CN110004339A - 用于受控速率溶解工具的电化活性的原位形成的颗粒 - Google Patents
用于受控速率溶解工具的电化活性的原位形成的颗粒 Download PDFInfo
- Publication number
- CN110004339A CN110004339A CN201910309243.6A CN201910309243A CN110004339A CN 110004339 A CN110004339 A CN 110004339A CN 201910309243 A CN201910309243 A CN 201910309243A CN 110004339 A CN110004339 A CN 110004339A
- Authority
- CN
- China
- Prior art keywords
- magnesium
- weight
- composite material
- base composite
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 62
- 239000000126 substance Substances 0.000 title claims abstract description 51
- 230000000694 effects Effects 0.000 title claims abstract description 43
- 238000004090 dissolution Methods 0.000 title claims description 36
- 239000002245 particle Substances 0.000 title abstract description 91
- 239000002131 composite material Substances 0.000 claims abstract description 137
- 239000000463 material Substances 0.000 claims abstract description 112
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 69
- 239000000654 additive Substances 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 239000011777 magnesium Substances 0.000 claims description 456
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 426
- 229910052749 magnesium Inorganic materials 0.000 claims description 416
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 212
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 154
- 238000000034 method Methods 0.000 claims description 114
- 229910052759 nickel Inorganic materials 0.000 claims description 68
- 239000010949 copper Substances 0.000 claims description 66
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 54
- 229910052802 copper Inorganic materials 0.000 claims description 54
- 230000000996 additive effect Effects 0.000 claims description 44
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 claims description 34
- 239000002244 precipitate Substances 0.000 claims description 25
- 239000010941 cobalt Substances 0.000 claims description 19
- 229910017052 cobalt Inorganic materials 0.000 claims description 19
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 19
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- 239000011701 zinc Substances 0.000 claims description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 150000002739 metals Chemical class 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 239000004411 aluminium Substances 0.000 claims description 10
- 239000011572 manganese Substances 0.000 claims description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 9
- 238000005553 drilling Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 239000002023 wood Substances 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 7
- 239000003129 oil well Substances 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 239000013049 sediment Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000000712 assembly Effects 0.000 claims description 2
- 238000000429 assembly Methods 0.000 claims description 2
- 239000011874 heated mixture Substances 0.000 claims 1
- 239000000956 alloy Substances 0.000 abstract description 84
- 229910045601 alloy Inorganic materials 0.000 abstract description 67
- 238000005266 casting Methods 0.000 abstract description 46
- 238000001816 cooling Methods 0.000 abstract description 37
- 238000001125 extrusion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 230000002708 enhancing effect Effects 0.000 abstract description 9
- 238000005242 forging Methods 0.000 abstract description 6
- 238000005096 rolling process Methods 0.000 abstract description 5
- 239000000155 melt Substances 0.000 abstract description 2
- 238000002844 melting Methods 0.000 description 116
- 230000008018 melting Effects 0.000 description 101
- 230000008569 process Effects 0.000 description 71
- 239000007787 solid Substances 0.000 description 70
- 238000006467 substitution reaction Methods 0.000 description 39
- 239000000243 solution Substances 0.000 description 34
- 230000032683 aging Effects 0.000 description 28
- 239000002923 metal particle Substances 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 12
- 235000013339 cereals Nutrition 0.000 description 11
- 230000001376 precipitating effect Effects 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000004080 punching Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000010907 mechanical stirring Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 229910020108 MgCu2 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000000048 melt cooling Methods 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910017961 MgNi Inorganic materials 0.000 description 1
- 229910017973 MgNi2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Catalysts (AREA)
- Forging (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种使用金属主要合金的可浇铸的、可模塑的和/或可挤出的结构。可将一种或多种添加剂添加到金属主要合金,从而在熔体中或者从熔体冷却时形成原位电化活性的增强颗粒。复合材料包含最佳组成和形貌,以在整体复合材料中获得特殊的电化腐蚀速率。原位形成的电化活性颗粒可用于增强复合材料的机械性质,例如延展性和/或拉伸强度。最终浇铸还可通过热处理以及变形加工(例如挤出、煅造或轧制)来相对于铸造状态的材料进一步改善最终复合材料的强度。
Description
本申请是国际申请号为PCT/US2015/026327、国际申请日为2015年4月17日的PCT国际申请进入中国阶段后国家申请号为201580020103.7的名称为“用于受控速率溶解工具的电化活性的原位形成的颗粒”的中国专利申请的分案申请。
发明领域
本发明涉及用于用作石油钻井中可溶解组件的新颖的镁复合材料。
背景技术
控制下井油井组件在不同溶液中的溶解的能力对于利用不可钻完井工具例如套筒、压裂球、液压致动工具等而言非常重要。用于这种应用的反应性材料已提出了一些时间,其在暴露于酸、盐和/或其它井眼(wellbore)条件时发生溶解或腐蚀。通常,这些组件由改造成溶解或腐蚀的材料组成。批露了溶解聚合物和一些粉末冶金金属,且其广泛地应用于制药工业,用于药物的缓释。此外,已由在体内溶解的金属或聚合物形成一些医疗装置。
虽然在降低完井成本方面现有技术的油井钻探组件已取得了适度成功,但它们具体控制在具体溶液中的溶解速率的一致性和能力以及其它不足例如受限的强度和不良的可靠性,已影响了它们的普遍采纳。理想地,这些组件由低成本的、可放大的方法来制造,并产生受控的腐蚀速率,且与传统的工程合金如铝、镁和铁相比具有相似或增加的强度。理想地,传统的热处理、变形加工和机械加工技术可在不影响这种组件的溶解速率和可靠性的情况下用于所述组件上。
发明内容
本发明涉及用于用作石油钻井中可溶解组件的新颖的镁复合材料,且将具体结合这种应用来描该镁复合材料。如本领域普通技术人员可理解,本发明的新颖镁复合材料可用于其它应用(例如,非油井应用等)。在一种非限制性实施方式中,本发明涉及钻井或完井操作(completion operation)中的球或其它工具组件,例如但不限于,在液压操作中容纳的组件,所述组件在使用之后可以溶解掉,从而无需钻探或除去该组件。管道、阀门、阀门组件、塞子、压裂球和其它形状和组件也可由本发明的新颖镁复合材料来形成。出于本发明之目的,在零件从阀门底座或塞子设置移除其自身或可变得在系统中自由浮起时,测量阀门组件和塞子的主要溶解。例如,当零件是塞子系统中的塞子时,当塞子降解或溶解到塞子不再能用作塞子且由此使得流体绕着塞子流动的点时,发生主要溶解。出于本发明之目的,在零件完全溶解成亚毫米颗粒时,测量次要溶解。如本领域普通技术人员可理解,本发明的新颖镁复合材料可用于也需要在一定时间段之后溶解的功能的其它油井组件。在本发明的一个非限制性方面中,从新颖镁复合材料组合物沉淀电化活性(galvanically-active)的相,并将其用于控制组件的溶解速率;然而,无需如此。新颖镁复合材料通常是可浇铸的和/或可机械加工的,且可用于取代现有的石油和天然气钻机中的金属或塑料组件,包括但不限于水喷射和水力压裂。新颖镁复合材料可进行热处理以及挤出和/或煅造。
在本发明的一个非限制性方面中,新颖镁复合材料用于形成可浇铸的、可模塑的或可挤出的组件。根据本发明的非限制性镁复合材料包含至少50重量%镁。可将一种或多种添加剂添加到镁或镁合金以形成本发明的新颖镁复合材料。可选定一种或多种添加剂且以一定数量使用,从而当镁或镁合金处于熔融状态时和/或在熔体冷却过程中,在镁或镁合金中形成电化活性的中间金属或不溶沉淀物;然而,无需如此。添加的一种或多种添加剂的重量百分数通常小于所述镁或镁合金的重量百分数。通常,镁或镁合金构成镁复合材料的约50.1重量%-99.9重量%以及在那之间的所有数值和范围。在本发明的非限制性方面中,镁或镁合金构成镁复合材料的约60重量%-95重量%,且通常镁或镁合金构成镁复合材料的约70重量%-90重量%。通常,在小于一种或多种添加剂熔点的温度下,将一种或多种添加剂添加到熔融的镁或镁合金。所述一种或多种添加剂通常具有下述平均粒度尺寸:至少约0.1微米,通常不超过约500微米(例如,0.1微米,0.1001微米,0.1002微米…499.9998微米,499.9999微米,500微米)和包含在那之间的任意数值或范围,更通常地是约0.1-400微米,和又更通常地是约10-50微米。在熔融的镁或镁合金中混合一种或多种添加剂的过程中,所述一种或多种添加剂通常不在熔融的镁或镁合金中形成完全的熔体。如本领域普通技术人员可理解,可在大于一种或多种添加剂熔点的温度下,将一种或多种添加剂添加到熔融的镁或镁合金。在形成镁复合材料的这种方法中,一种或多种添加剂与镁和/或镁合金中的其它金属形成次要金属合金(secondary metallic alloy),所述次要金属合金具有大于镁和/或镁合金中其它金属的熔点。当熔融的金属冷却时,这些新形成的次要金属合金开始从熔融的金属沉淀出来,并在冷却的固体镁复合材料中形成原位相到基质相。在混合过程结束以后,冷却熔融的镁或镁合金和在熔融的镁或镁合金中混合的一种或多种添加剂,以形成固体组件。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的添加剂的熔点更小至少约10℃,通常比在添加过程和混合过程中添加到熔融的镁或镁合金的添加剂的熔点更小至少约100℃,更通常的比在添加过程和混合过程中添加到熔融的镁或镁合金的添加剂的熔点更小约100℃-1000℃(以及在那之间的任何数值或范围);然而,无需如此。从未熔融的颗粒和/或新形成的次要金属合金称作熔融的镁复合材料中的原位颗粒形成。这种过程可用来在整体镁复合材料中和/或沿着镁复合材料的晶粒边界实现特殊的电化腐蚀速率。
本发明采用了在传统铸造实施中通常是负面的特征,其中在熔体加工中形成颗粒,其在接触导电流体时腐蚀合金,且借助沉淀硬化嵌入在共熔相中、晶粒边界中和/或甚至在晶粒之内。这个特征使得能控制在最终浇铸中电化活性的相所在的地方,以及原位相和基质相的表面积比例,这使得与粉末冶金或合金复合材料相比,可使用更低的阴极相负载来获得相同的溶解速率。原位形成的电化添加剂可用于增强镁复合材料的机械性质例如延展性,拉伸强度,和/或剪切强度。最终镁复合材料还可通过热处理以及变形加工(例如挤出、煅造或轧制)来相对于铸造状态的(as-cast)材料进一步改善最终复合材料的强度;然而,无需如此。变形加工可用来通过降低镁复合材料的晶粒尺寸,来强化镁复合材料。其它增强例如传统合金热处理(例如固溶化(solutionizing)、老化和/或冷加工)可用来通过下述实现控制溶解速率:在合金微观结构之内沉淀更多或更少的电化活性的相,同时改善机械性质;然而,无需如此。因为电化腐蚀是同时受到阳极相和阴极相之间的电势以及两个相的暴露表面积的影响,还可通过下述来控制腐蚀速率:调节原位形成的粒度而不增加或降低添加物的体积或重量分数和/或通过改变体积/重量分数却不改变粒度。原位粒度控制的实现可通过下述来获得:熔体的机械搅拌、熔体的超声加工、控制冷却速率和/或通过实施热处理。原位粒度还可由或者由辅助加工来改变,例如轧制、煅造、挤出和/或其它变形技术。
在本发明的另一非限制性方面中,可将浇铸的结构制成几乎任何形状。在形成过程中,电化活性的原位相可在整个组件中均匀分散,且可改变晶粒或晶粒边界组成来获得所需的溶解速率。电化腐蚀可改造成只影响晶粒边界和/或也可影响晶粒(基于组成);然而,无需如此。与其它方法相比,这个特征可用于实现使用显著更少的活性(阴极)原位相,来快速溶解高强轻量合金复合材料。
又在本发明的另一和/或替代非限制性方面中,可使用超声加工来控制原位形成的电化活性的相的尺寸;然而,无需如此。
又在本发明的另一和/或替代非限制性方面中,原位形成的颗粒可用作基质强化剂,以与不含添加剂的基础合金相比进一步增加材料拉伸强度;然而,无需如此。
还又在本发明的另一和/或替代非限制性方面中,提供一种控制选自镁和/或镁合金类的金属的溶解性质的方法,所述方法包括下述步骤:a)将镁或镁合金熔融到其固相线以上的点,b)向镁或镁合金加入添加剂材料和/或相,以实现电化活性的中间金属相的原位沉淀,和c)将熔体冷却到固体形式。通常,在当镁或镁合金处于熔融状态时且在小于添加剂材料熔点的温度下,将添加剂材料添加到镁或镁合金。电化活性的中间金属相可用来增强合金的屈服强度;然而,无需如此。原位沉淀的中间金属相的尺寸可通过熔体混合技术和/或冷却速率来控制;然而,无需如此。所述方法可包含下述额外步骤:使镁复合材料暴露于中间金属沉淀以进行至少约300℃的固溶化,以改善拉伸强度和/或改善延展性;然而,无需如此。固溶化温度小于镁复合材料的熔点。通常,固溶化温度小于50℃-200℃(镁复合材料的熔点),且固溶化的时间段是至少0.1小时。在本发明的非限制性方面中,镁复合材料可在300℃-620℃(例如,300℃-500℃等)温度的固溶化温度下暴露约0.5-50小时(例如,1-15小时等)。所述方法可包含下述额外步骤:使镁复合材料暴露于中间金属沉淀,以及在至少约90℃的温度下人工老化镁复合材料,从而改善拉伸强度;然而,无需如此。人工老化过程温度通常小于固溶化温度,人工老化过程温度的时间段通常是至少0.1小时。通常,人工老化过程小于50℃-400℃(固溶化温度)。在本发明的非限制性方面中,镁复合材料可在90℃-300℃(例如,100℃-200℃)的温度下进行约0.5-50小时(例如,1-16小时等)的老化处理。
在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.05-35重量%镍(和在那之间的全部数值或范围)添加到镁或镁合金以形成作为电化活性的原位沉淀的中间金属Mg2Ni。在一种非限制性设置中,镁复合材料包含约0.05-23.5重量%镍,0.01-5重量%镍,3-7重量%镍,7-10重量%镍,或10-24.5重量%镍。当熔融的镁或镁合金温度小于镍熔点时,将镍添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于镍的熔点。在混合过程中,形成Mg2Ni的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Ni固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Ni固体颗粒和任何未形成合金的镍颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的镍的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.05-35重量%铜(和在那之间的全部数值或范围)添加到镁或镁合金以形成作为电化活性的原位沉淀的中间金属CuMg2。在一种非限制性设置中,镁复合材料包含约0.01-5重量%铜,约0.5-15重量%铜,约15-35重量%铜,或约0.01-20重量%。当熔融的镁或镁合金温度小于铜熔点时,将铜添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于铜的熔点。在混合过程中,形成CuMg2的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、CuMg2固体颗粒和任何未形成合金的铜颗粒的混合物,且在固体镁或镁合金中形成CuMg2固体颗粒和任何未形成合金的铜颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的铜的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.05-20重量%钴添加到镁或镁合金以形成作为电化活性的原位沉淀的中间金属CoMg2。当熔融的镁或镁合金温度小于钴熔点时,将钴添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于钴的熔点。在混合过程中,形成CoMg2的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、CoMg2固体颗粒和任何未形成合金的钴颗粒的混合物,且在固体镁或镁合金中形成CoMg2固体颗粒和任何未形成合金的钴颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的钴的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将钴添加到镁或镁合金,其形成作为电化活性的原位沉淀的中间金属MgxCo。当熔融的镁或镁合金温度小于钴熔点时,将钴添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于钴的熔点。在混合过程中,形成CoMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、CoMgx固体颗粒和任何未形成合金的钴颗粒的混合物,且在固体镁或镁合金中形成CoMgx固体颗粒和任何未形成合金的钴颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的钴的熔点更小至少约200℃。
还又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.5-35重量%次要金属(SM)添加到镁或镁合金以形成在剩余浇铸中与镁或镁合金相比是电化活性的中间金属颗粒,在所述剩余浇铸中液相线到固相线之间的冷却速率快于1℃/分钟。当熔融的镁或镁合金温度小于次要金属熔点时,将次要金属添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于次要金属的熔点。在混合过程中,形成SMMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、SMMgx固体颗粒和任何未形成合金的次要金属颗粒的混合物,且在固体镁或镁合金中形成SMMgx固体颗粒和任何未形成合金的次要金属颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的次要金属的熔点更小至少约200℃。如本领域普通技术人员可理解,可将一种或多种次要金属添加到熔融的镁或镁合金。
在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.5-35重量%次要金属(SM)添加到镁或镁合金以形成在剩余浇铸中与镁或镁合金相比是电化活性的中间金属颗粒,在所述剩余浇铸中液相线到固相线之间的冷却速率慢于1℃/分钟。当熔融的镁或镁合金温度小于次要金属熔点时,将次要金属添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于次要金属的熔点。在混合过程中,形成SMMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、SMMgx固体颗粒和任何未形成合金的次要金属颗粒的混合物,且在固体镁或镁合金中形成SMMgx固体颗粒和任何未形成合金的次要金属颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的次要金属的熔点更小至少约200℃。如本领域普通技术人员可理解,可将一种或多种次要金属添加到熔融的镁或镁合金。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.05-35重量%次要金属(SM)添加到镁或镁合金以形成在剩余浇铸中与镁或镁合金相比是电化活性的中间金属颗粒,在所述剩余浇铸中液相线到固相线之间的冷却速率快于0.01℃/分钟且慢于1℃/分钟。当熔融的镁或镁合金温度小于次要金属熔点时,将次要金属添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于次要金属的熔点。在混合过程中,形成SMMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、SMMgx固体颗粒和任何未形成合金的次要金属颗粒的混合物,且在固体镁或镁合金中形成SMMgx固体颗粒和任何未形成合金的次要金属颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的次要金属的熔点更小至少约200℃。如本领域普通技术人员可理解,可将一种或多种次要金属添加到熔融的镁或镁合金。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.05-35重量%次要金属(SM)添加到镁或镁合金以形成在剩余浇铸中与镁或镁合金相比是电化活性的中间金属颗粒,在所述剩余浇铸中液相线到固相线之间的冷却速率快于10℃/分钟。当熔融的镁或镁合金温度小于次要金属熔点时,将次要金属添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于次要金属的熔点。在混合过程中,形成SMMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、SMMgx固体颗粒和任何未形成合金的次要金属颗粒的混合物,且在固体镁或镁合金中形成SMMgx固体颗粒和任何未形成合金的次要金属颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的次要金属的熔点更小至少约200℃。如本领域普通技术人员可理解,可将一种或多种次要金属添加到熔融的镁或镁合金。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.5-35重量%次要金属(SM)添加到镁或镁合金以形成在剩余浇铸中与镁或镁合金相比是电化活性的中间金属颗粒,在所述剩余浇铸中液相线到固相线之间的冷却速率慢于10℃/分钟。当熔融的镁或镁合金温度小于次要金属熔点时,将次要金属添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于次要金属的熔点。在混合过程中,形成SMMgx的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、SMMgx固体颗粒和任何未形成合金的次要金属颗粒的混合物,且在固体镁或镁合金中形成SMMgx固体颗粒和任何未形成合金的次要金属颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比添加到熔融的镁或镁合金的次要金属的熔点更小至少约200℃。如本领域普通技术人员可理解,可将一种或多种次要金属添加到熔融的镁或镁合金。
在本发明的另一和/或替代非限制性方面中,提供镁合金,所述镁合金包含超过50重量%镁且包含选自下组的至少一种金属:约0.5-10重量%量的铝,约0.05-6重量%量的锌,约0.01-3重量%量的锆,和/或约0.15-2重量%量的锰。在一种非限制性制剂中,镁合金包含超过50重量%镁且包含选自下组的至少一种金属:约0.05-6重量%量的锌,约0.05-3重量%量的锆,约0.05-0.25重量%量的锰,约0.0002-0.04重量%量的硼和约0.4-0.7重量%量的铋。然后,可将镁合金加热到熔融的状态,且可将一种或多种次要金属(SM)(例如,铜,镍,钴,钛,硅,铁等)添加到熔融的镁合金,其形成中间金属电化活性的颗粒原位沉淀。电化活性的颗粒可为SMMgx,SMA1x,SMZnx,SMZrx,SMMnx,SMBx SMBix,SM与B、Bi、Mg、Al、Zn、Zr和Mn中任一种的组合。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将选自下组的至少一种金属添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒:约0.05-6重量%量的锌,约0.05-3重量%量的锆,约0.05-0.25重量%量的锰,约0.0002-0.04重量%量的硼和/或约0.4-0.7重量%量的铋。然后,可将镁合金加热到熔融的状态,且可将一种或多种次要金属(SM)(例如,铜,镍,钴,钛,铁等)添加到熔融的镁合金,其形成中间金属电化活性的颗粒原位沉淀。电化活性的颗粒可为SMMgx,SMZnx,SMZrx,SMMnx,SMBx,SMBix,SM与Mg、Zn、Zr、Mn、B和/或Bi中任一种的组合。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁或镁合金,且将约0.01-5重量%量的镍添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于镍熔点时,将镍添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于镍的熔点。在混合过程中,形成Mg2Ni的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Ni固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Ni固体颗粒和任何未形成合金的镍颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的镍的熔点更小至少约200℃。
还又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.3-7重量%量的镍添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于镍熔点时,将镍添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于镍的熔点。在混合过程中,形成Mg2Ni的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Ni固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Ni固体颗粒和任何未形成合金的镍颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的镍的熔点更小至少约200℃。
在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约7-10重量%量的镍添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于镍熔点时,将镍添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于镍的熔点。在混合过程中,形成Mg2Ni的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Ni固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Ni固体颗粒和任何未形成合金的镍颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的镍的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约10-24.5重量%量的镍添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于镍熔点时,将镍添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于镍的熔点。在混合过程中,形成Mg2Ni的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Ni固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Ni固体颗粒和任何未形成合金的镍颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的镍的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且将约0.01-5重量%量的铜添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于铜熔点时,将铜添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于铜的熔点。在混合过程中,形成Mg2Cu的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Cu固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Cu固体颗粒和任何未形成合金的铜颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的铜的熔点更小至少约200℃。
还又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且包括将约0.5-15重量%量的铜添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于铜熔点时,将铜添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于铜的熔点。在混合过程中,形成Mg2Cu的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Cu固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Cu固体颗粒和任何未形成合金的铜颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的铜的熔点更小至少约200℃。
在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且包括将约15-35重量%量的铜添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于铜熔点时,将铜添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于铜的熔点。在混合过程中,形成Mg2Cu的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Cu固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Cu固体颗粒和任何未形成合金的铜颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的铜的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供含超过50重量%镁的镁复合材料,且包括将约0.01-20重量%量的铜添加到镁或镁合金以在镁或镁合金中形成电化活性的中间金属颗粒。当熔融的镁或镁合金温度小于铜熔点时,将铜添加到镁或镁合金。在整个混合过程中,熔融的镁或镁合金的温度小于铜的熔点。在混合过程中,形成Mg2Cu的固体颗粒。一旦混合过程完成之后,冷却熔融的镁或镁合金、Mg2Cu固体颗粒和任何未形成合金的镍颗粒的混合物,且在固体镁或镁合金中形成Mg2Cu固体颗粒和任何未形成合金的铜颗粒的原位沉淀。通常,熔融的镁或镁合金的温度比在添加过程和混合过程中添加到熔融的镁或镁合金的铜的熔点更小至少约200℃。
又在本发明的另一和/或替代非限制性方面中,提供进行热处理的镁复合材料,所述热处理是例如固溶化、老化和/或冷加工且将用于通过在合金微观结构之内沉淀更多或更少电化活性的相来控制溶解速率,同时改善机械性质。老化过程(当使用时)可为至少约1小时,约1-50小时,约1-20小时,或约8-20小时。固溶化(当使用时)可为至少约1小时,约1-50小时,约1-20小时,或约8-20小时。
还又在本发明的另一和/或替代非限制性方面中,提供一种用于控制镁复合材料溶解速率的方法,其中镁含量是至少约75%,添加镍以与镁或镁合金形成至少0.05重量MgNi2的原位沉淀,且在100-500℃的范围之内的温度下将所得金属固溶化0.25-50小时,所述镁复合材料的特征包括与进行所述老化处理但不含镍添加物的金属相比,具有更高的溶解速率。
在本发明的另一和/或替代非限制性方面中,提供一种用于提高镁复合材料物理性质的方法,其中镁含量是至少约85%,添加镍以与镁或镁合金形成至少0.05重量%MgNi2的原位沉淀,且在约100-500℃的温度下将所得金属固溶化0.25-50小时,所述镁复合材料的特征包括与具有相同组成但不含镍含量的镁基础合金相比,具有更高的拉伸强度和屈服强度。
又在本发明的另一和/或替代非限制性方面中,提供一种用于控制镁复合材料溶解速率的方法,其中镁含量是至少约75%,添加铜以与镁或镁合金形成至少0.05重量%MgCu2的原位沉淀,且在100-500℃的范围之内的温度下将所得金属固溶化0.25-50小时,所述镁复合材料的特征包括与进行所述老化处理但不含铜添加物的金属相比,具有更高的溶解速率。
又在本发明的另一和/或替代非限制性方面中,提供一种用于提高镁复合材料物理性质的方法,其中镁或镁合金中镁的总含量是至少约85%,添加铜以与镁或镁复合材料形成至少0.05重量%MgCu2的原位沉淀,且在约100-500℃的温度下将所得金属固溶化0.25-50小时,所述镁复合材料的特征包括与具有相同组成但不含铜含量的镁基础合金相比,具有更高的拉伸强度和屈服强度。
还又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料用于用作水力压裂和钻井中的可溶解的球或压裂球。
在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料用于用作用于钻井和水力控制以及水力压裂中的可溶解工具。
又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料包含对镁或镁合金基质而言不是电化活性的辅助原则形成的增强(secondary instituteformed reinforcement),从而提高镁复合材料的机械性质。辅助原则形成的增强包括Mg2Si相作为原位形成的增强。
在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料从液相线点到固相线点经历更快的冷却速率,从而形成更小的原位形成的颗粒。
又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料从液相线点到固相线点经历更慢的冷却速率,从而形成更大的原位形成的颗粒。
在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料在从液相线点到固相线点的冷却速率过程中经历机械搅拌,从而形成更小的原位形成的颗粒。
又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料在从液相线点到固相线点的冷却速率过程中经历化学搅拌,从而形成更小的原位形成的颗粒。
又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料在从液相线点到固相线点的冷却速率过程中经历超声搅拌,从而形成更小的原位形成的颗粒。
还又在本发明的另一和/或替代非限制性方面中,提供镁复合材料,所述镁复合材料进行变形或挤出,从而进一步改善原位形成的颗粒的分散。
在本发明的另一和/或替代非限制性方面中,提供一种用于形成新颖镁复合材料的方法,所述方法包括下述步骤:a)选定具有9重量%铝、1重量%锌和90重量%镁的AZ91D镁合金,b)将AZ91D镁合金熔融到800℃以上的温度,c)在小于镍熔点的温度下,向熔融的AZ91D镁合金添加最高达约7重量%镍,d)使用化学混合试剂且将温度保持在镍熔点以下,混合镍与熔融的AZ91D镁合金并在熔融的合金中分散镍,和e)在钢模中冷却和浇铸熔融的混合物。浇铸的材料具有约14ksi的拉伸强度、约3%的伸长率(elongation)和11ksi的剪切强度。在90℃的3%KCl溶液中,浇铸的材料具有约75毫克/厘米2-分钟的溶解速率。在21℃的3%KCl溶液中,浇铸的材料以1毫克/厘米2-小时的速率溶解。在90℃的3%KCl溶液中,浇铸的材料以325毫克/厘米2-小时的速率溶解。浇铸的材料可进行具有11:1面积收缩率(reduction area)的挤出。挤出的浇铸的材料呈现40ksi的拉伸强度和12%的失效伸长率。在20℃的3%KCl溶液中,挤出的浇铸材料以0.8毫克/厘米2-分钟的速率溶解。在90℃的3%KCl溶液中,挤出的浇铸材料以100毫克/厘米2-小时的速率溶解。挤出的浇铸材料可经历100℃-200℃之间的16小时的人工T5老化处理。
老化的挤出浇铸材料呈现48Ksi的拉伸强度、5%的失效伸长率和25Ksi的剪切强度。在90℃的3%KCl溶液中,老化的挤出浇铸材料以110毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,老化的挤出浇铸材料以1毫克/厘米2-小时的速率溶解。浇铸的材料可进行400℃-500℃之间的约18小时的固溶化处理T4,然后进行100℃-200℃之间约16小时的人工T6老化处理。老化和固溶化的浇铸材料呈现约34Ksi的拉伸强度、约11%的失效伸长率和约18Ksi的剪切强度。在90℃的3%KCl溶液中,老化和固溶化的浇铸材料以约84毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,老化和固溶化的浇铸材料以约0.8毫克/厘米2-小时的速率溶解。
在本发明的另一和/或替代非限制性方面中,提供一种用于形成新颖镁复合材料的方法,所述方法包括下述步骤:a)选定具有9重量%铝、1重量%锌和90重量%镁的AZ91D镁合金,b)将AZ91D镁合金熔融到800℃以上的温度,c)在小于镍熔点的温度下,向熔融的AZ91D镁合金添加最高达约1重量%镍,d)使用化学混合试剂且将温度保持在镍熔点以下,混合镍与熔融的AZ91D镁合金并在熔融的合金中分散镍,和e)在钢模中冷却和浇铸熔融的混合物。浇铸的材料具有约18ksi的拉伸强度、约5%的伸长率(elongation)和17ksi的剪切强度。在90℃的3%KCl溶液中,浇铸的材料具有约45毫克/厘米2-分钟的溶解速率。在21℃的3%KCl溶液中,浇铸的材料以0.5毫克/厘米2-小时的速率溶解。在90℃的3%KCl溶液中,浇铸的材料以325毫克/厘米2-小时的速率溶解。随后,浇铸的材料进行具有20:1面积收缩率的挤出。挤出的浇铸的材料呈现35ksi的拉伸屈服强度和12%的失效伸长率。在20℃的3%KCl溶液中,挤出的浇铸材料以0.8毫克/厘米2-分钟的速率溶解。在90℃的3%KCl溶液中,挤出的浇铸材料以50毫克/厘米2-小时的速率溶解。挤出的浇铸材料可经历100℃-200℃之间的16小时的人工T5老化处理。老化的挤出浇铸材料呈现48Ksi的拉伸强度、5%的失效伸长率和25Ksi的剪切强度。
又在本发明的另一和/或替代非限制性方面中,提供一种用于形成新颖镁复合材料的方法,所述方法包括下述步骤:a)选定具有约9重量%铝、1重量%锌和90重量%镁的AZ91D镁合金,b)将AZ91D镁合金熔融到800℃以上的温度,c)在小于铜熔点的温度下,向熔融的AZ91D镁合金添加最高达约10重量%铜,d)使用化学混合试剂且在小于铜熔点的温度下,在熔融的AZ91D镁合金中分散铜,和e)在钢模中冷却和浇铸熔融的混合物。浇铸的材料呈现约14ksi的拉伸强度、约3%的伸长率和11ksi的剪切强度。在90℃的3%KCl溶液中,浇铸的材料以约50毫克/厘米2-小时的速率溶解。在21℃的3%KCl溶液中,浇铸的材料以0.6毫克/厘米2-小时的速率溶解。浇铸的材料可进行100-200℃温度下约16小时的人工T5老化处理。老化的浇铸材料呈现50Ksi的拉伸强度、5%的失效伸长率和25Ksi的剪切强度。在90℃的3%KCl溶液中,老化的浇铸材料以40毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,老化的浇铸材料以0.5毫克/厘米2-小时的速率溶解。
如附图所示,根据下文的本发明的优选的实施方式的详细描述,本发明的这些和其它目的、特征和优势将变得显而易见。
附图简要说明
图1-3显示具有润湿到镁基质的电化活性的原位形成的中间金属相的典型浇铸的微观结构;和,
图4显示形成中间金属Mgx(M)的原位形成的颗粒的典型相图,其中M是元素周期表中的任何元素或者在镁基质中的任何化合物,且其中M的熔点大于Mg的熔点。
发明详述
本发明涉及新颖镁复合材料,其可用来形成可浇铸的、可模塑的或可挤出的组件。所述镁复合材料包含至少50重量%镁。通常,所述镁复合材料包含超过50重量%镁和小于约99.5重量%镁以及在那之间的所有数值和范围。可将一种或多种添加剂添加到镁或镁合金以形成本发明的新颖镁复合材料。可选定一种或多种添加剂且以一定数量使用,从而当镁或镁合金处于熔融状态时和/或在熔体冷却过程中,在镁或镁合金中形成电化活性的中间金属或不溶沉淀物;然而,无需如此。在小于所述一种或多种添加剂熔点的温度下,将一种或多种添加剂添加到熔融的镁或镁合金。在熔融的镁或镁合金中混合一种或多种添加剂的过程中,所述一种或多种添加剂不在熔融的镁或镁合金中形成完全的熔体。在混合过程结束以后,冷却熔融的镁或镁合金和在熔融的镁或镁合金中混合的一种或多种添加剂,以形成固体组件。如图1-3所示,熔体中的这种形成称作原位颗粒形成。这种过程可用来在整体镁复合材料中和/或沿着镁复合材料的晶粒边界实现特殊的电化腐蚀速率。这个特征使得能控制在最终浇铸中电化活性的相所在的地方,以及原位相和基质相的表面积比例,这使得与粉末冶金或合金复合材料相比,可使用更低的阴极相负载来获得相同的溶解速率。原位形成的电化添加剂可用于增强镁复合材料的机械性质例如延展性,拉伸强度,和/或剪切强度。最终镁复合材料还可通过热处理以及变形加工(例如挤出、煅造或轧制)来相对于铸造状态的材料进一步改善最终复合材料的强度;然而,无需如此。变形加工可用来通过降低镁复合材料的晶粒尺寸,来强化镁复合材料。其它增强例如传统合金热处理(例如固溶化(solutionizing)、老化和/或冷加工)可用来通过下述实现控制溶解速率:在合金微观结构之内沉淀更多或更少的电化活性的相,同时改善机械性质;然而,无需如此。因为电化腐蚀是同时受到阳极相和阴极相之间的电势以及两个相的暴露表面积的影响,还可通过下述来控制腐蚀速率:调节原位形成的粒度而不增加或降低添加物的体积或重量分数和/或通过改变体积/重量分数却不改变粒度。原位粒度控制的实现可通过下述来获得:熔体的机械搅拌、熔体的超声加工、控制冷却速率和/或通过实施热处理。原位粒度还可由或者由辅助加工来改变,例如轧制、煅造、挤出和/或其它变形技术。更小粒度可用来增加镁复合材料的溶解速率。镁复合材料中原位形成的颗粒或相的重量百分数增加还可用于或者用于增加镁复合材料的溶解速率。用于在镁复合材料中形成原位形成的颗粒或相的相图参见图4。
根据本发明,通过下述来制备新颖镁复合材料:浇铸镁金属或镁合金与至少一种组分,以与在化学上的另一组分形成电化活性的相,其形成离散相,所述离散相在可溶解组件的使用温度下是不溶的。原位形成的颗粒和相具有与其余镁金属或镁合金不同的电化学电势。使用例如触变模塑、搅拌浇铸、机械搅拌、化学搅拌、电润湿、超声分散和/或这些方法的组合的技术,使原位形成的颗粒或相穿过基质金属或金属合金均匀地分散。因为颗粒原位地形成到熔体,所以这种颗粒通常具有和基质相有益的润湿,且取决于合金组成和相图可在晶粒边界中发现或作为整个组件中连续的树枝相。因为合金形成电化中间金属颗粒,其中在使用温度下中间金属相不溶于基质,一旦材料低于固相线温度,无需在组件中进一步分散或控制尺寸。这个特征还实现通过传统变形加工来进一步晶粒增强最终合金,从而提高合金系统中的拉伸强度、失效伸长率和其它性质,这在不使用不溶颗粒添加物的情况下是不能获得的。因为甚至在复合材料变形加工和热处理之后,材料中原位形成的相的比例通常是恒定的,晶粒边界和晶粒表面积的比例通常是一致的,所以在机械加工之后,这种复合材料的腐蚀速率仍然非常相似。
实施例1
将具有9重量%铝、1重量%锌和90重量%镁的AZ91D镁合金熔融到800℃以上以及镍熔点以下至少200℃。将约7重量%镍添加到熔体,并分散。将熔体浇铸进入钢模。浇铸的材料呈现约14ksi的拉伸强度、约3%的伸长率和11ksi的剪切强度。在90℃的3%KCl溶液中,浇铸的材料以约75毫克/厘米2-分钟的速率溶解。在21℃的3%KCl溶液中,所述材料以1毫克/厘米2-小时的速率溶解。在90℃的3%KCl溶液中,所述材料以325毫克/厘米2-小时的速率溶解。
实施例2
将实施例1的复合材料进行具有11:1面积收缩率的挤出。材料呈现45ksi拉伸屈服强度、50ksi的极限拉伸强度和8%的失效伸长率。在20℃的3%KCl溶液中,所述材料具有0.8毫克/厘米2-分钟的溶解速率。在90℃的3%KCl溶液中,所述材料以100毫克/厘米2-小时的速率溶解。
实施例3
使实施例2的合金经历100℃-200℃的16小时的人工T5老化处理。所述合金呈现48Ksi的拉伸强度、5%的失效伸长率和25Ksi的剪切强度。在90℃的3%KCl溶液中,所述材料以110毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,所述材料以1毫克/厘米2-小时的速率溶解。
实施例4
使实施例1的合金进行400℃-500℃下18小时的固溶化处理T4,然后进行100℃-200℃下16小时的人工T6老化处理。所述合金呈现34Ksi的拉伸强度、11%的失效伸长率和18Ksi的剪切强度。在90℃的3%KCl溶液中,所述材料以84毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,所述材料以0.8毫克/厘米2-小时的速率溶解。
实施例5
将具有9重量%铝、1重量%锌和90重量%镁的AZ91D镁合金熔融到800℃以上以及铜熔点以下至少200℃。将约10重量%铜与熔体形成合金,并分散。将熔体浇铸进入钢模。浇铸的材料呈现约14ksi的拉伸屈服强度、约3%的伸长率和11ksi的剪切强度。在90℃的3%KCl溶液中,浇铸的材料以约50毫克/厘米2-小时的速率溶解。在21℃的3%KCl溶液中,所述材料以0.6毫克/厘米2-小时的速率溶解。
实施例6
使实施例5的合金进行100℃-200℃下16小时的人工T5老化处理。所述合金呈现50Ksi的拉伸强度、5%的失效伸长率和25Ksi的剪切强度。在90℃的3%KCl溶液中,所述材料以40毫克/厘米2-小时的速率溶解,且在20℃的3%KCl溶液中,所述材料以0.5毫克/厘米2-小时的速率溶解。
因此可知如上所述的目标,包括从上文的说明书可显然得知的那些目标都有效的达到了,且因为在不偏离本发明的精神和范围的情况下可进行某些变化,所以预期在上文的说明书中所含和在附图中所示的所以东西应理解成说明性的而不是限制性的。已经结合优选和替代的实施方式描述了本发明。在阅读和理解本文提供的发明的详细说明之后,修饰和改变对于本领域技术人员会是显而易见的。本发明包含全部这样的修饰和改变,只要它们在本发明的范围内。还应理解下面的权利要求用于覆盖本文所述的发明的全部上位的和下位的特征,以及本发明的范围的所有陈述,或者在语言上可称作落在本发明的范围之内。已经结合优选的实施方式对本发明进行了描述。这些和本发明的优选的实施方式和其他实施方式的其他修饰根据本文所公开的内容是显见的,从而前述描述的问题指示被解释为本发明的示例而不是限制。本发明包含全部这样的修饰和改变,只要它们在本发明的范围内。
Claims (30)
1.用于钻探或完井操作中的球或其他工具组件的可溶性镁复合材料,所述可溶性镁复合材料包含电化活性中间金属相的原位沉淀以实现所述镁复合材料的受控溶解,所述镁复合材料包含镁或镁合金与添加剂材料的混合物,所述添加剂材料占所述镁复合材料的比例不高于35%,所述添加剂材料为金属或金属合金,所述添加剂材料包含选自铜、镍和钴的一种或多种金属,所述镁复合材料包含包括所述添加剂材料的电化活性中间金属相的原位沉淀,所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为至少40毫克/厘米2/小时。
2.如权利要求1所述的镁复合材料,其中,所述添加剂材料构成所述镁复合材料的0.05重量%-35重量%。
3.如权利要求1所述的镁复合材料,其中,所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为40-325毫克/厘米2/小时。
4.如权利要求1所述的镁复合材料,其中,所述镁合金是包含铝和锌的AZ91D镁合金。
5.如权利要求1所述的方法,其中,所述镁复合材料包含至少85重量%的镁。
6.如权利要求1所述的镁复合材料,其中,所述镁合金包含镁和选自下组的至少一种组分:0.5-10重量%的铝、0.1-2重量%的锌、0.01-1重量%的锆和0.01-2重量%的锰。
7.如权利要求1所述的镁复合材料,其中,所述镁合金包含镁和选自下组的至少一种组分:0.1-3重量%的锌、0.05-1重量%的锆、0.05-0.25重量%的锰、0.0002-0.04重量%的硼和0.4-0.7重量%的铋。
8.如权利要求1所述的镁复合材料,其中,所述添加剂材料包含镍,所述镁复合材料中所述镍的含量为0.3-24.5重量%。
9.如权利要求1所述的镁复合材料,其中,所述添加剂材料包含铜,所述镁复合材料中所述铜的含量为0.01-35重量%。
10.用于钻井或完井操作中的工具组件,所述工具组件由可溶性镁复合材料形成,所述可溶性镁复合材料包含电化活性中间金属相的原位沉淀以实现所述镁复合材料的受控溶解,所述镁复合材料包含镁或镁合金与添加剂材料的混合物,所述添加剂材料占所述镁复合材料的比例不高于35%,所述添加剂材料为金属或金属合金,所述添加剂材料包含选自铜、镍和钴的一种或多种金属,所述镁复合材料包含包括所述添加剂材料的电化活性中间金属相的原位沉淀,所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为至少40毫克/厘米2/小时。
11.如权利要求10所述的工具组件,其中,该工具组件为球、管道或塞子。
12.如权利要求10所述的工具组件,其中,所述添加剂材料构成所述镁复合材料的0.05-35重量%。
13.如权利要求10所述的工具组件,其中,所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为40-325毫克/厘米2/小时。
14.如权利要求10所述的工具组件,其中,所述镁合金是包含铝和锌的AZ91D镁合金。
15.如权利要求10所述的工具组件,其中,所述镁复合材料包含至少85重量%的镁。
16.如权利要求10所述的工具组件,其中,所述镁合金包含镁和选自下组的至少一种组分:0.5-10重量%的铝、0.1-2重量%的锌、0.01-1重量%的锆和0.01-2重量%的锰。
17.如权利要求10所述的工具组件,其中,所述镁合金包含镁和选自下组的至少一种组分:0.1-3重量%的锌、0.05-1重量%的锆、0.05-0.25重量%的锰、0.0002-0.04重量%的硼和0.4-0.7重量%的铋。
18.如权利要求10所述的工具组件,其中,所述添加剂材料包含镍,所述镁复合材料中所述镍的含量为0.3-24.5重量%。
19.如权利要求10所述的工具组件,其中,所述添加剂材料包含铜,所述镁复合材料中所述铜的含量为0.01-35重量%。
20.形成镁复合材料来控制所述镁复合材料的溶解性质以实现所述镁复合材料的受控溶解的方法,所述方法包括:
提供镁或镁合金;
将所述镁或镁合金加热至所述镁的固相线温度以上的温度;
提供添加剂材料,所述添加剂是金属和/或金属合金,所述添加剂材料包含选自铜、镍和钴的金属;
将所述添加剂材料添加至所述镁或镁合金以形成混合物;
有控制地将所述加热过的混合物冷却至所述镁的所述固相线温度以下的温度,以形成所述镁复合材料,并使得包含所述添加剂材料的所述镁复合材料中形成电化活性中间金属相的原位沉淀;
其中,所述添加剂材料占所述镁复合材料的比例不高于35%,所述镁占所述镁复合材料的至少85重量%,所述添加剂材料以足够的数量处于以获得所述电化活性中间金属相的组成和形貌,从而所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为至少40毫克/厘米2/小时。
21.如权利要求20所述的方法,还包括使所述镁复合材料形成下井油井组件的步骤,所述下井油井组件包括选自球、管道和塞子的组件。
22.如权利要求20所述的方法,其特征在于,所述镁复合材料被模制、铸造或挤出。
23.如权利要求20所述的方法,其中,所述添加剂材料构成所述镁复合材料的0.05-35重量%。
24.如权利要求20所述的方法,其中,所述镁复合材料在90℃的3重量%KCl水混合物中的溶解速率为40-325毫克/厘米2/小时。
25.如权利要求20所述的方法,其中,所述镁合金是包含铝和锌的AZ91D镁合金。
26.如权利要求20所述的方法,其中,所述镁复合材料包含至少85重量%的镁。
27.如权利要求20所述的方法,其中,所述镁合金包含镁和选自下组的至少一种组分:0.5-10重量%的铝、0.1-2重量%的锌、0.01-1重量%的锆和0.01-2重量%的锰。
28.如权利要求20所述的方法,其中,所述镁合金包含镁和选自下组的至少一种组分:0.1-3重量%的锌、0.05-1重量%的锆、0.05-0.25重量%的锰、0.0002-0.04重量%的硼和0.4-0.7重量%的铋。
29.如权利要求20所述的方法,其中,所述添加剂材料包含镍,所述镁复合材料中所述镍的含量为0.3-24.5重量%。
30.如权利要求20所述的方法,其中,所述添加剂材料包含铜,所述镁复合材料中所述铜的含量为0.01-35重量%。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461981425P | 2014-04-18 | 2014-04-18 | |
US61/981,425 | 2014-04-18 | ||
CN201580020103.7A CN106460133B (zh) | 2014-04-18 | 2015-04-17 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580020103.7A Division CN106460133B (zh) | 2014-04-18 | 2015-04-17 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110004339A true CN110004339A (zh) | 2019-07-12 |
CN110004339B CN110004339B (zh) | 2021-11-26 |
Family
ID=54321503
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910309243.6A Active CN110004339B (zh) | 2014-04-18 | 2015-04-17 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
CN201580020103.7A Active CN106460133B (zh) | 2014-04-18 | 2015-04-17 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580020103.7A Active CN106460133B (zh) | 2014-04-18 | 2015-04-17 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
Country Status (4)
Country | Link |
---|---|
US (4) | US9903010B2 (zh) |
CN (2) | CN110004339B (zh) |
CA (1) | CA2942184C (zh) |
WO (1) | WO2015161171A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111218593A (zh) * | 2020-03-09 | 2020-06-02 | 厦门火炬特种金属材料有限公司 | 一种快速溶解镁合金的制备方法 |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US20170268088A1 (en) | 2014-02-21 | 2017-09-21 | Terves Inc. | High Conductivity Magnesium Alloy |
US10758974B2 (en) | 2014-02-21 | 2020-09-01 | Terves, Llc | Self-actuating device for centralizing an object |
WO2015127174A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Fluid activated disintegrating metal system |
GB2537576A (en) | 2014-02-21 | 2016-10-19 | Terves Inc | Manufacture of controlled rate dissolving materials |
CN110004339B (zh) | 2014-04-18 | 2021-11-26 | 特维斯股份有限公司 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
GB201413327D0 (en) | 2014-07-28 | 2014-09-10 | Magnesium Elektron Ltd | Corrodible downhole article |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
GB2557064B (en) * | 2015-09-02 | 2021-10-20 | Halliburton Energy Services Inc | Top set degradable wellbore isolation device |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
CN105525122B (zh) * | 2016-01-27 | 2017-03-29 | 北京工业大学 | 纳米SiC复合Mg‑Si‑Sn基热电材料的制备方法 |
WO2017138923A1 (en) * | 2016-02-09 | 2017-08-17 | Halliburton Energy Services, Inc. | Degradable casing joints for use in subterranean formation operations |
CA3012511A1 (en) * | 2017-07-27 | 2019-01-27 | Terves Inc. | Degradable metal matrix composite |
CN107641749B (zh) * | 2017-09-12 | 2019-02-22 | 太原理工大学 | 一种骨移植材料镁铋锰铝锌合金的制备方法 |
CA3039574A1 (en) * | 2018-05-10 | 2019-11-10 | Josh Caris | Degradable high-strength zinc compositions and method of manufacture |
CN109161766B (zh) * | 2018-09-21 | 2021-01-29 | 湘潭大学 | 一种含非晶熔凝层的生物镁合金及其制备方法 |
WO2020081621A1 (en) | 2018-10-18 | 2020-04-23 | Terves Llc | Degradable deformable diverters and seals |
CN110373565B (zh) * | 2019-07-05 | 2020-10-16 | 北京康普锡威科技有限公司 | 纳米弥散强化合金的制备方法 |
CN110273092B (zh) * | 2019-08-01 | 2020-08-18 | 重庆大学 | 一种CoCrNi颗粒增强镁基复合材料及其制备方法 |
CN110423915B (zh) * | 2019-08-29 | 2020-07-14 | 东北大学 | 一种铝基复合材料的制备方法 |
CN110423914B (zh) * | 2019-08-29 | 2020-06-02 | 东北大学 | 一种稀土镁合金复合材料的制备方法 |
US11668143B2 (en) | 2019-12-10 | 2023-06-06 | Saudi Arabian Oil Company | Deploying wellbore patch for mitigating lost circulation |
US11261678B2 (en) | 2019-12-10 | 2022-03-01 | Saudi Arabian Oil Company | Deploying wellbore patch for mitigating lost circulation |
US11125046B2 (en) | 2019-12-10 | 2021-09-21 | Saudi Arabian Oil Company | Deploying wellbore patch for mitigating lost circulation |
CN111228577A (zh) * | 2020-01-15 | 2020-06-05 | 太原科技大学 | 一种可短期降解医用镁合金及其制备方法 |
CN111172441A (zh) * | 2020-01-21 | 2020-05-19 | 中信戴卡股份有限公司 | 一种铸造镁合金及其制备方法 |
US11643878B2 (en) | 2020-03-26 | 2023-05-09 | Saudi Arabian Oil Company | Deploying material to limit losses of drilling fluid in a wellbore |
US11286733B2 (en) | 2020-03-26 | 2022-03-29 | Saudi Arabian Oil Company | Deploying material to limit losses of drilling fluid in a wellbore |
US11454071B2 (en) | 2020-03-26 | 2022-09-27 | Saudi Arabian Oil Company | Deploying material to limit losses of drilling fluid in a wellbore |
US11434708B2 (en) | 2020-06-10 | 2022-09-06 | Saudi Arabian Oil Company | Lost circulation fabric, method, and deployment systems |
US11459838B2 (en) | 2020-06-10 | 2022-10-04 | Saudi Arabian Oil Company | Lost circulation fabric, method, and deployment systems |
US11434707B2 (en) | 2020-06-10 | 2022-09-06 | Saudi Arabian Oil Company | Lost circulation fabric, method, and deployment systems |
CN112030049A (zh) * | 2020-07-14 | 2020-12-04 | 中国石油天然气股份有限公司 | 一种可控溶解镁合金材料及其制备方法 |
CN111979461A (zh) * | 2020-07-15 | 2020-11-24 | 湖南云轮科技有限公司 | 一种镁合金材料建筑模板及其制备方法 |
US11454082B2 (en) | 2020-08-25 | 2022-09-27 | Saudi Arabian Oil Company | Engineered composite assembly with controllable dissolution |
CN111996428A (zh) * | 2020-08-28 | 2020-11-27 | 深圳市苏德技术有限公司 | 一种可溶镁合金及其制备方法和应用 |
US11920469B2 (en) | 2020-09-08 | 2024-03-05 | Saudi Arabian Oil Company | Determining fluid parameters |
US11519767B2 (en) | 2020-09-08 | 2022-12-06 | Saudi Arabian Oil Company | Determining fluid parameters |
WO2022078800A1 (en) | 2020-10-12 | 2022-04-21 | Shell Internationale Research Maatschappij B.V. | Method of creating an annular zonal isolation seal in a downhole annulus |
US11867008B2 (en) | 2020-11-05 | 2024-01-09 | Saudi Arabian Oil Company | System and methods for the measurement of drilling mud flow in real-time |
US11867028B2 (en) | 2021-01-06 | 2024-01-09 | Saudi Arabian Oil Company | Gauge cutter and sampler apparatus |
US11572752B2 (en) | 2021-02-24 | 2023-02-07 | Saudi Arabian Oil Company | Downhole cable deployment |
US11727555B2 (en) | 2021-02-25 | 2023-08-15 | Saudi Arabian Oil Company | Rig power system efficiency optimization through image processing |
US11761296B2 (en) | 2021-02-25 | 2023-09-19 | Wenhui Jiang | Downhole tools comprising degradable components |
US11846151B2 (en) | 2021-03-09 | 2023-12-19 | Saudi Arabian Oil Company | Repairing a cased wellbore |
US11644351B2 (en) | 2021-03-19 | 2023-05-09 | Saudi Arabian Oil Company | Multiphase flow and salinity meter with dual opposite handed helical resonators |
US11585176B2 (en) | 2021-03-23 | 2023-02-21 | Saudi Arabian Oil Company | Sealing cracked cement in a wellbore casing |
US11913464B2 (en) | 2021-04-15 | 2024-02-27 | Saudi Arabian Oil Company | Lubricating an electric submersible pump |
US11624265B1 (en) | 2021-11-12 | 2023-04-11 | Saudi Arabian Oil Company | Cutting pipes in wellbores using downhole autonomous jet cutting tools |
US11867012B2 (en) | 2021-12-06 | 2024-01-09 | Saudi Arabian Oil Company | Gauge cutter and sampler apparatus |
US11994016B2 (en) | 2021-12-09 | 2024-05-28 | Saudi Arabian Oil Company | Downhole phase separation in deviated wells |
CN114346147B (zh) * | 2021-12-23 | 2024-11-19 | 重庆大学 | 一种轻质高强镁合金的旋锻制备方法 |
US12085687B2 (en) | 2022-01-10 | 2024-09-10 | Saudi Arabian Oil Company | Model-constrained multi-phase virtual flow metering and forecasting with machine learning |
WO2023170200A1 (en) | 2022-03-11 | 2023-09-14 | Shell Internationale Research Maatschappij B.V. | Method of creating a plurality of longitudinally separated circumferential dents in a wellbore tubular |
WO2023222738A1 (en) | 2022-05-20 | 2023-11-23 | Shell Internationale Research Maatschappij B.V. | Method of deforming an outer wellbore tubular |
CN114807708B (zh) * | 2022-05-26 | 2022-10-28 | 长沙理工大学 | 一种医用复合镁合金及其制备方法 |
CN115896509B (zh) * | 2022-12-14 | 2023-06-06 | 兰州理工大学 | 一种在镁合金中构筑超细晶组织的制备方法 |
US12203366B2 (en) | 2023-05-02 | 2025-01-21 | Saudi Arabian Oil Company | Collecting samples from wellbores |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916029A (en) * | 1984-10-19 | 1990-04-10 | Martin Marietta Corporation | Composites having an intermetallic containing matrix |
JPH06316740A (ja) * | 1992-11-13 | 1994-11-15 | Toyota Motor Corp | 高強度マグネシウム基合金およびその製造方法 |
RU2347836C1 (ru) * | 2007-08-27 | 2009-02-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет УГТУ-УПИ" | Способ производства лигатуры на основе никеля и магния |
CN102560174A (zh) * | 2011-12-23 | 2012-07-11 | 昆明理工大学 | 一种有序多孔储氢合金及其制备方法 |
CN102753716A (zh) * | 2010-02-08 | 2012-10-24 | 住友电气工业株式会社 | 镁合金板 |
CN103210102A (zh) * | 2010-11-16 | 2013-07-17 | 住友电气工业株式会社 | 镁合金板及其制造方法 |
CN103343271A (zh) * | 2013-07-08 | 2013-10-09 | 中南大学 | 一种轻质耐压快速分解的铸造镁合金 |
Family Cites Families (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180728A (en) | 1960-10-03 | 1965-04-27 | Olin Mathieson | Aluminum-tin composition |
US3445731A (en) | 1965-10-26 | 1969-05-20 | Nippo Tsushin Kogyo Kk | Solid capacitor with a porous aluminum anode containing up to 8% magnesium |
US4264362A (en) | 1977-11-25 | 1981-04-28 | The United States Of America As Represented By The Secretary Of The Navy | Supercorroding galvanic cell alloys for generation of heat and gas |
US4655852A (en) | 1984-11-19 | 1987-04-07 | Rallis Anthony T | Method of making aluminized strengthened steel |
US4875948A (en) | 1987-04-10 | 1989-10-24 | Verneker Vencatesh R P | Combustible delay barriers |
US5106702A (en) | 1988-08-04 | 1992-04-21 | Advanced Composite Materials Corporation | Reinforced aluminum matrix composite |
EP0464023A4 (en) | 1988-09-06 | 1992-04-08 | Encapsulation Systems, Inc | Realease assist microcapsules |
WO1990002656A1 (de) | 1988-09-08 | 1990-03-22 | Siemens Aktiengesellschaft | Ablagevorrichtung für einzelblätter einer druckeinrichtung |
JPH0499244A (ja) | 1990-08-09 | 1992-03-31 | Yoshida Kogyo Kk <Ykk> | 高力マグネシウム基合金 |
GB9023270D0 (en) | 1990-10-25 | 1990-12-05 | Castex Prod | Magnesium manganese alloy |
US5143795A (en) | 1991-02-04 | 1992-09-01 | Allied-Signal Inc. | High strength, high stiffness rapidly solidified magnesium base metal alloy composites |
US5552110A (en) | 1991-07-26 | 1996-09-03 | Toyota Jidosha Kabushiki Kaisha | Heat resistant magnesium alloy |
DE69214735T2 (de) | 1991-07-26 | 1997-03-20 | Toyota Motor Co Ltd | Hitzebeständiges Magnesiumlegierung |
US5240495A (en) | 1992-04-02 | 1993-08-31 | Cornell Research Foundation, Inc. | In situ formation of metal-ceramic oxide microstructures |
US5980602A (en) | 1994-01-19 | 1999-11-09 | Alyn Corporation | Metal matrix composite |
TW311896B (zh) | 1995-06-07 | 1997-08-01 | Elliot Younessian | |
JP3372171B2 (ja) | 1995-08-29 | 2003-01-27 | 東芝マイクロエレクトロニクス株式会社 | 半導体装置 |
US5735976A (en) | 1996-01-31 | 1998-04-07 | Aluminum Company Of America | Ceramic particles formed in-situ in metal. |
FR2764437B1 (fr) | 1997-06-10 | 1999-08-27 | Thomson Tubes Electroniques | Panneau a plasma a effet de conditionnement de cellules |
WO1999027146A1 (en) | 1997-11-20 | 1999-06-03 | Tübitak-Marmara Research Center | In situ process for producing an aluminium alloy containing titanium carbide particles |
GB9804599D0 (en) | 1998-03-05 | 1998-04-29 | Aeromet International Plc | Cast aluminium-copper alloy |
US7771547B2 (en) | 1998-07-13 | 2010-08-10 | Board Of Trustees Operating Michigan State University | Methods for producing lead-free in-situ composite solder alloys |
US6444316B1 (en) | 2000-05-05 | 2002-09-03 | Halliburton Energy Services, Inc. | Encapsulated chemicals for use in controlled time release applications and methods |
US6422314B1 (en) | 2000-08-01 | 2002-07-23 | Halliburton Energy Services, Inc. | Well drilling and servicing fluids and methods of removing filter cake deposited thereby |
JP2002173730A (ja) | 2000-12-01 | 2002-06-21 | Sumitomo Light Metal Ind Ltd | 展伸用マグネシウム合金 |
US20020121081A1 (en) | 2001-01-10 | 2002-09-05 | Cesaroni Technology Incorporated | Liquid/solid fuel hybrid propellant system for a rocket |
JP3677220B2 (ja) | 2001-04-26 | 2005-07-27 | 日本重化学工業株式会社 | マグネシウム系水素吸蔵合金 |
JP3861720B2 (ja) | 2002-03-12 | 2006-12-20 | Tkj株式会社 | マグネシウム合金の成形方法 |
US7794520B2 (en) | 2002-06-13 | 2010-09-14 | Touchstone Research Laboratory, Ltd. | Metal matrix composites with intermetallic reinforcements |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
WO2005005675A2 (en) | 2003-02-11 | 2005-01-20 | Liquidmetal Technologies, Inc. | Method of making in-situ composites comprising amorphous alloys |
US7244492B2 (en) | 2004-03-04 | 2007-07-17 | Fairmount Minerals, Ltd. | Soluble fibers for use in resin coated proppant |
US7353879B2 (en) | 2004-03-18 | 2008-04-08 | Halliburton Energy Services, Inc. | Biodegradable downhole tools |
AT7522U1 (de) | 2004-04-29 | 2005-04-25 | Plansee Ag | Wärmesenke aus borhaltigem diamant-kupfer-verbundwerkstoff |
US10316616B2 (en) | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US8211247B2 (en) | 2006-02-09 | 2012-07-03 | Schlumberger Technology Corporation | Degradable compositions, apparatus comprising same, and method of use |
US7380600B2 (en) | 2004-09-01 | 2008-06-03 | Schlumberger Technology Corporation | Degradable material assisted diversion or isolation |
US7350582B2 (en) | 2004-12-21 | 2008-04-01 | Weatherford/Lamb, Inc. | Wellbore tool with disintegratable components and method of controlling flow |
SE531439C2 (sv) | 2005-01-07 | 2009-04-07 | Gunnar Westin | Metod för framställning av kompositmaterial innefattande metallpartiklar i keramisk matris samt kompositmaterial |
CA2595686C (en) | 2005-01-21 | 2012-09-18 | A. Richard Sinclair | Soluble diverting agents |
US7491444B2 (en) | 2005-02-04 | 2009-02-17 | Oxane Materials, Inc. | Composition and method for making a proppant |
US7700038B2 (en) | 2005-03-21 | 2010-04-20 | Ati Properties, Inc. | Formed articles including master alloy, and methods of making and using the same |
US8231703B1 (en) | 2005-05-25 | 2012-07-31 | Babcock & Wilcox Technical Services Y-12, Llc | Nanostructured composite reinforced material |
US7434627B2 (en) | 2005-06-14 | 2008-10-14 | Weatherford/Lamb, Inc. | Method and apparatus for friction reduction in a downhole tool |
US7647964B2 (en) | 2005-12-19 | 2010-01-19 | Fairmount Minerals, Ltd. | Degradable ball sealers and methods for use in well treatment |
US8220554B2 (en) | 2006-02-09 | 2012-07-17 | Schlumberger Technology Corporation | Degradable whipstock apparatus and method of use |
US20110067889A1 (en) | 2006-02-09 | 2011-03-24 | Schlumberger Technology Corporation | Expandable and degradable downhole hydraulic regulating assembly |
US8770261B2 (en) | 2006-02-09 | 2014-07-08 | Schlumberger Technology Corporation | Methods of manufacturing degradable alloys and products made from degradable alloys |
JP2007284743A (ja) | 2006-04-17 | 2007-11-01 | Tetsuichi Mogi | Mg合金 |
US8211248B2 (en) | 2009-02-16 | 2012-07-03 | Schlumberger Technology Corporation | Aged-hardenable aluminum alloy with environmental degradability, methods of use and making |
US20130133897A1 (en) | 2006-06-30 | 2013-05-30 | Schlumberger Technology Corporation | Materials with environmental degradability, methods of use and making |
IL177568A (en) | 2006-08-17 | 2011-02-28 | Dead Sea Magnesium Ltd | Creep resistant magnesium alloy with improved ductility and fracture toughness for gravity casting applications |
WO2008072435A1 (ja) | 2006-12-11 | 2008-06-19 | Kabushiki Kaisha Toyota Jidoshokki | 鋳造用マグネシウム合金およびマグネシウム合金鋳物の製造方法 |
US8485265B2 (en) | 2006-12-20 | 2013-07-16 | Schlumberger Technology Corporation | Smart actuation materials triggered by degradation in oilfield environments and methods of use |
DE102007017754B4 (de) | 2007-04-16 | 2016-12-29 | Hermle Maschinenbau Gmbh | Verfahren zur Herstellung eines Werkstücks mit mindestens einem Freiraum |
DE102007017762B4 (de) | 2007-04-16 | 2016-12-29 | Hermle Maschinenbau Gmbh | Verfahren zur Herstellung eines Werkstücks mit mindestens einem Freiraum |
JP2008266734A (ja) | 2007-04-20 | 2008-11-06 | Toyota Industries Corp | 鋳造用マグネシウム合金およびマグネシウム合金鋳物 |
US7690436B2 (en) | 2007-05-01 | 2010-04-06 | Weatherford/Lamb Inc. | Pressure isolation plug for horizontal wellbore and associated methods |
DE602007009369D1 (de) | 2007-05-28 | 2010-11-04 | Acrostak Corp Bvi | Magnesiumbasierte Legierungen |
US20090101344A1 (en) | 2007-10-22 | 2009-04-23 | Baker Hughes Incorporated | Water Dissolvable Released Material Used as Inflow Control Device |
TWI347977B (en) | 2007-11-05 | 2011-09-01 | Univ Nat Central | Method for making mg-based intermetallic compound |
JP4831058B2 (ja) | 2007-12-03 | 2011-12-07 | セイコーエプソン株式会社 | 電気光学表示装置および電子機器 |
JP4613965B2 (ja) | 2008-01-24 | 2011-01-19 | 住友電気工業株式会社 | マグネシウム合金板材 |
CN101970703B (zh) | 2008-03-11 | 2012-11-28 | 都美工业株式会社 | 含Al2Ca的镁基复合材料 |
US7879162B2 (en) | 2008-04-18 | 2011-02-01 | United Technologies Corporation | High strength aluminum alloys with L12 precipitates |
US8678081B1 (en) | 2008-08-15 | 2014-03-25 | Exelis, Inc. | Combination anvil and coupler for bridge and fracture plugs |
US8267177B1 (en) | 2008-08-15 | 2012-09-18 | Exelis Inc. | Means for creating field configurable bridge, fracture or soluble insert plugs |
CN101381829B (zh) * | 2008-10-17 | 2010-08-25 | 江苏大学 | 一种原位颗粒增强镁基复合材料的制备方法 |
EP2359048A1 (en) | 2008-11-20 | 2011-08-24 | Brinker Technology Limited | Sealing method and apparatus |
US9217319B2 (en) | 2012-05-18 | 2015-12-22 | Frazier Technologies, L.L.C. | High-molecular-weight polyglycolides for hydrocarbon recovery |
US8079413B2 (en) | 2008-12-23 | 2011-12-20 | W. Lynn Frazier | Bottom set downhole plug |
JP4382152B1 (ja) | 2009-03-12 | 2009-12-09 | 虹技株式会社 | 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物 |
US8276670B2 (en) | 2009-04-27 | 2012-10-02 | Schlumberger Technology Corporation | Downhole dissolvable plug |
US8413727B2 (en) | 2009-05-20 | 2013-04-09 | Bakers Hughes Incorporated | Dissolvable downhole tool, method of making and using |
JP5405392B2 (ja) | 2009-06-17 | 2014-02-05 | 株式会社豊田中央研究所 | 再生マグネシウム合金とその製造方法およびマグネシウム合金 |
KR101133775B1 (ko) | 2009-09-21 | 2012-08-24 | 한국생산기술연구원 | 마그네슘 모합금, 이의 제조 방법, 이를 이용한 금속 합금, 및 이의 제조 방법 |
KR101094144B1 (ko) | 2009-09-21 | 2011-12-14 | 한국생산기술연구원 | 탈황제 및 그 제조 방법 |
US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
GB2477744B (en) | 2010-02-10 | 2014-06-04 | Aeromet Internat Plc | Aluminium-copper alloy for casting |
RU2564370C2 (ru) | 2010-03-29 | 2015-09-27 | Корейский Институт Промышленных Технологий | Сплав на магниевой основе с повышенной текучестью и устойчивостью к горячим надрывам и способ его получения |
KR101367892B1 (ko) | 2010-12-27 | 2014-02-26 | 한국생산기술연구원 | 고온용 마그네슘 합금 및 그 제조 방법 |
US8230731B2 (en) | 2010-03-31 | 2012-07-31 | Schlumberger Technology Corporation | System and method for determining incursion of water in a well |
US8211331B2 (en) | 2010-06-02 | 2012-07-03 | GM Global Technology Operations LLC | Packaged reactive materials and method for making the same |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
FR2964094B1 (fr) | 2010-08-31 | 2012-09-28 | Commissariat Energie Atomique | Assemblage d'objets par l'intermediaire d'un cordon de scellement comportant des composes intermetalliques |
CN201796928U (zh) | 2010-09-14 | 2011-04-13 | 河南思可达光伏材料股份有限公司 | 一种带有锥形花型的超白压花玻璃 |
US8596347B2 (en) | 2010-10-21 | 2013-12-03 | Halliburton Energy Services, Inc. | Drillable slip with buttons and cast iron wickers |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
CA2757805C (en) | 2010-11-10 | 2015-02-10 | Purdue Research Foundation | Method of producing particulate-reinforced composites and composites produced thereby |
US9016364B2 (en) | 2010-11-23 | 2015-04-28 | Wireline Solutions, Llc | Convertible multi-function downhole isolation tool and related methods |
US8668019B2 (en) | 2010-12-29 | 2014-03-11 | Baker Hughes Incorporated | Dissolvable barrier for downhole use and method thereof |
US20120190593A1 (en) | 2011-01-26 | 2012-07-26 | Soane Energy, Llc | Permeability blocking with stimuli-responsive microcomposites |
JP5703881B2 (ja) | 2011-03-22 | 2015-04-22 | 株式会社豊田自動織機 | 高強度マグネシウム合金およびその製造方法 |
US8789610B2 (en) | 2011-04-08 | 2014-07-29 | Baker Hughes Incorporated | Methods of casing a wellbore with corrodable boring shoes |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US8695714B2 (en) | 2011-05-19 | 2014-04-15 | Baker Hughes Incorporated | Easy drill slip with degradable materials |
KR101335010B1 (ko) | 2011-05-20 | 2013-12-02 | 한국생산기술연구원 | 실리콘화합물을 이용하여 제조된 마그네슘계 합금 및 그 제조 방법 |
CN102206777B (zh) | 2011-06-10 | 2013-07-10 | 深圳市新星轻合金材料股份有限公司 | 铝-锆-钛-碳中间合金的制备方法 |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
JP2013019030A (ja) | 2011-07-12 | 2013-01-31 | Tobata Seisakusho:Kk | 耐熱性及び難燃性を有するマグネシウム合金及びその製造方法 |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9027655B2 (en) | 2011-08-22 | 2015-05-12 | Baker Hughes Incorporated | Degradable slip element |
KR101395276B1 (ko) | 2011-08-29 | 2014-05-16 | 부산대학교 산학협력단 | 고온 주조용 Mg-Al계 마그네슘 합금 |
US8800657B2 (en) | 2011-08-30 | 2014-08-12 | Baker Hughes Incorporated | Sealing system, method of manufacture thereof and articles comprising the same |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US20130056215A1 (en) | 2011-09-07 | 2013-03-07 | Baker Hughes Incorporated | Disintegrative Particles to Release Agglomeration Agent for Water Shut-Off Downhole |
US10364629B2 (en) | 2011-09-13 | 2019-07-30 | Schlumberger Technology Corporation | Downhole component having dissolvable components |
US10119359B2 (en) | 2013-05-13 | 2018-11-06 | Magnum Oil Tools International, Ltd. | Dissolvable aluminum downhole plug |
US9187686B2 (en) | 2011-11-08 | 2015-11-17 | Baker Hughes Incorporated | Enhanced electrolytic degradation of controlled electrolytic material |
US8967275B2 (en) | 2011-11-11 | 2015-03-03 | Baker Hughes Incorporated | Agents for enhanced degradation of controlled electrolytic material |
CN102517489B (zh) * | 2011-12-20 | 2013-06-19 | 内蒙古五二特种材料工程技术研究中心 | 一种利用回收的硅粉制备Mg2Si/Mg复合材料的方法 |
EP2805011B1 (en) | 2012-01-20 | 2017-12-06 | Halliburton Energy Services, Inc. | Subterranean well interventionless flow restrictor bypass system |
US9016388B2 (en) | 2012-02-03 | 2015-04-28 | Baker Hughes Incorporated | Wiper plug elements and methods of stimulating a wellbore environment |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US20130209308A1 (en) | 2012-02-15 | 2013-08-15 | Baker Hughes Incorporated | Method of making a metallic powder and powder compact and powder and powder compact made thereby |
JP5561352B2 (ja) | 2012-02-22 | 2014-07-30 | 株式会社デンソー | 駆動回路 |
US9333099B2 (en) | 2012-03-30 | 2016-05-10 | Abbott Cardiovascular Systems Inc. | Magnesium alloy implants with controlled degradation |
US9016363B2 (en) | 2012-05-08 | 2015-04-28 | Baker Hughes Incorporated | Disintegrable metal cone, process of making, and use of the same |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9777549B2 (en) | 2012-06-08 | 2017-10-03 | Halliburton Energy Services, Inc. | Isolation device containing a dissolvable anode and electrolytic compound |
US8905147B2 (en) | 2012-06-08 | 2014-12-09 | Halliburton Energy Services, Inc. | Methods of removing a wellbore isolation device using galvanic corrosion |
US9759035B2 (en) | 2012-06-08 | 2017-09-12 | Halliburton Energy Services, Inc. | Methods of removing a wellbore isolation device using galvanic corrosion of a metal alloy in solid solution |
US9016384B2 (en) | 2012-06-18 | 2015-04-28 | Baker Hughes Incorporated | Disintegrable centralizer |
US20140018489A1 (en) | 2012-07-13 | 2014-01-16 | Baker Hughes Incorporated | Mixed metal polymer composite |
US9080439B2 (en) | 2012-07-16 | 2015-07-14 | Baker Hughes Incorporated | Disintegrable deformation tool |
JP2014043601A (ja) | 2012-08-24 | 2014-03-13 | Osaka Prefecture Univ | マグネシウム合金圧延材およびその製造方法 |
US10246763B2 (en) | 2012-08-24 | 2019-04-02 | The Regents Of The University Of California | Magnesium-zinc-strontium alloys for medical implants and devices |
US20140060834A1 (en) | 2012-08-31 | 2014-03-06 | Baker Hughes Incorporated | Controlled Electrolytic Metallic Materials for Wellbore Sealing and Strengthening |
CN102796928B (zh) * | 2012-09-05 | 2014-08-20 | 沈阳航空航天大学 | 一种高性能镁基合金材料及其制备方法 |
CA2895507C (en) | 2012-12-18 | 2019-03-05 | Frazier Technologies, L.L.C. | Downhole tools having non-toxic degradable elements and methods of using the same |
CA2897290C (en) | 2013-01-11 | 2017-06-13 | Kureha Corporation | Poly-l-lactic acid solid-state extrusion molded article, method for producing the same, and use applications of the same |
US9273526B2 (en) | 2013-01-16 | 2016-03-01 | Baker Hughes Incorporated | Downhole anchoring systems and methods of using same |
US9528343B2 (en) | 2013-01-17 | 2016-12-27 | Parker-Hannifin Corporation | Degradable ball sealer |
US9416617B2 (en) | 2013-02-12 | 2016-08-16 | Weatherford Technology Holdings, Llc | Downhole tool having slip inserts composed of different materials |
JP6392250B2 (ja) | 2013-02-15 | 2018-09-19 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 生体内分解性の内部人工器官およびそれに使用する生体内分解性マグネシウム合金を加工する方法 |
US20140305627A1 (en) | 2013-04-15 | 2014-10-16 | Halliburton Energy Services, Inc. | Anti-wear device for composite packers and plugs |
CN103602865B (zh) | 2013-12-02 | 2015-06-17 | 四川大学 | 一种含铜的耐热镁锡合金 |
GB2537576A (en) | 2014-02-21 | 2016-10-19 | Terves Inc | Manufacture of controlled rate dissolving materials |
US9790762B2 (en) | 2014-02-28 | 2017-10-17 | Exxonmobil Upstream Research Company | Corrodible wellbore plugs and systems and methods including the same |
CN110004339B (zh) | 2014-04-18 | 2021-11-26 | 特维斯股份有限公司 | 用于受控速率溶解工具的电化活性的原位形成的颗粒 |
CN103898384B (zh) | 2014-04-23 | 2016-04-20 | 大连海事大学 | 可溶性镁基合金材料,其制备方法及应用 |
WO2015171126A1 (en) | 2014-05-07 | 2015-11-12 | Halliburton Energy Services, Inc. | Downhole tools comprising oil-degradable sealing elements |
GB201413327D0 (en) | 2014-07-28 | 2014-09-10 | Magnesium Elektron Ltd | Corrodible downhole article |
US10526868B2 (en) | 2014-08-14 | 2020-01-07 | Halliburton Energy Services, Inc. | Degradable wellbore isolation devices with varying fabrication methods |
WO2016032490A1 (en) | 2014-08-28 | 2016-03-03 | Halliburton Energy Services, Inc. | Degradable downhole tools comprising magnesium alloys |
MX2017001309A (es) | 2014-08-28 | 2017-04-27 | Halliburton Energy Services Inc | Herramientas del interior del pozo degradables en agua dulce que comprenden aleaciones de aluminio y magnesio. |
AU2015307095B2 (en) | 2014-08-28 | 2018-03-01 | Halliburton Energy Services, Inc. | Subterranean formation operations using degradable wellbore isolation devices |
MX2017001258A (es) | 2014-08-28 | 2017-05-01 | Halliburton Energy Services Inc | Dispositivos de aislamiento de pozos degradables con grandes areas de flujo. |
WO2016036371A1 (en) | 2014-09-04 | 2016-03-10 | Halliburton Energy Services, Inc. | Wellbore isolation devices with solid sealing elements |
US20150102179A1 (en) | 2014-12-22 | 2015-04-16 | Caterpillar Inc. | Bracket to mount aftercooler to engine |
-
2015
- 2015-04-17 CN CN201910309243.6A patent/CN110004339B/zh active Active
- 2015-04-17 CN CN201580020103.7A patent/CN106460133B/zh active Active
- 2015-04-17 CA CA2942184A patent/CA2942184C/en active Active
- 2015-04-17 US US14/689,295 patent/US9903010B2/en active Active
- 2015-04-17 WO PCT/US2015/026327 patent/WO2015161171A1/en active Application Filing
-
2017
- 2017-07-05 US US15/641,439 patent/US10329653B2/en active Active
-
2018
- 2018-02-05 US US15/888,751 patent/US10760151B2/en active Active
- 2018-04-30 US US15/966,759 patent/US10724128B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4916029A (en) * | 1984-10-19 | 1990-04-10 | Martin Marietta Corporation | Composites having an intermetallic containing matrix |
JPH06316740A (ja) * | 1992-11-13 | 1994-11-15 | Toyota Motor Corp | 高強度マグネシウム基合金およびその製造方法 |
RU2347836C1 (ru) * | 2007-08-27 | 2009-02-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет УГТУ-УПИ" | Способ производства лигатуры на основе никеля и магния |
CN102753716A (zh) * | 2010-02-08 | 2012-10-24 | 住友电气工业株式会社 | 镁合金板 |
CN103210102A (zh) * | 2010-11-16 | 2013-07-17 | 住友电气工业株式会社 | 镁合金板及其制造方法 |
CN102560174A (zh) * | 2011-12-23 | 2012-07-11 | 昆明理工大学 | 一种有序多孔储氢合金及其制备方法 |
CN103343271A (zh) * | 2013-07-08 | 2013-10-09 | 中南大学 | 一种轻质耐压快速分解的铸造镁合金 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111218593A (zh) * | 2020-03-09 | 2020-06-02 | 厦门火炬特种金属材料有限公司 | 一种快速溶解镁合金的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2942184A1 (en) | 2015-10-22 |
CN110004339B (zh) | 2021-11-26 |
US9903010B2 (en) | 2018-02-27 |
US20180155813A1 (en) | 2018-06-07 |
WO2015161171A1 (en) | 2015-10-22 |
US20150299838A1 (en) | 2015-10-22 |
US10724128B2 (en) | 2020-07-28 |
US20180305801A1 (en) | 2018-10-25 |
US10329653B2 (en) | 2019-06-25 |
CN106460133A (zh) | 2017-02-22 |
CN106460133B (zh) | 2019-06-18 |
US10760151B2 (en) | 2020-09-01 |
US20170298492A1 (en) | 2017-10-19 |
CA2942184C (en) | 2020-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106460133B (zh) | 用于受控速率溶解工具的电化活性的原位形成的颗粒 | |
CN106029255B (zh) | 溶解速率受控材料的制备 | |
US12018356B2 (en) | Galvanically-active in situ formed particles for controlled rate dissolving tools | |
US20240227000A1 (en) | Galvanically-active in situ formed particles for controlled rate dissolving tools | |
El-Daly et al. | Enhancing mechanical response of hypoeutectic Sn–6.5 Zn solder alloy using Ni and Sb additions | |
JP5376604B2 (ja) | 鉛フリー黄銅合金粉末、鉛フリー黄銅合金押出材およびその製造方法 | |
WO2017027149A1 (en) | Methods of manufacturing dissolvable tools via liquid-solid state molding | |
CN108251721A (zh) | 一种高强可降解铝合金及其制备方法、应用 | |
CN109694976A (zh) | 一种低成本可溶性镁合金及其制备方法和应用 | |
CN105908038B (zh) | 一种用于制造压裂分隔工具的可溶合金及其制备方法 | |
CN107099712A (zh) | 一种可溶镁合金复合材料压裂球及其制备方法 | |
CN106756377B (zh) | 一种W/TiNi记忆合金复合材料及其制备方法 | |
US20230392235A1 (en) | Dissolvable magnesium alloy | |
US20250084512A1 (en) | Galvanically-active in situ formed particles for controlled rate dissolving magnesium alloy | |
CN114836652B (zh) | 一种可降解锌合金及应用该可降解锌合金的可溶桥塞 | |
CN106884105B (zh) | 无铅易切削黄铜合金的制备方法 | |
CA3199861A1 (en) | Mg alloy, method for manufacturing mg alloy, and construction material and biomaterial using mg alloy | |
CN115637362A (zh) | 一种水溶性镁合金及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40008899 Country of ref document: HK |
|
GR01 | Patent grant | ||
GR01 | Patent grant |