[go: up one dir, main page]

CN110106484B - 一种钛合金表面抗热冲刷涂层的制备方法 - Google Patents

一种钛合金表面抗热冲刷涂层的制备方法 Download PDF

Info

Publication number
CN110106484B
CN110106484B CN201910355854.4A CN201910355854A CN110106484B CN 110106484 B CN110106484 B CN 110106484B CN 201910355854 A CN201910355854 A CN 201910355854A CN 110106484 B CN110106484 B CN 110106484B
Authority
CN
China
Prior art keywords
gas
coating
sputtering
titanium alloy
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910355854.4A
Other languages
English (en)
Other versions
CN110106484A (zh
Inventor
黄浩
王敏涓
李虎
黄旭
李臻熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201910355854.4A priority Critical patent/CN110106484B/zh
Publication of CN110106484A publication Critical patent/CN110106484A/zh
Application granted granted Critical
Publication of CN110106484B publication Critical patent/CN110106484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明是一种钛合金表面抗热冲刷涂层的制备方法,该方法采用气相沉积设备分多次沉积在钛合金表面涂覆不同成分,不同组织结构的涂层,有效增加基材使用过程中高温抗热震性能,抗氧化性能,解决了热匹配问题,防止钛合金界面处的应力集中。本发明的步骤是:1.在钛合金表面沉积界面结合层;2.在界面结合层表面沉积组元梯度涂层;3.在组元梯度涂层表面制备组织梯度涂层;3.在组织梯度涂层表面制备抗磨损复合涂层。本发明的优点是:采用PVD涂层技术,制备四种不同组织成分梯度的涂层,可以有效的防止热冲刷,其中涉及多钟材质的靶材,操作简单。

Description

一种钛合金表面抗热冲刷涂层的制备方法
技术领域
本发明涉及一种钛合金表面抗热冲刷涂层的制备方法或气相沉积方法,该涂层有效增加基材使用过程中高温抗热震性能,抗氧化性能,解决了不同材质热匹配问题,防止钛合金界面处的应力集中,属于材料的表面处理技术领域。
背景技术
武器装备用钛合金表面抗热冲刷涂层是影响武器装备长期稳定使用的关键,现有涂层主要为陶瓷、钨合金、钽等,但合金涂层硬度及抗高温冲刷性能较差,陶瓷涂层难以制备,无法满足武器的使用需求。
制退器2000年以前采用高温钢作为基材,70年代通过电镀的方法涂覆Cr,80年代在Cr涂层表面进行氮化处理,90年代通过PVD的方法制备Ta、W、Ta/Cr、Ta-W、Ta-Cr涂层,改善了界面结合力,当前尝试采用高温氧化物、氮化物、碳化物涂覆在钢材表面。采用钛合金为基材的制退器是近两年的热点,由于其高温下低的强度,易被高温冲蚀,目前尝试用W、NiCrAlY、氧化物陶瓷作为钛合金表面抗热冲刷涂层,但均无法满足武器的使用需求。
TiAlN及Ti3AlN具有优良的高温抗氧化性、高温力学强度和热稳定性,且与钛合金基体结合性好,是理想的钛合金基材表面的高温抗冲刷涂层。TiAlN具有比Ti3AlN更高的硬度,而Ti3AlN具有更好的韧性和更高的热稳定温度。此外,TiAlC/α-C、HfC/α-C和TaC/α-C作为自润滑涂层,具有良好的抗磨损能力。采用pvd方法制备的组元梯度和组织梯度TiAlN或Ti3AlN涂层能有效阻止钛合金基材表面的氧化,具有良好的高温抗热振性和抗冲刷能力,在表面TiAlN或Ti3AlN涂层再涂覆TiAlC/非晶C、HfC/非晶C或TaC/非晶C后还能提高其抗磨损能力。
发明内容
本发明的目的是:在钛合金表面制备TiAl(或Ti3Al)+组元梯度TiAlN(或Ti3AlN)+组织梯度TiAlN(或Ti3AlN)+抗磨损涂层。该涂层可以有效增加基材使用过程中高温抗热震性能,抗氧化性能,解决了热匹配问题,防止钛合金界面处的应力集中。保证该材料具有良好的抗热冲刷性能。
本发明的技术方案是:
提供一种钛合金表面抗热冲刷涂层的制备方法,该方法的操作步骤如下:
步骤1、在磁控溅射设备中,对钛合金基材进行沉积,采用TiAl或Ti3Al作为溅射靶材;在钛合金基材表面沉积出TiAl或Ti3Al的界面结合层,其中工作气体为Ar气;
步骤2、在界面结合层表面沉积出TiAlN或Ti3AlN组元梯度涂层,其中工作气体为Ar气和N2气的混合气体;
步骤3、在组元梯度涂层表面沉积出TiAlN或Ti3AlN的组织梯度涂层,其中工作气体为Ar气和N2气的混合气体,步骤3中Ar气和N2气的混合气体中N2气与Ar气的质量比高于步骤2中的N2气与Ar气的质量比;
步骤4、采用TiAl、Ti3Al、Ta或Hf作为溅射靶材;在组织梯度涂层表面沉积出碳化物和非晶碳复合材料涂层,其中工作气体为Ar气和CH4气的混合气体。
进一步的,步骤1中对钛合金基材进行沉积之前,对沉积区域的钛合金基材表面进行抛光处理。更优选地,在抛光处理后对抛光区域进行清洗,清洗采用丙酮、酒精和去离子水。
进一步的,步骤1中磁控溅射的背底真空高于10-4Pa后,基材加温至300~600℃,靶基距为30~150mm,溅射压强为0.4~2Pa,偏压-100V~-250V,溅射电流密度20~60mA/cm2,溅射时间0.5~3h,结合层厚度为5~10μm。
进一步的,步骤2中溅射压强为0.4~2Pa,靶基距为30~150mm,偏压为-150V~-250V,溅射电流密度20~60mA/cm2;混合气体中N2气与Ar气的质量比为5%~60%。
进一步的,步骤2的混合气体中N2气与Ar气的质量比从第一阶段逐级提高到第五阶段:第一阶段的质量比为3%~8%,第二阶段的质量比为5%~15%,第三阶段的质量比为10%~25%,第四阶段的质量比为20%~35%,第五阶段的质量比为30%~60%,溅射时间1.5~4h,致密组元梯度涂层的厚度为2~5μm。
进一步的,步骤3中混合气体的N2气与Ar气的质量比为30%~60%,溅射压强为0.4~2Pa,溅射电流密度20~60mA/cm2,靶基距为30~150mm,偏压-40V~-250V。
进一步的,步骤3中偏压从第一阶段逐级提高到第四阶段:第一阶段偏压为-200V~-250V,第二阶段偏压为-150V~-200V,第三阶段偏压为-100V~-150V,第四阶段偏压为-40V~-100V,溅射时间5~8h,组织梯度涂层的厚度为10~30μm。
进一步的,步骤4中靶基距为30~150mm,混合气体中CH4气与Ar气质量比为5%~20%,溅射压强为0.4~2Pa,溅射电流密度20~60mA/cm2,偏压0V~-200V,溅射时间0.5~1.5h,碳化物和非晶碳复合材料涂层厚度为1~3μm。
基体钛合金的表面形成TiAl或Ti3Al结合层,结合层为致密组织,防止基体钛合金发生氧化,导致涂层的剥落,同时,TiAl或Ti3Al能够调节基体钛合金及组元梯度涂层之间的热膨胀系数差及模量差,保持整个涂层结构具有低的热残余应力,提高涂层抗热震性能。
致密组元梯度涂层为致密结构,防止氧化的产生,通过调节N2气的流量实现N的组元梯度,是为了获得梯度的热膨胀系数、硬度、模量,防止界面处由于硬度、模量差距过大,造成应力集中。
组织梯度涂层的结构为从致密组织过渡到疏松柱状晶组织,提高本涂层与致密组元梯度涂层的结合力,同时疏松柱状晶组织具有规则孔隙率及优异的抗热震性能。
碳化物和非晶碳复合材料涂层主要成分为TaC和非晶碳、HfC合非晶碳、TiAlC和非晶碳或Ti3AlC和非晶碳(对应Ta、Hf、TiAl或Ti3Al靶材),该复合涂层具有低的摩擦系数及自润滑作用,防止涂层使用过程中,表面由于碰撞产生的冲击磨损。
本发明的优点是:第一,采用化学气相沉积的方法在SiC纤维C涂层表面上生长出石墨烯墙来增加表面积,在不引入有害元素的情况下,能增强界面结合强度。
第二,石墨烯墙的厚度能通过沉积条件高度可控,仅通过石墨烯墙的厚度便于对复合材料中界面结合强度的优化,便于制备出高性能的SiC纤维增强钛基复合材料。
第三,化学气相沉积与物理气相沉积相结合的方法,可控度高,石墨烯墙的厚度和钛合金涂层的厚度都具有高重复性和高可控性,工艺简单、洁净、高效,便于产业化。
具体实施方式
下面对本发明做进一步详细说明。
实施例1
该种在钛合金表面制备高温抗热冲刷涂层的操作步骤如下:
(1)将钛合金基材①表面抛光,采用丙酮、酒精、去离子水进行表面清洗,放入PVD设备中,开真空系统,背底真空高于10-4Pa后,基材加温至300℃,采用TiAl作为溅射靶材,靶基距30mm,通入Ar溅射气体,溅射压强调整为0.4Pa,偏压-250V,溅射电流密度30mA/cm2,溅射时间2h,实现在钛合金基材表面涂覆10μm致密TiAl结合层;
(2)通入Ar气和N2气的混合气体,溅射压强为0.4Pa,靶基距30mm,偏压-200V,溅射电流密度20mA/cm2,采用TiAl作为溅射靶材,梯度控制N2/Ar比例:第一阶段N2/Ar质量比为3%,第二阶段N2/Ar比例为8%,第三阶段N2/Ar比例为20%,第四阶段N2/Ar比例为30%,第五阶段N2/Ar比例为50%,溅射时间4h,实现在结合层②表面涂覆5μm致密组元梯度的TiAlN涂层;
(3)保持N2/Ar比例50%,溅射压强为0.4Pa,溅射电流密度50mA/cm2,靶基距30mm,采用TiAl作为溅射靶材,梯度控制偏压:第一阶段偏压-250V,第二阶段偏压-180V,第三阶段偏压-120V,第四阶段偏压-60V,溅射时间8h,实现在致密组元梯度涂层③表面涂覆30μm组织梯度的TiAlN涂层;
(4)关闭N2气,通入Ar气和CH4气的混合气体,采用TiAl作为溅射靶材,靶基距30mm,保持CH4/Ar比例为10%,溅射压强为0.4Pa,溅射电流密度20mA/cm2,偏压0V,溅射时间0.5h,实现在组织梯度涂层④表面涂覆1μmTiAlC/非晶碳复合材料涂层;
(5)试验结束后,关闭溅射电源及气体,冷却2小时后关闭循环水和总电源。
此涂层具有更高的硬度且工艺简单。
实施例2
该种在钛合金表面制备高温抗热冲刷涂层的操作步骤如下:
(1)将钛合金基材①表面抛光,采用丙酮、酒精、去离子水进行表面清洗,放入PVD设备中,开真空系统,背底真空高于10-4Pa后,基材加温至600℃,采用TiAl作为溅射靶材,靶基距60mm,通入Ar溅射气体,溅射压强调整为0.8Pa,偏压-200V,溅射电流密度40mA/cm2,溅射时间1h,实现在钛合金基材表面涂覆7μm TiAl结合层;
(2)通入Ar气和N2气的混合气体,溅射压强为0.8Pa,靶基距60mm,偏压-200V,溅射电流密度40mA/cm2,采用TiAl作为溅射靶材,梯度控制N2/Ar比例:第一阶段N2/Ar比例为5%,第二阶段N2/Ar比例为10%,第三阶段N2/Ar比例为15%,第四阶段N2/Ar比例为30%,第五阶段N2/Ar比例为60%,溅射时间1.5h,实现在结合层表面涂覆2μm致密组元梯度的TiAlN涂层;
(3)保持N2/Ar比例60%,溅射压强为0.8Pa,溅射电流密度40mA/cm2,靶基距60mm,采用TiAl作为溅射靶材,梯度控制偏压:第一阶段偏压-220V,第二阶段偏压-180V,第三阶段偏压-150V,第四阶段偏压-40V,溅射时间6h,实现在致密组元梯度涂层表面涂覆20μm组织梯度的TiAlN涂层;
(4)关闭N2气,通入Ar气和CH4气的混合气体,采用Ta或Hf作为溅射靶材,靶基距60mm,保持CH4/Ar比例为20%,溅射压强为0.8Pa,溅射电流密度30mA/cm2,偏压-50V,溅射时间1h,实现在组织梯度涂层④表面涂覆2μmTaC/非晶碳或HfC/非晶碳复合材料涂层;
(5)试验结束后,关闭溅射电源及气体,冷却2小时后关闭循环水和总电源。
此涂层具有良好的抗磨损性能。
实施例3
该种在钛合金表面制备高温抗热冲刷涂层的操作步骤如下:
(1)将钛合金基材表面抛光,采用丙酮、酒精、去离子水进行表面清洗,放入PVD设备中,开真空系统,背底真空高于10-4Pa后,基材加温至400℃,采用Ti3Al作为溅射靶材,靶基距150mm,通入Ar溅射气体,溅射压强调整为1.2Pa,偏压-150V,溅射电流密度20mA/cm2,溅射时间3h,实现在钛合金基材表面涂覆10μm Ti3Al结合层;
(2)通入Ar气和N2气的混合气体,溅射压强为1.2Pa,靶基距150mm,偏压-150V,溅射电流密度20mA/cm2,采用Ti3Al作为溅射靶材,梯度控制N2/Ar比例:第一阶段N2/Ar比例为8%,第二阶段N2/Ar比例为15%,第三阶段N2/Ar比例为25%,第四阶段N2/Ar比例为35%,第五阶段N2/Ar比例为40%,溅射时间4h,实现在结合层表面涂覆4μm致密组元梯度的Ti3AlN涂层;
(3)保持N2/Ar比例40%,溅射压强为1.2Pa,溅射电流密度60mA/cm2,靶基距150mm,采用Ti3Al作为溅射靶材,梯度控制偏压:第一阶段偏压-220V,第二阶段偏压-200V,第三阶段偏压-120V,第四阶段偏压-100V,溅射时间6h,实现在致密组元梯度涂层表面涂覆25μm组织梯度的Ti3AlN涂层;
(4)关闭N2气,通入Ar气和CH4气的混合气体,采用Ti3Al作为溅射靶材,靶基距150mm,保持CH4/Ar比例为5%,溅射压强为1.2Pa,溅射电流密度60mA/cm2,偏压-120V,溅射时间1.5h,实现在组织梯度涂层表面涂覆3μmTi3AlC/非晶碳复合材料涂层;
(5)试验结束后,关闭溅射电源及气体,冷却2小时后关闭循环水和总电源。
此涂层具有良好的柔韧性且工艺简单。
实施例4
该种在钛合金表面制备高温抗热冲刷涂层的操作步骤如下:
(1)将钛合金基材表面抛光,采用丙酮、酒精、去离子水进行表面清洗,放入PVD设备中,开真空系统,背底真空高于10-4Pa后,基材加温至600℃,采用Ti3Al作为溅射靶材,靶基距120mm,通入Ar溅射气体,溅射压强调整为2Pa,偏压-100V,溅射电流密度60mA/cm2,溅射时间0.5h,实现在钛合金基材表面涂覆5μm Ti3Al结合层;
(2)通入Ar气和N2气的混合气体,溅射压强为2Pa,靶基距120mm,偏压-200V,溅射电流密度60mA/cm2,采用Ti3Al作为溅射靶材,梯度控制N2/Ar比例:第一阶段N2/Ar比例为3%,第二阶段N2/Ar比例为5%,第三阶段N2/Ar比例为10%,第四阶段N2/Ar比例为20%,第五阶段N2/Ar比例为30%,溅射时间3h,实现在结合层表面涂覆3μm致密组元梯度的Ti3AlN涂层;
(3)保持N2/Ar比例30%,溅射压强为2Pa,溅射电流密度20mA/cm2,靶基距120mm,采用Ti3Al作为溅射靶材,梯度控制偏压:第一阶段偏压-200V,第二阶段偏压-150V,第三阶段偏压-100V,第四阶段偏压-40V,溅射时间5h,实现在致密组元梯度涂层表面涂覆10μm组织梯度的Ti3AlN涂层;
(4)关闭N2气,通入Ar气和CH4气的混合气体,采用Ta或Hf作为溅射靶材,靶基距120mm,保持CH4/Ar比例为18%,溅射压强为2Pa,溅射电流密度50mA/cm2,偏压-200V,溅射时间1h,实现在组织梯度涂层④表面涂覆2μmTaC/非晶碳或HfC/非晶碳复合材料涂层;
(5)试验结束后,关闭溅射电源及气体,冷却2小时后关闭循环水和总电源。
此涂层具有更高的抗热冲刷温度。

Claims (6)

1.一种钛合金表面抗热冲刷涂层的制备方法,该方法的操作步骤如下:
步骤1、在磁控溅射设备中,对钛合金基材进行沉积,采用TiAl或Ti3Al作为溅射靶材;在钛合金基材表面沉积出TiAl或Ti3Al的结合层,其中工作气体为Ar气;磁控溅射的背底真空高于10-4Pa后,基材加温至300~600℃,靶基距为30~150mm,溅射压强为0.4~2Pa,偏压-100V~-250V,溅射电流密度20~60mA/cm2,溅射时间0.5~3h,结合层厚度为5~10μm;
步骤2、在结合层表面沉积出TiAlN或Ti3AlN致密组元梯度涂层,其中工作气体为Ar气和N2气的混合气体;溅射压强为0.4~2Pa,靶基距为30~150mm,偏压为-150V~-250V,溅射电流密度20~60mA/cm2;混合气体中N2气与Ar气的质量比为5%~60%;
步骤3、在致密组元梯度涂层表面沉积出TiAlN或Ti3AlN的组织梯度涂层,其中工作气体为Ar气和N2气的混合气体,步骤3中Ar气和N2气的混合气体中N2气与Ar气的质量比高于步骤2中的N2气与Ar气的质量比;混合气体的N2气与Ar气的质量比为30%~60%,溅射压强为0.4~2Pa,溅射电流密度20~60mA/cm2,靶基距为30~150mm,偏压-40V~-250V;
步骤4、采用TiAl、Ti3Al、Ta或Hf作为溅射靶材;在组织梯度涂层表面沉积出碳化物和非晶碳复合材料涂层,其中工作气体为Ar气和CH4气的混合气体;靶基距为30~150mm,混合气体中CH4气与Ar气质量比为5%~20%,溅射压强为0.4~2Pa,溅射电流密度20~60mA/cm2,偏压0V~-200V,溅射时间0.5~1.5h,碳化物和非晶碳复合材料涂层厚度为1~3μm。
2.根据权利要求1所述的一种钛合金表面抗热冲刷涂层的制备方法,其特征在于:步骤1中对钛合金基材进行沉积之前,对沉积区域的钛合金基材表面进行抛光处理。
3.根据权利要求1所述的一种钛合金表面抗热冲刷涂层的制备方法,其特征在于:在抛光处理后对抛光区域进行清洗,清洗采用丙酮、酒精和去离子水。
4.根据权利要求1所述的一种钛合金表面抗热冲刷涂层的制备方法,其特征在于:步骤2的混合气体中N2气与Ar气的质量比从第一阶段逐级提高到第五阶段:第一阶段的质量比为3%~8%,第二阶段的质量比为5%~15%,第三阶段的质量比为10%~25%,第四阶段的质量比为20%~35%,第五阶段的质量比为30%~60%,溅射时间1.5~4h,致密组元梯度涂层的厚度为2~5μm。
5.根据权利要求1所述的一种钛合金表面抗热冲刷涂层的制备方法,其特征在于:步骤3中偏压从第一阶段逐级提高到第四阶段:第一阶段偏压为-200V~-250V,第二阶段偏压为-150V~-200V,第三阶段偏压为-100V~-150V,第四阶段偏压为-40V~-100V,溅射时间5~8h,组织梯度涂层的厚度为10~30μm。
6.根据权利要求1所述的一种钛合金表面抗热冲刷涂层的制备方法,其特征在于:步骤3中所述偏压从-250V逐渐升高-40V。
CN201910355854.4A 2019-04-29 2019-04-29 一种钛合金表面抗热冲刷涂层的制备方法 Active CN110106484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910355854.4A CN110106484B (zh) 2019-04-29 2019-04-29 一种钛合金表面抗热冲刷涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910355854.4A CN110106484B (zh) 2019-04-29 2019-04-29 一种钛合金表面抗热冲刷涂层的制备方法

Publications (2)

Publication Number Publication Date
CN110106484A CN110106484A (zh) 2019-08-09
CN110106484B true CN110106484B (zh) 2021-05-14

Family

ID=67487494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910355854.4A Active CN110106484B (zh) 2019-04-29 2019-04-29 一种钛合金表面抗热冲刷涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110106484B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708857B (zh) * 2020-12-16 2022-10-11 中国航发北京航空材料研究院 具有应变容限和耐磨性的涂层结构及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962947A (zh) * 2005-11-08 2007-05-16 中国科学院金属研究所 一种金属材料防护方法之一
JP2018051705A (ja) * 2016-09-29 2018-04-05 三菱マテリアル株式会社 表面被覆切削工具
CN106947970A (zh) * 2017-03-23 2017-07-14 华东理工大学 一种钛及钛合金表面制备细晶Ti3Al/TiN梯度涂层的方法和装置
CN107201499B (zh) * 2017-05-26 2019-09-17 东北大学 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法

Also Published As

Publication number Publication date
CN110106484A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN107227441B (zh) 一种基于反应溅射迟滞效应的TiAlSiN涂层制备方法
CN101596607B (zh) TiZrN涂层刀具及其制备方法
CN107130222B (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
CN109504940B (zh) 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
CN106086806B (zh) 一种AlTiCrN高温耐磨涂层及其制备方法
CN108468028B (zh) 一种周期性多层结构AlTiYN/AlCrSiN硬质涂层及其制备方法和应用
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN110306190A (zh) 一种多元纳米梯度涂层刀具及其制备方法
CN110129741B (zh) 一种多元纳米叠层涂层刀具及其制备方法
CN103789726B (zh) 与工具表面结合牢固的AlTiCrN/MoN纳米多层涂层及其制备方法
CN106756849A (zh) 一种具有过渡金属硼化物涂层的pcb用微钻及其制备方法
CN109097731B (zh) 一种AlCrN/AlCrYN多元多层涂层及其制备方法和应用
CN111647856B (zh) 一种AlCrTiSiN/AlCrTiSiON多层复合涂层的制备工艺
CN110578122A (zh) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN109097743A (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
CN103882386A (zh) 一种具有超高硬度的基体保护涂层及其制备方法
CN102766846B (zh) AN/Cr1-xAlxN/Cr30(Al,Y)70N硬质梯度涂层及其制备方法
CN110106484B (zh) 一种钛合金表面抗热冲刷涂层的制备方法
CN103938157A (zh) 一种ZrNbAlN超晶格涂层及制备方法
CN111020497B (zh) 一种周期性多层结构AlTiN/AlCrO涂层及其制备方法
CN111549322B (zh) 一种AlCrTiSiN/AlCrTiSiON多层复合涂层及其制备工艺
CN114000118B (zh) 一种钛合金表面硬度梯度分布层厚可调的氮化层制备方法
CN110656313B (zh) 一种与硬质合金结合牢固的氮化锆铝/氧化铝复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant