CN110416319B - Double-sided Schottky-controlled fast recovery diode device and preparation method thereof - Google Patents
Double-sided Schottky-controlled fast recovery diode device and preparation method thereof Download PDFInfo
- Publication number
- CN110416319B CN110416319B CN201910773796.7A CN201910773796A CN110416319B CN 110416319 B CN110416319 B CN 110416319B CN 201910773796 A CN201910773796 A CN 201910773796A CN 110416319 B CN110416319 B CN 110416319B
- Authority
- CN
- China
- Prior art keywords
- active
- cathode
- type
- region
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 112
- 229910052751 metal Inorganic materials 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 82
- 239000000872 buffer Substances 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims description 26
- 229920002120 photoresistant polymer Polymers 0.000 claims description 26
- 150000002500 ions Chemical class 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 230000004913 activation Effects 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 8
- 238000005468 ion implantation Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 238000001259 photo etching Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 238000001994 activation Methods 0.000 description 11
- 239000000969 carrier Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种二极管器件及制备方法,尤其是一种双面肖特基控制的快恢复二极管器件及制备方法,属于微电子的技术领域。The invention relates to a diode device and a preparation method, in particular to a double-sided Schottky-controlled fast recovery diode device and a preparation method, belonging to the technical field of microelectronics.
背景技术Background technique
随着电力电子技术的发展,各种变频电路和斩波电路中新型电力电子器件的应用,对与之并联、起箝位或缓冲作用的快速二极管提出了更高的要求,以减小二极管反向恢复电荷在功率开关器件中产主的功耗,减小反向恢复起的附加在功率开关器件上的高感应电压,提高功率开关器件的使用寿命及可靠性。为了实现上述目的,二极管必须具有短的反向恢复时间trr,较小的反向恢复电流IRM和较软的恢复特性。With the development of power electronics technology, the application of new power electronic devices in various frequency conversion circuits and chopper circuits puts forward higher requirements for fast diodes that are connected in parallel and act as clamps or buffers to reduce diode inverse The reverse recovery charge produces the main power consumption in the power switch device, reduces the high induced voltage added to the power switch device caused by reverse recovery, and improves the service life and reliability of the power switch device. In order to achieve the above purpose, the diode must have a short reverse recovery time trr, a small reverse recovery current IRM and soft recovery characteristics.
在高压电流电路中,传统PIN二极管具有较好的反向耐压性能,且在高通态电流密度下的正向压降很低,呈现低阻状态。然而,由于少子寿命较长,二极管的开关速度相应较低,尤其是反向恢复特性差,越来越不能满足功率开关器件的发展和要求。因而开发高频高压快速软恢复大功率二极管具有一定的现实意义。In high-voltage current circuits, traditional PIN diodes have good reverse withstand voltage performance, and the forward voltage drop is very low under high on-state current density, showing a low resistance state. However, due to the long lifetime of the minority carrier, the switching speed of the diode is relatively low, especially the reverse recovery characteristics are poor, and it is increasingly unable to meet the development and requirements of power switching devices. Therefore, it is of practical significance to develop high frequency, high voltage, fast soft recovery and high power diodes.
目前国内快恢复二极管制造基本还都是普通的PIN/MPS等结构,制造技术也多以重金属Au/Pt掺杂、电子辐照等少子寿命控制技术为主,而这些技术都存在一些不可避免的缺陷,如电子辐照高温反偏漏电大,软度差反向恢复产生高感应电压,影响电路可靠性,重金属Pt掺杂高温性能衰退,负温度系数不适用于并联电路等。At present, the manufacturing of domestic fast recovery diodes is basically common PIN/MPS and other structures, and the manufacturing technologies are mostly based on minority carrier lifetime control technologies such as heavy metal Au/Pt doping and electron irradiation, and these technologies have some unavoidable problems. Defects, such as large reverse bias leakage under high temperature of electron irradiation, poor softness and reverse recovery produce high induced voltage, which affects circuit reliability, heavy metal Pt doping high temperature performance degradation, negative temperature coefficient is not suitable for parallel circuits, etc.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种双面肖特基控制的快恢复二极管器件及制备方法,其能获得较快的反向恢复时间,减少动态损耗,提高优软度,温度系数小,可靠性高。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide a double-sided Schottky-controlled fast recovery diode device and its preparation method, which can obtain a faster reverse recovery time, reduce dynamic loss, and improve softness Degree, small temperature coefficient, high reliability.
按照本发明提供的技术方案,所述双面肖特基控制的快恢复二极管器件,包括半导体基板,所述半导体基板包括N型衬底以及与所述N型衬底邻接的N型缓冲层,在N型衬底的中心区设置有源区;According to the technical solution provided by the present invention, the double-sided Schottky-controlled fast recovery diode device includes a semiconductor substrate, and the semiconductor substrate includes an N-type substrate and an N-type buffer layer adjacent to the N-type substrate, setting an active region in the central region of the N-type substrate;
在二极管器件的截面上,有源区内包括若干呈交替分布的有源P柱与有源N柱,所述有源P柱、有源N柱位于N型衬底内的上部;在N型衬底上设置阳极金属,所述有源P柱与N型衬底上的阳极金属欧姆接触,有源N柱与N型衬底上的阳极金属肖特基接触;On the cross-section of the diode device, the active region includes a number of alternately distributed active P columns and active N columns, and the active P columns and active N columns are located in the upper part of the N-type substrate; An anode metal is set on the substrate, the active P column is in ohmic contact with the anode metal on the N-type substrate, and the active N column is in Schottky contact with the anode metal on the N-type substrate;
在N型缓冲层上设置若干交替分布的阴极P-区以及阴极N+区,所述阴极N+区与阴极金属欧姆接触,阴极P-区与阴极金属肖特基接触。A plurality of alternately distributed cathode P-regions and cathode N+regions are arranged on the N-type buffer layer, the cathode N+regions are in ohmic contact with the cathode metal, and the cathode P-regions are in contact with the cathode metal Schottky.
在有源区的外圈设置场环区,所述场环区包括场环P柱,所述场环P柱与阳极金属欧姆接触。A field ring area is provided on the outer circle of the active area, and the field ring area includes a field ring P column, and the field ring P column is in ohmic contact with the anode metal.
所述有源P柱包括位于上部的有源P+区以及位于下部的有源P-区,所述有源P-区与有源P+区邻接,有源P+区的掺杂浓度大于有源P-区的掺杂浓度,且有源P柱通过有源P+区与阳极金属欧姆接触;有源N柱的横向宽度为Wn,相邻有源N柱间的间距为Wp。The active P column includes an upper active P+ region and a lower active P- region, the active P- region is adjacent to the active P+ region, and the doping concentration of the active P+ region is greater than that of the active P+ region. The doping concentration of the - area, and the active P column is in ohmic contact with the anode metal through the active P+ area; the lateral width of the active N column is Wn, and the distance between adjacent active N columns is Wp.
所述场环P柱与有源P柱为同一工艺制造层,场环P柱包括位于上部的场环P+区以及位于下部的场环P-区,场环P-区与场环P+区邻接,且场环P柱通过场环P+区与阳极金属欧姆接触。The field ring P column and the active P column are the same process manufacturing layer, and the field ring P column includes a field ring P+ area located in the upper part and a field ring P- area located in the lower part, and the field ring P- area is adjacent to the field ring P+ area , and the field ring P column is in ohmic contact with the anode metal through the field ring P+ region.
一种双面肖特基控制的快恢复二极管器件的制备方法,所述制备方法包括如下步骤:A preparation method of a double-sided Schottky-controlled fast recovery diode device, the preparation method comprising the steps of:
步骤1、提供具有N导电类型的半导体基板,所述半导体基板包括N型衬底;
步骤2、在N型衬底的正面生长场氧化层,所述场氧化层覆盖N型衬底的正面;
步骤3、选择性地掩蔽和刻蚀所述场氧化层,以得到贯通所述场氧化层的场氧化层窗口;
步骤4、利用上述场氧化层窗口对N型衬底的正面进行P型杂质离子注入,并在注入后进行高温推阱,以在N型衬底内的上部得到衬底P区;
步骤5、对上述衬底P区再进行P型杂质离子注入,以在衬底P区的上部得到P+区,利用P+区以及位于所述P+区下方的衬底P区,能得到所需的有源P柱以及场环P柱,且在N型衬底内,相邻有源P柱间的N型衬底形成有源N柱;
步骤6、去除上述场氧化层,并在N型衬底的正面设置阳极金属,所述阳极金属覆盖在N型衬底的正面,且阳极金属与有源P柱、场环P柱欧姆接触,阳极金属与有源N柱肖特基接触;
步骤7、对上述N型衬底的背面进行减薄,并对减薄后的N型衬底背面进行N型杂质离子的注入,在激活后,得到N型缓冲区;
步骤8、在N型缓冲区上涂覆背面光刻胶层,并对所述背面光刻胶层进行光刻,以得到贯通背面光刻胶层的背面光刻胶层窗口;
步骤9、利用上述背面光刻胶层窗口向N型缓冲区内进行N型杂质离子的注入;Step 9. Implanting N-type impurity ions into the N-type buffer zone by using the above-mentioned backside photoresist layer window;
步骤10、去除上述背面光刻胶层,并向N型缓冲区内进行P型杂质离子的注入,在激活后,能得到交替分布的阴极P-区以及阴极N+区,且通过N型缓冲区能形成N型缓冲层;
步骤11、在上述阴极P-区以及阴极N+区上设置阴极金属,所述阴极N+区与阴极金属欧姆接触,阴极金属与阴极P-区肖特基接触。
所述半导体基板的材料包括硅。The material of the semiconductor substrate includes silicon.
本发明的优点:有源P柱与有源N柱交替分布,且有源P柱与阳极金属欧姆接触,有源N柱与阳极金属肖特基接触;阴极P-区与阴极N+区交替分布,所述阴极N+区与阴极金属欧姆接触,阴极P-区与阴极金属肖特基接触,从而大大减小载流子注入效率,并且二极管的阳极可以通过有源N柱的横向宽度Wn、二极管的阴极可以通过阴极P-区的面积来调节注入效率,有源N柱的横向宽度Wn越大阳极空穴注入效率越小,阴极P-区的面积越大,电子注入效率越小。因此,可以使阳极到阴极载流子呈现平缓的线性分布,所以反向恢复期间,N型衬底被抽出的载流子随时间变化量较小,少数载流子抽取的速度变化很小,从而在感性负载上感生的电压很小,减少动态损耗,控制电路震荡,即获得较好反向恢复软度。Advantages of the present invention: active P columns and active N columns are alternately distributed, and active P columns are in ohmic contact with anode metal, active N columns are in contact with anode metal Schottky; cathode P- regions and cathode N+ regions are alternately distributed , the cathode N+ region is in ohmic contact with the cathode metal, and the cathode P- region is in contact with the cathode metal Schottky, thereby greatly reducing the carrier injection efficiency, and the anode of the diode can pass through the lateral width Wn of the active N column, the diode The cathode can adjust the injection efficiency by the area of the cathode P-region, the larger the lateral width Wn of the active N column, the lower the anode hole injection efficiency, and the larger the area of the cathode P-region, the smaller the electron injection efficiency. Therefore, the carriers from the anode to the cathode can be smoothly and linearly distributed, so during the reverse recovery period, the amount of carriers extracted from the N-type substrate changes with time, and the rate of minority carrier extraction changes very little. Therefore, the voltage induced on the inductive load is very small, the dynamic loss is reduced, the oscillation of the circuit is controlled, and better reverse recovery softness is obtained.
附图说明Description of drawings
图1为本发明的剖视图。Fig. 1 is a sectional view of the present invention.
图2为本发明正向通道时电子和空穴的路径示意图。Fig. 2 is a schematic diagram of the paths of electrons and holes in the forward channel of the present invention.
图3~图11为本发明具体实施工艺步骤剖视图,其中3 to 11 are cross-sectional views of the process steps of the specific implementation of the present invention, wherein
图3为本发明N型衬底的剖视图。Fig. 3 is a cross-sectional view of an N-type substrate of the present invention.
图4为本发明得到场氧化层后的剖视图。FIG. 4 is a cross-sectional view of the field oxide layer obtained in the present invention.
图5为本发明得到场氧化层窗口后的剖视图。Fig. 5 is a cross-sectional view of the field oxide layer window obtained in the present invention.
图6为本发明得到有源P柱以及有源N柱后的剖视图。FIG. 6 is a cross-sectional view of an active P column and an active N column obtained in the present invention.
图7为本发明去除场氧化层后的剖视图。FIG. 7 is a cross-sectional view of the present invention after removing the field oxide layer.
图8为本发明得到阳极金属后的剖视图。Fig. 8 is a cross-sectional view of the anode metal obtained in the present invention.
图9为本发明得到N型缓冲区后的剖视图。Fig. 9 is a cross-sectional view of an N-type buffer zone obtained in the present invention.
图10为本发明得到阴极P-区以及阴极N+区的剖视图。Fig. 10 is a cross-sectional view of the cathode P- region and the cathode N+ region obtained in the present invention.
图11为本发明得到阴极金属后的剖视图。Fig. 11 is a cross-sectional view of the cathode metal obtained in the present invention.
附图标记说明:1-N型衬底、2-N型缓冲层、3-阳极金属、4-阴极金属、5-场环P-区、6-场环P+区、7-有源N柱、8-阴极P-区、9-阴极N+区、10-有源区、11-场环区、12-有源P-区、13-有源P+区、14-场氧化层、15-场氧化层窗口以及16-N型缓冲区。Explanation of reference numerals: 1-N-type substrate, 2-N-type buffer layer, 3-anode metal, 4-cathode metal, 5-field ring P-region, 6-field ring P+ region, 7-active N column , 8-cathode P-region, 9-cathode N+ region, 10-active region, 11-field ring region, 12-active P-region, 13-active P+ region, 14-field oxide layer, 15-field Oxide window and 16-N buffer.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific drawings and embodiments.
如图1所示:为了能获得较快的反向恢复时间,减少动态损耗,提高优软度,降低高温漏电,本发明包括半导体基板,所述半导体基板包括N型衬底1以及与所述N型衬底1邻接的N型缓冲层2,在N型衬底1的中心区设置有源区10;As shown in Figure 1: In order to obtain a faster reverse recovery time, reduce dynamic loss, improve softness, and reduce high-temperature leakage, the present invention includes a semiconductor substrate, which includes an N-
在二极管器件的截面上,有源区10内包括若干呈交替分布的有源P柱与有源N柱7,所述有源P柱、有源N柱7位于N型衬底1内的上部;在N型衬底1上设置阳极金属3,所述有源P柱与N型衬底1上的阳极金属3欧姆接触,有源N柱7与N型衬底1上的阳极金属3肖特基接触;On the cross-section of the diode device, the
在N型缓冲层2上设置若干交替分布的阴极P-区8以及阴极N+区9,所述阴极N+区9与阴极金属4欧姆接触,阴极P-区8与阴极金属4肖特基接触。Several cathode P-
具体地,所述半导体基板的材料包括硅,当然,半导体基板还可以采用其他常用的半导体材料,具体可以根据需要进行选择,此处不再赘述。有源区10位于N型衬底1的中心区,N型衬底1的厚度大于N型缓冲层2的厚度,N型缓冲层2的掺杂浓度大于N型衬底1的撑场子浓度。Specifically, the material of the semiconductor substrate includes silicon. Of course, the semiconductor substrate can also use other commonly used semiconductor materials, which can be selected according to needs, and will not be repeated here. The
本发明实施例中,有源P柱、有源N柱7在N型衬底1内交替分布,有源P柱、有源N柱7的长度方向与N型衬底1的厚度方向相一致,且有源P柱、有源N柱7相应的长度小于N型衬底1的厚度,具体实施时,有源P柱与有源N柱7的长度相一致。阳极金属3在N型衬底1上,阳极金属3与有源P柱欧姆接触,而有源N柱7与阳极金属3形成肖特基接触,通过阳极金属3能形成二极管器件的阳极端。In the embodiment of the present invention, the active P columns and
阴极P-区8以及阴极N+区9呈交替分布,阴极N+区9的掺杂浓度大于N型缓冲层2的掺杂浓度,有源N柱7的掺杂浓度与N型衬底1的掺杂浓度相一致。为了能形成二极管器件的阴极端,需要设置阴极金属4,阴极N+区9与阴极金属4欧姆接触,阴极P-区8与阴极金属4肖特基接触。The cathode P-
具体实施时,所述有源P柱包括位于上部的有源P+区13以及位于下部的有源P-区12,所述有源P-区12与有源P+区13邻接,有源P+区13的掺杂浓度大于有源P-区12的掺杂浓度,且有源P柱通过有源P+区13与阳极金属3欧姆接触;有源N柱7的横向宽度为Wn,相邻有源N柱7间的间距为Wp。During specific implementation, the active P column includes an upper
本发明实施例中,有源P+区13的深度远小于有源P-区12的深度,但有源P-区12的掺杂浓度远低于有源P+区13的掺杂浓度。有源P+区13位于有源P-区12的顶端。有源N柱7位于两个相邻的有源P柱间,有源N柱7的横向宽度为Wn,相邻有源N柱7间的间距为Wp(即为有源P柱的宽度)。In the embodiment of the present invention, the depth of the
本发明实施例中,阳极金属3与有源N柱7肖特基接触,且阳极金属3与有源P柱欧姆接触后,能控制载流子注入效率,从而减短反向恢复时间trr,提升恢复软度。通过调节有源N柱7的横向宽度Wn来调节阳极空穴注入效率,Wn越大阳极空穴注入效率越低;同理可以通过调节阴极P-区8的面积来调节阴极电子注入效率,阴极P-区8的面积越大阴极电子注入效率越小。In the embodiment of the present invention, after the
进一步地,在有源区10的外圈设置场环区11,所述场环区11包括场环P柱,所述场环P柱与阳极金属3欧姆接触。Further, a
本发明实施例中,场环区11与有源区10之间的具体配合关系与现有相一致,具体为本技术领域人员所熟知,此处不再赘述。具体实施时,所述场环P柱与有源P柱为同一工艺制造层,场环P柱包括位于上部的场环P+区6以及位于下部的场环P-区5,场环P-区5与场环P+区6邻接,且场环P柱通过场环P+区6与阳极金属3欧姆接触。In the embodiment of the present invention, the specific coordination relationship between the
具体实施时,快恢复二极管方向恢复性能表现,本质上是少数载流子的抽取过程,为了获得较快恢复速度可以在正向导通是减小载流子注入,载流子总量减少复合抽取的时间相应减小;另外,在反向恢复过程中,加快复合速度,从而减小恢复时间。In actual implementation, the recovery performance of the fast recovery diode in the direction is essentially a minority carrier extraction process. In order to obtain a faster recovery speed, the carrier injection can be reduced in the forward conduction, and the total amount of carriers can be reduced by recombination extraction. The time of the corresponding reduction; in addition, in the reverse recovery process, speed up the composite speed, thereby reducing the recovery time.
本发明实施例中,通过减小载流子注入效率从而大大减小反向恢复时间,原理如下:正向导通时,阴极N+区9的电子通过N型衬底1,由于有源N柱7与阳极金属3形成的肖特基内建电势远比N衬底1与有源P-区12的低,电子大部分由N型衬底1直接到达阳极金属3,且不存在电子积累,从而大大减小阴极P-区8的少子浓度,削弱阴极P-区8空穴的注入效率,且可以通过调整相邻有源N柱7之间的横向宽度Wp来控制空穴注入效率;阴极同样受阴极P-区8与阴极金属4间的肖特基控制,可以大大减少N+电子注入效率,因此可以大大减小反向恢复时间trr。In the embodiment of the present invention, the reverse recovery time is greatly reduced by reducing the carrier injection efficiency. The Schottky built-in potential formed with the
传统PIN结构快恢复二极管由于阴极、阳极注入的载流子浓度很高,注入效率高,所有正向导通是载流子浓度从阳极到阴极呈现高-低-高山谷式分布,阴极、阳极附近载流子浓度很高,导致载流子抽取速度变化很大,从而导致严重的电压过冲,对于感性负载引起剧烈振荡。Due to the high concentration of carriers injected into the cathode and anode of the traditional PIN structure fast recovery diode, the injection efficiency is high. All forward conduction is that the carrier concentration presents a high-low-high valley distribution from the anode to the cathode. Near the cathode and anode The high carrier concentration leads to large variations in the carrier extraction rate, which can lead to severe voltage overshoots and violent oscillations for inductive loads.
如图2所示,有源P柱与有源N柱7交替分布,且有源P柱与阳极金属3欧姆接触,有源N柱7与阳极金属3肖特基接触;阴极P-区8与阴极N+区9交替分布,所述阴极N+区9与阴极金属4欧姆接触,阴极P-区8与阴极金属4肖特基接触,从而大大减小载流子注入效率,并且二极管的阳极可以通过有源N柱7的横向宽度Wn、二极管的阴极可以通过阴极P-区8的面积来调节注入效率,有源N柱7的横向宽度Wn越大阳极空穴注入效率越小,阴极P-区8的面积越大,电子注入效率越小。因此,可以使阳极到阴极载流子呈现平缓的线性分布,所以反向恢复期间,N型衬底被抽出的载流子随时间变化量较小,少数载流子抽取的速度变化很小,从而在感性负载上感生的电压很小,控制电路震荡,即获得较好反向恢复软度。As shown in Figure 2, the active P columns and the
如图3~图11所示,上述双面肖特基控制的快恢复二极管器件,具体可以通过下述工艺步骤制备得到,具体地,所述制备方法包括如下步骤:As shown in Figures 3 to 11, the above-mentioned double-sided Schottky-controlled fast recovery diode device can be specifically prepared through the following process steps. Specifically, the preparation method includes the following steps:
步骤1、提供具有N导电类型的半导体基板,所述半导体基板包括N型衬底1;
具体地,半导体基板的材料可以为硅或其他常用的材料,如图3所示。Specifically, the material of the semiconductor substrate may be silicon or other common materials, as shown in FIG. 3 .
步骤2、在N型衬底1的正面生长场氧化层14,所述场氧化层14覆盖N型衬底1的正面;
具体地,场氧化层14为二氧化硅层,场氧化层14可以通过热氧化的方式生长得到,如图4所示。Specifically, the
步骤3、选择性地掩蔽和刻蚀所述场氧化层14,以得到贯通所述场氧化层14的场氧化层窗口15;
具体地,为了能得到场氧化层窗口15,一般需要在场氧化层14上涂覆光刻胶层,对光刻胶层进行光刻后,采用对场氧化层14进行刻蚀等方式能得到场氧化层窗口15,通过场氧化层窗口15能使得N型衬底1相应的正面区域裸露,N型衬底1其余的区域均由场氧化层14进行覆盖,如图5所示。在得到场氧化层窗口15后,一般需要将场氧化层14上的光刻胶去除。Specifically, in order to obtain the field
步骤4、利用上述场氧化层窗口15对N型衬底1的正面进行P型杂质离子注入,并在注入后进行高温推阱,以在N型衬底1内的上部得到衬底P区;
具体地,在进行P型杂质离子注入时,P型杂质离子仅能注入与场氧化层窗口15对应的区域内,而由场氧化层14覆盖的区域无法进行离子注入,进行P型杂质离子注入的工艺过程以及高温推阱的过程均与现有相一致,具体可以根据需要进行选择,此处不再赘述。Specifically, when performing P-type impurity ion implantation, P-type impurity ions can only be implanted in the region corresponding to the field
步骤5、对上述衬底P区再进行P型杂质离子注入,以在衬底P区的上部得到P+区,利用P+区以及位于所述P+区下方的衬底P区,能得到所需的有源P柱以及场环P柱,且在N型衬底1内,相邻有源P柱间的N型衬底1形成有源N柱7;
具体地,步骤4中得到的衬底P区的掺杂浓度一般交底,为了能形成欧姆接触,需要再次进行P型杂质离子的注入,再次注入后,用P+区以及位于所述P+区下方的衬底P区,能得到所需的有源P柱以及场环P柱,且在N型衬底1内,相邻有源P柱间的N型衬底1形成有源N柱7,P+区的掺杂浓度远大于衬底P区的掺杂浓度,具体的工艺过程与现有相一致,具体为本技术领域人员所熟知,如图6所示。Specifically, the doping concentration of the P region of the substrate obtained in
步骤6、去除上述场氧化层14,并在N型衬底1的正面设置阳极金属3,所述阳极金属3覆盖在N型衬底1的正面,且阳极金属3与有源P柱、场环P柱欧姆接触,阳极金属3与有源N柱7肖特基接触;
具体地,采用本技术领域常用的技术手段实现将场氧化层14的去除,具体去除过程为本技术领域的人员所熟知,此处不再赘述。去除场氧化层14后情况,如图7所示。Specifically, the removal of the
本发明实施例中,采用金属溅射等方式制备阳极金属3,得到阳极金属3后,阳极金属3与有源P柱、场环P柱欧姆接触,阳极金属3与有源N柱7肖特基接触,如图8所示。In the embodiment of the present invention, the
步骤7、对上述N型衬底1的背面进行减薄,并对减薄后的N型衬底1背面进行N型杂质离子的注入,在激活后,得到N型缓冲区16;
本发明实施例中,采用本技术领域常用的技术手段实现对N型衬底1背面的减薄,在减薄后,进行N型杂质离子的置入,从而能在N型衬底1的背面得到N型缓冲区16,如图9所示。N型缓冲区16的掺杂浓度大于N型衬底1的掺杂浓度,在进行N型杂质离子的注入后,激活的方式包括激光激活,具体进行N型杂质离子的注入以及激活过程均可采用现有常用的方式,具体为本技术领域人员所熟知,此处不再赘述。In the embodiment of the present invention, the thinning of the back side of the N-
步骤8、在N型缓冲区16上涂覆背面光刻胶层,并对所述背面光刻胶层进行光刻,以得到贯通背面光刻胶层的背面光刻胶层窗口;
具体地,采用本技术领域常用的技术手段实现涂覆背面光刻胶层,以及得到背面光刻胶层窗口。Specifically, common technical means in this technical field are used to realize the coating of the photoresist layer on the back side and obtain the window of the photoresist layer on the back side.
步骤9、利用上述背面光刻胶层窗口向N型缓冲区内进行N型杂质离子的注入;Step 9. Implanting N-type impurity ions into the N-type buffer zone by using the above-mentioned backside photoresist layer window;
具体地,在背面光刻胶层窗口外的区域利用所述背面光刻胶层能阻挡N型杂质离子注入到N型缓冲区16内。Specifically, the backside photoresist layer can block the implantation of N-type impurity ions into the N-
步骤10、去除上述背面光刻胶层,并向N型缓冲区内进行P型杂质离子的注入,在激活后,能得到交替分布的阴极P-区8以及阴极N+区9,且通过N型缓冲区16能形成N型缓冲层2;
具体地,采用本技术领域常用的技术手段实现对背面光刻胶层的去除,然后进行P型杂质离子的普注,进行P型杂质离子的注入剂量远小于步骤9中进行N型杂质离子的注入剂量,从而在激活后能得到交替分布的阴极P-区8以及阴极N+区9,且通过N型缓冲区16能形成N型缓冲层2,如图10所示。激活的方式包括激光激活,具体激光激活的工艺条件以及过程为本技术领域的技术人员所熟知,此处不再赘述。Specifically, the removal of the photoresist layer on the back is achieved by using commonly used technical means in this technical field, and then the general injection of P-type impurity ions is performed. The implantation dose of P-type impurity ions is much smaller than that of N-type impurity ions in step 9. Dose injection, so that alternately distributed cathode P-
步骤11、在上述阴极P-区8以及阴极N+区9上设置阴极金属4,所述阴极N+区9与阴极金属4欧姆接触,阴极金属4与阴极P-区8肖特基接触。
具体实施时,采用本技术领域常用的技术手段实现阴极金属4的制备,制备得到的阴极金属4与阴极N+区9欧姆接触,且与阴极P-区8肖特基接触,从而能形成所需的二极管器件的阴极端。During specific implementation, the preparation of the
与现有快恢复二极管器件的工艺相比,由于没有使用重金属掺杂或者电子辐照等传统技术,而电子辐照会引入大量缺陷导致高温漏电大,重金属掺杂技术随温度升高晶格震动越来越剧烈,载流子能量变大,能量达到一定程度时较容易挣脱由掺杂重金属引入复合中心的俘获,从而高温下导通压降变小,负温度系数明显。所以本发明较传统快恢复二极管具有更低的高温漏电,更小温度系数等优势。Compared with the existing fast recovery diode device technology, because there is no traditional technology such as heavy metal doping or electron irradiation, and electron irradiation will introduce a large number of defects, resulting in large high-temperature leakage, and the heavy metal doping technology will vibrate with the increase of temperature. As it becomes more intense, the carrier energy becomes larger, and when the energy reaches a certain level, it is easier to break free from the capture of the recombination center introduced by the doped heavy metal, so that the conduction voltage drop becomes smaller at high temperature, and the negative temperature coefficient is obvious. Therefore, compared with the traditional fast recovery diode, the present invention has the advantages of lower high temperature leakage, smaller temperature coefficient and the like.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910773796.7A CN110416319B (en) | 2019-08-21 | 2019-08-21 | Double-sided Schottky-controlled fast recovery diode device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910773796.7A CN110416319B (en) | 2019-08-21 | 2019-08-21 | Double-sided Schottky-controlled fast recovery diode device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110416319A CN110416319A (en) | 2019-11-05 |
CN110416319B true CN110416319B (en) | 2023-05-05 |
Family
ID=68368214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910773796.7A Active CN110416319B (en) | 2019-08-21 | 2019-08-21 | Double-sided Schottky-controlled fast recovery diode device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110416319B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115706170A (en) * | 2021-08-12 | 2023-02-17 | 无锡华润华晶微电子有限公司 | Silicon carbide junction barrier Schottky diode and manufacturing method thereof |
CN113659014B (en) * | 2021-10-20 | 2022-01-18 | 四川洪芯微科技有限公司 | Power diode with cathode short-circuit groove grid structure |
CN116364748A (en) * | 2021-12-27 | 2023-06-30 | 苏州东微半导体股份有限公司 | semiconductor diode |
CN114300544B (en) * | 2021-12-30 | 2025-01-28 | 江苏中科君芯科技有限公司 | A fast recovery diode and a method for manufacturing the same |
CN115241293B (en) * | 2022-06-15 | 2023-12-05 | 江苏新顺微电子股份有限公司 | High-speed soft recovery high-voltage Schottky diode device and manufacturing method |
CN117727799B (en) * | 2023-12-20 | 2024-12-06 | 扬州国宇电子有限公司 | A multi-field ring fast recovery diode based on a punch-through structure and a preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1172351A (en) * | 1997-06-13 | 1998-02-04 | 清华大学 | High-power quick soft-recovery diode SIOD tube core structure |
JP2008140968A (en) * | 2006-12-01 | 2008-06-19 | Shindengen Electric Mfg Co Ltd | Trench Schottky barrier diode |
CN103890955A (en) * | 2011-07-27 | 2014-06-25 | 丰田自动车株式会社 | Diode, semiconductor device, and mosfe |
CN108172507A (en) * | 2017-12-27 | 2018-06-15 | 江苏中科君芯科技有限公司 | Processing method of MPS-FRD device |
-
2019
- 2019-08-21 CN CN201910773796.7A patent/CN110416319B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1172351A (en) * | 1997-06-13 | 1998-02-04 | 清华大学 | High-power quick soft-recovery diode SIOD tube core structure |
JP2008140968A (en) * | 2006-12-01 | 2008-06-19 | Shindengen Electric Mfg Co Ltd | Trench Schottky barrier diode |
CN103890955A (en) * | 2011-07-27 | 2014-06-25 | 丰田自动车株式会社 | Diode, semiconductor device, and mosfe |
CN107068733A (en) * | 2011-07-27 | 2017-08-18 | 丰田自动车株式会社 | Semiconductor devices |
CN108172507A (en) * | 2017-12-27 | 2018-06-15 | 江苏中科君芯科技有限公司 | Processing method of MPS-FRD device |
Also Published As
Publication number | Publication date |
---|---|
CN110416319A (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110416319B (en) | Double-sided Schottky-controlled fast recovery diode device and preparation method thereof | |
CN101540343B (en) | 4H-SiC PiN/Schottky diode with offset field plate structure and its fabrication method | |
KR100994185B1 (en) | Semiconductor devices | |
CN103022154B (en) | A kind of fast recovery diode and manufacture method | |
JP2002305305A (en) | Semiconductor device | |
CN101228635A (en) | power semiconductor device | |
US9837275B2 (en) | Fabrication method of fast recovery diode | |
CN118588746A (en) | Semiconductor structure manufacturing method, semiconductor structure, chip and electronic device | |
JP2002261281A (en) | Method of manufacturing insulated gate bipolar transistor | |
CN114300544B (en) | A fast recovery diode and a method for manufacturing the same | |
CN114823332A (en) | Fabrication process and structure of a semi-superjunction fast recovery diode device | |
US9236433B2 (en) | Semiconductor devices in SiC using vias through N-type substrate for backside contact to P-type layer | |
CN108598153B (en) | Soft recovery power semiconductor diode and preparation method thereof | |
CN107452623B (en) | A kind of manufacturing method of fast recovery diode and fast recovery diode | |
KR101415878B1 (en) | Structure and Fabrication Method of High-Voltage UFRED | |
CN214848631U (en) | Low-voltage grid unidirectional silicon controlled electrostatic protection device | |
CN115224105A (en) | Fast recovery diode and manufacturing method and application thereof | |
CN210467855U (en) | Fast recovery diode | |
CN106920846A (en) | Power transistor and its manufacture method | |
JP2003218354A (en) | Semiconductor device and method of manufacturing the same | |
JP2003163357A (en) | Semiconductor device and method of manufacturing the same | |
CN102931228B (en) | Reverse conducting IGBT device and manufacturing method thereof | |
CN114050183A (en) | Reverse conducting power chip manufacturing method | |
CN113594262A (en) | Fast recovery diode structure and manufacturing method thereof | |
CN110061048A (en) | A kind of MOS field controlled thyristor and preparation method thereof based on Schottky diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |