[go: up one dir, main page]

CN110265486B - 氧化镓sbd终端结构及制备方法 - Google Patents

氧化镓sbd终端结构及制备方法 Download PDF

Info

Publication number
CN110265486B
CN110265486B CN201910537853.1A CN201910537853A CN110265486B CN 110265486 B CN110265486 B CN 110265486B CN 201910537853 A CN201910537853 A CN 201910537853A CN 110265486 B CN110265486 B CN 110265486B
Authority
CN
China
Prior art keywords
gallium oxide
metal layer
layer
concentration
anode metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910537853.1A
Other languages
English (en)
Other versions
CN110265486A (zh
Inventor
吕元杰
王元刚
周幸叶
谭鑫
宋旭波
邹学锋
梁士雄
冯志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201910537853.1A priority Critical patent/CN110265486B/zh
Publication of CN110265486A publication Critical patent/CN110265486A/zh
Priority to PCT/CN2020/089764 priority patent/WO2020253420A1/zh
Priority to US17/069,071 priority patent/US11417779B2/en
Application granted granted Critical
Publication of CN110265486B publication Critical patent/CN110265486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明适用于半导体器件制造技术领域,提供了一种氧化镓SBD终端结构,自下至上包括阴极金属层、N+高浓度衬底层、N‑低浓度Ga2O3外延层和阳极金属层,其中,N‑低浓度Ga2O3外延层在靠近阳极金属层的一定厚度范围内,阳极金属层下方的掺杂浓度大于阳极金属层两侧的掺杂浓度。即只改变阳极金属层对应区域以外部分的掺杂浓度,从而保证在低导通电阻的情况下,提高氧化镓SBD终端结构的击穿电压。

Description

氧化镓SBD终端结构及制备方法
技术领域
本发明属于半导体器件制造技术领域,尤其涉及一种氧化镓SBD终端结构及制备方法。
背景技术
电力电子器件又称为功率半导体器件主要用于电力设备的电能变化和电路控制,是工业设施、家用电器等设备电能控制与转换的核心器件,可以进行典型的功率处理,包括变频、变压、变流、功率管理等。硅基半导体功率器件是目前电力系统使用最普遍的功率器件,但其性能已接近由其材料决定的理论极限,使得其功率密度的增长呈饱和趋势。
超宽禁带氧化镓作为一种新的半导体材料,在击穿场强、巴利加优值和成本等方面优势突出,目前共发现α、β、γ、δ、ε五种氧化镓的结晶形态,其中,以β结构的氧化镓最为稳定,目前为止在半导体领域围绕氧化镓的研究都是在β结构的氧化镓上展开的;国际上通常采用巴利加优值来表征材料适合功率器件的程度,β-Ga2O3材料的巴利加优值是第一代半导体Si材料的3444倍,第三代宽禁带半导体GaN材料的4倍、SiC材料的10倍,β-Ga2O3功率器件与GaN和SiC器件相同耐压情况下,导通电阻更低,功耗更小,能够极大地降低器件工作时的电能损耗。
镜像力致势垒降低效应是限制氧化镓SBD(Schottky Barrier Diode,肖特基势垒二极管)特性的瓶颈问题,利用等离子处理工艺降低漂移区浓度可以缓解镜像力致势垒降低效应和提高器件击穿电压,通过引入Ar离子注入,使阳极结以外区域变成高阻区,调节阳极电场,提高击穿电压。然而,Ar离子注入对材料损伤大且影响击穿电压的进一步提升,如何在保证低导通电阻的情况下进一步提高击穿电压成为亟待解决的问题。
发明内容
有鉴于此,本发明实施例提供了一种氧化镓SBD终端结构及制备方法,以解决现有技术中在保证低导通电阻的情况下进一步提高击穿电压的问题。
为了实现上述目的,本发明实施例的第一方面提供了一种氧化镓SBD终端结构:自下至上包括阴极金属层、N+高浓度衬底层、N-低浓度Ga2O3外延层和阳极金属层,其中,N-低浓度Ga2O3外延层在靠近阳极金属层的一定厚度范围内,阳极金属层下方的掺杂浓度大于阳极金属层两侧的掺杂浓度。
进一步地,所述N-低浓度Ga2O3外延层在靠近阳极金属层的一定厚度范围内,掺杂浓度自下至上逐渐减小。
进一步地,所述N-低浓度Ga2O3外延层的电子浓度为1.0×1015cm-3至1.0×1020cm-3
进一步地,所述N-低浓度Ga2O3外延层的厚度为100nm至50μm。
进一步地,所述N+高浓度衬底层的材料为Ga2O3或SiC。
进一步地,所述阳极金属层为Ni/Au,所述阴极金属层为Ti/Au。
本发明实施例的第二方面提供了一种一种氧化镓SBD终端结构的制备方法,包括:
在N+高浓度衬底层上生长N-低浓度Ga2O3外延层;
在所述N-低浓度Ga2O3外延层上淀积掩膜层;
去除掩膜层与阳极金属层对应的区域以外的部分,得到氧化镓SBD终端样品;
对所述氧化镓SBD终端样品进行含至少两种温度的高温退火处理;
去除经过高温退火处理后的氧化镓SBD终端样品上的掩膜层,并在氧化镓SBD终端样品的两侧分别形成阳极金属层和阴极金属层。
进一步地,所述掩膜层材料为采用PECVD或者溅射方式实现的SiO2、SiN或者Al2O3
进一步地,所述高温退火处理在氧气氛围中进行。
进一步地,所述高温退火处理的温度变化方式为线性或者阶梯状变化。
进一步地,所述退火温度为200℃至900℃中的任意值,退火时间为10秒至100分钟。
进一步地,所述退火温度为400℃和450℃,每种温度下的退火时间均为10分钟。
本发明实施例通过在N-低浓度Ga2O3外延层上淀积掩膜层,并去除掩膜层与阳极金属层对应的区域以外的部分,得到一个只有阳极金属层对应区域覆盖有掩膜层的氧化镓SBD终端样品,对此样品进行退火处理,可以只使掩膜层与阳极金属层对应区域以外的部分形成掺杂浓度由下至上的逐渐减小的变化,而不改变阳极金属层对应区域的掺杂浓度,从而实现在低导通电阻的情况下,提高氧化镓SBD终端结构的击穿电压。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的氧化镓SBD终端结构示意图;
图2是本发明实施例提供的氧化镓SBD终端结构制备方法的流程图;
图3是本发明实施例提供的氧化镓SBD终端结构淀积掩膜层的结构示意图;
图4是本发明实施例提供的氧化镓SBD终端样品进行退火处理后的结构示意图。
图中:1、阴极金属层;2、N+高浓度衬底层;3、N-低浓度Ga2O3外延层;31、第二N-低浓度Ga2O3外延层;3’、掩膜层;4、阳极金属层。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
如图1所示,氧化镓SBD终端结构包括阴极金属层1、N+高浓度衬底层2、N-低浓度Ga2O3外延层3和阳极金属层4,其中N-低浓度Ga2O3外延层3在靠近阳极金属层4的一定厚度范围内,阳极金属层下方的掺杂浓度大于阳极金属层两侧的掺杂浓度。
具体地,第二N-低浓度Ga2O3外延层31属于N-低浓度Ga2O3外延层3,为靠近阳极金属层的一定厚度范围内,阳极金属层对应区域以外的部分,第二N-低浓度Ga2O3外延层31的掺杂浓度小于阳极金属层对应区域的掺杂浓度。
在上述实施例的基础上:
作为一种优选的实施例,N-低浓度Ga2O3外延层的电子浓度为1.0×1015cm-3至1.0×1020cm-3
具体的,N-低浓度Ga2O3外延层3的掺杂浓度可以为一个固定值,也可以是一个梯度变化的值。
作为一种优选的实施例,N-低浓度Ga2O3外延层3的厚度为100nm至50μm。
作为一种优选的实施例,N+高浓度衬底层2的材料为Ga2O3或SiC。
作为一种优选的实施例,阳极金属层为Ni/Au,所述阴极金属层为Ti/Au。
如图2所示,本发明中公开了一种氧化镓SBD终端结构的制备方法,包括
步骤S101,在N+高浓度衬底层上生长N-低浓度Ga2O3外延层;
步骤S102,如图3所示,在所述N-低浓度Ga2O3外延层上淀积掩膜层3’;
作为一种优选的实施例,所述掩膜层材料为采用PECVD或者溅射方式实现的SiO2、SiN或者Al2O3
具体的,所述掩膜层的厚度为50nm至3000nm。
步骤S103,去除掩膜层与阳极金属层对应的区域以外的部分,得到氧化镓SBD终端样品;
具体的,可以在阳极金属层对应的区域涂覆上一层光刻胶,然后再采用干法或湿法刻蚀的方式去除阳极金属层对应的区域以外的部分的掩膜层。
步骤S104,如图4所示,对所述氧化镓SBD终端样品进行含至少两种温度的高温退火处理;
具体的,由于阳极金属层对应的N-低浓度Ga2O3外延层上表面淀积有掩膜层3’,因此退火处理会使与阳极金属层对应的区域以外的部分的掺杂浓度在靠近阳极金属层的一定厚度范围内,由下至上逐渐减小;而退火处理并没有改变阳极金属层对应的区域的掺杂浓度,即阳极金属层下方为未进行退火处理区域,这样就在靠近阳极金属层的一定厚度范围内的N-低浓度Ga2O3外延层中引入了横向浓度变化,从而使整体氧化镓SBD终端结构的导通电阻更低。
其中,两个不同温度的退火处理会导致N-低浓度Ga2O3外延层的表面区域掺杂浓度降低,从而实现掺杂浓度自下至上,从内部到表面逐渐减小。
步骤S105,去除经过高温退火处理后的氧化镓SBD终端样品上的掩膜层,并在氧化镓SBD终端样品的两侧分别形成阳极金属层和阴极金属层。
作为一种优选的实施例,高温退火处理在氧气氛围中进行。
作为一种优选的实施例,高温退火处理的温度变化方式为线性或者阶梯状变化。
其中,温度变化可以是先高温后低温,也可以是先低温后高温。
作为一种优选的实施例,退火温度为200℃至900℃中的任意值,退火时间为10秒至100分钟。
作为一种优选的实施例,所述退火温度为400℃和450℃,每种温度下的退火时间均为10分钟。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (12)

1.一种氧化镓SBD终端结构的制备方法,其特征在于,包括以下步骤:
在N+高浓度衬底层上生长N-低浓度Ga2O3外延层;
在所述N-低浓度Ga2O3外延层上淀积掩膜层;
去除掩膜层与阳极金属层对应的区域以外的部分,得到氧化镓SBD终端样品;
对所述氧化镓SBD终端样品进行含至少两种温度的高温退火处理;所述高温退火处理的退火温度为200℃至900℃中的任意值;
去除经过高温退火处理后的氧化镓SBD终端样品上的掩膜层,并在氧化镓SBD终端样品的两侧分别形成阳极金属层和阴极金属层。
2.如权利要求1所述的氧化镓SBD终端结构的制备方法,其特征在于,所述掩膜层为采用PECVD或者溅射方式实现的SiO2、SiN或者Al2O3
3.如权利要求1所述的氧化镓SBD终端结构的制备方法,其特征在于,所述高温退火处理在氧气氛围中进行。
4.如权利要求1所述的氧化镓SBD终端结构的制备方法,其特征在于,所述高温退火处理的温度变化方式为线性或者阶梯状变化。
5.如权利要求1至4任一项所述的氧化镓SBD终端结构的制备方法,其特征在于,所述高温退火处理的退火时间为10秒至100分钟。
6.如权利要求5所述的氧化镓SBD终端结构的制备方法,其特征在于,所述退火温度为400℃和450℃,每种温度下的退火时间均为10分钟。
7.一种氧化镓SBD终端结构,其特征在于,根据如权利要求1至6任一项所述的氧化镓SBD终端结构的制备方法制备得到,自下至上包括阴极金属层、N+高浓度衬底层、N-低浓度Ga2O3外延层和阳极金属层,其中,N-低浓度Ga2O3外延层在靠近阳极金属层的一定厚度范围内,阳极金属层下方的掺杂浓度大于阳极金属层两侧的掺杂浓度。
8.如权利要求7所述的氧化镓SBD终端结构,其特征在于,所述N-低浓度Ga2O3外延层在靠近阳极金属层的一定厚度范围内,掺杂浓度自下至上逐渐减小。
9.如权利要求7所述的氧化镓SBD终端结构,其特征在于,所述N-低浓度Ga2O3外延层的电子浓度为1.0×1015cm-3至1.0×1020cm-3
10.如权利要求7所述的氧化镓SBD终端结构,其特征在于,所述N-低浓度Ga2O3外延层的厚度为100nm至50μm。
11.如权利要求7所述的氧化镓SBD终端结构,其特征在于,所述N+高浓度衬底层的材料为Ga2O3或SiC。
12.如权利要求7至11任一项所述的氧化镓SBD终端结构,其特征在于,所述阳极金属层为Ni/Au,所述阴极金属层为Ti/Au。
CN201910537853.1A 2019-06-20 2019-06-20 氧化镓sbd终端结构及制备方法 Active CN110265486B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910537853.1A CN110265486B (zh) 2019-06-20 2019-06-20 氧化镓sbd终端结构及制备方法
PCT/CN2020/089764 WO2020253420A1 (zh) 2019-06-20 2020-05-12 氧化镓sbd终端结构及制备方法
US17/069,071 US11417779B2 (en) 2019-06-20 2020-10-13 Gallium oxide SBD terminal structure and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910537853.1A CN110265486B (zh) 2019-06-20 2019-06-20 氧化镓sbd终端结构及制备方法

Publications (2)

Publication Number Publication Date
CN110265486A CN110265486A (zh) 2019-09-20
CN110265486B true CN110265486B (zh) 2023-03-24

Family

ID=67920001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910537853.1A Active CN110265486B (zh) 2019-06-20 2019-06-20 氧化镓sbd终端结构及制备方法

Country Status (3)

Country Link
US (1) US11417779B2 (zh)
CN (1) CN110265486B (zh)
WO (1) WO2020253420A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659355B (zh) * 2018-12-06 2020-11-24 中国电子科技集团公司第十三研究所 常关型氧化镓场效应晶体管结构
WO2020183645A1 (ja) * 2019-03-13 2020-09-17 三菱電機株式会社 半導体装置
CN110265486B (zh) 2019-06-20 2023-03-24 中国电子科技集团公司第十三研究所 氧化镓sbd终端结构及制备方法
CN110797391B (zh) * 2019-10-23 2023-07-18 中国电子科技集团公司第十三研究所 肖特基二极管的制备方法
CN111129164B (zh) * 2019-12-05 2023-09-26 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
CN111146294B (zh) * 2019-12-05 2023-11-07 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
CN111129165B (zh) * 2019-12-05 2023-11-28 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
CN111129163B (zh) * 2019-12-05 2023-06-27 中国电子科技集团公司第十三研究所 肖特基二极管及其制备方法
JP7391326B2 (ja) * 2019-12-26 2023-12-05 株式会社ノベルクリスタルテクノロジー 半導体装置
CN111192926B (zh) * 2020-01-07 2021-09-03 中国电子科技集团公司第十三研究所 氧化镓肖特基二极管及其制备方法
JP7469201B2 (ja) * 2020-09-18 2024-04-16 株式会社デンソー 半導体装置とその製造方法
US20240249954A1 (en) * 2021-05-13 2024-07-25 Ohio State Innovation Foundation IN SITU DAMAGE FREE ETCHING OF Ga2O3 USING Ga FLUX FOR FABRICATING HIGH ASPECT RATIO 3D STRUCTURES
CN113871454A (zh) * 2021-09-28 2021-12-31 西安电子科技大学芜湖研究院 基于二氧化硅边缘终端的氧化镓肖特基势垒二极管及其制备方法
CN116230743B (zh) * 2022-04-09 2024-02-23 重庆理工大学 一种氧化镓pn异质结二极管
US12074195B1 (en) * 2023-09-22 2024-08-27 Silanna UV Technologies Pte Ltd Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918082A (zh) * 2011-11-09 2014-07-09 株式会社田村制作所 肖特基势垒二极管
EP3301725A1 (en) * 2016-10-03 2018-04-04 Flosfia Inc. Semiconductor device and semiconductor system including semiconductor device
CN109427915A (zh) * 2017-08-24 2019-03-05 流慧株式会社 半导体装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449925A (en) * 1994-05-04 1995-09-12 North Carolina State University Voltage breakdown resistant monocrystalline silicon carbide semiconductor devices
SE9501312D0 (sv) * 1995-04-10 1995-04-10 Abb Research Ltd Method for procucing a semiconductor device
JP4379854B2 (ja) * 2001-10-30 2009-12-09 日鉱金属株式会社 表面処理銅箔
US6596384B1 (en) * 2002-04-09 2003-07-22 International Business Machines Corporation Selectively roughening conductors for high frequency printed wiring boards
US7074643B2 (en) * 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
EP1743373B1 (en) * 2004-03-19 2013-05-08 Fairchild Semiconductor Corporation Schottky diode with durable contact on silicon carbide and method of fabrication
CN101690434B (zh) * 2007-06-26 2011-08-17 株式会社村田制作所 元器件内置基板的制造方法
JP5157843B2 (ja) * 2007-12-04 2013-03-06 住友電気工業株式会社 炭化ケイ素半導体装置およびその製造方法
US20110062450A1 (en) * 2009-09-15 2011-03-17 The University Of Warwick Silicon carbide semiconductor device
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
CN110828553A (zh) * 2014-07-22 2020-02-21 株式会社Flosfia 结晶性半导体膜和板状体以及半导体装置
JP6344718B2 (ja) * 2014-08-06 2018-06-20 株式会社タムラ製作所 結晶積層構造体及び半導体素子
JP6758569B2 (ja) * 2015-03-20 2020-09-23 株式会社タムラ製作所 高耐圧ショットキーバリアダイオード
TWI686952B (zh) * 2015-12-18 2020-03-01 日商Flosfia股份有限公司 半導體裝置
JP2017139293A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 ダイオード
JP7008293B2 (ja) * 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
JP7024433B2 (ja) * 2018-01-19 2022-02-24 富士電機株式会社 不純物導入装置、不純物導入方法及び炭化ケイ素半導体装置の製造方法
US20190295937A1 (en) * 2018-03-20 2019-09-26 Intel Corporation Non-roughened cu trace with anchoring to reduce insertion loss of high speed io routing in package substrate
CN109767990A (zh) * 2018-12-27 2019-05-17 山东大学 一种氧化镓表面载流子浓度调控的方法
CN110265486B (zh) * 2019-06-20 2023-03-24 中国电子科技集团公司第十三研究所 氧化镓sbd终端结构及制备方法
IT202000004696A1 (it) * 2020-03-05 2021-09-05 St Microelectronics Srl METODO DI FABBRICAZIONE DI UN DISPOSITIVO ELETTRONICO IN SiC CON FASI DI MANIPOLAZIONE RIDOTTE, E DISPOSITIVO ELETTRONICO IN SiC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918082A (zh) * 2011-11-09 2014-07-09 株式会社田村制作所 肖特基势垒二极管
EP3301725A1 (en) * 2016-10-03 2018-04-04 Flosfia Inc. Semiconductor device and semiconductor system including semiconductor device
CN109427915A (zh) * 2017-08-24 2019-03-05 流慧株式会社 半导体装置

Also Published As

Publication number Publication date
CN110265486A (zh) 2019-09-20
US11417779B2 (en) 2022-08-16
US20210043778A1 (en) 2021-02-11
WO2020253420A1 (zh) 2020-12-24

Similar Documents

Publication Publication Date Title
CN110265486B (zh) 氧化镓sbd终端结构及制备方法
CN105789047B (zh) 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
CN110190116A (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
US20190109208A1 (en) Enhancement-mode gan-based hemt device on si substrate and manufacturing method thereof
CN110112215A (zh) 兼具栅极电介质和刻蚀阻挡层功能结构的常关型功率器件及其制备方法
CN110197854B (zh) 氧化镓sbd终端结构及制备方法
CN109540987B (zh) 基于凹槽结构的无参比电极GaN基pH传感器及其制备方法
CN106711212B (zh) 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件及其制造方法
CN109873034B (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
CN106229345A (zh) 叠层栅介质GaN基绝缘栅高电子迁移率晶体管及制作方法
CN110164769B (zh) 氧化镓场效应晶体管及其制备方法
CN109037326A (zh) 一种具有p型埋层结构的增强型hemt器件及其制备方法
CN110459595A (zh) 一种增强型AlN/AlGaN/GaN HEMT器件及其制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN110223920B (zh) 氧化镓场效应晶体管及其制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN115410922A (zh) 一种垂直型氧化镓晶体管及其制备方法
WO2021139041A1 (zh) 氧化镓肖特基二极管及其制备方法
CN114725022A (zh) 一种基于GaOx-GaN的CMOS反相器的制备方法
CN209487514U (zh) 一种高质量栅界面的GaN MISFET器件
CN111739801A (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN207664047U (zh) 一种高性能常关型的GaN场效应晶体管
CN102263166A (zh) 采用纳米粒子提高AlGaN基探测器性能的方法
CN107104047A (zh) 氮化镓肖特基二极管的制造方法
CN113451129B (zh) 一种高电子迁移率晶体管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant