[go: up one dir, main page]

CN110031806B - 利用fsk调制的啁啾提高fmcw雷达中的范围精度的系统和方法 - Google Patents

利用fsk调制的啁啾提高fmcw雷达中的范围精度的系统和方法 Download PDF

Info

Publication number
CN110031806B
CN110031806B CN201910011926.3A CN201910011926A CN110031806B CN 110031806 B CN110031806 B CN 110031806B CN 201910011926 A CN201910011926 A CN 201910011926A CN 110031806 B CN110031806 B CN 110031806B
Authority
CN
China
Prior art keywords
frequency
range
radar chirps
consecutive
consecutive radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910011926.3A
Other languages
English (en)
Other versions
CN110031806A (zh
Inventor
阿维克·桑特拉
托马斯·芬克
约翰·彼得·弗斯特纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN110031806A publication Critical patent/CN110031806A/zh
Application granted granted Critical
Publication of CN110031806B publication Critical patent/CN110031806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/286Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses frequency shift keyed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/341Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal wherein the rate of change of the transmitted frequency is adjusted to give a beat of predetermined constant frequency, e.g. by adjusting the amplitude or frequency of the frequency-modulating signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/347Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using more than one modulation frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • H03L7/23Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

提供了利用FSK调制的啁啾提高FMCW雷达中的范围精度的系统和方法。用于确定对象的范围的方法包括:发射连续的雷达啁啾;向连续的雷达啁啾添加频率偏移,该频率偏移是范围频率窗口的一部分;接收返回信号;根据返回信号中的每一个构造频率变换;将频率变换中的每一个加在一起以创建复合频率变换;以及根据在复合频率变换中检测到的频率峰值来内插计算对象的范围。

Description

利用FSK调制的啁啾提高FMCW雷达中的范围精度的系统和 方法
技术领域
本发明总体上涉及利用频移键控(FSK)调制的啁啾来提高调频连续波(FMCW)雷达中的范围(range)精度的系统和方法。
背景技术
在一些雷达系统中,通过发射调频信号、接收该调频信号的反射以及基于调频信号的发射和接收之间的时延和/或频率差确定距离来确定雷达与目标之间的距离。因此,一些雷达系统包括发射RF信号的发射天线、接收RF的接收天线以及用于产生发射信号和接收RF信号的相关RF电路。在一些情况下,可以使用多个天线来利用相控阵技术来实现定向波束。
在工业应用中,精确估计雷达范围是雷达界感兴趣的。在FMCW拉伸处理中,目标范围分辨率及其精度受到雷达带宽的限制。范围分辨率是雷达系统区分同一方位(bearing)但不同范围内的两个或更多个目标的能力。范围分辨率的程度取决于雷达带宽的宽度、发射的脉冲、目标的类型和大小以及接收器和指示器的效率。
发明内容
根据实施方式,一种用于确定对象的范围的方法包括:发射多个连续的雷达啁啾;向多个连续的雷达啁啾中的至少一个雷达啁啾添加频率偏移,使得在多个连续的雷达啁啾中的每一个之间发生频率偏移,频率偏移是范围频率窗口(bin)的一部分;接收相应的多个返回信号;根据多个返回信号构造多个频率变换;将频率变换中的每一个加在一起以创建复合频率变换;以及根据在复合频率变换中检测到的频率峰值来内插计算对象的范围。
根据另一实施方式,一种用于确定对象的范围的系统包括:被配置成用于发射多个连续的雷达啁啾的至少一个天线;发射器,被配置成用于向多个连续的雷达啁啾中的至少一个雷达啁啾添加频率偏移,使得在多个连续的雷达啁啾中的每一个之间发生频率偏移,频率偏移是范围频率窗口的一部分;被配置成用于接收相应的多个返回信号的至少一个天线;以及接收器,被配置成用于根据多个返回信号构造多个频率变换,将频率变换中的每一个加在一起以创建复合频率变换,并且根据在复合频率变换中检测到的频率峰值来内插计算对象的范围。
根据另一实施方式,一种用于确定对象的范围的方法包括:发射多个脉冲;向多个脉冲中的至少一个脉冲添加频率偏移;接收多个返回信号;根据多个返回信号构造多个频率变换;将频率变换中的每一个加在一起以创建复合频率变换;以及根据复合频率变换中的最大频率峰值来确定对象的范围。
附图说明
为了更完整地理解本发明及其优点,现在参考以下结合附图所进行的描述,在附图中:
图1是实施方式雷达系统的框图;
图2是实施方式FMCW雷达的较详细框图;
图3是FMCW雷达啁啾的时序图;
图4是锯齿波线性频率调制扫描信号的时序图;
图5是阶梯波频率调制扫描信号的时序图;
图6A至图6D是根据实施方式的锯齿波频率扫描的时序图;
图7A至图7D是根据实施方式的阶梯波频率扫描的时序图;
图8是示出使用图6A至图6D的锯齿波频率扫描的连续脉冲的时序图;
图9是示出使用图7A至图7D的阶梯波频率扫描的连续脉冲的时序图;
图10是示出使用图6A至图6D的锯齿波频率扫描的多个天线实施方式的时序图;
图11是示出使用图7A至图7D的阶梯波频率扫描的多个天线实施方式的时序图;
图12A至图12D是根据实施方式的返回信号的频移FFT的图;
图13是根据实施方式的N点零插入(zero-inserted)FFT的图;
图14是根据实施方式的根据连续返回脉冲重构的FFT的图;以及
图15至图18是根据实施方式的雷达系统实现的框图。
具体实施方式
图1示出了根据本发明实施方式的雷达系统100。如图所示,雷达收发器装置102被配置成经由发射天线120a和/或发射天线120b发射入射的RF信号,并经由包括接收天线122a至122d的天线阵列接收反射的RF信号。雷达收发器装置102包括耦接到接收天线122a至122d的接收器前端112,耦接到发射天线120a的第一发射器前端104和耦接到发射天线120b的第二发射器前端110。雷达电路106提供要发射到第一发射器前端104和第二发射器前端110的信号,并接收和/或处理由接收器前端112接收的信号。在实施方式中,对象132接收发射的RF信号并产生反射的RF信号。
在实施方式中,第二发射器前端110的输入可以经由由开关109表示的电路在雷达电路106的输出和通信电路108的输出之间选择。当第二发射器前端110接收来自雷达电路106的输入时,第一发射器前端104和第二发射器前端110均可以用于构建全息雷达。
在实施方式中,雷达收发器装置102或者雷达收发器装置102的一部分可以实现在包含第一发射器前端104、第二发射器前端110、接收器前端112以及发射天线120a和120b和接收天线122a至122d的封装中。
在实施方式中,本文公开的雷达系统100以及其它实施方式的操作的频率在约57GHz至约66GHz之间。替选地,实施方式系统也可以在该范围之外的频率下操作。
图2是示例FMCW雷达200的框图。雷达200包括可调谐RF源,例如用于产生RF发射信号st(t)的压控振荡器(VCO)202。RF发射信号st(t)由耦合器204接收,以产生第一RF发射信号和第二RF发射信号。第一RF发射信号由环行器206接收,以通过第一端口传送到天线。第二RF发射信号由混频器212接收。天线208还用于接收接收信号sr(t),该接收信号sr(t)由环行器206接收并通过第二端口传送到混频器212。混频器212产生中频(IF)信号sIF(t)。IF信号是正弦信号,并且目标210的范围R1被嵌入在频率和相位中。IF信号由放大器214接收并由滤波器216滤波。滤波器216的模拟输出信号由A/D转换器218转换成数字信号sIF[n]。IF数字信号由信号处理器220处理以提取范围R1
图3示出了包括发射信号306和接收信号308的FMCW雷达啁啾302的示例。示出了雷达啁啾302的上啁啾部分和下啁啾部分。在实施方式中,仅使用上啁啾部分。图3中还示出了对应于所示的特定发射信号306和接收信号308的中频信号304。
然而,在实施方式中,上啁啾和下啁啾均可以用于通过加上和减去最大FFT指数来估计范围和多普勒精度。范围和多普勒精度均得到改善。以下示出了针对该实施方式的相应频率方程:
f_r=f_max_up-f_max_down以及f_d=f_max_up+f_max_down。
参照图2和图3,系统模型的接收信号处理在以下步骤中解释如下:将接收的雷达信号与发射信号进行混频/拍频(beat)(在时域中相乘)(也称为去啁啾/去斜坡(de-ramping)/去拉伸);由于二阶时间项,来自目标的时延自身表现为拍频正弦频率;得到两个正弦项——通过模拟低通滤波滤除较高阶频率项;对滤波后的信号执行FFT以计算目标的范围;利用加窗、零填充来改善频谱输出;以及使用无频偏线性调频(LFM)脉冲对接收信号进行去拉伸,该无频偏线性调频(LFM)脉冲指的是接收和发射波形相同的第一个脉冲。例如,f0=载波频率=24Ghz或60Ghz,B=带宽=250Mhz或7Ghz,T=啁啾时间=35μs至1.5ms。
图4和图5示出了LFM扫描信号类型的示例。图4示出了锯齿波线性调频扫描信号400,其可以如图所示从时间-T到时间T以及从f0-B的频率到f0+B被发射。图5示出了阶梯波线性调频扫描信号500,其可以如图所示从时间-T到时间T以及从f0-B的频率到f0+B被发射。每个阶梯之间的频率差显示为δf。
现在参照图6A至图6D,示出了根据实施方式的锯齿波频率扫描。相当于所使用的频率窗口的范围的0.25倍的频率偏移被添加到四个连续的LFM发射脉冲。接收信号利用无频偏LFM脉冲被去拉伸。虽然四个连续的LFM发射脉冲被示出为具有所使用的频率窗口的范围的0.25倍的频率偏移,但是也可以使用其他数量的连续LFM发射脉冲。例如,可以使用八个连续的LFM发射脉冲,其频率偏移是所使用的频率窗口的范围的0.125倍。在另一示例中,可以使用十个连续的LFM发射脉冲,其频率偏移是所使用的频率窗口的范围的0.1倍。在又一示例中,可以使用“n”个连续的LFM发射脉冲,其频率偏移是所使用的频率窗口的范围的“1/n”倍。通过增加LFM发射脉冲的数量来提高确定目标的范围的精度。
图6A示出了无频率偏移的锯齿波频率扫描信号(脉冲1)602。图6B示出了锯齿波扫描信号(脉冲2)604,其具有所使用的频率窗口的范围的(N*0.25)倍的第一频率偏移,其中N=1。图6C示出了锯齿波扫描信号(脉冲3)606,其具有所使用的频率窗口的范围的(N*0.25)倍的第二频率偏移,其中N=2。在图6C中还示出了N=1的频率偏移。图6D示出了锯齿波扫描信号(脉冲4)608,其具有所使用的频率窗口的范围的(N*0.25)倍的第三频率偏移,其中N=3。在图6D中还示出了N=1和N=2的频率偏移。
类似地,图7A示出了无频率偏移的阶梯波扫描信号(脉冲1)702。每个阶梯之间的频率差再次被示出为δf。图7B示出了阶梯波扫描信号(脉冲2)704,其具有所使用的频率窗口的范围的(N*0.25)倍的第一频率偏移,其中N=1。图7C示出了阶梯波扫描信号(脉冲3)706,其具有所使用的频率窗口的范围的(N*0.25)倍的第二频率偏移,其中N=2。在图7C中还示出了N=1的频率偏移。图7D示出了阶梯波扫描信号(脉冲4)708,其具有所使用的频率窗口的范围的(N*0.25)倍的第三频率偏移,其中N=3。在图7D中还示出了N=1和N=2的频率偏移。
图8和图9中示出了可以用于例如单个发射天线实施方式的连续的频偏LFM脉冲。图8和图9中所示的连续脉冲实施方式利用了组合LFM和FSK调制来更有效地提高雷达范围分辨率(与不包括频率偏移的连续发射脉冲相比)。连续脉冲一起被处理以进行估计并在范围窗口内内插雷达测量值。如将在下面进一步详细说明的,图8和图9中所示的实施方式减小了距离波门相跨损耗并改善了雷达范围精度。
图8示出了使用先前关于图6A至图6D讨论的锯齿波频率扫描的四个连续脉冲802、804、806和808。第一脉冲(脉冲1)802从第一频率f0扫描到第二频率f1。第二脉冲(脉冲2)804从第一移位频率f0+d扫描到第二移位频率f1+d,其中“d”等于用于分析雷达返回信号的频率窗口的范围的0.25倍。在图8所示的示例实施方式中,回顾到由于使用了四个连续脉冲,所以将偏移设置为窗口范围的0.25倍。如前所述,可以使用具有相应不同的频率偏移“d”的不同数量的连续脉冲。第三脉冲(脉冲3)806从第一移位频率f0+2d扫描到第二移位频率f1+2d。第四脉冲(脉冲4)808从第一移位频率f0+3d扫描到第二移位频率f1+3d。然后,在实施方式中,脉冲序列802、804、806和808被重复并利用单个发射天线发射。
图9示出了使用先前关于图7A至图7D讨论的阶梯波频率扫描的四个连续脉冲902、904、906和908。第一脉冲(脉冲1)902从第一频率f0扫描到第二频率f1。第二脉冲(脉冲2)904从第一移位频率f0+d扫描到第二移位频率f1+d,其中“d”等于用于分析雷达返回信号的频率窗口的范围的0.25倍。在图9所示的示例实施方式中,回顾到由于使用了四个连续脉冲,所以将偏移设置为窗口范围的0.25倍。如前所述,可以使用具有相应不同的频率偏移“d”的不同数量的连续脉冲。第三脉冲(脉冲3)906从第一移位频率f0+2d扫描到第二移位频率f1+2d。第四脉冲(脉冲4)908从第一移位频率f0+3d扫描到第二移位频率f1+3d。然后,在实施方式中,脉冲序列902、904、906和908被重复并利用单个发射天线发射。
在图10和图11中示出了可以用于例如多个发射天线实施方式的连续的频偏LFM脉冲。图10和图11中所示的连续脉冲实施方式还利用了组合LFM和FSK调制来更有效地提高雷达范围分辨率(与不包括频率偏移的连续发射脉冲相比并且与图8和图9的单个天线实施方式相比)。连续脉冲一起被处理以进行估计并在范围窗口内内插雷达测量值。如将在下面进一步详细说明的,图10和图11中所示的实施方式进一步减小了距离波门相跨损耗并改善了雷达范围精度。
图10示出了使用先前关于图6A至图6D讨论的锯齿波频率扫描的四个连续脉冲1002、1004、1006和1008。第一脉冲(发射天线1)1002从第一频率f0扫描到第二频率f1并在第一天线上发射。第二脉冲(发射天线2)1004从第一移位频率f0+d扫描到第二移位频率f1+d并且在第二天线上发射,其中“d”等于用于分析雷达返回信号的频率窗口的范围的0.25倍。在图10所示的示例实施方式中,回顾到由于使用了四个连续脉冲,所以偏移被设置为窗口范围的0.25倍。如前所述,可以使用具有相应不同的频率偏移“d”的不同数量的连续脉冲。第三脉冲(发射天线3)1006从第一移位频率f0+2d扫描到第二移位频率f1+2d,并在第三天线上发射。第四脉冲(发射天线4)1008从第一移位频率f0+3d扫描到第二移位频率f1+3d,并在第四天线上发射。然后,在实施方式中,脉冲序列1002、1004、1006和1008被重复并利用多个发射天线来发射。可以使用其他数量的发射天线和相应的频率偏移。
图11示出了使用先前关于图7A至图7D讨论的阶梯波频率扫描的四个连续脉冲1102、1104、1106和1108。第一脉冲(发射天线1)1102从第一频率f0扫描到第二频率f1并在第一天线上发射。第二脉冲(发射天线2)1104从第一移位频率f0+d扫描到第二移位频率f1+d并且在第二天线上发射,其中“d”等于用于分析雷达返回信号的频率窗口的范围的0.25倍。在图11所示的示例实施方式中,回顾到由于使用了四个连续脉冲,所以将偏移设置为窗口范围的0.25倍。如前所述,可以使用具有相应不同的频率偏移“d”的不同数量的连续脉冲。第三脉冲(发射天线3)1106从第一移位频率f0+2d扫描到第二移位频率f1+2d,并在第三天线上发射。第四脉冲(发射天线4)1108从第一移位频率f0+3d扫描到第二移位频率f1+3d,并在第四天线上发射。然后,在实施方式中,脉冲序列1102、1104、1106和1108被重复并利用多个发射天线来发射。可以使用其他数量的发射天线和相应的频率偏移。
图12A至图12D示出了来自对应于先前描述的发射脉冲的连续返回信号的IF拍频信号的四个FFT。回顾到,发射脉冲和相应的返回信号通过频率偏移进行频率移位,如前所述。图12A示出了通过对应于第一脉冲的第一FFT所看到的每个频率窗口中的多个离散频率点1202。图12B示出了通过对应于第二脉冲的第二FFT所看到的每个频率窗口中的多个离散频率点1204。图12C示出了通过对应于第三脉冲的第三FFT所看到的每个频率窗口中的多个离散频率点1206。图12D示出了通过对应于第四脉冲的第四FFT所看到的每个频率窗口中的多个离散频率点1208。在图12A、12B、12C和12D中的每一个中示出了重构的FFT频谱1200并且在下面进一步详细地说明了重构的FFT频谱1200。虽然图12A至图12D中示出了四个FFT,但是可以根据所使用的连续发射脉冲的数量来使用任何数量。
现在参照图13,根据实施方式,示出了FFT 1302的图和相应的N点零插入FFT 1304的图,其中,N=2。例如图12A至图12D中所示的FFT都是N点零插入的,在这种情况下N=4。在图13中,注意到,在FFT 1302的每个数据点之间存在“零插入”以产生零插入FFT 1304。在图12A至图12D的FFT中,其中N=4,在每个数据点之间存在三个零插入,使得可以通过简单加法来组合所有的频移FFT以产生复合FFT。复合FFT在图14中示出并在下面进一步详细地描述。
图14示出了如前所述根据连续的频移脉冲重构的重构FFT 1200。FFT 1200频谱根据图12A至图12D中所示的各个零插入FFT被交织(interleave)。连续发射脉冲中的固定频率偏移原则上用于在重构的FFT频谱中的范围窗口之间内插FFT测量数据。换句话说,图14中所示的重构的FFT 1200频谱可以揭示在使用不包括频率偏移的脉冲时不明显的峰值。
实线1200表示由目标脉冲响应表示的物理目标响应。这种理想的目标响应仅可以通过连续时间处理来提供。频谱上的虚线点1202、1204、1206和1208表示分别使用第一脉冲、第二脉冲、第三脉冲和第四脉冲上的各个FFT观察到的FFT输出点。注意,在图14的说明性示例中,第三FFT 1206(由2d移位的发射FMCW脉冲产生)捕获频谱的峰值。在传统系统中,返回信号的分析仅限于第一FFT,因此错过了实际/准确的目标峰值频率,因此不利地影响了范围估计(不太准确)。
下面给出根据实施方式的用于解调和发射的啁啾的相关方程:
接收器解调啁啾信号
具有在处的目标的来自脉冲1的接收啁啾
具有初始频移δωc的来自脉冲2的接收啁啾
类似地,来自脉冲3的接收啁啾
类似地,来自脉冲4的接收啁啾
下面给出根据连续脉冲方程的相关IF拍频信号:
来自脉冲1的IF信号
滤除较高频率项,表示目标的瞬时频率为
来自脉冲2的经滤波的IF拍频信号
然后来自脉冲2的瞬时目标频率项是
来自脉冲3和脉冲4的IF信号是
在图15中示出了使用单独的发射和接收锁相环(PLL)1504和1520的系统实现1500A的框图。系统实现1500A包括用于发射路径和接收路径的同步参考时钟1502和1518。
在发射路径中,PLL 1504接收同步时钟信号,并且被耦接到除以N1电路1512和分数斜坡逻辑电路1510。分数斜坡逻辑电路1510使得能够产生频率偏移。PLL 1504的输出由VCO 1506接收。VCO 1506的第一输出由除以N2电路1514接收并由缓冲放大器1516缓冲。缓冲放大器1516的输出耦接到除以N1电路1512的输入。VCO 1506还用于驱动单个发射天线1508。
在接收路径中,PLL 1520接收同步时钟信号,并且被耦接到除以N1电路1530和分数斜坡逻辑电路1528。分数斜坡逻辑电路1528使得能够分析频率偏移。PLL 1520的输出由VCO 1522接收。VCO 1522的第一输出由除以N2电路1532接收并由缓冲放大器1534缓冲。缓冲放大器1534的输出耦接到除以N1电路1530的输入。VCO 1522还耦接到混频器1524。混频器1524还耦接到单个接收天线1526。混频器1524的输出耦接到低通滤波器1536。低通滤波器1536的输出被放大器1538放大,其由ADC 1540转换为数字信号并由信号处理单元1544分析。
在图16中示出了使用单独的发射和接收锁相环(PLL)1504和1520的系统实现1500B的框图。系统实现1500B的描述类似于系统实现1500A的描述,不同之处在于使用了多个天线1508到1548。因此,系统实现1500B可以用于适应先前描述的多个天线操作方法。系统实现1500B包括耦接到VCO 1506的天线选择单元1546,天线选择单元1546又耦接到多个发射天线1508到1548。
在图17中示出了在发射路径中使用数控振荡器(NCO)和在接收路径中使用PLL1520的系统实现1500C的框图。除了NCO以外,系统实现1500C的描述类似于系统实现1500A的描述。系统实现1500C包括用于生成频率偏移的查找表(LUT)1550、DAC 1552和频率转换电路1554。频率转换电路1554接收来自VCO 1522的输出并驱动发射天线1508。
在图18中示出了在发射路径中使用数控振荡器(NCO)和在接收路径中使用PLL1520的系统实现1500D的框图。除了使用多个天线1508到1548之外,系统实现1500D的描述类似于系统实现1500C的描述。因此,系统实现1500D可以用于适应先前描述的多个天线操作方法。系统实现1500D包括耦接到VCO 1522的天线选择单元1546,天线选择单元1546又耦接到多个发射天线1508到1548。
虽然已经参考说明性实施方式描述了本发明,但是该描述并非旨在以限制性的意义来解释。在参考说明书时,说明性实施方式的各种修改和组合以及本发明的其他实施方式对于本领域技术人员将是明显的。因此,所附权利要求旨在涵盖任何这样的修改或实施方式。

Claims (16)

1.一种用于确定对象的范围的方法,包括:
发射多个连续的雷达啁啾;
向所述多个连续的雷达啁啾中的至少一个雷达啁啾添加频率偏移,使得在所述多个连续的雷达啁啾中的每一个之间发生所述频率偏移,所述频率偏移是范围频率窗口的一部分;
接收相应的多个返回信号;
根据所述多个返回信号构造多个频率变换,其中,构造所述多个频率变换包括生成所述多个返回信号中的每个返回信号的频率变换;
将所述多个频率变换中的每一个加在一起以创建复合频率变换;以及
根据在所述复合频率变换中检测到的频率峰值来对所述对象的范围进行内插。
2.根据权利要求1所述的方法,其中,所述多个连续的雷达啁啾中的每一个包括锯齿波频率扫描。
3.根据权利要求1所述的方法,其中,所述多个连续的雷达啁啾中的每一个包括阶梯波频率扫描。
4.根据权利要求1所述的方法,其中,所述多个连续的雷达啁啾的数量通过所使用的频率偏移的数量来确定。
5.根据权利要求1所述的方法,其中,所述多个连续的雷达啁啾在单个天线上被发射。
6.根据权利要求1所述的方法,其中,所述多个连续的雷达啁啾中的每一个在多个天线中的不同的单个相应天线上被发射。
7.根据权利要求1所述的方法,其中,使用第一锁相环来完成向所述对象发射所述多个连续的雷达啁啾,并且使用第二锁相环来完成从所述对象接收所述相应的多个返回信号。
8.根据权利要求1所述的方法,其中,使用锁相环来完成向所述对象发射所述多个连续的雷达啁啾,并且使用数控振荡器来完成从所述对象接收所述相应的多个返回信号。
9.一种用于确定对象的范围的系统,包括:
被配置成用于发射多个连续的雷达啁啾的至少一个天线;
发射器,被配置成用于向所述多个连续的雷达啁啾中的至少一个雷达啁啾添加频率偏移,使得在所述多个连续的雷达啁啾中的每一个之间发生所述频率偏移,所述频率偏移是范围频率窗口的一部分;
被配置成用于接收相应的多个返回信号的至少一个天线;以及
接收器,被配置成用于根据所述多个返回信号构造多个频率变换,将所述多个频率变换中的每一个加在一起以创建复合频率变换,并且根据在所述复合频率变换中检测到的频率峰值来对所述对象的范围进行内插,其中,构造所述多个频率变换包括生成所述多个返回信号中的每个返回信号的频率变换。
10.根据权利要求9所述的系统,其中,所述多个连续的雷达啁啾中的每一个包括锯齿波频率扫描。
11.根据权利要求9所述的系统,其中,所述多个连续的雷达啁啾中的每一个包括阶梯波频率扫描。
12.根据权利要求9所述的系统,其中,所述多个连续的雷达啁啾的数量通过所述频率偏移的数量来确定。
13.根据权利要求9所述的系统,其中,被配置成用于发射多个连续的雷达啁啾的至少一个天线是单个天线。
14.根据权利要求9所述的系统,其中,被配置成用于发射多个连续的雷达啁啾的至少一个天线包括多个天线,每个天线被配置成用于发射所述多个连续的雷达啁啾中的相应一个雷达啁啾。
15.根据权利要求9所述的系统,其中,所述发射器包括第一锁相环,并且所述接收器包括第二锁相环。
16.根据权利要求9所述的系统,其中,所述发射器包括锁相环,并且所述接收器包括数控振荡器。
CN201910011926.3A 2018-01-11 2019-01-07 利用fsk调制的啁啾提高fmcw雷达中的范围精度的系统和方法 Active CN110031806B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/868,727 US10718860B2 (en) 2018-01-11 2018-01-11 System and method to improve range accuracy in FMCW radar using FSK modulated chirps
US15/868,727 2018-01-11

Publications (2)

Publication Number Publication Date
CN110031806A CN110031806A (zh) 2019-07-19
CN110031806B true CN110031806B (zh) 2024-06-18

Family

ID=65011882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910011926.3A Active CN110031806B (zh) 2018-01-11 2019-01-07 利用fsk调制的啁啾提高fmcw雷达中的范围精度的系统和方法

Country Status (3)

Country Link
US (1) US10718860B2 (zh)
EP (1) EP3511734B1 (zh)
CN (1) CN110031806B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL250253B (en) * 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
US11644529B2 (en) 2018-03-26 2023-05-09 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
IL260694A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
US11585889B2 (en) * 2018-07-25 2023-02-21 Qualcomm Incorporated Methods for radar coexistence
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
DE102020006742A1 (de) * 2019-11-20 2021-05-20 Sew-Eurodrive Gmbh & Co Kg Vorrichtung und Verfahren zur Datenübertragung
US11762077B2 (en) 2019-12-09 2023-09-19 Nxp Usa, Inc. Method and system for frequency offset modulation range division MIMO automotive radar using I-channel only modulation mixer
US11662427B2 (en) * 2019-12-09 2023-05-30 Nxp Usa, Inc. Method and system for frequency offset modulation range division MIMO automotive radar
US12164057B2 (en) * 2019-12-16 2024-12-10 Ay Dee Kay Llc Calibrating array antennas based on signal energy distribution as a function of angle
WO2021233514A1 (en) * 2020-05-18 2021-11-25 Telefonaktiebolaget Lm Ericsson (Publ) Communication node and method for generating modulated signals by backscattering
TWI760808B (zh) * 2020-08-04 2022-04-11 何忠誠 雷達距離探測裝置與方法
CN116490800B (zh) * 2020-09-21 2025-04-01 谷歌有限责任公司 用于活动用户的活动辨识和非活动用户的生命体征监测的使用单个雷达传输模式的智能家居装置
US11693107B2 (en) * 2020-09-29 2023-07-04 Steradian Semiconductors Private Limited System, device and method for efficient MIMO radar
DE102020126735A1 (de) 2020-10-12 2022-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Doppler-LiDAR
US11949763B2 (en) * 2020-11-19 2024-04-02 Steradian Semiconductors Private Limited System, device and method for data compression in a radar system
US12235341B2 (en) * 2021-12-06 2025-02-25 Microsoft Technology Licensing, Llc Radar tracking with greater than range resolution precision

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149596A1 (ja) * 2016-02-29 2017-09-08 三菱電機株式会社 レーダ装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502144A (ja) * 1985-04-08 1987-08-20 ヒユ−ズ・エアクラフト・カンパニ− 高速合成域レ−ダ−処理システム
US5424742A (en) * 1992-12-31 1995-06-13 Raytheon Company Synthetic aperture radar guidance system and method of operating same
US5430445A (en) * 1992-12-31 1995-07-04 Raytheon Company Synthetic aperture radar guidance system and method of operating same
US5608404A (en) * 1993-06-23 1997-03-04 The United States Of America As Represented By The United States Department Of Energy Imaging synthetic aperture radar
US5589838A (en) * 1994-09-06 1996-12-31 The Regents Of The University Of California Short range radio locator system
DE69737354T2 (de) * 1996-10-17 2007-10-31 Saab Bofors Dynamics Ab Verfahren zur störungsunterdrückung in einem fmcw-radar
US6437729B1 (en) * 2000-04-28 2002-08-20 Lockheed Martin Corporation Integrator for radar return signals with high acceleration uncertainty
JP3680029B2 (ja) * 2001-08-08 2005-08-10 三菱重工業株式会社 金属薄膜の気相成長方法およびその気相成長装置
JP2004150825A (ja) * 2002-10-28 2004-05-27 Hitachi Ltd スペクトル分析装置およびスペクトル分析方法
US6828929B2 (en) * 2003-01-30 2004-12-07 Raytheon Company Technique for non-coherent integration of targets with ambiguous velocities
US20060262007A1 (en) * 2004-01-16 2006-11-23 Clariant Technologies, Corp. Methods and apparatus for automotive radar sensors
US8232907B2 (en) * 2004-08-23 2012-07-31 Telephonics Corporation Step frequency high resolution radar
US7683827B2 (en) * 2004-12-15 2010-03-23 Valeo Radar Systems, Inc. System and method for reducing the effect of a radar interference signal
US8026843B2 (en) * 2008-01-31 2011-09-27 Infineon Technologies Ag Radar methods and systems using ramp sequences
US10338210B2 (en) * 2008-04-17 2019-07-02 Aviation Communication & Surveillance Systems Llc Systems and methods for providing GPS alternatives on 1090 MHz
US7986397B1 (en) * 2008-04-30 2011-07-26 Lockheed Martin Coherent Technologies, Inc. FMCW 3-D LADAR imaging systems and methods with reduced Doppler sensitivity
CN101660945B (zh) * 2008-08-27 2013-02-20 中国科学院光电技术研究所 快速图像重构方法
EP2343570A1 (en) * 2010-01-11 2011-07-13 BAE Systems PLC Pulse radar range profile motion compensation
US9024809B2 (en) * 2011-03-17 2015-05-05 Sony Corporation Object detection system and method
JP2013096828A (ja) * 2011-10-31 2013-05-20 Panasonic Corp ドップラーレーダシステム、及び物体検知方法
US9551552B2 (en) * 2012-03-02 2017-01-24 Orbital Atk, Inc. Methods and apparatuses for aerial interception of aerial threats
US9170070B2 (en) * 2012-03-02 2015-10-27 Orbital Atk, Inc. Methods and apparatuses for active protection from aerial threats
US9658321B2 (en) * 2012-06-07 2017-05-23 Hrl Laboratories, Llc Method and apparatus for reducing noise in a coded aperture radar
US9194947B1 (en) * 2012-10-31 2015-11-24 Raytheon Company Radar system using matched filter bank
DE102012220879A1 (de) * 2012-11-15 2014-05-15 Robert Bosch Gmbh Rapid-Chirps-FMCW-Radar
US9529081B2 (en) * 2013-04-03 2016-12-27 The Boeing Company Using frequency diversity to detect objects
DE102013105019A1 (de) * 2013-05-16 2015-02-19 Endress + Hauser Gmbh + Co. Kg Füllstandsmessung mit verbesserter Entfernungsbestimmmung
DE102013210256A1 (de) * 2013-06-03 2014-12-04 Robert Bosch Gmbh Interferenzunterdrückung bei einem fmcw-radar
DE102014213190A1 (de) * 2014-06-10 2015-12-17 Robert Bosch Gmbh Verfahren zur Objektortung mit einem FMCW-Radar
DE102014212284A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh MIMO-Radarmessverfahren
US10254405B2 (en) * 2014-08-15 2019-04-09 The United States Of America As Represented By The Administrator Of Nasa Hyperfine interpolated range finding for CW lidar, radar, and sonar using repeating waveforms and fourier transform reordering
US10094920B2 (en) 2014-08-27 2018-10-09 Texas Instruments Incorporated Range resolution in FMCW radars
US9952313B2 (en) * 2014-09-19 2018-04-24 The Boeing Company Phase calibration of a stepped-chirp signal for a synthetic aperture radar
US10107895B2 (en) * 2014-09-19 2018-10-23 The Boeing Company Amplitude calibration of a stepped-chirp signal for a synthetic aperture radar
DE102015103149B4 (de) * 2015-03-04 2024-06-06 HELLA GmbH & Co. KGaA Radarvorrichtung
US10067221B2 (en) * 2015-04-06 2018-09-04 Texas Instruments Incorporated Interference detection in a frequency modulated continuous wave (FMCW) radar system
CN105738696B (zh) * 2016-04-18 2019-03-05 天津大学 全相位时移相位差频率估计方法及装置
JP6610894B2 (ja) * 2016-06-01 2019-11-27 株式会社デンソーテン 物標検出方法、及び、レーダ装置
CN106054138B (zh) * 2016-07-29 2018-09-21 西安电子科技大学 一种ddma波形的参差多普勒频率偏移选择方法
US10128886B1 (en) * 2016-09-26 2018-11-13 Keysight Technologies, Inc. Radio frequency (RF) receivers and methods to spread spectral energy of spurious outputs
US10132671B2 (en) * 2016-09-30 2018-11-20 Rosemount Tank Radar Ab Pulsed radar level gauge with single oscillator
EP3324201B1 (en) 2016-11-22 2023-03-22 Veoneer Sweden AB A vehicle radar system waveform
US10718861B2 (en) * 2017-09-21 2020-07-21 Hach Company Frequency profiles for non-contact range measurement with multi-scale analysis
IL259190A (en) * 2018-05-07 2018-06-28 Arbe Robotics Ltd System and method for frequency hopping MIMO FMCW imaging radar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149596A1 (ja) * 2016-02-29 2017-09-08 三菱電機株式会社 レーダ装置

Also Published As

Publication number Publication date
EP3511734A1 (en) 2019-07-17
US10718860B2 (en) 2020-07-21
US20190212428A1 (en) 2019-07-11
CN110031806A (zh) 2019-07-19
EP3511734B1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CN110031806B (zh) 利用fsk调制的啁啾提高fmcw雷达中的范围精度的系统和方法
US6646587B2 (en) Doppler radar apparatus
US8169358B1 (en) Coherent multi-band radar and communications transceiver
US9470784B2 (en) Radar device
JP2003315447A (ja) 走査型fmcwレーダのアンテナ切り換え方法及び走査型fmcwレーダ
US5557637A (en) Convolutional ambiguity multiple access (CAMA) transmission system
US5568150A (en) Method and apparatus for hybrid analog-digital pulse compression
US7498975B2 (en) Pulse radar system
WO2020218925A1 (en) Processing of radar signals for fmcw radar
EP4187280B1 (en) A method for performing radar measurements and a radar device
CN114755684A (zh) 一种相位差补偿方法、装置及车载毫米波雷达系统
JP5460290B2 (ja) レーダ装置
Wang et al. Nonlinearity correction for range estimation in FMCW millimeter-wave automotive radar
JP4702117B2 (ja) パルスレーダ装置及び測距方法
US20220350011A1 (en) Radar system and procedures for operating a radar system
CN112859057A (zh) Mimo雷达设备和用于运行mimo雷达设备的方法
JP3366615B2 (ja) パルスレーダ装置
CN210775831U (zh) 雷达
RU2237908C2 (ru) Устройство оптимальной обработки последовательностей широкополосных сигналов с модуляцией несущей частоты
Peek Estimation and compensation of frequency sweep nonlinearity in FMCW radar
US20250076457A1 (en) Multi-channel radar measurement device using time-frequency space distribution
KR101766765B1 (ko) 선형 위상 변위 방식의 반사계 시스템
Ali et al. Design and implementation of FMCW radar using the raspberry Pi single board computer
TWI771103B (zh) 雷達裝置及其訊號接收方法
RU2258939C1 (ru) Способ формирования и сжатия радиосигналов

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant