[go: up one dir, main page]

CN106093852A - A kind of method improving WiFi fingerprint location precision and efficiency - Google Patents

A kind of method improving WiFi fingerprint location precision and efficiency Download PDF

Info

Publication number
CN106093852A
CN106093852A CN201610364491.7A CN201610364491A CN106093852A CN 106093852 A CN106093852 A CN 106093852A CN 201610364491 A CN201610364491 A CN 201610364491A CN 106093852 A CN106093852 A CN 106093852A
Authority
CN
China
Prior art keywords
fingerprint
fingerprints
positioning
database
sampling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610364491.7A
Other languages
Chinese (zh)
Inventor
张慧
官洪运
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610364491.7A priority Critical patent/CN106093852A/en
Publication of CN106093852A publication Critical patent/CN106093852A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Collating Specific Patterns (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种提高WiFi指纹定位精度与效率的方法,在离线训练阶段,构建用于在线定位的指纹数据库,并对指纹数据库中采用K‑means聚类算法进行分类,其中,指纹数据库中的采样点的信号强度值经过数据平滑处理;在线定位阶段,采用K近邻算法寻得与实测指纹距离最近的K个指纹,K个指纹的均值对应采样点的位置即为待测点的估计位置。本发明能够提高定位精度和定位效率。

The invention relates to a method for improving the accuracy and efficiency of WiFi fingerprint positioning. In the offline training stage, a fingerprint database for online positioning is constructed, and the K-means clustering algorithm is used to classify the fingerprint database. The signal strength value of the sampling point is processed by data smoothing; in the online positioning stage, the K nearest neighbor algorithm is used to find the K fingerprints closest to the measured fingerprint, and the position of the sampling point corresponding to the average value of the K fingerprints is the estimated position of the point to be measured. The invention can improve positioning accuracy and positioning efficiency.

Description

一种提高WiFi指纹定位精度与效率的方法A Method of Improving the Accuracy and Efficiency of WiFi Fingerprint Positioning

技术领域technical field

本发明涉及基于WiFi的室内定位技术领域,特别是涉及一种提高WiFi指纹定位精度与效率的方法。The invention relates to the field of WiFi-based indoor positioning technology, in particular to a method for improving the accuracy and efficiency of WiFi fingerprint positioning.

背景技术Background technique

室内定位系统是目前信息技术领域的热点之一,随着物联网和无线通信技术的迅速发展,基于位置的服务在医疗卫生、公共安全、工业生产等领域展现了广阔的应用前景。Indoor positioning system is one of the current hot spots in the field of information technology. With the rapid development of the Internet of Things and wireless communication technology, location-based services have shown broad application prospects in the fields of medical care, public safety, and industrial production.

全球定位系统(Global Positioning System,GPS)是现阶段被广泛使用的定位技术,它普遍应用于各种位置服务中。但是GPS定位系统无法在室内进行定位,因为这种定位方法需要三颗以上的卫星来提供定位信息,一般情况下只适用于空旷无遮蔽的室外环境,在较为封闭的室内环境下GPS定位系统无法通过卫星来获取定位所需的信息。由此可见,GPS定位系统只适用于室外定位,而无法满足多样化的室内环境中的定位需求。此时,基于无线局域网的WiFi定位技术急速升温,其中应用最广泛的就是WiFi指纹定位技术,WiFi指纹定位技术是无线定位技术中具有较高精度和可实施性的技术,它不需要额外的硬件设施,价格低廉,因此具有非常强的实用性。The Global Positioning System (Global Positioning System, GPS) is a widely used positioning technology at the present stage, and it is widely used in various location services. However, the GPS positioning system cannot locate indoors, because this positioning method requires more than three satellites to provide positioning information. Generally, it is only suitable for open and unsheltered outdoor environments. In a relatively closed indoor environment, the GPS positioning system cannot The information required for positioning is obtained through satellites. It can be seen that the GPS positioning system is only suitable for outdoor positioning, but cannot meet the positioning requirements in a variety of indoor environments. At this time, the WiFi positioning technology based on the wireless local area network is rapidly heating up, and the most widely used one is the WiFi fingerprint positioning technology. The WiFi fingerprint positioning technology is a technology with high accuracy and practicability in the wireless positioning technology, and it does not require additional hardware. The facilities are cheap, so they are very practical.

WiFi指纹定位源于数据库定位技术,它需要预先创建指纹数据库,指纹数据库里存放的是离线的信号强度和位置坐标。由于信号的多径传播对环境具有依赖性,在不同位置其信道的多径特征也均不相同,呈现出非常强的特殊性。位置指纹定位技术有效地利用多径效应,将多径特征与位置信息相结合,由于信道的多径影响在同一个位置点具有唯一性,可将多径结构作为数据库中指纹。待测点在同样环境中获取接入点发送的无线信号,将接收到的无线信号强度与数据库中指纹进行匹配,找出最相似的结果进行定位。WiFi fingerprint positioning is derived from database positioning technology. It needs to create a fingerprint database in advance. The offline signal strength and location coordinates are stored in the fingerprint database. Since the multipath propagation of the signal is dependent on the environment, the multipath characteristics of the channel in different locations are also different, showing a very strong particularity. The location fingerprint positioning technology effectively utilizes the multipath effect and combines multipath features with location information. Since the multipath effect of the channel is unique at the same location point, the multipath structure can be used as a fingerprint in the database. The point to be tested obtains the wireless signal sent by the access point in the same environment, matches the received wireless signal strength with the fingerprint in the database, and finds the most similar result for positioning.

WiFi指纹定位技术具体在定位实施时分两个阶段:离线训练阶段和在线定位阶段。The WiFi fingerprint positioning technology is specifically divided into two stages in the positioning implementation: the offline training stage and the online positioning stage.

离线训练阶段:首先在定位环境中部署无线AP、确定采样点位置,使得每个采样点都能接收到无线AP发射的信号。在每个采样点放置信号接收装置(移动设备),记录接收自每个AP的信号强度(RSSI值),将这些信号强度值以及坐标信息存入指纹数据库中,这样就唯一标识了这个采样点。对所有采样点采样结束后,构建完整的信号强度信息与对应位置关系的指纹数据库,即指纹地图。Offline training phase: first deploy wireless AP in the positioning environment and determine the location of the sampling point so that each sampling point can receive the signal transmitted by the wireless AP. Place a signal receiving device (mobile device) at each sampling point, record the signal strength (RSSI value) received from each AP, and store these signal strength values and coordinate information in the fingerprint database, thus uniquely identifying this sampling point . After all sampling points are sampled, a fingerprint database of complete signal strength information and corresponding location relationship, that is, a fingerprint map, is constructed.

在线定位阶段:在待测点实时测量获取各AP的信号强度信息,并将其与位置指纹数据库中的信息进行匹配,将实测数据与预存数据进行匹配分析,从而估计待测终端的位置。Online positioning stage: measure and obtain the signal strength information of each AP in real time at the point to be tested, and match it with the information in the location fingerprint database, and perform matching analysis between the measured data and the pre-stored data, so as to estimate the location of the terminal to be tested.

但是,传统的WiFi指纹定位算法的定位精度不高、定位效率较低。However, the traditional WiFi fingerprint positioning algorithm has low positioning accuracy and low positioning efficiency.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种提高WiFi指纹定位精度与效率的方法,能够提高定位精度和定位效率。The technical problem to be solved by the present invention is to provide a method for improving the positioning accuracy and efficiency of WiFi fingerprints, which can improve the positioning accuracy and positioning efficiency.

本发明解决其技术问题所采用的技术方案是:提供一种提高WiFi指纹定位精度与效率的方法,在离线训练阶段,构建用于在线定位的指纹数据库,并对指纹数据库中采用K-means聚类算法进行分类,其中,指纹数据库中的采样点的信号强度值经过数据平滑处理;在线定位阶段,采用K近邻算法寻得与实测指纹距离最近的K个指纹,K个指纹的均值对应采样点的位置即为待测点的估计位置。The technical scheme adopted by the present invention to solve the technical problem is: provide a method for improving the accuracy and efficiency of WiFi fingerprint positioning, construct a fingerprint database for online positioning in the offline training stage, and use K-means aggregation in the fingerprint database In the fingerprint database, the signal strength values of the sampling points are processed by data smoothing; in the online positioning stage, the K nearest neighbor algorithm is used to find the K fingerprints closest to the measured fingerprints, and the average value of the K fingerprints corresponds to the sampling point The position of is the estimated position of the point to be measured.

所述构建用于在线定位的指纹数据库具体包括以下步骤:The fingerprint database constructed for online positioning specifically includes the following steps:

选定室内某环境作为定位区域,在这个定位区域中,部署n个无线接入点并选取L个采样点,记录每个采样点的位置坐标;Select an indoor environment as the positioning area, in this positioning area, deploy n wireless access points and select L sampling points, and record the position coordinates of each sampling point;

在每个采样点,利用具有WiFi信号检测功能的移动终端进行信号强度检测,多次采集每个无线接入点的RSSI值,然后对采集到的数据进行平滑,得到这个采样点均值平滑后的指纹;遍历L个采样点,得到L个指纹,存入指纹数据库。At each sampling point, the mobile terminal with WiFi signal detection function is used to detect the signal strength, and the RSSI value of each wireless access point is collected multiple times, and then the collected data is smoothed to obtain the smoothed mean value of the sampling point. Fingerprint: traverse L sampling points, get L fingerprints, and store them in the fingerprint database.

所述对指纹数据库中采用K-means聚类算法进行分类具体包括以下步骤:Described adopting K-means clustering algorithm to classify in the fingerprint database specifically comprises the following steps:

将指纹数据库进行K-means聚类,以欧氏距离作为相似度的评价准则,距离较小的指纹聚集在一个子类,距离较大的指纹彼此远离;Carry out K-means clustering on the fingerprint database, using Euclidean distance as the evaluation criterion of similarity, the fingerprints with smaller distances are gathered in one subclass, and the fingerprints with larger distances are far away from each other;

多次执行上一步骤,直到聚类结束,指纹数据库变成具有K个子类的指纹样本空间。Execute the previous step several times until the clustering ends, and the fingerprint database becomes a fingerprint sample space with K subclasses.

所述K-means聚类算法具体为:The K-means clustering algorithm is specifically:

输入L个指纹和聚类个数K,其中,K≤L;从L个指纹中任意选择K个指纹作为初始的聚类中心;Input L fingerprints and the number of clusters K, where K≤L; randomly select K fingerprints from the L fingerprints as the initial cluster center;

对于剩下的指纹,计算每个指纹到每个聚类中心的距离,找到最小距离后,将指纹分到对应的聚类中,得到新的聚类结果,完成指纹分配;For the remaining fingerprints, calculate the distance from each fingerprint to each cluster center, and after finding the minimum distance, divide the fingerprints into the corresponding clusters, obtain new clustering results, and complete the fingerprint assignment;

计算新的聚类中心,并与上一次的聚类中心进行比较,如果两者相同则聚类结束,否则更新聚类中心并返回上一步骤执行聚类。Calculate the new cluster center and compare it with the last cluster center. If the two are the same, the clustering ends. Otherwise, update the cluster center and return to the previous step to perform clustering.

在线定位阶段具体包括以下步骤:The online positioning stage specifically includes the following steps:

将实测指纹与训练之后的指纹数据库进行匹配,计算实测指纹与每个聚类中心的距离,并找出最小距离所对应的聚类;Match the measured fingerprint with the fingerprint database after training, calculate the distance between the measured fingerprint and each cluster center, and find the cluster corresponding to the minimum distance;

计算实测指纹与最小距离所对应的聚类中的每个指纹的距离;Calculate the distance between the measured fingerprint and each fingerprint in the cluster corresponding to the minimum distance;

根据得到的距离值按照从小到大的顺序排列,保留最小的K个距离,并将这K个距离对应的指纹选为参考指纹,其对应的采样点坐标作为参考坐标;Arrange according to the obtained distance values in ascending order, keep the smallest K distances, and select the fingerprints corresponding to the K distances as reference fingerprints, and the corresponding sampling point coordinates as reference coordinates;

计算这K个参考坐标的均值作为实测指纹的估计位置。Calculate the mean value of these K reference coordinates as the estimated position of the measured fingerprint.

有益效果Beneficial effect

由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明在离线阶段采用均值平滑法来减小指纹序列的波动性,并采用K-means聚类算法对WiFi指纹进行分类处理,在在线定位阶段,提出了基于K-means聚类的K近邻算法从而提高了定位效率。Due to the adoption of the above-mentioned technical solution, the present invention has the following advantages and positive effects compared with the prior art: the present invention adopts the mean value smoothing method to reduce the volatility of the fingerprint sequence in the offline stage, and adopts K-means clustering The algorithm classifies and processes WiFi fingerprints. In the online positioning stage, a K-nearest neighbor algorithm based on K-means clustering is proposed to improve the positioning efficiency.

附图说明Description of drawings

图1是本发明中指纹数据库训练流程图;Fig. 1 is the training flowchart of fingerprint database among the present invention;

图2是本发明中K-means聚类流程图;Fig. 2 is a flow chart of K-means clustering among the present invention;

图3是本发明中基于K-means聚类的K近邻算法流程图。Fig. 3 is a flowchart of the K-nearest neighbor algorithm based on K-means clustering in the present invention.

具体实施方式detailed description

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the teachings of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.

本发明的实施方式涉及一种提高WiFi指纹定位精度与效率的方法,在离线训练阶段,构建用于在线定位的指纹数据库,并对指纹数据库中采用K-means聚类算法进行分类,其中,指纹数据库中的采样点的信号强度值经过数据平滑处理;在线定位阶段,采用K近邻算法寻得与实测指纹距离最近的K个指纹,K个指纹的均值对应采样点的位置即为待测点的估计位置。The embodiment of the present invention relates to a method for improving the accuracy and efficiency of WiFi fingerprint positioning. In the offline training phase, a fingerprint database for online positioning is constructed, and the K-means clustering algorithm is used to classify the fingerprint database. The signal strength values of the sampling points in the database are processed by data smoothing; in the online positioning stage, the K nearest neighbor algorithm is used to find the K fingerprints closest to the measured fingerprints, and the position of the sampling point corresponding to the average value of the K fingerprints is the location of the point to be tested. Estimated location.

离线训练阶段offline training phase

在离线训练阶段,首先在定位环境中部署无线接入点(AP)、确定采样点位置,使得每个采样点都能接收到无线AP发射的信号。之后在每个采样点放置信号接收装置(移动设备),记录接收自每个AP的信号强度(RSSI值),最后将这些信号强度值以及坐标信息存入指纹数据库中,这样就唯一标识了这个采样点,所有采样点的数据都存入数据库,形成指纹数据库,用于在线定位。In the offline training phase, first deploy wireless access points (APs) in the positioning environment and determine the location of the sampling points so that each sampling point can receive the signal transmitted by the wireless AP. Then place a signal receiving device (mobile device) at each sampling point, record the signal strength (RSSI value) received from each AP, and finally store these signal strength values and coordinate information in the fingerprint database, thus uniquely identifying this AP. Sampling points, the data of all sampling points are stored in the database to form a fingerprint database for online positioning.

理想情况下,接收到的信号强度RSSI值会随着传播距离的增加作规律性递减,但是在实际应用中,无线信号在传播过程中受到环境因素的影响,如室内信号的多径、反射、墙壁及门的吸收等,致使信号产生不一致的衰减关系,从而使得在任一采样点采集到的每个无线AP的RSSI值不唯一,存在较大波动性,这对离线训练阶段指纹数据库的精度影响很大,因此需要采取一些有效可行的措施来最大程度地降低RSSI值的波动,以减小指纹数据库的数据误差,提高在线定位时的定位精度。Ideally, the received signal strength RSSI value will decrease regularly with the increase of the propagation distance, but in practical applications, the wireless signal is affected by environmental factors during the propagation process, such as indoor signal multipath, reflection, The absorption of walls and doors, etc., causes the signal to have an inconsistent attenuation relationship, so that the RSSI value of each wireless AP collected at any sampling point is not unique, and there is a large fluctuation, which affects the accuracy of the fingerprint database in the offline training phase. Therefore, it is necessary to take some effective and feasible measures to minimize the fluctuation of the RSSI value, so as to reduce the data error of the fingerprint database and improve the positioning accuracy during online positioning.

对于任一采样点,在记录每个无线AP的RSSI值时会发现,任何一个无线AP的RSSI值都不是唯一的,在不同的时间段接收到的RSSI值都有所差异,甚至有时差异很大。因此,不能仅仅以某一次的RSSI测量值为标准,作为某一采样点的指纹数据存入数据库,这样造成的定位误差会很大,此时应该采用多次测量的方法,在任一采样点处,多次采集每个无线AP的RSSI值,然后对采集到的数据进行平滑,从而降低RSSI值的波动,以提高定位精度。信号平滑的方法有很多,例如均值法、中值法、众数法等。本实施方式采用均值平滑法进行数据平滑处理。For any sampling point, when recording the RSSI value of each wireless AP, it will be found that the RSSI value of any wireless AP is not unique, and the RSSI values received in different time periods are different, and sometimes the difference is very large. Big. Therefore, it is not possible to use a certain RSSI measurement value as a standard and store it in the database as the fingerprint data of a certain sampling point, which will cause a large positioning error. , collect the RSSI value of each wireless AP multiple times, and then smooth the collected data, thereby reducing the fluctuation of the RSSI value and improving the positioning accuracy. There are many methods for signal smoothing, such as mean method, median method, mode method, etc. In this embodiment, the mean value smoothing method is used for data smoothing processing.

均值平滑法预先设定一个标准差阈值XD,在任一采样点处,对其采集到的每个无线AP的多个RSSI值计算其标准差SD,标准差SD越大,证明RSSI值的波动越明显,即受环境的干扰越大,若将此时的数据取均值作为该采样点处某个无线AP的RSSI值存入指纹数据库,误差会很大。均值平滑法首先将数据分成两部分,如式(1)和(2)所示,其中,S1表示小于所有数据均值Sav的那部分数据的均值,S2表示大于所有数据均值Sav的那部分数据的均值;其次,用a来衡量S1和S2在接收到的信号强度RSSI中所占的比重,如式(4)所示,在SD>XD时,S1占较大比重,即信号较强部分的数据在采集的数据中占较大比重,反之则占较小比重;最后,利用式(3)可以计算出任一采样点处某个无线AP的RSSI值存入指纹数据库。该值由S1和S2按照不同比重来计算,在信号较强处S1占较大比重,在信号较弱处S2占较大比重,因此该方法可以有效地减小RSSI值的波动,提高离线训练阶段指纹数据库的数据精度。The mean smoothing method pre-sets a standard deviation threshold X D , and at any sampling point, calculates the standard deviation SD of the multiple RSSI values collected for each wireless AP . The larger the standard deviation SD , the greater the RSSI value is. The more obvious the fluctuation, that is, the greater the interference by the environment, if the average value of the data at this time is used as the RSSI value of a wireless AP at the sampling point and stored in the fingerprint database, the error will be large. The mean smoothing method first divides the data into two parts, as shown in formulas (1) and (2), where S 1 represents the mean value of the part of data that is less than the mean value S av of all data, and S 2 represents the mean value of the part that is greater than the mean value S av of all data The average value of that part of the data; secondly, use a to measure the proportion of S 1 and S 2 in the received signal strength RSSI, as shown in formula (4), when S D > X D , S 1 accounts for more Large proportion, that is, the data of the stronger part of the signal accounts for a larger proportion in the collected data, and vice versa; finally, the RSSI value of a certain wireless AP at any sampling point can be calculated by using formula (3) and stored in fingerprint database. This value is calculated by S 1 and S 2 according to different proportions. S 1 accounts for a larger proportion in places where the signal is stronger, and S 2 takes a larger proportion in places where the signal is weaker. Therefore, this method can effectively reduce the fluctuation of the RSSI value , to improve the data accuracy of the fingerprint database in the offline training phase.

SS 11 == 11 nno 11 &Sigma;&Sigma; ii == 11 nno 11 SS ii ,, SS ii << SS aa vv -- -- -- (( 11 ))

SS 22 == 11 nno 22 &Sigma;&Sigma; ii == 11 nno 22 SS ii ,, SS ii &GreaterEqual;&Greater Equal; SS aa vv -- -- -- (( 22 ))

经过均值平滑法处理后的RSSI值为:The RSSI value after the mean smoothing method is:

RSSI=(1-a)*S1+a*S2 (3)RSSI=(1-a)*S 1 +a*S 2 (3)

其中:in:

aa == 0.50.5 ** (( 11 -- SS DD. -- Xx DD. SS DD. )) ,, SS DD. &GreaterEqual;&Greater Equal; Xx DD. 0.50.5 ** (( 11 ++ Xx DD. -- SS DD. Xx DD. )) ,, SS DD. << Xx DD. 00 << aa << 11 -- -- -- (( 44 ))

K-means聚类也可称为K-均值聚类。K-means聚类方法是一种使用广泛、适用于多种数据类型的聚类算法,算法简单,实现快速。k-means聚类是典型的基于距离的聚类算法,以距离作为相似性的度量,其算法基本思想是根据现有的样本之间的相似度将其划分为K个子类,将相似度较大的样品聚集在一起,相似度较小的样品彼此远离。K-means聚类算法可以高效分类,使得整个WiFi指纹数据库划分为不同的小类,从而减小在线定位阶段位置指纹搜索范围,提高定位效率。K-means clustering can also be called K-means clustering. The K-means clustering method is a widely used clustering algorithm suitable for various data types. The algorithm is simple and fast to implement. K-means clustering is a typical distance-based clustering algorithm, which uses distance as a measure of similarity. The basic idea of the algorithm is to divide the existing samples into K sub-categories according to the similarity between them, and compare the similarity with each other. Large samples are clustered together, and samples with less similarity are far away from each other. The K-means clustering algorithm can efficiently classify, so that the entire WiFi fingerprint database is divided into different sub-categories, thereby reducing the location fingerprint search range in the online positioning stage and improving positioning efficiency.

WiFi指纹算法的第一阶段是在离线状态下建立WiFi指纹数据库。在WiFi环境下,假设某个特定的室内区域中,可以检测到n个WiFi信号强度即RSSI值,在这个定位区域内选定L个采样点,采样点的位置信息已知,采用二维空间坐标(x,y)表示。在每个采样点可以采集到这n个RSSI值(rssi1,rssi2,…rssin),将该数组作为这个采样点的指纹,每一个指纹与其采样点的位置一一对应,成一一映射的关系。那么这个指纹数据库可以表示为式(5)所示。The first stage of the WiFi fingerprint algorithm is to build a WiFi fingerprint database in an offline state. In the WiFi environment, assuming that in a specific indoor area, n WiFi signal strengths, that is, RSSI values, can be detected, L sampling points are selected in this positioning area, and the location information of the sampling points is known, using a two-dimensional space Coordinates (x, y) represent. The n RSSI values (rssi 1 , rssi 2 ,...rssi n ) can be collected at each sampling point, and the array is used as the fingerprint of this sampling point, and each fingerprint corresponds to the position of the sampling point one by one, forming a one-to-one mapping relationship. Then this fingerprint database can be expressed as formula (5).

LL RR == xx 11 ythe y 11 rssirssi 11 11 rssirssi 11 22 ...... rssirssi 11 nno xx 22 ythe y 22 rssrss 22 11 rssirssi 22 22 ...... rssirssi 22 nno .. .. .. .. .. .. .. .. .. ...... .. .. .. .. .. .. xx LL ythe y LL rssirssi LL 11 rssirssi LL 22 ...... rssirssi LL nno -- -- -- (( 55 ))

其中,LR包含位置信息和RSSI序列,那么指纹信息就可以分开表示为位置集合L和指纹集合R,如式(6)和式(7)所示。Among them, LR contains location information and RSSI sequence, then the fingerprint information can be separately expressed as location set L and fingerprint set R, as shown in formula (6) and formula (7).

LL == xx 11 ythe y 11 xx 22 ythe y 22 .. .. .. .. .. .. xx LL ythe y LL -- -- -- (( 66 ))

RR == rssirssi 11 11 rssirssi 11 22 ...... rssirssi 11 nno rssirssi 22 11 rssirssi 22 22 ...... rssirssi 22 nno .. .. .. .. .. ...... .. .. .. .. rssirssi LL 11 rssirssi LL 22 ...... rssirssi LL nno -- -- -- (( 77 ))

在离线训练阶段训练指纹数据库的WiFi指纹时,首先需要对指纹数据进行预处理,即上述提出的采用均值平滑法平滑指纹集合R,得到之后采用K-means聚类算法对指纹集合进行分类处理。训练指纹数据库的流程如图1所示。When training the WiFi fingerprint of the fingerprint database in the offline training phase, the fingerprint data needs to be preprocessed first, that is, the above-mentioned mean smoothing method is used to smooth the fingerprint set R, and the obtained After that, the K-means clustering algorithm is used to analyze the fingerprint collection Carry out classification processing. The process of training the fingerprint database is shown in Figure 1.

具体训练步骤为以下四个步骤:The specific training steps are the following four steps:

Step1.选定室内某环境作为定位区域,在这个定位区域中,部署n个无线AP并选取L个采样点,记录每个采样点的位置坐标。Step1. Select an indoor environment as the positioning area. In this positioning area, deploy n wireless APs and select L sampling points, and record the position coordinates of each sampling point.

Step2.在每个采样点,利用具有WiFi信号检测功能的移动终端进行信号强度检测,多次采集每个无线AP的RSSI值,然后对采集到的数据进行平滑,得到这个采样点均值平滑后的指纹1≤i≤L;遍历L个采样点,得到L个指纹,存入指纹数据库。Step2. At each sampling point, use a mobile terminal with WiFi signal detection function to perform signal strength detection, collect the RSSI value of each wireless AP multiple times, and then smooth the collected data to obtain the smoothed mean value of this sampling point fingerprint 1≤i≤L; traverse L sampling points, get L fingerprints, and store them in the fingerprint database.

Step3.将指纹数据库进行K-means聚类,以欧氏距离作为相似度的评价准则,距离较小的指纹聚集在一个子类,距离较大的指纹彼此远离。Step3. Carry out K-means clustering on the fingerprint database, and use Euclidean distance as the evaluation criterion for similarity. Fingerprints with smaller distances are gathered in one subclass, and fingerprints with larger distances are far away from each other.

Step4.多次执行Step3,直到聚类结束,指纹数据库变成具有K个子类的指纹样本空间。其中在Step3中所提到的K-means聚类方法,其执行过程分为以下五步:Step4. Execute Step3 multiple times until the clustering ends, and the fingerprint database becomes a fingerprint sample space with K subclasses. Among them, the K-means clustering method mentioned in Step3, its execution process is divided into the following five steps:

1.输入L个指纹和聚类个数K,(K≤L);从L个指纹中任意选择K个指纹作为初始的聚类中心C=(C1,C2,…CK)。1. Enter L fingerprints and the number of clusters K, (K≤L); randomly select K fingerprints from L fingerprints as the initial cluster center C=(C 1 , C 2 ,...C K ).

2.对于剩下的(L-K)个指纹,计算每个指纹到每个聚类中心的距离Dis tan ce={dij|i=1,2,…,(L-K);j=1,2,…,K},其中dij表示第i个指纹到第j个聚类中心的距离,找到min(Dis tan ce),将第i个指纹分到第j个聚类中,得到新的聚类结果。2. For the remaining (LK) fingerprints, calculate the distance Dis tan ce={d ij |i=1,2,...,(LK) from each fingerprint to each cluster center; j=1,2, ...,K}, where d ij represents the distance from the i-th fingerprint to the j-th cluster center, find min(Dis tan ce), divide the i-th fingerprint into the j-th cluster, and get a new cluster result.

3.重复第2个步骤,将剩下的指纹分配完成,形成K个聚类G1,G2,…,Gj,…GK,每个类Gj都包含其聚类中心和属于该类的指纹成员,指纹总个数为nj3. Repeat the second step to complete the assignment of the remaining fingerprints to form K clusters G 1 , G 2 ,...,G j ,...G K , each class G j contains its cluster center and belongs to the cluster The fingerprint members of the class, the total number of fingerprints is n j .

4.根据公式计算新的聚类中心,其中rssii表示Gj类中的第i个RSSI值。计算每个类的类中心,得到新的聚类中心 4. According to the formula Calculate new cluster centers, where rssi i represents the ith RSSI value in class Gj. Calculate the class center of each class to get the new cluster center

5.若C*=C,即相邻两次的聚类中心相同,即分类趋于稳定,聚类结束,当前的G1,G2,…,Gj,…GK代表了最终形成的聚类。否则令C=C*,即更新类中心,返回第2步骤继续执行聚类过程。K-means聚类算法的流程如图2所示。5. If C * = C, that is, the two adjacent cluster centers are the same, that is, the classification tends to be stable, and the clustering ends. The current G 1 , G 2 ,...,G j ,...G K represent the final formed clustering. Otherwise, set C=C * , that is, update the cluster center, and return to step 2 to continue the clustering process. The flow of the K-means clustering algorithm is shown in Figure 2.

在线定位阶段Online Orientation Phase

K-近邻算法(KNNSS)是最近邻算法(NNSS)的改进算法。最近邻算法易于实现,算法简单,将在线阶段测得的实测指纹与指纹数据库匹配,寻得距离最近的指纹,该指纹对应采样点的位置即为待测点的估计位置。最近邻算法选择的参考指纹较为单一,定位结果不稳定,易产生较大误差。K-Nearest Neighbor Algorithm (KNNSS) is an improved algorithm of Nearest Neighbor Algorithm (NNSS). The nearest neighbor algorithm is easy to implement and the algorithm is simple. Match the measured fingerprints measured in the online stage with the fingerprint database to find the closest fingerprint. The position of the fingerprint corresponding to the sampling point is the estimated position of the point to be measured. The reference fingerprint selected by the nearest neighbor algorithm is relatively single, and the positioning result is unstable, which is prone to large errors.

针对参考指纹单一的问题,本实施方式采用K近邻算法(K-Nearest Neighbor inSignal Space,KNNSS)。在KNNSS算法中,不是选取单一指纹对应的采样点作为待测点的估计位置,而是选择与实测指纹距离最近的K个指纹,计算出这K个采样点的均值,该均值即为待测点的估计位置。然而KNNSS虽然在NNSS的基础上减小了定位误差,但它每次在线定位时需要将实测指纹与指纹数据库中所有指纹进行比较求距离差,这个定位过程耗时太长,系统运算量太大,定位效率太低。因此,本实施方式为了在提高定位精度的同时,还要提高定位效率,设计了一种基于K-means聚类的K近邻算法。其定位过程如图3所示,具体为以下五个步骤:To solve the problem of a single reference fingerprint, this embodiment adopts a K-nearest neighbor algorithm (K-Nearest Neighbor in Signal Space, KNNSS). In the KNNSS algorithm, instead of selecting the sampling point corresponding to a single fingerprint as the estimated position of the point to be tested, K fingerprints closest to the actual measured fingerprint are selected, and the average value of the K sampling points is calculated, and the average value is the target point to be tested. The estimated location of the point. However, although KNNSS reduces the positioning error on the basis of NNSS, it needs to compare the measured fingerprints with all the fingerprints in the fingerprint database to find the distance difference every time it is positioned online. This positioning process takes too long and the system has a large amount of calculation. , the positioning efficiency is too low. Therefore, in order to improve positioning efficiency while improving positioning accuracy, this embodiment designs a K-nearest neighbor algorithm based on K-means clustering. The positioning process is shown in Figure 3, specifically the following five steps:

Step1.将实测指纹r=(rssi1,rssi2,…,rssin)与训练之后的指纹数据库进行匹配,计算r与每个聚类中心的距离,记为D=[D1,D2,…,DK]。Step1. Match the measured fingerprint r=(rssi 1 , rssi 2 ,...,rssi n ) with the fingerprint database after training, and calculate the distance between r and each cluster center, recorded as D=[D 1 ,D 2 , ..., D K ].

Step2.找到D中的最小值min(D)对应的类,记为GMINStep2. Find the class corresponding to the minimum value min(D) in D, denoted as G MIN .

Step3.计算实测指纹r=(rssi1,rssi2,…,rssin)与GMIN中的每个指纹的距离记为其中表示该类中第i个指纹,ng表示该类中指纹的个数。Step3. Calculate the distance between the measured fingerprint r=(rssi 1 , rssi 2 ,...,rssi n ) and each fingerprint in G MIN recorded as in Indicates the i-th fingerprint in this class, n g indicates the number of fingerprints in this class.

Step4.将按照从小到大的顺序排列,剔除其中明显较大的距离值,保留剩下的K个距离,并将这K个距离对应的指纹选为参考指纹,其对应的采样点坐标作为参考坐标。Step4. Will Arranged in ascending order, remove the significantly larger distance values, keep the remaining K distances, and select the fingerprints corresponding to the K distances as reference fingerprints, and the corresponding sampling point coordinates as reference coordinates.

Step5.计算这K个参考坐标的均值作为实测指纹的估计位置,计算方法如式(8)所示。Step5. Calculate the mean value of these K reference coordinates as the estimated position of the measured fingerprint, and the calculation method is shown in formula (8).

xx ee sthe s tt ii mm aa tt ee == 11 KK &Sigma;&Sigma; ii == 11 KK xx ii ythe y ee sthe s tt ii mm aa tt ee == 11 KK &Sigma;&Sigma; ii == 11 KK ythe y ii -- -- -- (( 88 ))

不难发现,本发明在离线阶段采用均值平滑法来减小指纹序列的波动性,并采用K-means聚类算法对WiFi指纹进行分类处理,在在线定位阶段,提出了基于K-means聚类的K近邻算法从而提高了定位效率。It is not difficult to find that the present invention uses the mean smoothing method to reduce the volatility of the fingerprint sequence in the offline stage, and uses the K-means clustering algorithm to classify the WiFi fingerprints. The K nearest neighbor algorithm improves the positioning efficiency.

Claims (5)

1.一种提高WiFi指纹定位精度与效率的方法,其特征在于,在离线训练阶段,构建用于在线定位的指纹数据库,并对指纹数据库中采用K-means聚类算法进行分类,其中,指纹数据库中的采样点的信号强度值经过数据平滑处理;在线定位阶段,采用K近邻算法寻得与实测指纹距离最近的K个指纹,K个指纹的均值对应采样点的位置即为待测点的估计位置。1. A method for improving WiFi fingerprint location accuracy and efficiency, characterized in that, in the offline training phase, construct a fingerprint database for online location, and classify using the K-means clustering algorithm in the fingerprint database, wherein the fingerprint The signal strength values of the sampling points in the database are processed by data smoothing; in the online positioning stage, the K nearest neighbor algorithm is used to find the K fingerprints closest to the measured fingerprints, and the position of the sampling point corresponding to the average value of the K fingerprints is the location of the point to be tested. estimated location. 2.根据权利要求1所述的提高WiFi指纹定位精度与效率的方法,其特征在于,所述构建用于在线定位的指纹数据库具体包括以下步骤:2. the method for improving WiFi fingerprint location accuracy and efficiency according to claim 1, is characterized in that, the fingerprint database that described construction is used for online location specifically comprises the following steps: 选定室内某环境作为定位区域,在这个定位区域中,部署n个无线接入点并选取L个采样点,记录每个采样点的位置坐标;Select an indoor environment as the positioning area, in this positioning area, deploy n wireless access points and select L sampling points, and record the position coordinates of each sampling point; 在每个采样点,利用具有WiFi信号检测功能的移动终端进行信号强度检测,多次采集每个无线接入点的RSSI值,然后对采集到的数据进行平滑,得到这个采样点均值平滑后的指纹;遍历L个采样点,得到L个指纹,存入指纹数据库。At each sampling point, the mobile terminal with WiFi signal detection function is used to detect the signal strength, and the RSSI value of each wireless access point is collected multiple times, and then the collected data is smoothed to obtain the smoothed mean value of the sampling point. Fingerprint: traverse L sampling points, get L fingerprints, and store them in the fingerprint database. 3.根据权利要求1所述的提高WiFi指纹定位精度与效率的方法,其特征在于,所述对指纹数据库中采用K-means聚类算法进行分类具体包括以下步骤:3. the method for improving WiFi fingerprint location accuracy and efficiency according to claim 1, is characterized in that, adopting K-means clustering algorithm to classify in the fingerprint database specifically comprises the following steps: 将指纹数据库进行K-means聚类,以欧氏距离作为相似度的评价准则,距离较小的指纹聚集在一个子类,距离较大的指纹彼此远离;Carry out K-means clustering on the fingerprint database, using Euclidean distance as the evaluation criterion of similarity, the fingerprints with smaller distances are gathered in one subclass, and the fingerprints with larger distances are far away from each other; 多次执行上一步骤,直到聚类结束,指纹数据库变成具有K个子类的指纹样本空间。Execute the previous step several times until the clustering ends, and the fingerprint database becomes a fingerprint sample space with K subclasses. 4.根据权利要求1所述的提高WiFi指纹定位精度与效率的方法,其特征在于,所述K-means聚类算法具体为:4. the method for improving WiFi fingerprint location accuracy and efficiency according to claim 1, is characterized in that, described K-means clustering algorithm is specifically: 输入L个指纹和聚类个数K,其中,K≤L;从L个指纹中任意选择K个指纹作为初始的聚类中心;Input L fingerprints and the number of clusters K, where K≤L; randomly select K fingerprints from the L fingerprints as the initial cluster center; 对于剩下的指纹,计算每个指纹到每个聚类中心的距离,找到最小距离后,将指纹分到对应的聚类中,得到新的聚类结果,完成指纹分配;For the remaining fingerprints, calculate the distance from each fingerprint to each cluster center, and after finding the minimum distance, divide the fingerprints into the corresponding clusters, obtain new clustering results, and complete the fingerprint assignment; 计算新的聚类中心,并与上一次的聚类中心进行比较,如果两者相同则聚类结束,否则更新聚类中心并返回上一步骤执行聚类。Calculate the new cluster center and compare it with the last cluster center. If the two are the same, the clustering ends. Otherwise, update the cluster center and return to the previous step to perform clustering. 5.根据权利要求1所述的提高WiFi指纹定位精度与效率的方法,其特征在于,在线定位阶段具体包括以下步骤:5. The method for improving WiFi fingerprint positioning accuracy and efficiency according to claim 1, wherein the online positioning stage specifically comprises the following steps: 将实测指纹与训练之后的指纹数据库进行匹配,计算实测指纹与每个聚类中心的距离,并找出最小距离所对应的聚类;Match the measured fingerprint with the fingerprint database after training, calculate the distance between the measured fingerprint and each cluster center, and find the cluster corresponding to the minimum distance; 计算实测指纹与最小距离所对应的聚类中的每个指纹的距离;Calculate the distance between the measured fingerprint and each fingerprint in the cluster corresponding to the minimum distance; 根据得到的距离值按照从小到大的顺序排列,保留最小的K个距离,并将这K个距离对应的指纹选为参考指纹,其对应的采样点坐标作为参考坐标;Arrange according to the obtained distance values in ascending order, keep the smallest K distances, and select the fingerprints corresponding to the K distances as reference fingerprints, and the corresponding sampling point coordinates as reference coordinates; 计算这K个参考坐标的均值作为实测指纹的估计位置。Calculate the mean value of these K reference coordinates as the estimated position of the measured fingerprint.
CN201610364491.7A 2016-05-27 2016-05-27 A kind of method improving WiFi fingerprint location precision and efficiency Pending CN106093852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610364491.7A CN106093852A (en) 2016-05-27 2016-05-27 A kind of method improving WiFi fingerprint location precision and efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610364491.7A CN106093852A (en) 2016-05-27 2016-05-27 A kind of method improving WiFi fingerprint location precision and efficiency

Publications (1)

Publication Number Publication Date
CN106093852A true CN106093852A (en) 2016-11-09

Family

ID=57229396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610364491.7A Pending CN106093852A (en) 2016-05-27 2016-05-27 A kind of method improving WiFi fingerprint location precision and efficiency

Country Status (1)

Country Link
CN (1) CN106093852A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643736A (en) * 2017-01-06 2017-05-10 中国人民解放军信息工程大学 Indoor positioning method and system
CN106658422A (en) * 2017-01-09 2017-05-10 深圳市智开科技有限公司 Network side positioning method and network side positioning system for aiming at high-sparse WiFi data
CN106792554A (en) * 2016-11-23 2017-05-31 长安大学 A kind of localization method based on Dual Matching fingerprint location technology
CN107277776A (en) * 2017-07-26 2017-10-20 杨建伟 A kind of location fingerprint alignment system and method
CN107389071A (en) * 2017-08-02 2017-11-24 电子科技大学 A kind of improved indoor positioning KNN methods
CN107526058A (en) * 2017-09-22 2017-12-29 中国联合网络通信集团有限公司 Indoor orientation method, apparatus and system
CN107942319A (en) * 2017-12-11 2018-04-20 北京理工大学 A kind of indoor orientation method based on bluetooth RSSI value location fingerprint storehouse
CN107948930A (en) * 2017-12-31 2018-04-20 电子科技大学 Indoor positioning optimization method based on location fingerprint algorithm
CN108243389A (en) * 2016-12-26 2018-07-03 南京烽火星空通信发展有限公司 Method and system is determined based on the hotspot location of multipoint acquisition
CN108445443A (en) * 2018-02-07 2018-08-24 武汉大学 A kind of fingerprint point clustering method based on KNN
CN108596271A (en) * 2018-05-09 2018-09-28 中国平安人寿保险股份有限公司 Appraisal procedure, device, storage medium and the terminal of fingerprint developing algorithm
CN108761385A (en) * 2018-05-16 2018-11-06 武汉大学 A kind of indoor location localization method carrying out fingerprint point cluster based on AP virtual coordinates
CN108761435A (en) * 2018-04-25 2018-11-06 西安交通大学 A kind of fingerprint optimization method based on normal distribution signal
CN110599228A (en) * 2018-06-13 2019-12-20 北京智慧图科技有限责任公司 Shop identification method
CN110602651A (en) * 2019-09-20 2019-12-20 北京智芯微电子科技有限公司 Positioning method based on WIFI position fingerprint and positioning system of robot
CN110933596A (en) * 2019-12-04 2020-03-27 哈尔滨工业大学 A Fingerprint Localization Method Based on Metric Learning
CN110933631A (en) * 2019-12-03 2020-03-27 浙江科技学院 Indoor positioning method based on WIFI position fingerprint
CN111031472A (en) * 2019-12-03 2020-04-17 扬州后潮科技有限公司 Anti-interference indoor rapid positioning method based on combination of WiFi and UWB
CN111615174A (en) * 2019-02-26 2020-09-01 腾讯科技(深圳)有限公司 Method for identifying wireless network, terminal device and computer readable storage medium
CN111726861A (en) * 2020-06-09 2020-09-29 北京无限向溯科技有限公司 Indoor positioning method, device and system for heterogeneous equipment and storage medium
CN112135248A (en) * 2020-10-09 2020-12-25 西安建筑科技大学 WIFI fingerprint positioning method based on K-means optimal estimation
CN114424635A (en) * 2020-06-01 2022-04-29 蜂图志科技控股有限公司 Signal map construction method, device, equipment and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476118A (en) * 2013-09-29 2013-12-25 哈尔滨工业大学 WLAN indoor location fingerprint positioning method used for real-time monitoring
CN103476115A (en) * 2013-09-22 2013-12-25 中国地质大学(武汉) Method for WiFi fingerprint positioning based on AP set similarity
CN104053129A (en) * 2014-06-19 2014-09-17 北京芯同汇科技有限公司 Wireless sensor network indoor positioning method and device based on sparse RF fingerprint interpolations
CN104936287A (en) * 2015-06-09 2015-09-23 南京邮电大学 Indoor fingerprint location method for sensor network based on matrix completion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476115A (en) * 2013-09-22 2013-12-25 中国地质大学(武汉) Method for WiFi fingerprint positioning based on AP set similarity
CN103476118A (en) * 2013-09-29 2013-12-25 哈尔滨工业大学 WLAN indoor location fingerprint positioning method used for real-time monitoring
CN104053129A (en) * 2014-06-19 2014-09-17 北京芯同汇科技有限公司 Wireless sensor network indoor positioning method and device based on sparse RF fingerprint interpolations
CN104936287A (en) * 2015-06-09 2015-09-23 南京邮电大学 Indoor fingerprint location method for sensor network based on matrix completion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓昶等: "基于RSSI测距补偿室内定位技术", 《电子科技》 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792554A (en) * 2016-11-23 2017-05-31 长安大学 A kind of localization method based on Dual Matching fingerprint location technology
CN108243389A (en) * 2016-12-26 2018-07-03 南京烽火星空通信发展有限公司 Method and system is determined based on the hotspot location of multipoint acquisition
CN106643736A (en) * 2017-01-06 2017-05-10 中国人民解放军信息工程大学 Indoor positioning method and system
CN106643736B (en) * 2017-01-06 2020-05-22 中国人民解放军信息工程大学 An indoor positioning method and system
CN106658422A (en) * 2017-01-09 2017-05-10 深圳市智开科技有限公司 Network side positioning method and network side positioning system for aiming at high-sparse WiFi data
CN106658422B (en) * 2017-01-09 2019-09-10 深圳市智开科技有限公司 For the network side localization method and system of the sparse WiFi data of height
CN107277776A (en) * 2017-07-26 2017-10-20 杨建伟 A kind of location fingerprint alignment system and method
CN107389071A (en) * 2017-08-02 2017-11-24 电子科技大学 A kind of improved indoor positioning KNN methods
CN107389071B (en) * 2017-08-02 2021-03-23 电子科技大学 Improved indoor KNN positioning method
CN107526058B (en) * 2017-09-22 2019-12-03 中国联合网络通信集团有限公司 Indoor orientation method, apparatus and system
CN107526058A (en) * 2017-09-22 2017-12-29 中国联合网络通信集团有限公司 Indoor orientation method, apparatus and system
CN107942319A (en) * 2017-12-11 2018-04-20 北京理工大学 A kind of indoor orientation method based on bluetooth RSSI value location fingerprint storehouse
CN107948930A (en) * 2017-12-31 2018-04-20 电子科技大学 Indoor positioning optimization method based on location fingerprint algorithm
CN107948930B (en) * 2017-12-31 2020-07-17 电子科技大学 Indoor positioning optimization method based on position fingerprint algorithm
CN108445443A (en) * 2018-02-07 2018-08-24 武汉大学 A kind of fingerprint point clustering method based on KNN
CN108445443B (en) * 2018-02-07 2021-06-04 武汉大学 KNN-based fingerprint point clustering method
CN108761435A (en) * 2018-04-25 2018-11-06 西安交通大学 A kind of fingerprint optimization method based on normal distribution signal
CN108596271B (en) * 2018-05-09 2023-05-26 中国平安人寿保险股份有限公司 Evaluation method and device of fingerprint construction algorithm, storage medium and terminal
CN108596271A (en) * 2018-05-09 2018-09-28 中国平安人寿保险股份有限公司 Appraisal procedure, device, storage medium and the terminal of fingerprint developing algorithm
CN108761385A (en) * 2018-05-16 2018-11-06 武汉大学 A kind of indoor location localization method carrying out fingerprint point cluster based on AP virtual coordinates
CN110599228B (en) * 2018-06-13 2022-08-23 北京智慧图科技有限责任公司 Shop identification method
CN110599228A (en) * 2018-06-13 2019-12-20 北京智慧图科技有限责任公司 Shop identification method
CN111615174B (en) * 2019-02-26 2022-02-08 腾讯科技(深圳)有限公司 Method for identifying wireless network, terminal device and computer readable storage medium
CN111615174A (en) * 2019-02-26 2020-09-01 腾讯科技(深圳)有限公司 Method for identifying wireless network, terminal device and computer readable storage medium
CN110602651A (en) * 2019-09-20 2019-12-20 北京智芯微电子科技有限公司 Positioning method based on WIFI position fingerprint and positioning system of robot
CN110602651B (en) * 2019-09-20 2022-02-01 北京智芯微电子科技有限公司 Positioning method based on WIFI position fingerprint and positioning system of robot
CN111031472A (en) * 2019-12-03 2020-04-17 扬州后潮科技有限公司 Anti-interference indoor rapid positioning method based on combination of WiFi and UWB
CN110933631A (en) * 2019-12-03 2020-03-27 浙江科技学院 Indoor positioning method based on WIFI position fingerprint
CN110933596A (en) * 2019-12-04 2020-03-27 哈尔滨工业大学 A Fingerprint Localization Method Based on Metric Learning
CN114424635A (en) * 2020-06-01 2022-04-29 蜂图志科技控股有限公司 Signal map construction method, device, equipment and readable storage medium
CN111726861A (en) * 2020-06-09 2020-09-29 北京无限向溯科技有限公司 Indoor positioning method, device and system for heterogeneous equipment and storage medium
CN111726861B (en) * 2020-06-09 2022-09-13 北京无限向溯科技有限公司 Indoor positioning method, device and system for heterogeneous equipment and storage medium
CN112135248A (en) * 2020-10-09 2020-12-25 西安建筑科技大学 WIFI fingerprint positioning method based on K-means optimal estimation
CN112135248B (en) * 2020-10-09 2022-08-26 西安建筑科技大学 WIFI fingerprint positioning method based on K-means optimal estimation

Similar Documents

Publication Publication Date Title
CN106093852A (en) A kind of method improving WiFi fingerprint location precision and efficiency
WO2019062734A1 (en) Indoor positioning method and device based on wi-fi hot spots
CN103874191B (en) A kind of localization method based on WiFi wireless networks
CN106851571B (en) Decision tree-based rapid KNN indoor WiFi positioning method
CN103901398B (en) A kind of location fingerprint localization method based on combination collating sort
CN105792356A (en) A location fingerprint positioning method based on wifi
CN110049549B (en) Multi-fusion indoor positioning method and system based on WiFi fingerprint
CN109511085B (en) A UWB Fingerprint Location Method Based on MeanShift and Weighted k-Nearest Neighbor Algorithm
CN104394588B (en) Indoor orientation method based on Wi Fi fingerprints and Multidimensional Scaling
CN106468771B (en) A kind of multi-target detection and tracking method under high clutter conditions of low Observable
CN112135248B (en) WIFI fingerprint positioning method based on K-means optimal estimation
CN113518308B (en) The Best AP Screening Method in Indoor Positioning
CN108919177A (en) A Location Map Construction Method Based on Virtual Source Estimation and Trajectory Correction
CN105974361A (en) Indoor positioning method based on fingerprint section indexes and WiFi-FM fusion fingerprints
CN107677989B (en) A kind of indoor location localization method carrying out RSSI removal noise based on RSSI maximum value
CN104581945B (en) The WLAN indoor orientation methods of semi-supervised APC clustering algorithms based on distance restraint
Liu et al. CTSLoc: An indoor localization method based on CNN by using time-series RSSI
CN111405461B (en) Wireless indoor positioning method for optimizing equal-interval fingerprint sampling number
CN108919182B (en) Target positioning method based on support set and expectation maximization in WIFI environment
CN109121081B (en) An Indoor Localization Method Based on Location Candidate Set and EM Algorithm
CN108445443B (en) KNN-based fingerprint point clustering method
Zhang et al. GraphSLAM-based Crowdsourcing framework for indoor Wi-Fi fingerprinting
CN113271542A (en) Indoor mobile terminal positioning method based on Bluetooth and visible light
CN108168563B (en) A WiFi-based indoor positioning and navigation method for large shopping malls
Hou et al. Positioning by floors based on WiFi fingerprint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161109