CN108627798A - WLAN indoor positioning algorithms based on linear discriminant analysis and gradient boosted tree - Google Patents
WLAN indoor positioning algorithms based on linear discriminant analysis and gradient boosted tree Download PDFInfo
- Publication number
- CN108627798A CN108627798A CN201810298929.5A CN201810298929A CN108627798A CN 108627798 A CN108627798 A CN 108627798A CN 201810298929 A CN201810298929 A CN 201810298929A CN 108627798 A CN108627798 A CN 108627798A
- Authority
- CN
- China
- Prior art keywords
- fingerprint data
- positioning
- reference point
- gbdt
- rssi signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Radio frequency fingerprinting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/33—Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Collating Specific Patterns (AREA)
Abstract
本发明基于线性判别分析和梯度提升树的WLAN室内定位算法。为了降低室内WLAN环境中接收信号强度值(RSSI)的时变特性对定位精度的影响,提出了利用LDA提取原始RSSI信号的定位特征,并通过构建GBDT模型实现对位置坐标的预测。该方法主要分为4个过程。1)在参考点采集AP的RSSI信号值,并与该参考点的位置坐标组成一条指纹数据,存入指纹数据库;2)求解指纹数据的类内散度矩阵和类间散度矩阵,得到投影矩阵,实现对RSSI信号定位特征的提取;3)利用前向分布算法和加法模型,迭代生成GBDT定位模型;4)在线阶段,采集测试点周边AP的RSSI信号值,使用LDA进行特征提取,并输入GBDT定位模型计算位置坐标。
The invention is a WLAN indoor positioning algorithm based on linear discriminant analysis and gradient boosting tree. In order to reduce the impact of the time-varying characteristics of received signal strength (RSSI) on positioning accuracy in indoor WLAN environments, LDA is proposed to extract the positioning features of the original RSSI signal, and the prediction of position coordinates is realized by building a GBDT model. This method is mainly divided into 4 processes. 1) Collect the RSSI signal value of the AP at the reference point, and form a fingerprint data with the position coordinates of the reference point, and store it in the fingerprint database; 2) Solve the intra-class scatter matrix and inter-class scatter matrix of the fingerprint data to obtain the projection matrix to realize the extraction of RSSI signal positioning features; 3) use the forward distribution algorithm and the additive model to iteratively generate the GBDT positioning model; 4) in the online phase, collect the RSSI signal values of APs around the test point, use LDA for feature extraction, and Input the GBDT positioning model to calculate the position coordinates.
Description
技术领域:Technical field:
本发明属于WLAN室内定位领域。是一种在WLAN室内定位离线阶段对指纹数据利用线性判别分析(LDA)提取定位特征,并通过梯度提升树(GBDT)构建定位模型的室内定位方法。该方法能够有效提高WLAN室内定位精度。The invention belongs to the field of WLAN indoor positioning. It is an indoor positioning method that uses linear discriminant analysis (LDA) to extract positioning features from fingerprint data in the offline stage of WLAN indoor positioning, and constructs a positioning model through gradient boosting tree (GBDT). This method can effectively improve the WLAN indoor positioning accuracy.
背景技术:Background technique:
近年来,随着智能设备和互联网技术的突破,衍生出越来越多需要利用位置服务的场景,人们对于位置服务的需求也从室外行车导航向室内定位扩展。但是,由于建筑物墙体遮挡信号,在户外被普遍使用的全球定位系统(GPS)在室内环境中无法工作。为了使用户在室内获取准确的位置信息,国内外研究人员根据不同工作原理开发了多种室内定位系统。其中,基于WLAN技术的系统是最为常见的。由于WLAN已经成为建筑物内的基础设施之一,所以基于WLAN的定位系统不需要搭建定位专用的硬件设备,减小了系统的成本和实现的难度。WLAN室内定位分为离线阶段和在线阶段。In recent years, with the breakthrough of smart devices and Internet technology, more and more scenarios that need to use location services have been derived, and people's demand for location services has also expanded from outdoor driving navigation to indoor positioning. However, the Global Positioning System (GPS), which is commonly used outdoors, cannot work in an indoor environment because building walls block signals. In order to enable users to obtain accurate location information indoors, researchers at home and abroad have developed a variety of indoor positioning systems based on different working principles. Among them, the system based on WLAN technology is the most common. Since WLAN has become one of the infrastructures in buildings, the positioning system based on WLAN does not need to build dedicated positioning hardware equipment, which reduces the cost of the system and the difficulty of implementation. WLAN indoor positioning is divided into offline phase and online phase.
离线阶段,在参考点上采集接入点(AP)的接收信号强度值(RSSI),与该参考点的位置坐标组成一条指纹信息,存入指纹数据库。但是,参见图1,由于多径传播、遮挡等影响,RSSI信号呈现时变特性。利用原始指纹数据会严重降低定位算法的预测精度。对用户实时位置的预测算法可以分为最近邻法(NN),最大似然法和人工神经网络法。NN精度过低,最大似然法实时性差,人工神经网络法泛化能力不足。因此本发明提出了一种基于线性判别分析和梯度提升树(LDA-GBDT)的WLAN室内定位算法。In the offline stage, the received signal strength value (RSSI) of the access point (AP) is collected at the reference point, and the position coordinates of the reference point form a fingerprint information, which is stored in the fingerprint database. However, referring to FIG. 1 , due to influences such as multipath propagation and occlusion, the RSSI signal exhibits time-varying characteristics. Utilizing raw fingerprint data will seriously reduce the prediction accuracy of localization algorithms. Algorithms for predicting the user's real-time location can be divided into the nearest neighbor method (NN), the maximum likelihood method and the artificial neural network method. The precision of NN is too low, the real-time performance of the maximum likelihood method is poor, and the generalization ability of the artificial neural network method is insufficient. Therefore, the present invention proposes a WLAN indoor positioning algorithm based on linear discriminant analysis and gradient boosting tree (LDA-GBDT).
发明内容:Invention content:
针对RSSI信号的时变特性降低定位精度的问题,本发明提出采用LDA提取RSSI信号中的定位特征,并通过构建GBDT定位模型,实现对位置坐标的预测。Aiming at the problem that the time-varying characteristics of RSSI signal reduce the positioning accuracy, the present invention proposes to use LDA to extract the positioning features in the RSSI signal, and realize the prediction of position coordinates by constructing a GBDT positioning model.
为了实现上述目的,本发明采取如下技术方案:离线阶段,首先在每个参考点收集AP的RSSI信号值,并与对应的位置坐标共同构成指纹数据,接着使用LDA提取原始RSSI信号的定位特征,以消除RSSI信号的时变特性以及噪声等的影响。最后,更新原始指纹数据库,并通过前向分布算法和加法模型迭代生成GBDT定位模型。在线阶段,收集测试点周边AP的RSSI信号值,使用LDA对其进行定位特征提取,然后将其输入GBDT定位模型中预测位置坐标,本发明定位方法的示意图参见图2。In order to achieve the above object, the present invention adopts the following technical solutions: in the offline stage, first collect the RSSI signal value of the AP at each reference point, and form fingerprint data together with the corresponding position coordinates, then use LDA to extract the positioning features of the original RSSI signal, In order to eliminate the time-varying characteristics of the RSSI signal and the influence of noise and the like. Finally, the original fingerprint database is updated, and the GBDT positioning model is generated iteratively through the forward distribution algorithm and the additive model. In the online stage, collect the RSSI signal value of the AP around the test point, use LDA to extract the positioning feature, and then input it into the GBDT positioning model to predict the position coordinates. The schematic diagram of the positioning method of the present invention is shown in Figure 2.
一种基于LDA-GBDT的WLAN室内定位算法,依次包括下述步骤:A kind of WLAN indoor positioning algorithm based on LDA-GBDT, comprises the following steps successively:
(1)在待定位区域均匀选取参考点,在参考点上采集接入点(AP)的RSSI信号值,并与参考点的坐标组成有序向量,该向量为参考点的位置指纹数据。(1) Select a reference point evenly in the area to be located, collect the RSSI signal value of the access point (AP) on the reference point, and form an ordered vector with the coordinates of the reference point, which is the location fingerprint data of the reference point.
(2)采用LDA提取原始RSSI信号中的定位特征,步骤如下:(2) Using LDA to extract the positioning features in the original RSSI signal, the steps are as follows:
1)构建目标函数;1) Construct the objective function;
2)按照参考点的坐标将位置指纹数据分为k个类别,得出各类指纹数据的类间散度矩阵Sb,计算公式如下:2) According to the coordinates of the reference point, the location fingerprint data is divided into k categories, and the inter-class scatter matrix S b of each type of fingerprint data is obtained. The calculation formula is as follows:
其中,Zj表示第j(j=1,2,...,k)类指纹数据的个数,μj表示第j(j=1,2,...,k类指纹数据的均值向量,μ表示全部指纹数据的均值向量。Among them, Z j represents the number of the jth (j=1, 2, ..., k) type fingerprint data, μ j represents the j (j = 1, 2, ..., the mean vector of the k type fingerprint data , μ represents the mean vector of all fingerprint data.
3)根据下式计算各类指纹数据的类内散度矩阵Sω;3) Calculate the intra-class scatter matrix S ω of various fingerprint data according to the following formula;
其中,ηj为第j(j=1,2,...,k)类指纹数据的集合,γ表示在第j(j=1,2,...,k)类指纹数据集合中的指纹数据。Among them, η j is the set of the jth (j=1, 2, ..., k) class fingerprint data, and γ represents the jth (j=1, 2, ..., k) class fingerprint data set in the fingerprint data.
4)根据2)和3)计算结果,计算矩阵Sω -1Sb的特征值和特征向量,并得到投影矩阵。4) Calculate the eigenvalues and eigenvectors of the matrix S ω -1 S b according to the calculation results of 2) and 3), and obtain the projection matrix.
5)利用4)中得到投影矩阵,计算经过LDA提取定位特征后的新指纹数据集。5) Use the projection matrix obtained in 4) to calculate the new fingerprint data set after extracting the positioning features through LDA.
(3)使用(2)中得出的新指纹数据集,根据前向分布算法,将损失函数的负梯度值作为回归问题提升树算法中的残差的近似值,拟合一个分类回归树。(3) Using the new fingerprint data set obtained in (2), according to the forward distribution algorithm, the negative gradient value of the loss function is used as the approximate value of the residual in the boosting tree algorithm of the regression problem, and a classification regression tree is fitted.
(4)使用加法模型将(3)中生成的分类回归树线性组合。(4) Linearly combine the classification and regression trees generated in (3) using an additive model.
(5)重复步骤(3)和(4),建立GBDT定位模型。(5) Repeat steps (3) and (4) to establish a GBDT positioning model.
(6)在测试点采集AP的RSSI信号,利用LDA提取其定位特征后输入到(5)建立的GBDT定位模型中计算测试点的坐标。(6) Collect the RSSI signal of the AP at the test point, use LDA to extract its positioning features, and then input it into the GBDT positioning model established in (5) to calculate the coordinates of the test point.
本算法旨在利用LDA提取原始RSSI信号中的定位特征,降低其时变特性对定位精度的影响,并通过构建GBDT定位模型预测位置坐标。与现有技术相比,本发明具有以下优点:This algorithm aims to use LDA to extract the positioning features in the original RSSI signal, reduce the impact of its time-varying characteristics on the positioning accuracy, and predict the position coordinates by constructing a GBDT positioning model. Compared with the prior art, the present invention has the following advantages:
(1)提取原始RSSI信号的定位特征,可以有效滤除其中包含的冗余信号和噪声;(1) Extracting the positioning features of the original RSSI signal can effectively filter out redundant signals and noise contained therein;
(2)GBDT定位模型可以通过构建准确的损失函数,降低异常值对定位精度的影响;(2) The GBDT positioning model can reduce the impact of outliers on positioning accuracy by constructing an accurate loss function;
(3)相同的定位误差情况下,本发明提出的算法使用更少的AP个数。(3) In the case of the same positioning error, the algorithm proposed by the present invention uses fewer APs.
附图说明:Description of drawings:
图1是RSSI信号时变误差来源图;Figure 1 is a diagram of the source of the time-varying error of the RSSI signal;
图2是该室内定位算法的示意图;FIG. 2 is a schematic diagram of the indoor positioning algorithm;
图3是本发明所述算法流程图;Fig. 3 is the algorithm flowchart of the present invention;
图4是室内定位场景图。Figure 4 is a scene diagram of indoor positioning.
具体实施方式:Detailed ways:
本发明的方法流程图参见图3。离线阶段的实施是通过移动设备采集参考点上AP的RSSI信号值,并与该位置的坐标构成一组有序向量,该向量为该参考点的位置指纹数据。利用LDA对原始RSSI信号进行定位信息重组,滤除冗余定位特征和噪声,提取最具判别力的定位特征,接着根据前向分布算法,利用损失函数的负梯度值作为回归问题提升树算法中的残差的近似值,拟合一个分类回归树,最后使用加法模型将生成的分类回归树线性组合,生成GBDT定位模型。在线阶段,采集测试点上AP的RSSI信号值,使用LDA提取定位特征,并将其输入到GBDT定位模型中,计算测试点坐标。具体实施步骤如下:Refer to FIG. 3 for the flow chart of the method of the present invention. The implementation of the offline stage is to collect the RSSI signal value of the AP on the reference point through the mobile device, and form a set of ordered vectors with the coordinates of the position, which is the location fingerprint data of the reference point. Use LDA to reorganize the positioning information of the original RSSI signal, filter out redundant positioning features and noise, and extract the most discriminative positioning features, and then according to the forward distribution algorithm, use the negative gradient value of the loss function as a regression problem in the boosting tree algorithm The approximate value of the residual, fit a classification and regression tree, and finally use the additive model to linearly combine the generated classification and regression trees to generate a GBDT positioning model. In the online stage, the RSSI signal value of the AP on the test point is collected, and the positioning feature is extracted by LDA, which is input into the GBDT positioning model to calculate the coordinates of the test point. The specific implementation steps are as follows:
(1)参见图4,为待定位的室内场景平面图,整个区域共221平方米。在该区域均匀选取的参考点用浅色圆点表示,随机选取的测试点用深色方格表示。(1) Referring to Fig. 4, it is a floor plan of the indoor scene to be positioned, and the whole area is 221 square meters in total. The uniformly selected reference points in this area are represented by light-colored dots, and the randomly selected test points are represented by dark-colored squares.
(2)规定待定位区域坐标原点,并测量(1)中选取的参考点与测试点的位置坐标。(2) Specify the coordinate origin of the area to be positioned, and measure the position coordinates of the reference point and the test point selected in (1).
(3)在参考点上采集AP的RSSI信号值,并与(2)中测量的该参考点的位置坐标共同构成有序向量,该向量为参考点的位置指纹数据,存入指纹数据库。接着利用LDA提取原始RSSI信号的定位特征。(3) Collect the RSSI signal value of the AP at the reference point, and form an ordered vector together with the position coordinates of the reference point measured in (2), which is the location fingerprint data of the reference point, and store it in the fingerprint database. Then LDA is used to extract the localization features of the original RSSI signal.
其中所述的“指纹数据库”是用于存储参考点指纹数据的数据库。The "fingerprint database" mentioned herein is a database for storing reference point fingerprint data.
其中所述的“LDA提取原始RSSI信号的定位特征”的具体操作步骤为:The specific operation steps of "LDA extracting the positioning feature of the original RSSI signal" described therein are:
1)输入原始位置指纹数据集 1) Input the original location fingerprint dataset
其中,N为参考点的总数,γi=(rss1,rss2,...,rssn)表示在第i个参考点上采集到的n个AP的RSSI值,n表示AP总数。li表示第i个参考点的坐标。Wherein, N is the total number of reference points, γ i =(rss 1 , rss 2 , ..., rss n ) represents the RSSI values of n APs collected at the i-th reference point, and n represents the total number of APs. li represents the coordinates of the i-th reference point.
2)构建目标函数。2) Construct the objective function.
3)将指纹数据按照参考点的坐标分为k类,计算类间散度矩阵sb;其中,所述的“类间散度矩阵”表示为k表示指纹数据的类别总数,Zj表示第j(j=1,2,...,k)类指纹数据的个数,μj表示第j(j=1,2,...,k)类指纹数据的均值向量,μ表示全部指纹数据的均值向量。3) The fingerprint data is divided into k classes according to the coordinates of the reference points, and the inter-class scatter matrix s b is calculated; wherein, the "inter-class scatter matrix" is expressed as k represents the total number of categories of fingerprint data, Z j represents the number of fingerprint data of the jth (j=1, 2, ..., k) class, μ j represents the j (j=1, 2, ..., k ) is the mean vector of fingerprint data, and μ represents the mean vector of all fingerprint data.
4)计算类内散度矩阵Sω;4) Calculate the intra-class scatter matrix S ω ;
其中,所述的“类内散度矩阵”表示为k表示指纹数据的类别总数,ηj为第j(j=1,2,...,k)类指纹数据的集合,γ表示指纹数据,μj表示第j(j=1,2,...,k)类指纹数据的均值向量。Among them, the "intra-class scatter matrix" is expressed as k represents the total number of categories of fingerprint data, η j is the collection of jth (j=1, 2, ..., k) type fingerprint data, γ represents fingerprint data, μ j represents the jth (j=1, 2, . . . . , k) mean vector of class fingerprint data.
5)根据3)与4)结果,计算矩阵Sω -1Sb的特征值和特征向量。5) According to the results of 3) and 4), calculate the eigenvalues and eigenvectors of the matrix S ω -1 S b .
6)选取矩阵Sω -1Sb前θ个特征值,将其对应的特征向量张成投影矩阵Ψ;6) Select the first θ eigenvalues of the matrix S ω -1 S b , and stretch the corresponding eigenvectors into a projection matrix Ψ;
其中,θ表示矩阵Ψ的维数,取值范围是[1,n],即提取定位特征后指纹数据的维数。n表示AP的总数。Among them, θ represents the dimension of the matrix Ψ, and the value range is [1, n], that is, the dimension of the fingerprint data after extracting the positioning features. n represents the total number of APs.
7)根据计算定位特征提取后新的指纹数据集;7) According to Calculate the new fingerprint data set after the location feature extraction;
其中,所述的“新的指纹数据集”可表示为N为参考点的总数,表示定位特征提取后第i个参考点处的θ维位置指纹数据,rss′表示定位特征提取后新的RSSI信号值,γi表示第i个参考点处原始的指纹数据,li表示第i个参考点的坐标。Wherein, the "new fingerprint data set" can be expressed as N is the total number of reference points, Indicates the θ-dimension position fingerprint data at the i-th reference point after location feature extraction, r ss′ represents the new RSSI signal value after location feature extraction, γ i represents the original fingerprint data at the i-th reference point, l i represents the The coordinates of i reference points.
8)重复上述7步,对原始RSSI信号按照另一维位置坐标进行LDA定位特征提取。8) Repeat the above 7 steps to perform LDA positioning feature extraction on the original RSSI signal according to another dimension of position coordinates.
(3)使用(2)中得到的新指纹数据集D′,初始化第一个分类回归树 (3) Using the new fingerprint data set D′ obtained in (2), initialize the first classification regression tree
其中,N为参考点的总数。L为损失函数,本发明采用Huber损失函数,可以明显减小指纹数据集D′中异常值对定位结果的影响。li表示第i个参考点的坐标。τ表示分类回归树的叶子节点输出值。Among them, N is the total number of reference points. L is a loss function, and the present invention adopts the Huber loss function, which can significantly reduce the influence of abnormal values in the fingerprint data set D' on the positioning result. l i represents the coordinates of the i-th reference point. τ represents the output value of the leaf node of the classification regression tree.
(4)当生成第m(m=1,2,...,M)个分类回归树时,将损失函数的负梯度值αmi作为回归问题提升树算法中的残差的近似值,拟合一个分类回归树。(4) When the mth (m=1, 2, ..., M) classification regression tree is generated, the negative gradient value α mi of the loss function is used as the approximate value of the residual in the regression problem boosting tree algorithm, and the fitting A classification regression tree.
其中,αmi表示生成第m(m=1,2,...,M)个分类回归树时,第i(i=1,2,...,N)个参考点的指纹数据的损失函数的负梯度值。M为生成分类回归树的总数。Among them, α mi represents the loss of the fingerprint data of the i (i=1, 2, ..., N) reference point when the m (m = 1, 2, ..., M) classification and regression tree is generated The negative gradient value of the function. M is the total number of generated classification and regression trees.
其中所述的“拟合一个分类回归树”具体步骤为:The specific steps of "fitting a classification and regression tree" described therein are:
1)设为输入空间;1) set is the input space;
其中,N为参考点的总数。Among them, N is the total number of reference points.
2)遍历切分特征h(h=1,2,...,θ),对固定的切分特征h扫描与其对应的切分点s(s=rss′1,rss′2,...,rss′θ),将输入空间P递归地划分为两个区域;2) Traverse the segmentation feature h (h=1, 2, ..., θ), and scan the corresponding segmentation point s (s = rss' 1 , rss' 2 , ... , rss′ θ ), recursively divide the input space P into two regions;
3)当2)中两个子域的各自集合的均方差最小,同时它们的均方差之和最小时所对应的切分特征和特征值划分点为最优切分变量和切分点;3) When the mean square error of the respective sets of the two subfields in 2) is the smallest, and the sum of their mean square errors is the smallest, the corresponding segmentation feature and eigenvalue division point are the optimal segmentation variables and segmentation points;
4)用3)选定的最优切分变量和切分点(h,s)将输入空间P划分为两个子区域,并采用线性搜索计算各个子区域的输出值;4) Divide the input space P into two sub-regions with the optimal segmentation variable and segmentation point (h, s) selected in 3), and use linear search to calculate the output value of each sub-region;
5)重复2),3)和4)的操作,将输入空间P递归地划分为β1,β2,...,βR,且这R个子区域互不相交。第m个分类回归树的每个子区域的输出值用τmr表示;5) Repeat the operations of 2), 3) and 4) to recursively divide the input space P into β 1 , β 2 , . . . , β R , and these R sub-regions are mutually disjoint. The output value of each sub-region of the m-th classification and regression tree is represented by τ mr ;
其中,r(r=1,2,...,R)表示子区域的序号。Wherein, r (r=1, 2, . . . , R) represents the serial number of the sub-region.
6)根据每个子区域的输出值τmr,第m个分类回归树表示为 6) According to the output value τ mr of each sub-region, the mth classification and regression tree is expressed as
(5)在每个分类回归树前乘以正则化系数λ,其取值范围是(0,1],以避免过度拟合训练样本数据的情况。(5) Multiply the regularization coefficient λ before each classification and regression tree, and its value range is (0, 1] to avoid overfitting the training sample data.
(6)使用加法模型将(5)中经过正则化的分类回归树线性相加。其中,所述的“加法模型”为Fm=Fm-1+λmTm。λm表示第m(m=1,2,...,M)个分类回归树的正则化系数。(6) Linearly add the regularized classification and regression trees in (5) using an additive model. Wherein, the "additive model" is F m =F m-1 +λ m T m . λ m represents the regularization coefficient of the mth (m=1, 2, . . . , M) classification regression tree.
(7)重复(4)至(6),生成GBDT定位模型FM。(7) Repeat (4) to (6) to generate the GBDT positioning model F M .
其中,所述的“GBDT定位模型”可表示为M表示生成的分类回归树总数。Wherein, the "GBDT positioning model" can be expressed as M represents the total number of classification and regression trees generated.
(8)在线阶段,采集测试点上AP的RSSI信号值,利用LDA提取定位特征,将其输入(7)中生成的GBDT定位模型,得出具体的测试点坐标。(8) In the online stage, collect the RSSI signal value of the AP on the test point, use LDA to extract the positioning feature, and input it into the GBDT positioning model generated in (7), to obtain the specific coordinates of the test point.
将(8)计算得出的测试点坐标与(2)中测量的测试点坐标真实值进行比较,得出平均定位误差为1.51m,因此,依照本发明的算法在WLAN室内环境下可以获得较高的定位精度。Comparing the test point coordinates calculated in (8) with the real value of the test point coordinates measured in (2), the average positioning error is 1.51m. Therefore, the algorithm according to the present invention can obtain a relatively high accuracy in the WLAN indoor environment. High positioning accuracy.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810298929.5A CN108627798B (en) | 2018-04-04 | 2018-04-04 | WLAN indoor positioning algorithm based on linear discriminant analysis and gradient lifting tree |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810298929.5A CN108627798B (en) | 2018-04-04 | 2018-04-04 | WLAN indoor positioning algorithm based on linear discriminant analysis and gradient lifting tree |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108627798A true CN108627798A (en) | 2018-10-09 |
CN108627798B CN108627798B (en) | 2022-03-11 |
Family
ID=63704915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810298929.5A Active CN108627798B (en) | 2018-04-04 | 2018-04-04 | WLAN indoor positioning algorithm based on linear discriminant analysis and gradient lifting tree |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108627798B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109257699A (en) * | 2018-11-15 | 2019-01-22 | 电子科技大学 | A kind of wireless sensor network locating method using gradient boosted tree |
CN109541537A (en) * | 2018-12-07 | 2019-03-29 | 辽宁工程技术大学 | A kind of pervasive indoor orientation method based on ranging |
CN111639712A (en) * | 2020-05-29 | 2020-09-08 | 北斗数睿(北京)科技有限公司 | Positioning method and system based on density peak clustering and gradient lifting algorithm |
CN112243193A (en) * | 2020-09-29 | 2021-01-19 | 成都长虹网络科技有限责任公司 | Indoor positioning method and device, computer equipment and readable storage medium |
CN113030892A (en) * | 2021-02-26 | 2021-06-25 | 南京信息工程大学 | Sea surface small target detection method based on high-dimensional feature domain gradient lifting tree |
CN113759311A (en) * | 2021-11-09 | 2021-12-07 | 中移(上海)信息通信科技有限公司 | Positioning method, positioning device and storage medium |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101620270A (en) * | 2009-07-23 | 2010-01-06 | 重庆邮电大学 | Wireless location method based on cluster-fusion |
CN103079269A (en) * | 2013-01-25 | 2013-05-01 | 哈尔滨工业大学 | LDE (Linear Discriminant Analysis) algorithm-based WiFi (Wireless Fidelity) indoor locating method |
CN103889051A (en) * | 2014-02-18 | 2014-06-25 | 北京工业大学 | Indoor WLAN fingerprint positioning method based on AP ID filtering and Kalman filtering |
CN104093203A (en) * | 2014-07-07 | 2014-10-08 | 浙江师范大学 | An Access Point Selection Algorithm for Wireless Indoor Positioning |
KR20140137548A (en) * | 2013-05-23 | 2014-12-03 | 한국과학기술원 | A feature extraction method and system for reducing complexity with linear discriminant analtsys |
CN104519571A (en) * | 2014-12-26 | 2015-04-15 | 北京工业大学 | Indoor positioning method based on RSS (Received Signal Strength) |
CN104540221A (en) * | 2015-01-15 | 2015-04-22 | 哈尔滨工业大学 | WLAN indoor positioning method based on semi-supervised SDE algorithm |
CN106557942A (en) * | 2015-09-30 | 2017-04-05 | 百度在线网络技术(北京)有限公司 | A kind of recognition methodss of customer relationship and device |
CN106815369A (en) * | 2017-01-24 | 2017-06-09 | 中山大学 | A kind of file classification method based on Xgboost sorting algorithms |
US20170213280A1 (en) * | 2016-01-27 | 2017-07-27 | Huawei Technologies Co., Ltd. | System and method for prediction using synthetic features and gradient boosted decision tree |
CN107766851A (en) * | 2017-12-06 | 2018-03-06 | 北京搜狐新媒体信息技术有限公司 | A kind of face key independent positioning method and positioner |
-
2018
- 2018-04-04 CN CN201810298929.5A patent/CN108627798B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101620270A (en) * | 2009-07-23 | 2010-01-06 | 重庆邮电大学 | Wireless location method based on cluster-fusion |
CN103079269A (en) * | 2013-01-25 | 2013-05-01 | 哈尔滨工业大学 | LDE (Linear Discriminant Analysis) algorithm-based WiFi (Wireless Fidelity) indoor locating method |
KR20140137548A (en) * | 2013-05-23 | 2014-12-03 | 한국과학기술원 | A feature extraction method and system for reducing complexity with linear discriminant analtsys |
CN103889051A (en) * | 2014-02-18 | 2014-06-25 | 北京工业大学 | Indoor WLAN fingerprint positioning method based on AP ID filtering and Kalman filtering |
CN104093203A (en) * | 2014-07-07 | 2014-10-08 | 浙江师范大学 | An Access Point Selection Algorithm for Wireless Indoor Positioning |
CN104519571A (en) * | 2014-12-26 | 2015-04-15 | 北京工业大学 | Indoor positioning method based on RSS (Received Signal Strength) |
CN104540221A (en) * | 2015-01-15 | 2015-04-22 | 哈尔滨工业大学 | WLAN indoor positioning method based on semi-supervised SDE algorithm |
CN106557942A (en) * | 2015-09-30 | 2017-04-05 | 百度在线网络技术(北京)有限公司 | A kind of recognition methodss of customer relationship and device |
US20170213280A1 (en) * | 2016-01-27 | 2017-07-27 | Huawei Technologies Co., Ltd. | System and method for prediction using synthetic features and gradient boosted decision tree |
CN106815369A (en) * | 2017-01-24 | 2017-06-09 | 中山大学 | A kind of file classification method based on Xgboost sorting algorithms |
CN107766851A (en) * | 2017-12-06 | 2018-03-06 | 北京搜狐新媒体信息技术有限公司 | A kind of face key independent positioning method and positioner |
Non-Patent Citations (3)
Title |
---|
XIA, YF等: "A boosted decision tree approach", 《EXPERT SYSTEMS WITH APPLICATIONS》 * |
林雨铭等: "基于Wi-Fi定位数据的人群特征探究", 《数字•文化——2017全国建筑院系建筑数字技术教学研讨会暨DADA2017数字建筑国际学术研讨会论文集全国高校建筑学学科专业指导委员会建筑数字技术教学工作委员会会议论文集》 * |
谢代军等: "基于分布重叠和特征加权的无线局域网室内定位算法", 《计算机科学》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109257699A (en) * | 2018-11-15 | 2019-01-22 | 电子科技大学 | A kind of wireless sensor network locating method using gradient boosted tree |
CN109541537A (en) * | 2018-12-07 | 2019-03-29 | 辽宁工程技术大学 | A kind of pervasive indoor orientation method based on ranging |
CN109541537B (en) * | 2018-12-07 | 2023-05-16 | 辽宁工程技术大学 | Universal indoor positioning method based on ranging |
CN111639712A (en) * | 2020-05-29 | 2020-09-08 | 北斗数睿(北京)科技有限公司 | Positioning method and system based on density peak clustering and gradient lifting algorithm |
CN112243193A (en) * | 2020-09-29 | 2021-01-19 | 成都长虹网络科技有限责任公司 | Indoor positioning method and device, computer equipment and readable storage medium |
CN112243193B (en) * | 2020-09-29 | 2022-08-12 | 成都长虹网络科技有限责任公司 | Indoor positioning method and device, computer equipment and readable storage medium |
CN113030892A (en) * | 2021-02-26 | 2021-06-25 | 南京信息工程大学 | Sea surface small target detection method based on high-dimensional feature domain gradient lifting tree |
CN113759311A (en) * | 2021-11-09 | 2021-12-07 | 中移(上海)信息通信科技有限公司 | Positioning method, positioning device and storage medium |
CN113759311B (en) * | 2021-11-09 | 2022-03-15 | 中移(上海)信息通信科技有限公司 | A positioning method, device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN108627798B (en) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108627798A (en) | WLAN indoor positioning algorithms based on linear discriminant analysis and gradient boosted tree | |
CN107038717B (en) | A Method for Automatically Analyzing 3D Point Cloud Registration Errors Based on Stereo Grid | |
Liu et al. | Seqlpd: Sequence matching enhanced loop-closure detection based on large-scale point cloud description for self-driving vehicles | |
CN105223546B (en) | Indoor orientation method based on received signal strength and reference point locations double focusing class | |
CN107703480B (en) | A hybrid kernel function indoor localization method based on machine learning | |
WO2021082571A1 (en) | Robot tracking method, device and equipment and computer readable storage medium | |
CN111914878B (en) | Feature point tracking training method and device, electronic equipment and storage medium | |
CN105120479B (en) | Signal strength difference correction method for Wi-Fi signals between terminals | |
CN106408591A (en) | Anti-blocking target tracking method | |
CN103379441A (en) | Indoor positioning method based on region segmentation and curve fitting | |
CN111027140A (en) | Rapid reconstruction method of aircraft standard parts model based on multi-view point cloud data | |
Hou et al. | Hitpr: Hierarchical transformer for place recognition in point cloud | |
CN104540221A (en) | WLAN indoor positioning method based on semi-supervised SDE algorithm | |
WO2022242018A1 (en) | Indoor target positioning method based on improved cnn model | |
KR20170089745A (en) | Method and apparatus for positioning key points | |
CN112258580A (en) | Visual SLAM loop detection method based on deep learning | |
CN104994366A (en) | FCM video key frame extracting method based on feature weighing | |
CN108519578A (en) | A method for constructing indoor positioning fingerprint library based on crowd sensing | |
Bampis et al. | High order visual words for structure-aware and viewpoint-invariant loop closure detection | |
CN110175574A (en) | A kind of Road network extraction method and device | |
Lin et al. | Wi-Fi indoor localization based on multi-task deep learning | |
CN107578056A (en) | A Manifold Learning System Integrating Classical Models for Sample Dimensionality Reduction | |
Contreras et al. | O-poco: Online point cloud compression mapping for visual odometry and slam | |
CN113707213A (en) | Protein-ligand binding site prediction method based on deep learning | |
CN117422963A (en) | Cross-modal place recognition method based on high-dimension feature mapping and feature aggregation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |