CN109999618A - System and method for separating carbon dioxide from medium-high pressure gas source - Google Patents
System and method for separating carbon dioxide from medium-high pressure gas source Download PDFInfo
- Publication number
- CN109999618A CN109999618A CN201910340516.3A CN201910340516A CN109999618A CN 109999618 A CN109999618 A CN 109999618A CN 201910340516 A CN201910340516 A CN 201910340516A CN 109999618 A CN109999618 A CN 109999618A
- Authority
- CN
- China
- Prior art keywords
- desorption
- gas
- tower
- lean solution
- high pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 36
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000003795 desorption Methods 0.000 claims abstract description 147
- 238000010521 absorption reaction Methods 0.000 claims abstract description 43
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims description 106
- 238000000926 separation method Methods 0.000 claims description 22
- 239000007791 liquid phase Substances 0.000 claims description 9
- 238000009833 condensation Methods 0.000 claims description 3
- 230000005494 condensation Effects 0.000 claims description 3
- 230000006837 decompression Effects 0.000 claims description 3
- CUZMQPZYCDIHQL-VCTVXEGHSA-L calcium;(2s)-1-[(2s)-3-[(2r)-2-(cyclohexanecarbonylamino)propanoyl]sulfanyl-2-methylpropanoyl]pyrrolidine-2-carboxylate Chemical compound [Ca+2].N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1.N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1 CUZMQPZYCDIHQL-VCTVXEGHSA-L 0.000 claims 1
- 238000012856 packing Methods 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 230000002745 absorbent Effects 0.000 abstract description 2
- 239000002250 absorbent Substances 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000000498 cooling water Substances 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 230000008020 evaporation Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 50
- 238000004064 recycling Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/18—Absorbing units; Liquid distributors therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
技术领域technical field
本发明属于气体分离技术、二氧化碳减排技术领域,具体涉及一种中高压气源中二氧化碳的分离系统及方法。The invention belongs to the technical fields of gas separation technology and carbon dioxide emission reduction, and particularly relates to a system and method for separating carbon dioxide from a medium and high pressure gas source.
背景技术Background technique
全球气候变化已经严重威胁到人类社会、生存环境以及经济的可持续发展。2013年,政府间气候变化专门委员会(IPCC)发布的“第五次气候变化评估报告”指出,温室气体浓度的增加是气候变化的主要驱动因子,CO2是对温升效应贡献最大的温室气体,控制气候变化需要大幅度和持续地减少CO2排放。2018年,IPCC再次对全球气候变暖提出严重警告,CO2排放控制刻不容缓,并将全球气候升温目标从控制在工业化前水平2℃以内提高到控制在1.5℃以内。Global climate change has seriously threatened the sustainable development of human society, living environment and economy. In 2013, the "Fifth Climate Change Assessment Report" issued by the Intergovernmental Panel on Climate Change (IPCC) pointed out that the increase of greenhouse gas concentration is the main driving factor of climate change, and CO 2 is the greenhouse gas that contributes the most to the effect of temperature rise. , controlling climate change will require substantial and sustained reductions in CO2 emissions. In 2018, the IPCC once again issued a serious warning about global warming, and it is urgent to control CO 2 emissions, and raised the global climate warming target from within 2°C of the pre-industrial level to within 1.5°C.
燃煤电厂是我国CO2集中稳定的排放源,约占全国CO2总排放量的35%。此外,合成氨、制氢、煤气化、煤化工等工业领域也存在大量CO2捕集或分离过程。相比燃煤电厂烟道气,这些领域的脱碳工序所需处理的气体压力高(2MPa~5MPa),CO2浓度高(25~60%)。传统常压CO2分离工艺一般通过低温吸收、高温解吸的方法实现CO2脱除,或者通过热泵、机械蒸汽再压缩等手段回收部分热量,达到节能降耗的目的。但对于中高压CO2气源来说,常压CO2分离工艺无法充分利用中高压气源特点,很难充分满足其低能耗和低成本要求。Coal-fired power plants are a concentrated and stable source of CO 2 emissions in China, accounting for about 35% of the country's total CO 2 emissions. In addition, there are also a large number of CO capture or separation processes in industrial fields such as ammonia synthesis, hydrogen production, coal gasification, and coal chemical industry. Compared with the flue gas of coal-fired power plants, the decarbonization process in these fields requires high gas pressure (2MPa~5MPa) and high CO2 concentration (25~60%). The traditional atmospheric CO 2 separation process generally realizes CO 2 removal through low temperature absorption and high temperature desorption, or recovers some heat by means of heat pump, mechanical vapor recompression, etc., to achieve the purpose of energy saving and consumption reduction. However, for the medium and high pressure CO 2 gas source, the atmospheric CO 2 separation process cannot make full use of the characteristics of the medium and high pressure gas source, and it is difficult to fully meet its low energy consumption and low cost requirements.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种中高压气源中二氧化碳的分离系统及方法,解决了现有的常压CO2分离工艺无法实现中高压CO2的脱除。The purpose of the present invention is to provide a system and method for separating carbon dioxide from a medium and high pressure gas source, which solves the problem that the existing normal pressure CO 2 separation process cannot realize the removal of medium and high pressure CO 2 .
为了达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
本发明提供的一种中高压气源中二氧化碳的分离系统,包括吸收塔、闪蒸罐、高压解吸塔、高压解吸再沸器、低压解吸塔、贫液换热设备、半贫液换热设备、第二低压解吸再沸器、解吸气冷却器和气液分离罐,其中,吸收塔的底部CO2富液出口连接闪蒸罐的入口,闪蒸罐的顶部解吸气体出口通过解吸气冷却器连接气液分离罐的入口;The present invention provides a system for separating carbon dioxide from a medium and high pressure gas source, comprising an absorption tower, a flash tank, a high pressure desorption tower, a high pressure desorption reboiler, a low pressure desorption tower, lean liquid heat exchange equipment, and semi-lean liquid heat exchange equipment , a second low-pressure desorption reboiler, a desorption gas cooler and a gas-liquid separation tank, wherein the CO2 -rich liquid outlet at the bottom of the absorption tower is connected to the inlet of the flash tank, and the desorption gas outlet at the top of the flash tank is cooled by the desorption gas The device is connected to the inlet of the gas-liquid separation tank;
闪蒸罐的底部液相出口分为两路,一路连接高压解吸塔的入口;另一路连接低压解吸塔的入口;The liquid phase outlet at the bottom of the flash tank is divided into two paths, one is connected to the inlet of the high-pressure desorption tower; the other is connected to the inlet of the low-pressure desorption tower;
高压解吸塔的底部热贫液出口依次通过第二低压解吸再沸器和贫液换热设备连接吸收塔的顶部入口;高压解吸塔的顶部解吸气体出口通过解吸气冷却器连接气液分离罐的入口;The bottom hot lean liquid outlet of the high pressure desorption tower is connected to the top inlet of the absorption tower through the second low pressure desorption reboiler and the lean liquid heat exchange equipment in turn; the top desorption gas outlet of the high pressure desorption tower is connected to the gas-liquid separation tank through the desorption gas cooler entrance;
高压解吸塔连接高压解吸再沸器;The high pressure desorption tower is connected to the high pressure desorption reboiler;
低压解吸塔的底部半贫液出口通过半贫液换热设备连接吸收塔的中部入口;低压解吸塔的顶部解吸气体出口通过解吸气冷却器连接气液分离罐的入口;The semi-lean liquid outlet at the bottom of the low-pressure desorption tower is connected to the middle inlet of the absorption tower through the semi-lean liquid heat exchange equipment; the desorption gas outlet at the top of the low-pressure desorption tower is connected to the inlet of the gas-liquid separation tank through the desorption gas cooler;
低压解吸塔连接第二低压解吸再沸器;The low pressure desorption tower is connected to the second low pressure desorption reboiler;
气液分离器的底部冷凝液出口分别连接高压解吸塔和低压解吸塔的入口,气液分离器的顶部设置有CO2产品气出口;The bottom condensate outlet of the gas-liquid separator is connected to the inlets of the high-pressure desorption tower and the low-pressure desorption tower respectively, and the top of the gas-liquid separator is provided with a CO2 product gas outlet;
吸收塔的顶部设置有净化气出口。The top of the absorption tower is provided with a purified gas outlet.
优选地,贫液换热设备包括贫液换热器和贫液冷却器,其中,闪蒸罐底部液相出口的一路连接贫液换热器的冷端入口,贫液换热器的冷端出口连接高压解吸塔的入口;高压解吸塔的底部热贫液出口连接贫液换热器的热端入口,贫液换热器的热端出口通过贫液冷却器连接吸收塔的顶部入口。Preferably, the lean liquid heat exchange equipment includes a lean liquid heat exchanger and a lean liquid cooler, wherein one of the liquid phase outlets at the bottom of the flash tank is connected to the cold end inlet of the lean liquid heat exchanger, and the cold end of the lean liquid heat exchanger The outlet is connected to the inlet of the high pressure desorption tower; the hot lean liquid outlet of the bottom of the high pressure desorption tower is connected to the hot end inlet of the lean liquid heat exchanger, and the hot end outlet of the lean liquid heat exchanger is connected to the top inlet of the absorption tower through the lean liquid cooler.
优选地,贫液换热器的热端出口与贫液冷却器之间设置有贫液泵。Preferably, a lean liquid pump is provided between the hot end outlet of the lean liquid heat exchanger and the lean liquid cooler.
优选地,半贫液换热设备包括半贫液换热器和半贫液换热器,其中,闪蒸罐底部液相出口的另一路连接半贫液换热器的冷端入口,半贫液换热器的冷端出口连接低压解吸塔的入口;低压解吸塔的底部热贫液出口连接半贫液换热器的热端入口,半贫液换热器的热端出口通过半贫液换热器连接吸收塔的中部入口。Preferably, the semi-lean liquid heat exchange equipment includes a semi-lean liquid heat exchanger and a semi-lean liquid heat exchanger, wherein the other path of the liquid phase outlet at the bottom of the flash tank is connected to the cold end inlet of the semi-lean liquid heat exchanger, and the semi-lean liquid heat exchanger is The cold end outlet of the liquid heat exchanger is connected to the inlet of the low pressure desorption tower; the hot lean liquid outlet of the bottom of the low pressure desorption tower is connected to the hot end inlet of the semi-lean liquid heat exchanger, and the hot end outlet of the semi-lean liquid heat exchanger passes through the semi-lean liquid heat exchanger. The heat exchanger is connected to the middle inlet of the absorption tower.
优选地,半贫液换热器的热端出口和半贫液换热器之间设置有半贫液泵。Preferably, a semi-lean liquid pump is arranged between the hot end outlet of the semi-lean liquid heat exchanger and the semi-lean liquid heat exchanger.
优选地,高压解吸再沸器连接外接热源设备。Preferably, the high pressure desorption reboiler is connected to an external heat source device.
优选地,低压解吸塔还分别连接有第一低压解吸再沸器,第一低压解吸再沸器连接外接热源设备。Preferably, the low-pressure desorption towers are also respectively connected with first low-pressure desorption reboilers, and the first low-pressure desorption reboilers are connected to external heat source equipment.
一种中高压气源中二氧化碳的分离方法,基于一种中高压气源中二氧化碳的分离系统,包括以下步骤:A method for separating carbon dioxide in a medium and high pressure gas source, based on a system for separating carbon dioxide in a medium and high pressure gas source, comprising the following steps:
含有CO2的工业气从吸收塔的下部进入吸收塔与从不同位置加入的贫液、半贫液逆流接触,完成吸收脱除CO2过程,脱除CO2后的净化气从吸收塔顶部排出;The industrial gas containing CO 2 enters the absorption tower from the lower part of the absorption tower and is in countercurrent contact with the lean liquid and semi-lean liquid added from different positions to complete the process of absorbing and removing CO 2 , and the purified gas after removing CO 2 is discharged from the top of the absorption tower. ;
吸收塔的底部排出的CO2富液进入闪蒸罐进行初步减压解吸,闪蒸罐顶部排出的解吸气体经过解吸气冷却器进入气液分离罐;The CO2 -rich liquid discharged from the bottom of the absorption tower enters the flash tank for preliminary decompression desorption, and the desorbed gas discharged from the top of the flash tank enters the gas-liquid separation tank through the desorption gas cooler;
闪蒸罐底部的排出液相分两路,一路进入高压解吸塔进行解吸,另一部进入低压解吸塔进行解吸;The discharged liquid phase at the bottom of the flash tank is divided into two paths, one enters the high pressure desorption tower for desorption, and the other enters the low pressure desorption tower for desorption;
高压解吸塔底部的热贫液通过贫液换热设备进行降温,之后送往吸收塔的顶部循环使用;The hot lean liquid at the bottom of the high pressure desorption tower is cooled by the lean liquid heat exchange equipment, and then sent to the top of the absorption tower for recycling;
高压解吸塔通过高压解吸再沸器加热,其塔顶的解吸气体进入解吸气冷却器进一步冷凝后进入气液分离器;The high-pressure desorption tower is heated by the high-pressure desorption reboiler, and the desorbed gas at the top of the tower enters the desorption gas cooler for further condensation and then enters the gas-liquid separator;
低压解吸塔通过第二低压解吸再沸器加热,其底部的半贫液经半贫液换热设备进行降温,之后返回吸收塔的中部循环使用;The low-pressure desorption tower is heated by the second low-pressure desorption reboiler, and the semi-lean liquid at the bottom is cooled by the semi-lean liquid heat exchange equipment, and then returned to the middle of the absorption tower for recycling;
低压解吸塔塔顶的解吸气体经解吸气冷却器进一步冷凝后进入气液分离器;The desorption gas at the top of the low pressure desorption tower is further condensed by the desorption gas cooler and then enters the gas-liquid separator;
气液分离器底部的冷凝液分别返回高压解吸塔和低压解吸塔;气液分离器上部的气体出口为CO2产品气。The condensate at the bottom of the gas-liquid separator is returned to the high-pressure desorption tower and the low-pressure desorption tower respectively; the gas outlet at the upper part of the gas-liquid separator is CO2 product gas.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的一种中高压气源中二氧化碳的分离系统,来自吸收塔的CO2富液通过闪蒸、高压解吸、低压解吸等方式逐级减压再生,充分利用了CO2气源的压力较高的特点,减少了外来热耗的输入;满足了低能耗和低成本要求。The present invention provides a system for separating carbon dioxide from a medium and high pressure gas source. The CO 2 rich liquid from the absorption tower is regenerated under reduced pressure step by step by means of flash evaporation, high pressure desorption, low pressure desorption, etc., and the pressure of the CO 2 gas source is fully utilized. Higher characteristics reduce the input of external heat consumption; meet the requirements of low energy consumption and low cost.
进一步的,高压解吸塔塔顶的高温解吸气通入低压解吸塔的再沸器,用作加热解吸的热源,减少了低压解吸塔所需的外来热耗,同时降低了解吸气冷却器的冷却水消耗量。Further, the high-temperature desorption gas at the top of the high-pressure desorption tower is passed into the reboiler of the low-pressure desorption tower, and used as a heat source for heating and desorption, which reduces the external heat consumption required by the low-pressure desorption tower, and at the same time reduces the capacity of the suction cooler. Cooling water consumption.
进一步的,来自高压解吸塔和低压解吸塔的贫液和半贫液分别从吸收塔上段填料和中段填料进入,有助于保持塔身各处反应温度较为均匀,避免局部温度过高,减少吸收剂降解和损耗。Further, the lean liquid and semi-lean liquid from the high-pressure desorption tower and the low-pressure desorption tower enter from the upper and middle packings of the absorption tower respectively, which helps to keep the reaction temperature around the tower relatively uniform, avoids excessive local temperature, and reduces absorption. agent degradation and loss.
进一步的,根据分离工艺的中高压特点和系统内的热能品位特性进行能量的优化利用,没有引入热泵、机械蒸汽再压缩等热回收设备,有效降低投资成本和操作成本。Further, according to the medium and high pressure characteristics of the separation process and the thermal energy grade characteristics in the system, the optimal utilization of energy is carried out, and no heat recovery equipment such as heat pump and mechanical vapor recompression is introduced, which effectively reduces investment costs and operating costs.
附图说明Description of drawings
图1是本发明涉及的分离系统的结构示意图。FIG. 1 is a schematic structural diagram of a separation system according to the present invention.
具体实施方式Detailed ways
下面结合附图,对本发明进一步详细说明。The present invention will be described in further detail below with reference to the accompanying drawings.
如图1所示,本发明提供的一种中高压气源中二氧化碳的分离系统,包括吸收塔1、闪蒸罐2、贫液换热器3、高压解吸塔4、高压解吸再沸器5、贫液泵6、贫液冷却器7、半贫液换热器8、低压解吸塔9、半贫液泵10、半贫液冷却器11、第一低压解吸再沸器12、第二低压解吸再沸器13、解吸气冷却器14、气液分离器15和冷凝液泵16,其中,吸收塔1的气体进口与含CO2的工业气气源相连,吸收塔1的富液出口与闪蒸罐2的溶液进口相连;闪蒸罐2底部的溶液出口分两路,一路通过贫液换热器3与高压解吸塔4上部的溶液进口相连;高压解吸塔4设置高压解吸再沸器5,由外来蒸汽提供热源;高压解吸塔4底部贫液出口依次通过贫液换热器3、贫液泵6、贫液冷却器7与吸收塔1上部的贫液进口相连;As shown in Figure 1 , a system for separating carbon dioxide from a medium and high pressure gas source provided by the present invention comprises an absorption tower 1, a flash tank 2, a lean liquid heat exchanger 3, a high pressure desorption tower 4, and a high pressure desorption reboiler 5 , lean liquid pump 6, lean liquid cooler 7, semi-lean liquid heat exchanger 8, low pressure desorption tower 9, semi-lean liquid pump 10, semi-lean liquid cooler 11, first low pressure desorption reboiler 12, second low pressure Desorption reboiler 13, desorption gas cooler 14, gas-liquid separator 15 and condensate pump 16, wherein the gas inlet of absorption tower 1 is connected with the industrial gas source containing CO2 , and the rich liquid outlet of absorption tower 1 Connect with the solution inlet of the flash tank 2; the solution outlet at the bottom of the flash tank 2 is divided into two paths, and all the way is connected with the solution inlet on the upper part of the high pressure desorption tower 4 through the lean liquid heat exchanger 3; the high pressure desorption tower 4 is provided with high pressure desorption and reboiling 5, the heat source is provided by external steam; the lean liquid outlet at the bottom of the high-pressure desorption tower 4 is connected to the lean liquid inlet at the upper part of the absorption tower 1 through the lean liquid heat exchanger 3, the lean liquid pump 6, and the lean liquid cooler 7 in turn;
闪蒸罐2底部的溶液出口另一路通过半贫液换热器8与低压解吸塔9的上部和中部溶液进口相连;低压解吸塔9底部的半品液出口依次通过半贫液换热器8、半贫液泵10、半贫液冷却器11与吸收塔1中部的半贫液进口相连;The solution outlet at the bottom of the flash tank 2 is connected to the upper and middle solution inlets of the low-pressure desorption tower 9 through the semi-lean liquid heat exchanger 8 in another way; , the semi-lean liquid pump 10 and the semi-lean liquid cooler 11 are connected to the semi-lean liquid inlet in the middle of the absorption tower 1;
低压解吸塔9设置第一低压解吸再沸器12和第二低压解吸再沸器13;第一低压解吸再沸器12由外来蒸汽提供热源,第二低压解吸再沸器13由来自高压解吸塔4顶部的解吸气提供热源;The low pressure desorption tower 9 is provided with a first low pressure desorption reboiler 12 and a second low pressure desorption reboiler 13; the first low pressure desorption reboiler 12 is provided with a heat source by external steam, and the second low pressure desorption reboiler 13 is supplied from the high pressure desorption tower. 4 The desorption gas at the top provides a heat source;
来自闪蒸罐2顶部、高压解吸塔4顶部和低压解吸塔9顶部的解吸气体经过解吸气冷却器14与气液分离器15的进口相连;气液分离器15底部的冷凝液出口通过冷凝液泵16分别与高压解吸塔4上部和低压解吸塔9上部的冷凝液进口相连,气液分离器15上部的气体出口为二氧化碳产品气出口。The desorption gas from the top of the flash tank 2, the top of the high-pressure desorption tower 4 and the top of the low-pressure desorption tower 9 is connected with the inlet of the gas-liquid separator 15 through the desorption gas cooler 14; the condensate outlet at the bottom of the gas-liquid separator 15 is condensed The liquid pump 16 is respectively connected to the condensate inlet of the upper part of the high pressure desorption tower 4 and the upper part of the low pressure desorption tower 9, and the gas outlet of the upper part of the gas-liquid separator 15 is the carbon dioxide product gas outlet.
本发明的工作原理如下:The working principle of the present invention is as follows:
含有CO2的工业气从吸收塔1的下部进入吸收塔与从不同位置加入的吸收剂贫液、半贫液逆流接触,完成吸收脱除CO2过程,脱除CO2后的净化气从吸收塔1顶部排出。The industrial gas containing CO2 enters the absorption tower from the lower part of the absorption tower 1 and is in countercurrent contact with the absorbent lean liquid and semi-lean liquid added from different positions to complete the process of absorbing and removing CO2 . The top of column 1 is discharged.
来自贫液冷却器7的贫液从最上一段填料的上部加入,来自半贫液换热器11的半贫液从中间填料的上部加入。The lean liquid from the lean liquid cooler 7 is added from the upper part of the uppermost packing, and the semi-lean liquid from the semi-lean liquid heat exchanger 11 is added from the upper part of the intermediate packing.
吸收塔1的底部排出的CO2富液进入闪蒸罐2进行初步减压解吸,闪蒸罐2顶部排出的解吸气体经过解吸气冷却器14进入气液分离罐15;The CO2 -rich liquid discharged from the bottom of the absorption tower 1 enters the flash tank 2 for preliminary decompression and desorption, and the desorbed gas discharged from the top of the flash tank 2 enters the gas-liquid separation tank 15 through the stripping gas cooler 14;
闪蒸罐2底部的排出液相分两路,一路经贫液换热器3预热后进入高压解吸塔4进行解吸,另一部经半贫液换热器8预热后进入低压解吸塔9进行解吸。The discharged liquid phase at the bottom of the flash tank 2 is divided into two paths, one of which is preheated by the lean liquid heat exchanger 3 and then enters the high-pressure desorption tower 4 for desorption, and the other is preheated by the semi-lean liquid heat exchanger 8 and enters the low-pressure desorption tower. 9 Perform desorption.
贫液换热器3通过高压解吸塔4塔釜的热贫液加热,半贫液换热器8通过低压解吸塔9塔釜的热半贫液加热。The lean liquid heat exchanger 3 is heated by the hot lean liquid from the tower kettle of the high pressure desorption tower 4, and the semi-lean liquid heat exchanger 8 is heated by the hot semi lean liquid from the tower kettle of the low pressure desorption tower 9.
高压解吸塔4通过高压解吸再沸器5加热,高压解吸再沸器5热源采用来自界区外的蒸汽;高压解吸塔4底部的热贫液通过贫液换热器3回收余热后用贫液泵6送往贫液冷却器7进一步降温,之后送往吸收塔1循环使用。The high pressure desorption tower 4 is heated by the high pressure desorption reboiler 5, and the heat source of the high pressure desorption reboiler 5 adopts the steam from outside the boundary area; The pump 6 is sent to the lean liquid cooler 7 for further cooling, and then sent to the absorption tower 1 for recycling.
高压解吸塔4塔顶的解吸气体进入低压解吸塔9下部的第二低压解吸再沸器13回收热量,并经解吸气冷却器14进一步冷凝后进入气液分离器15。The desorbed gas at the top of the high pressure desorption tower 4 enters the second low pressure desorption reboiler 13 at the lower part of the low pressure desorption tower 9 to recover heat, and is further condensed by the desorption gas cooler 14 before entering the gas-liquid separator 15.
低压解吸塔9有两个再沸器,其中第一低压解吸再沸器12由外来蒸汽提供热源,第二低压解吸再沸器13由来自高压解吸塔4顶部的解吸气提供热源。The low pressure desorption tower 9 has two reboilers, wherein the first low pressure desorption reboiler 12 provides heat source from external steam, and the second low pressure desorption reboiler 13 provides heat source from the desorption gas from the top of the high pressure desorption tower 4.
低压解吸塔9底部的半贫液经半贫液换热器8换热,之后由半贫液泵10送入半贫液换热器11进一步降温后返回吸收塔1循环使用。The semi-lean liquid at the bottom of the low-pressure desorption tower 9 is heat-exchanged by the semi-lean liquid heat exchanger 8, and then sent to the semi-lean liquid heat exchanger 11 by the semi-lean liquid pump 10 for further cooling, and then returned to the absorption tower 1 for recycling.
低压解吸塔9塔顶的解吸气体经解吸气冷却器14进一步冷凝后进入气液分离器15。The desorbed gas at the top of the low pressure desorption tower 9 is further condensed by the desorption gas cooler 14 and then enters the gas-liquid separator 15 .
气液分离器15底部的冷凝液通过冷凝液泵16分别返回高压解吸塔4和低压解吸塔9;气液分离器15上部的气体出口为CO2产品气。The condensate at the bottom of the gas-liquid separator 15 is respectively returned to the high-pressure desorption tower 4 and the low-pressure desorption tower 9 through the condensate pump 16; the gas outlet at the upper part of the gas-liquid separator 15 is CO2 product gas.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910340516.3A CN109999618B (en) | 2019-04-25 | 2019-04-25 | System and method for separating carbon dioxide from medium-high pressure gas source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910340516.3A CN109999618B (en) | 2019-04-25 | 2019-04-25 | System and method for separating carbon dioxide from medium-high pressure gas source |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109999618A true CN109999618A (en) | 2019-07-12 |
CN109999618B CN109999618B (en) | 2024-05-14 |
Family
ID=67174287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910340516.3A Active CN109999618B (en) | 2019-04-25 | 2019-04-25 | System and method for separating carbon dioxide from medium-high pressure gas source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109999618B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110655959A (en) * | 2019-11-11 | 2020-01-07 | 新疆八一钢铁股份有限公司 | Gas CO removal for Ou smelting furnace2Device for measuring the position of a moving object |
CN112452109A (en) * | 2020-12-31 | 2021-03-09 | 双盾环境科技有限公司 | Desorption SO for improving desulfurization absorbent2Efficient process |
CN114515497A (en) * | 2020-11-19 | 2022-05-20 | 中国石油化工股份有限公司 | Treatment system and treatment method for divinylbenzene production tail gas |
CN114570164A (en) * | 2022-03-31 | 2022-06-03 | 四川益能康生环保科技有限公司 | CO2Or SO2Pressure-swing regeneration energy-saving process for organic amine solution of trapping system |
CN115779639A (en) * | 2022-11-25 | 2023-03-14 | 新疆敦华绿碳技术股份有限公司 | Carbon dioxide production system and control method |
CN115920593A (en) * | 2022-11-25 | 2023-04-07 | 新疆敦华绿碳技术股份有限公司 | Absorption device and production system based on double desorption units |
CN119236433A (en) * | 2024-10-25 | 2025-01-03 | 中石化节能技术服务有限公司 | A solvent regeneration system and method |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1176991A (en) * | 1996-08-28 | 1998-03-25 | 三菱重工业株式会社 | Process for removal and high-pressure recovery of carbon dioxide from high-pressure raw gas and system therefor |
CN101643209A (en) * | 2009-07-14 | 2010-02-10 | 北京健坤伟华新能源科技有限公司 | Method for purifying and reclaiming carbon dioxide from landfill gas and device thereof |
JP2011000525A (en) * | 2009-06-17 | 2011-01-06 | Mitsubishi Heavy Ind Ltd | Co2 recovering device and co2 recovering method |
CN102133499A (en) * | 2011-03-03 | 2011-07-27 | 杨东 | System and method for trapping acid gas in smoke |
CN102350177A (en) * | 2011-09-07 | 2012-02-15 | 航天环境工程有限公司 | Pneumatic trapping system and process for carbon dioxide (CO2) in smoke |
CN102784546A (en) * | 2012-08-03 | 2012-11-21 | 中国华能集团清洁能源技术研究院有限公司 | An Efficient CO2 Capture System |
CN102824815A (en) * | 2012-09-17 | 2012-12-19 | 江苏润丰环境工程有限公司 | Absorption extraction process for carbon dioxide in normal-pressure gas |
CN102985161A (en) * | 2010-07-09 | 2013-03-20 | 美国碳捕集与利用技术开发公司 | A gas pressurized separation column and process to generate a high pressure product gas |
CN103372365A (en) * | 2013-07-04 | 2013-10-30 | 天津大学 | Cement kiln waste heat power generation auxiliary carbon dioxide capture system device |
CN103768895A (en) * | 2012-10-23 | 2014-05-07 | 中国石油化工股份有限公司 | Method for low-energy consumption removal of carbon dioxide by hot potash |
DE102013008852A1 (en) * | 2013-05-23 | 2014-11-27 | Linde Aktiengesellschaft | Process and apparatus for treating a sulfur-containing exhaust gas from a sulfur recovery |
CN105268283A (en) * | 2015-09-28 | 2016-01-27 | 北京化工大学 | Combined absorption carbon dioxide trapping and compressing treatment technology |
CN105664671A (en) * | 2016-03-17 | 2016-06-15 | 中石化南京工程有限公司 | Zero-carbon emission process gas purification method and device |
CN106000000A (en) * | 2016-06-29 | 2016-10-12 | 中山大学 | Device and method for performing multistage flash, resolution and separation on synthetic ammonia decarburization absorption tower bottom pregnant solution |
US20160296879A1 (en) * | 2013-12-04 | 2016-10-13 | Korea Institute Of Energy Research | System and method for separation and recovery of acid gas |
US20160339379A1 (en) * | 2015-05-18 | 2016-11-24 | Kabushiki Kaisha Toshiba | Carbon dioxide capture system and carbon dioxide capture method |
CN106362551A (en) * | 2016-11-23 | 2017-02-01 | 四川大学 | System and technology for trapping CO2 in smoke |
CN107754568A (en) * | 2017-11-28 | 2018-03-06 | 沈建冲 | A kind of device and gas recovery process of low energy consumption flue gas trapping and recovering carbon dioxide |
CN108236831A (en) * | 2017-11-23 | 2018-07-03 | 中石化石油工程技术服务有限公司 | Carbon dioxide capture system based on UTILIZATION OF VESIDUAL HEAT IN |
CN207562634U (en) * | 2017-11-23 | 2018-07-03 | 中石化石油工程技术服务有限公司 | Carbon dioxide capture system based on UTILIZATION OF VESIDUAL HEAT IN |
CN108815993A (en) * | 2018-07-24 | 2018-11-16 | 中石化石油工程技术服务有限公司 | The carbon dioxide capture system utilized based on Waste Heat Recovery |
US20190091625A1 (en) * | 2017-09-22 | 2019-03-28 | Jiangsu Environmental Protection Group Inc., | Carbon capture |
CN210410096U (en) * | 2019-04-25 | 2020-04-28 | 华能国际电力股份有限公司 | Separation system for carbon dioxide in medium-high pressure gas source |
-
2019
- 2019-04-25 CN CN201910340516.3A patent/CN109999618B/en active Active
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1176991A (en) * | 1996-08-28 | 1998-03-25 | 三菱重工业株式会社 | Process for removal and high-pressure recovery of carbon dioxide from high-pressure raw gas and system therefor |
JP2011000525A (en) * | 2009-06-17 | 2011-01-06 | Mitsubishi Heavy Ind Ltd | Co2 recovering device and co2 recovering method |
CN101643209A (en) * | 2009-07-14 | 2010-02-10 | 北京健坤伟华新能源科技有限公司 | Method for purifying and reclaiming carbon dioxide from landfill gas and device thereof |
CN102985161A (en) * | 2010-07-09 | 2013-03-20 | 美国碳捕集与利用技术开发公司 | A gas pressurized separation column and process to generate a high pressure product gas |
CN102133499A (en) * | 2011-03-03 | 2011-07-27 | 杨东 | System and method for trapping acid gas in smoke |
CN102350177A (en) * | 2011-09-07 | 2012-02-15 | 航天环境工程有限公司 | Pneumatic trapping system and process for carbon dioxide (CO2) in smoke |
CN102784546A (en) * | 2012-08-03 | 2012-11-21 | 中国华能集团清洁能源技术研究院有限公司 | An Efficient CO2 Capture System |
CN102824815A (en) * | 2012-09-17 | 2012-12-19 | 江苏润丰环境工程有限公司 | Absorption extraction process for carbon dioxide in normal-pressure gas |
CN103768895A (en) * | 2012-10-23 | 2014-05-07 | 中国石油化工股份有限公司 | Method for low-energy consumption removal of carbon dioxide by hot potash |
DE102013008852A1 (en) * | 2013-05-23 | 2014-11-27 | Linde Aktiengesellschaft | Process and apparatus for treating a sulfur-containing exhaust gas from a sulfur recovery |
CN103372365A (en) * | 2013-07-04 | 2013-10-30 | 天津大学 | Cement kiln waste heat power generation auxiliary carbon dioxide capture system device |
US20160296879A1 (en) * | 2013-12-04 | 2016-10-13 | Korea Institute Of Energy Research | System and method for separation and recovery of acid gas |
US20160339379A1 (en) * | 2015-05-18 | 2016-11-24 | Kabushiki Kaisha Toshiba | Carbon dioxide capture system and carbon dioxide capture method |
CN105268283A (en) * | 2015-09-28 | 2016-01-27 | 北京化工大学 | Combined absorption carbon dioxide trapping and compressing treatment technology |
CN105664671A (en) * | 2016-03-17 | 2016-06-15 | 中石化南京工程有限公司 | Zero-carbon emission process gas purification method and device |
CN106000000A (en) * | 2016-06-29 | 2016-10-12 | 中山大学 | Device and method for performing multistage flash, resolution and separation on synthetic ammonia decarburization absorption tower bottom pregnant solution |
CN106362551A (en) * | 2016-11-23 | 2017-02-01 | 四川大学 | System and technology for trapping CO2 in smoke |
US20190091625A1 (en) * | 2017-09-22 | 2019-03-28 | Jiangsu Environmental Protection Group Inc., | Carbon capture |
CN108236831A (en) * | 2017-11-23 | 2018-07-03 | 中石化石油工程技术服务有限公司 | Carbon dioxide capture system based on UTILIZATION OF VESIDUAL HEAT IN |
CN207562634U (en) * | 2017-11-23 | 2018-07-03 | 中石化石油工程技术服务有限公司 | Carbon dioxide capture system based on UTILIZATION OF VESIDUAL HEAT IN |
CN107754568A (en) * | 2017-11-28 | 2018-03-06 | 沈建冲 | A kind of device and gas recovery process of low energy consumption flue gas trapping and recovering carbon dioxide |
CN108815993A (en) * | 2018-07-24 | 2018-11-16 | 中石化石油工程技术服务有限公司 | The carbon dioxide capture system utilized based on Waste Heat Recovery |
CN210410096U (en) * | 2019-04-25 | 2020-04-28 | 华能国际电力股份有限公司 | Separation system for carbon dioxide in medium-high pressure gas source |
Non-Patent Citations (2)
Title |
---|
冀树芳;王军;: "燃煤电厂碳捕集系统节能潜力分析", 现代化工, no. 12, 20 December 2015 (2015-12-20), pages 160 - 163 * |
魏有福;张静;: "热钾碱法脱碳溶液双塔变压再生改造及余热回收", 化肥设计, no. 05, 25 October 2013 (2013-10-25), pages 49 - 51 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110655959A (en) * | 2019-11-11 | 2020-01-07 | 新疆八一钢铁股份有限公司 | Gas CO removal for Ou smelting furnace2Device for measuring the position of a moving object |
CN110655959B (en) * | 2019-11-11 | 2024-05-14 | 新疆八一钢铁股份有限公司 | CO is removed to ouye stove gas2Device and method for controlling the same |
CN114515497A (en) * | 2020-11-19 | 2022-05-20 | 中国石油化工股份有限公司 | Treatment system and treatment method for divinylbenzene production tail gas |
CN112452109A (en) * | 2020-12-31 | 2021-03-09 | 双盾环境科技有限公司 | Desorption SO for improving desulfurization absorbent2Efficient process |
CN114570164A (en) * | 2022-03-31 | 2022-06-03 | 四川益能康生环保科技有限公司 | CO2Or SO2Pressure-swing regeneration energy-saving process for organic amine solution of trapping system |
CN114570164B (en) * | 2022-03-31 | 2022-12-30 | 四川益能康生环保科技有限公司 | CO 2 Or SO 2 Pressure swing regeneration energy-saving process for organic amine solution of trapping system |
CN115779639A (en) * | 2022-11-25 | 2023-03-14 | 新疆敦华绿碳技术股份有限公司 | Carbon dioxide production system and control method |
CN115920593A (en) * | 2022-11-25 | 2023-04-07 | 新疆敦华绿碳技术股份有限公司 | Absorption device and production system based on double desorption units |
CN115920593B (en) * | 2022-11-25 | 2024-05-31 | 新疆敦华绿碳技术股份有限公司 | Absorption device based on double desorption units and production system |
CN119236433A (en) * | 2024-10-25 | 2025-01-03 | 中石化节能技术服务有限公司 | A solvent regeneration system and method |
Also Published As
Publication number | Publication date |
---|---|
CN109999618B (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109999618A (en) | System and method for separating carbon dioxide from medium-high pressure gas source | |
CN103463955B (en) | A kind of technique of separation and recovery carbon dioxide from industrial tail gas | |
CN104107629B (en) | A kind of smoke carbon dioxide capture system and capture method | |
CN102895860B (en) | Method and system for reducing consumption of chemical absorption CO2 capture process | |
CN102218261B (en) | Method and equipment for collecting carbon dioxide from fuel gas by using ammonia water fine spraying | |
LU504005B1 (en) | System and method for synchronous recovery of carbon dioxide and nitrogen gas from flue gas by chemical method and psa method | |
CN105749728B (en) | Method and apparatus for capturing carbon dioxide | |
CN106362551A (en) | System and technology for trapping CO2 in smoke | |
CN107741103A (en) | An ammonia water absorption refrigeration combined with carbon capture device | |
CN102784546A (en) | An Efficient CO2 Capture System | |
CN107715650B (en) | A carbon capture system regeneration gas heat recovery structure | |
CN111482069A (en) | Energy-saving flue gas carbon dioxide recovery system and recovery process | |
CN218544490U (en) | Flue gas waste heat recovery device of coupling carbon entrapment | |
CN100491245C (en) | Method for preparing food-grade liquid carbon dioxide by utilizing cement kiln exhaust gas | |
CN115463521A (en) | Low-energy-consumption carbon capture device and method | |
CN202393293U (en) | Device for improving cooling effect of cooling tower by means of reducing air moisture | |
CN111744328A (en) | Low-energy-consumption carbon dioxide capturing method and system for low-concentration carbon dioxide-containing tail gas | |
CN217410286U (en) | A flue gas deep carbon capture device for recovering waste heat | |
CN217220919U (en) | CO 2 And N 2 Composite trapping and purifying system | |
CN217795387U (en) | Low-energy-consumption carbon trapping device | |
CN217909691U (en) | Energy-saving and water-saving carbon capture device | |
CN117180928A (en) | Gas trapping and storing system and method | |
CN114632402B (en) | Trapping method of flue gas carbon dioxide trapping system | |
CN114963218A (en) | Flue gas waste heat recovery device and method coupled with carbon capture | |
CN212327892U (en) | Energy-saving flue gas carbon dioxide recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 100031, 6, Fuxing Avenue, Xicheng District, Beijing Applicant after: Huaneng Power International,Inc. Applicant after: HUANENG CLEAN ENERGY Research Institute Address before: 100031 Beijing city Xicheng District Fuxingmen South Street No. 2 C Applicant before: Huaneng Power International,Inc. Applicant before: HUANENG CLEAN ENERGY Research Institute |
|
GR01 | Patent grant | ||
GR01 | Patent grant |