network | |
CN109348416A (en) | Fingerprint indoor positioning method based on bipartite k-means | |
Liu et al. | An indoor WLAN location algorithm based on fingerprint database processing | |
CN111194000B (en) | Ranging method and system based on Bluetooth fusion hybrid filtering and neural network | |
CN111669702A (en) | Rough and precise matching positioning method based on WIFI address and field strength | |
CN105357647B (en) | A kind of WIFI indoor orientation method under linear "hysteresis" loop border | |
CN113810846B (en) | An indoor positioning method based on the fusion of WiFi and IMU |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |