CN202393293U - Device for improving cooling effect of cooling tower by means of reducing air moisture - Google Patents
Device for improving cooling effect of cooling tower by means of reducing air moisture Download PDFInfo
- Publication number
- CN202393293U CN202393293U CN2011205252246U CN201120525224U CN202393293U CN 202393293 U CN202393293 U CN 202393293U CN 2011205252246 U CN2011205252246 U CN 2011205252246U CN 201120525224 U CN201120525224 U CN 201120525224U CN 202393293 U CN202393293 U CN 202393293U
- Authority
- CN
- China
- Prior art keywords
- solution
- inlet
- outlet
- heat exchanger
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 74
- 230000000694 effects Effects 0.000 title claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 172
- 239000000498 cooling water Substances 0.000 claims abstract description 31
- 238000010521 absorption reaction Methods 0.000 claims abstract description 25
- 230000008929 regeneration Effects 0.000 claims description 100
- 238000011069 regeneration method Methods 0.000 claims description 100
- 239000007789 gas Substances 0.000 claims description 77
- 238000007791 dehumidification Methods 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000003546 flue gas Substances 0.000 claims description 5
- 239000002274 desiccant Substances 0.000 abstract 3
- 230000001172 regenerating effect Effects 0.000 abstract 3
- 239000003245 coal Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 54
- 229910002092 carbon dioxide Inorganic materials 0.000 description 27
- 238000000034 method Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- PVXVWWANJIWJOO-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-N-ethylpropan-2-amine Chemical compound CCNC(C)CC1=CC=C2OCOC2=C1 PVXVWWANJIWJOO-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- QMMZSJPSPRTHGB-UHFFFAOYSA-N MDEA Natural products CC(C)CCCCC=CCC=CC(O)=O QMMZSJPSPRTHGB-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及一种利用溶液除湿回收化学法CO2捕集装置的能量来提高冷却塔冷却效果的系统,属于CO2捕集技术能量回收节能领域。 The utility model relates to a system for improving the cooling effect of a cooling tower by utilizing the energy of a CO 2 capture device in a solution dehumidification recycling chemical method, and belongs to the field of energy recovery and energy saving of the CO 2 capture technology.
背景技术 Background technique
火力发电厂作为CO2最大的排放源,控制火电厂CO2排放是全球减排工作的重要组成部分。现有的CO2捕集装置能耗较高,造成减排成本过高,这是CCS(二氧化碳捕集与储存)技术迄今没有大规模应用的主要障碍。 As the largest source of CO 2 emissions from thermal power plants, controlling CO 2 emissions from thermal power plants is an important part of global emission reduction efforts. Existing CO2 capture devices have high energy consumption, resulting in high emission reduction costs, which is the main obstacle for the large-scale application of CCS (carbon dioxide capture and storage) technology so far.
当前应用于CO2捕集的主要是化学吸收法,通过化学吸收剂在吸收塔中吸收CO2,然后吸收后的富液返回再生塔加热再生,再生气经过降温冷凝后进入压缩机压缩液化,输送至埋藏地储存,再生后的贫液在降温后进入吸收塔继续吸收CO2。在再生塔中,需将溶液加热至110℃以上,CO2气体才会解吸出。再生过程需要大量热量,输入的热量一部分被用来加热溶液至解吸温度,另一部分被用来使CO2从富液中解吸出来,还有一部分被水蒸发和再生气带走。在贫液冷却和再生气冷凝过程中,这部分热量被冷却水带走,没有利用。 Currently, the CO 2 capture method is mainly the chemical absorption method. The CO 2 is absorbed in the absorption tower through a chemical absorbent, and then the absorbed rich liquid is returned to the regeneration tower for heating and regeneration. The regeneration gas enters the compressor for compression and liquefaction after cooling down and condensing. It is transported to the burial ground for storage, and the regenerated lean liquid enters the absorption tower to continue absorbing CO 2 after cooling down. In the regeneration tower, the solution needs to be heated above 110°C to desorb the CO 2 gas. The regeneration process requires a lot of heat. Part of the input heat is used to heat the solution to the desorption temperature, another part is used to desorb CO2 from the rich solution, and part is taken away by water evaporation and regeneration gas. In the process of lean liquid cooling and regeneration gas condensation, this part of the heat is taken away by the cooling water and is not utilized.
冷却塔是发电厂冷端系统的主要设备,其运行的好坏直接影响机组和电厂的热经济性。有文献表明,对于中压机组,冷却水温度每下降1℃,效率可以提高0.47%;对高压机组,可以提高0.35%。此外,由于冷却塔设计工况和实际运行工况的差别,在一年的某些气象条件下,可能会造成冷却塔性能的下降,使得电厂不得不减负荷运行。 The cooling tower is the main equipment of the cold end system of the power plant, and its operation directly affects the heat economy of the unit and the power plant. Some literature shows that for medium-pressure units, the efficiency can be increased by 0.47% for every 1°C drop in cooling water temperature; for high-pressure units, it can be increased by 0.35%. In addition, due to the difference between the design condition of the cooling tower and the actual operating condition, under certain weather conditions in a year, the performance of the cooling tower may decline, making the power plant have to reduce the load.
本实用新型采用贫液和再生气的热量来对溶液除湿系统的稀溶液进行再生,并将除湿之后的低含湿量空气送入电厂冷却塔,提高冷却塔效率,降低凝汽器入口冷却水温,在提高电厂发电机组效率的同时,有效的利用了本来被冷却水带走的热量。 The utility model uses the heat of lean liquid and regeneration gas to regenerate the dilute solution in the solution dehumidification system, and sends the dehumidified low-humidity air into the cooling tower of the power plant to improve the efficiency of the cooling tower and reduce the cooling water temperature at the entrance of the condenser , while improving the efficiency of the generating set of the power plant, the heat originally taken away by the cooling water is effectively utilized.
发明内容 Contents of the invention
技术问题:本实用新型的目的是提供一种提高冷却塔冷却效果的装置。该系统以溶液除湿技术和化学法CO2捕集技术为基础,回收利用CO2捕集过程中原本需要被冷却水带走的贫液和再生气热量,用于溶液除湿系统的再生,并将溶液除湿系统处理后的低含湿量空气送入电厂冷却塔,提高冷却塔效果,降低凝汽器冷却水进口温度,提高发电机组效率。 Technical problem: The purpose of this utility model is to provide a device for improving the cooling effect of the cooling tower. The system is based on solution dehumidification technology and chemical method CO2 capture technology, recycles the heat of lean liquid and regeneration gas that originally needs to be taken away by cooling water in the process of CO2 capture, and uses it for the regeneration of the solution dehumidification system, and will The low-humidity air treated by the solution dehumidification system is sent to the cooling tower of the power plant to improve the effect of the cooling tower, reduce the temperature of the cooling water inlet of the condenser, and improve the efficiency of the generator set.
技术方案:为解决上述技术问题,本实用新型提供了一种降低空气含湿量来提高冷却塔冷却效果的装置,其包括电厂冷却水子系统、CO2捕集子系统、将电厂冷却子系统和CO2捕集子系统整合在一起的溶液除湿子系统; Technical solution: In order to solve the above technical problems, the utility model provides a device for reducing the moisture content of the air to improve the cooling effect of the cooling tower, which includes the cooling water subsystem of the power plant, the CO2 capture subsystem, and the cooling subsystem of the power plant Solution dehumidification subsystem integrated with CO2 capture subsystem;
电厂冷却水子系统包括冷却塔; The cooling water subsystem of the power plant includes cooling towers;
CO2捕集子系统包括吸收塔、富液泵、贫富液换热器、再生塔、再生气冷却器、气液分离器、贫液泵、贫液换热器、再沸器、贫液水冷换热器、再生气水冷冷却器; The CO2 capture subsystem includes absorption tower, rich liquid pump, lean liquid heat exchanger, regeneration tower, regeneration gas cooler, gas-liquid separator, lean liquid pump, lean liquid heat exchanger, reboiler, lean liquid Water-cooled heat exchanger, regeneration gas water-cooled cooler;
溶液除湿子系统包括除湿器入口风机、溶液除湿器、稀溶液泵、水冷换热器、浓溶液泵、溶液再生器、再生器入口风机、浓溶液稀溶液换热器、空气水冷却器; The solution dehumidification subsystem includes dehumidifier inlet fan, solution dehumidifier, dilute solution pump, water-cooled heat exchanger, concentrated solution pump, solution regenerator, regenerator inlet fan, concentrated solution dilute solution heat exchanger, air-water cooler;
所述的溶液除湿子系统中,除湿器入口风机的出口通过风管与溶液除湿器的鼓风入口相连,溶液除湿器的空气出口与空气水冷却器的空气入口相接,空气水冷却器的空气出口与冷却塔空气入口相通;稀溶液泵入口与溶液除湿器稀溶液出口相接,稀溶液泵出口与浓溶液稀溶液换热器的稀溶液入口相连;浓溶液稀溶液换热器的稀溶液出口与贫液换热器的稀溶液入口相通;贫液换热器的稀溶液出口与再生气冷却器的稀溶液入口相连;再生气冷却器的稀溶液出口与溶液再生器的稀溶液入口相通;溶液再生器的浓溶液出口与浓溶液泵的进口相连;浓溶液泵的出口与浓溶液稀溶液换热器的浓溶液入口相接;浓溶液稀溶液换热器的浓溶液出口与水冷换热器的浓溶液入口相连;水冷换热器的浓溶液出口与溶液除湿器的浓溶液入口连接;再生器入口风机的出口与溶液再生器的鼓风入口相连; In the solution dehumidification subsystem, the outlet of the dehumidifier inlet fan is connected to the blast inlet of the solution dehumidifier through an air pipe, the air outlet of the solution dehumidifier is connected to the air inlet of the air-water cooler, and the air-water cooler The air outlet is connected to the air inlet of the cooling tower; the inlet of the dilute solution pump is connected to the dilute solution outlet of the solution dehumidifier, and the outlet of the dilute solution pump is connected to the dilute solution inlet of the dilute solution heat exchanger for concentrated solution; The solution outlet is connected to the diluted solution inlet of the lean liquid heat exchanger; the diluted solution outlet of the lean liquid heat exchanger is connected to the diluted solution inlet of the regeneration gas cooler; the diluted solution outlet of the regeneration gas cooler is connected to the diluted solution inlet of the solution regenerator connected; the concentrated solution outlet of the solution regenerator is connected with the inlet of the concentrated solution pump; the outlet of the concentrated solution pump is connected with the concentrated solution inlet of the concentrated solution dilute solution heat exchanger; the concentrated solution outlet of the concentrated solution dilute solution heat exchanger is connected with the water cooling The concentrated solution inlet of the heat exchanger is connected; the concentrated solution outlet of the water-cooled heat exchanger is connected with the concentrated solution inlet of the solution dehumidifier; the outlet of the regenerator inlet fan is connected with the blast inlet of the solution regenerator;
所述的CO2捕集子系统中,烟气进入吸收塔气体进口;吸收塔富液出口与富液泵相接;富液泵出口与贫富液换热器的富液入口相通;贫富液换热器富液出口与再生塔富液入口相连;再生塔贫液出口与贫液泵入口相通;贫液泵出口与贫富液换热器的贫液入口相连;贫富液换热器的贫液出口与贫液换热器的贫液入口相接;贫液换热器的贫液出口与贫液水冷换热器的贫液入口相通;贫液水冷换热器的贫液出口与吸收塔的贫液入口相连;再生塔再生气出口与再生气冷却器再生气入口相接;再生气冷却器的再生气出口与再生气水冷冷却器的再生气入口相通;再生气水冷冷却器的再生气出口与气液分离器的气体入口相通; In the CO2 capture subsystem, flue gas enters the gas inlet of the absorption tower; the rich liquid outlet of the absorption tower is connected to the rich liquid pump; the rich liquid pump outlet is connected to the rich liquid inlet of the poor-rich liquid heat exchanger; The rich liquid outlet of the liquid heat exchanger is connected with the rich liquid inlet of the regeneration tower; the lean liquid outlet of the regeneration tower is connected with the lean liquid pump inlet; the lean liquid pump outlet is connected with the lean liquid inlet of the lean-rich liquid heat exchanger; the lean-rich liquid heat exchanger The lean liquid outlet of the lean liquid heat exchanger is connected to the lean liquid inlet of the lean liquid heat exchanger; the lean liquid outlet of the lean liquid heat exchanger is connected to the lean liquid inlet of the lean liquid water-cooled heat exchanger; the lean liquid outlet of the lean liquid water-cooled heat exchanger is connected to the The lean liquid inlet of the absorption tower is connected; the regeneration gas outlet of the regeneration tower is connected with the regeneration gas inlet of the regeneration gas cooler; the regeneration gas outlet of the regeneration gas cooler is connected with the regeneration gas inlet of the regeneration gas water-cooled cooler; The regeneration gas outlet communicates with the gas inlet of the gas-liquid separator;
所述的电厂冷却水子系统中,溶液除湿器空气出口与空气水冷却器空气进口相连,空气水冷却器空气出口与冷却塔空气入口相接。 In the cooling water subsystem of the power plant, the air outlet of the solution dehumidifier is connected to the air inlet of the air-water cooler, and the air outlet of the air-water cooler is connected to the air inlet of the cooling tower.
有益效果:Beneficial effect:
(1) 本实用新型提供了一种利用溶液除湿回收化学法CO2捕集装置能量的方法与装置,回收利用原本被冷却水带走的贫液和再生气热量,用于溶液除湿系统的稀溶液再生。 (1) This utility model provides a method and device for recovering the energy of a chemical method CO2 capture device by using solution dehumidification, recycling the heat of lean liquid and regeneration gas originally taken away by cooling water, and used for dilute solution dehumidification system Solution regeneration.
(2) 将溶液除湿系统除湿之后的低含湿量空气送入电厂冷却塔,提高冷却塔效率,降低凝汽器冷却水进水温度,提高发电机组效率。 (2) Send the low-humidity air dehumidified by the solution dehumidification system into the cooling tower of the power plant to improve the efficiency of the cooling tower, reduce the inlet temperature of the condenser cooling water, and improve the efficiency of the generator set.
(3) 本实用新型充分利用了原本直接被冷却水带走的热量,提高发电机组效率,降低加装CO2捕集系统后对电厂效率的不利影响。 (3) The utility model makes full use of the heat that is directly taken away by the cooling water, improves the efficiency of the generating set, and reduces the adverse effect on the efficiency of the power plant after installing a CO 2 capture system.
附图说明 Description of drawings
图1是一种提高冷却塔冷却效果的装置图; Fig. 1 is a kind of device diagram that improves cooling tower cooling effect;
其中:吸收塔1;富液泵2;贫富液换热器3;再生塔4;再生气冷却器5;气液分离器6;贫液泵7;贫液换热器8;再沸器9;除湿器入口风机10;溶液除湿器11;稀溶液泵12;水冷换热器13;浓溶液泵14;溶液再生器15;再生器入口风机16;浓溶液稀溶液换热器17;冷却塔18;贫液水冷换热器19;再生气水冷冷却器20;空气水冷却器21;锅炉22、汽轮机23;发电机24;凝汽器25;水泵26。
Among them: absorption tower 1; rich liquid pump 2; lean
具体实施方式 Detailed ways
下面将参照附图对本实用新型进行说明。 The utility model will be described below with reference to the accompanying drawings.
利用溶液除湿回收化学法CO2捕集装置能量的系统是建立在溶液除湿技术和化学法CO2捕集技术之上的,常用的溶液除湿剂有溴化锂溶液、氯化锂溶液和氯化钙溶液等;常用的用于捕集CO2的溶液有MEA溶液、MDEA溶液等。 The system of using solution dehumidification to recover energy from chemical CO2 capture devices is based on solution dehumidification technology and chemical CO2 capture technology. Commonly used solution dehumidifiers are lithium bromide solution, lithium chloride solution and calcium chloride solution etc. Commonly used solutions for capturing CO 2 include MEA solution, MDEA solution, etc.
在电厂冷却水子系统中,溶液除湿器空气出口经过空气水冷却器降至室温后与冷却塔空气入口相连,除湿之后的空气通过管路送入冷却塔。 In the cooling water subsystem of the power plant, the air outlet of the solution dehumidifier is connected to the air inlet of the cooling tower after being cooled to room temperature through the air-water cooler, and the dehumidified air is sent into the cooling tower through the pipeline.
发明提供了一种提高冷却塔冷却效果的系统,其包括电厂冷却水子系统、CO2捕集子系统、将电厂冷却子系统和CO2捕集子系统整合在一起的溶液除湿子系统; The invention provides a system for improving the cooling effect of a cooling tower, which includes a power plant cooling water subsystem, a CO capture subsystem, and a solution dehumidification subsystem integrating the power plant cooling subsystem and the CO capture subsystem;
电厂冷却水子系统包括冷却塔; The cooling water subsystem of the power plant includes cooling towers;
CO2捕集子系统包括吸收塔、富液泵、贫富液换热器、再生塔、再生气冷却器、气液分离器、贫液泵、贫液换热器、再沸器、贫液水冷换热器、再生气水冷冷却器; The CO2 capture subsystem includes absorption tower, rich liquid pump, lean liquid heat exchanger, regeneration tower, regeneration gas cooler, gas-liquid separator, lean liquid pump, lean liquid heat exchanger, reboiler, lean liquid Water-cooled heat exchanger, regeneration gas water-cooled cooler;
溶液除湿子系统包括除湿器入口风机、溶液除湿器、稀溶液泵、水冷换热器、浓溶液泵、溶液再生器、再生器入口风机、浓溶液稀溶液换热器、空气水冷却器; The solution dehumidification subsystem includes dehumidifier inlet fan, solution dehumidifier, dilute solution pump, water-cooled heat exchanger, concentrated solution pump, solution regenerator, regenerator inlet fan, concentrated solution dilute solution heat exchanger, air-water cooler;
所述的溶液除湿子系统中,室外空气通过除湿器入口风机10被送入溶液除湿器11中与浓溶液接触除湿,除湿后的干燥空气先被送入空气水冷却器21中降温至室外干球温度,然后再被送入电厂冷却水子系统的冷却塔18中,强化冷却塔中的传热传质,以提高冷却塔冷却效果;在除湿器11中吸收完空气中水分后得到的稀溶液被稀溶液泵12送入浓溶液稀溶液换热器17中与再生后得到的浓溶液交换热量,换热后的稀溶液接着被送入贫液换热器8中与CO2捕集子系统中的贫液换热,然后又被送至CO2捕集子系统中的再生冷却器5中与再生塔4出口再生CO2气体换热,使稀溶液被加热至再生温度,接着稀溶液被送入溶液再生器15中与室外空气接触得到再生;再生空气由再生器入口风机16引入;再生后得到的浓溶液被浓溶液泵14送入浓溶液稀溶液换热器17中与稀溶液换热,接着被送入水冷换热器13,进一步降温至溶液除湿器入口温度后送入溶液除湿器11;
In the solution dehumidification subsystem, the outdoor air is sent into the solution dehumidifier 11 through the
所述的CO2捕集子系统中,电厂锅炉中烟气经过脱硫后进入吸收塔1与再生后得到的贫液反应,被脱除CO2后的净化气排入大气,反应之后得到的富液经过富液泵2送入贫富液换热器3与贫液交换热量,然后富液被送入再生塔4再生,在再生塔4中,富液被再沸器9加热至再生温度,将其中的CO2解吸出来,再生后得到的贫液经过贫液泵7送入贫富液换热器3与富液换热,交换热量后的贫液接着被送入贫液换热器8中与溶液除湿子系统的稀溶液换热,然后再被送入贫液水冷换热器19中,贫液降至吸收温度后被送入吸收塔1;再生塔4中解吸出来的CO2与水蒸气一起进入再生气冷却器5中进一步加热溶液除湿子系统中的稀溶液,使稀溶液得到再生,降温后的CO2和凝结水被送入再生气水冷冷却器20中进一步降温,以便于出口的CO2再进一步的被压缩和液化,凝结水从气液分离器6回流至再生塔4;
In the CO2 capture subsystem described above, the flue gas in the power plant boiler enters the absorption tower 1 after desulfurization and reacts with the lean liquid obtained after regeneration, and the purified gas after the CO2 removal is discharged into the atmosphere, and the rich liquid obtained after the reaction is The liquid is sent to the lean-rich
所述的电厂冷却水子系统中,经过溶液除湿系统除湿后的干燥空气被送入冷却塔18,强化了冷却塔中的传热传质,降低了冷却塔18的出口水温,低的冷却水温度提高了凝汽器的真空,使得机组效率得到提高。
In the cooling water subsystem of the power plant, the dry air dehumidified by the solution dehumidification system is sent into the
参见图1,提高冷却塔冷却效果的系统,其包括电厂冷却水子系统、CO2捕集子系统、将电厂冷却子系统和CO2捕集子系统整合在一起的溶液除湿子系统; Referring to Figure 1, the system for improving the cooling effect of a cooling tower includes a power plant cooling water subsystem, a CO2 capture subsystem, and a solution dehumidification subsystem integrating the power plant cooling subsystem and the CO2 capture subsystem;
电厂冷却水子系统包括冷却塔18;
The cooling water subsystem of the power plant includes a
CO2捕集子系统包括吸收塔1、富液泵2、贫富液换热器3、再生塔4、再生气冷却器5、气液分离器6、贫液泵7、贫液换热器8、再沸器9、贫液水冷换热器19、再生气水冷冷却器20;
CO2 capture subsystem includes absorption tower 1, rich liquid pump 2, lean
溶液除湿子系统包括除湿器入口风机10、溶液除湿器11、稀溶液泵12、水冷换热器13、浓溶液泵14、溶液再生器15、再生器入口风机16、浓溶液稀溶液换热器17、空气水冷却器21;
The solution dehumidification subsystem includes
所述的溶液除湿子系统中,除湿器入口风机10的出口通过风管与溶液除湿器11的鼓风入口相连,溶液除湿器11的空气出口与空气水冷却器21的空气入口相接,空气水冷却器21的空气出口与冷却塔18空气入口相通;稀溶液泵12入口与溶液除湿器11稀溶液出口相接,稀溶液泵12出口与浓溶液稀溶液换热器17的稀溶液入口相连;浓溶液稀溶液换热器17的稀溶液出口与贫液换热器8的稀溶液入口相通;贫液换热器8的稀溶液出口与再生气冷却器5的稀溶液入口相连;再生气冷却器5的稀溶液出口与溶液再生器15的稀溶液入口相通;溶液再生器15的浓溶液出口与浓溶液泵14的进口相连;浓溶液泵14的出口与浓溶液稀溶液换热器17的浓溶液入口相接;浓溶液稀溶液换热器17的浓溶液出口与水冷换热器13的浓溶液入口相连;水冷换热器13的浓溶液出口与溶液除湿器11的浓溶液入口连接;再生器入口风机16的出口与溶液再生器15的鼓风入口相连;
In the solution dehumidification subsystem, the outlet of the
所述的CO2捕集子系统中,烟气与吸收塔1气体进口相连;吸收塔1富液出口与富液泵2相接;富液泵2出口与贫富液换热器3的富液入口相通;贫富液换热器3富液出口与再生塔4富液入口相连;再生塔4贫液出口与贫液泵7入口相通;贫液泵7出口与贫富液换热器3的贫液入口相连;贫富液换热器3的贫液出口与贫液换热器8的贫液入口相接;贫液换热器8的贫液出口与贫液水冷换热器19的贫液入口相通;贫液水冷换热器19的贫液出口与吸收塔1的贫液入口相连;再生塔4再生气出口与再生气冷却器5再生气入口相接;再生气冷却器5的再生气出口与再生气水冷冷却器20的再生气入口相通;再生气水冷冷却器20的再生气出口与气液分离器6的气体入口相通;
In the CO2 capture subsystem, the flue gas is connected to the gas inlet of the absorption tower 1; the rich liquid outlet of the absorption tower 1 is connected to the rich liquid pump 2; the rich liquid pump 2 outlet is connected to the rich
所述的电厂冷却水子系统中,溶液除湿器11空气出口与空气水冷却器21空气进口相连,空气水冷却器21空气出口与冷却塔18空气入口相接。
In the power plant cooling water subsystem, the air outlet of the solution dehumidifier 11 is connected to the air inlet of the air-
本实用新型利用溶液除湿系统除湿后的稀溶液通过换热器先与温度较低的贫液换热,然后与温度较高的再生气换热,使稀溶液得到再生,并将溶液除湿系统处理后的低含湿量空气送入电厂冷却塔,提高冷却效率,降低凝汽器冷却进水温度,提高发电机组效率,使原本通过冷却水带走的热量得到利用,减少了能量损失。 The utility model utilizes the dehumidified dilute solution of the solution dehumidification system to first exchange heat with the lean liquid with a lower temperature through a heat exchanger, and then exchange heat with the regeneration gas with a higher temperature, so that the dilute solution can be regenerated, and the solution dehumidification system is processed The final low-humidity air is sent to the cooling tower of the power plant to improve the cooling efficiency, reduce the cooling water temperature of the condenser, improve the efficiency of the generator set, and make use of the heat originally taken away by the cooling water, reducing energy loss.
在建有CO2捕集装置的电厂中设置了一套溶液除湿子系统,将电厂冷却水子系统同CO2捕集子系统整合起来:主要特征为溶液除湿子系统将空气在溶液除湿器11中除湿后送入冷却塔18的空气入口,强化冷却塔中的传热传质过程,提高冷却塔的效率,降低凝汽器循环水进水温度;
A solution dehumidification subsystem is set up in a power plant with a CO 2 capture device to integrate the cooling water subsystem of the power plant with the CO 2 capture subsystem: the main feature is that the solution dehumidification subsystem puts air in the solution dehumidifier 11 After dehumidification in the middle, it is sent to the air inlet of the
同时溶液除湿器11的出口稀溶液先在贫液换热器8中和温度较低的贫液换热,再在再生气冷却器5中与温度较高的再生气换热,使稀溶液得到再生,将再生后的稀溶液用于降低冷却塔18进口空气的含湿量。
At the same time, the dilute solution at the outlet of the solution dehumidifier 11 first exchanges heat with the lean liquid with a lower temperature in the lean liquid heat exchanger 8, and then exchanges heat with the higher regenerated gas in the regenerated gas cooler 5, so that the dilute solution can be obtained. For regeneration, the regenerated dilute solution is used to reduce the moisture content of the inlet air of the
贫液水冷换热器19用于将贫液换热器8出口贫液冷却至吸收温度,再生气水冷冷却器20用于将再生气冷却器5出口再生气冷却至压缩机入口要求温度。
The lean liquid water-cooled
凡是涉及到回收电厂CO2捕集系统贫液热量和再生气热量,将此部分回收的热量用于溶液除湿系统的稀溶液再生,并且将溶液除湿系统除湿后的空气送入电厂冷却塔,强化冷却塔传热传质效果的系统,包括使用改进型的溶液除湿系统或者改进型的CO2捕集系统,只要原理一致,皆在权利要求范围之内。 When it comes to recovering the lean liquid heat and regeneration gas heat of the CO2 capture system of the power plant, this part of the recovered heat is used for the regeneration of the dilute solution of the solution dehumidification system, and the air dehumidified by the solution dehumidification system is sent to the cooling tower of the power plant to strengthen The heat and mass transfer effect system of the cooling tower, including the use of the improved solution dehumidification system or the improved CO 2 capture system, as long as the principles are consistent, are all within the scope of the claims.
参见图1,在溶液除湿子系统中,风机10的出口通过风管与溶液除湿器11的鼓风入口相连,除湿器11的空气出口与空气水冷却器21的空气入口相接,空气水冷却器21的空气出口与电厂冷却塔18空气入口相通;稀溶液泵12入口与除湿器11稀溶液出口相接,出口与浓溶液稀溶液换热器17的稀溶液入口相连;浓溶液稀溶液换热器17的稀溶液出口与贫液换热器8的稀溶液入口相通;贫液换热器8的稀溶液出口与再生气冷却器5的稀溶液入口相连;再生气冷却器5的稀溶液出口与溶液再生器15的稀溶液入口相通;溶液再生器15的浓溶液出口与浓溶液泵14的进口相连;浓溶液泵14的出口与浓溶液稀溶液换热器17的浓溶液入口相接;浓溶液稀溶液换热器17的浓溶液出口与水冷换热器13的浓溶液入口相连;水冷换热器13的浓溶液出口与溶液除湿器11的浓溶液入口连接;风机16的出口与溶液再生器15的鼓风入口相连。 Referring to Fig. 1, in the solution dehumidification subsystem, the outlet of the fan 10 is connected with the blast inlet of the solution dehumidifier 11 through the air pipe, and the air outlet of the dehumidifier 11 is connected with the air inlet of the air-water cooler 21, and the air-water cooling The air outlet of device 21 communicates with the air inlet of power plant cooling tower 18; the inlet of dilute solution pump 12 is connected with the outlet of dilute solution of dehumidifier 11, and the outlet is connected with the inlet of dilute solution of concentrated solution dilute solution heat exchanger 17; The dilute solution outlet of the heat exchanger 17 is connected with the dilute solution inlet of the lean liquid heat exchanger 8; the dilute solution outlet of the lean liquid heat exchanger 8 is connected with the dilute solution inlet of the regeneration gas cooler 5; The outlet is communicated with the dilute solution inlet of the solution regenerator 15; the concentrated solution outlet of the solution regenerator 15 is connected with the inlet of the concentrated solution pump 14; the outlet of the concentrated solution pump 14 is connected with the concentrated solution inlet of the concentrated solution dilute solution heat exchanger 17 The concentrated solution outlet of concentrated solution dilute solution heat exchanger 17 links to each other with the concentrated solution inlet of water-cooled heat exchanger 13; The concentrated solution outlet of water-cooled heat exchanger 13 is connected with the concentrated solution inlet of solution dehumidifier 11; The outlet of blower fan 16 is connected with The blast inlet of the solution regenerator 15 is connected.
在CO2捕集子系统中,烟气与吸收塔气体进口相连;吸收塔1富液出口与富液泵2相接;富液泵2出口与贫富液换热器3的富液入口相通;贫富液换热器3富液出口与再生塔4富液入口相连;再生塔4贫液出口与贫液泵7入口相通;贫液泵7出口与贫富液换热器3的贫液入口相连;贫富液换热器3的贫液出口与贫液换热器8的贫液入口相接;贫液换热器8的贫液出口与贫液水冷换热器19的贫液入口相通;贫液水冷换热19的贫液出口与吸收塔1的贫液入口相连;再生塔4再生气出口与再生气冷却器5再生气入口相接;再生气冷却器5的再生气出口与再生气水冷冷却器20的再生气入口相通;再生气水冷冷却器20的再生气出口与气液分离器6的气体入口相通。 In the CO2 capture subsystem, the flue gas is connected to the gas inlet of the absorption tower; the rich liquid outlet of the absorption tower 1 is connected to the rich liquid pump 2; the rich liquid pump 2 outlet is connected to the rich liquid inlet of the lean-rich liquid heat exchanger 3 The rich liquid outlet of the poor-rich liquid heat exchanger 3 is connected to the rich liquid inlet of the regeneration tower 4; the lean liquid outlet of the regeneration tower 4 is connected to the lean liquid pump 7 inlet; the lean liquid pump 7 outlet is connected to the lean liquid of the lean-rich liquid heat exchanger 3 The inlet is connected; the lean liquid outlet of the lean liquid heat exchanger 3 is connected with the lean liquid inlet of the lean liquid heat exchanger 8; the lean liquid outlet of the lean liquid heat exchanger 8 is connected with the lean liquid inlet of the lean liquid water-cooled heat exchanger 19 connected; the lean liquid outlet of the lean liquid water cooling heat exchange 19 is connected with the lean liquid inlet of the absorption tower 1; the regeneration gas outlet of the regeneration tower 4 is connected with the regeneration gas inlet of the regeneration gas cooler 5; the regeneration gas outlet of the regeneration gas cooler 5 is connected with the The regeneration gas inlet of the regeneration gas water-cooled cooler 20 communicates; the regeneration gas outlet of the regeneration gas water-cooled cooler 20 communicates with the gas inlet of the gas-liquid separator 6 .
在电厂冷却水子系统中,溶液除湿器11空气出口经过空气水冷却器21降至室温后与冷却塔空18气入口相连,除湿后的空气通过管路送入冷却塔18。
In the cooling water subsystem of the power plant, the air outlet of the solution dehumidifier 11 is lowered to room temperature through the air-
以上所述仅为本实用新型的较佳实施方式,本实用新型的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本实用新型所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。 The above are only preferred embodiments of the present utility model, and the protection scope of the present utility model is not limited to the above-mentioned embodiments, but any equivalent modification or change made by those of ordinary skill in the art according to the content disclosed in the present utility model, All should be included in the scope of protection described in the claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011205252246U CN202393293U (en) | 2011-12-15 | 2011-12-15 | Device for improving cooling effect of cooling tower by means of reducing air moisture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011205252246U CN202393293U (en) | 2011-12-15 | 2011-12-15 | Device for improving cooling effect of cooling tower by means of reducing air moisture |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202393293U true CN202393293U (en) | 2012-08-22 |
Family
ID=46668211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011205252246U Expired - Fee Related CN202393293U (en) | 2011-12-15 | 2011-12-15 | Device for improving cooling effect of cooling tower by means of reducing air moisture |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202393293U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519299A (en) * | 2011-12-15 | 2012-06-27 | 东南大学 | System capable of improving cooling effect of cooling tower by means of reducing moisture content of air |
US9021810B2 (en) * | 2012-01-27 | 2015-05-05 | The University Of Kentucky Research Foundation | Fossil-fuel-fired power plant |
CN110701922A (en) * | 2019-10-22 | 2020-01-17 | 常州和余环保科技有限公司 | Mechanical ventilation cooling tower |
CN114923233A (en) * | 2022-04-01 | 2022-08-19 | 东南大学 | A light stimuli-responsive ionic liquid dehumidification and air conditioning system |
-
2011
- 2011-12-15 CN CN2011205252246U patent/CN202393293U/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519299A (en) * | 2011-12-15 | 2012-06-27 | 东南大学 | System capable of improving cooling effect of cooling tower by means of reducing moisture content of air |
CN102519299B (en) * | 2011-12-15 | 2013-05-01 | 东南大学 | System capable of improving cooling effect of cooling tower by means of reducing moisture content of air |
US9021810B2 (en) * | 2012-01-27 | 2015-05-05 | The University Of Kentucky Research Foundation | Fossil-fuel-fired power plant |
CN110701922A (en) * | 2019-10-22 | 2020-01-17 | 常州和余环保科技有限公司 | Mechanical ventilation cooling tower |
CN114923233A (en) * | 2022-04-01 | 2022-08-19 | 东南大学 | A light stimuli-responsive ionic liquid dehumidification and air conditioning system |
CN114923233B (en) * | 2022-04-01 | 2023-10-24 | 东南大学 | Light stimulus response ionic liquid dehumidification air conditioning system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110152489B (en) | Carbon dioxide capture system and method based on steam turbine exhaust waste heat recovery | |
CN114768488B (en) | Coal-fired unit flue gas carbon dioxide entrapment system | |
CN102895860B (en) | Method and system for reducing consumption of chemical absorption CO2 capture process | |
EA035832B1 (en) | Method and plant for cocapture | |
CN106039960A (en) | Carbon dioxide capturing and liquefying process stepwise utilizing smoke waste heat | |
CN106906874A (en) | Island air water fetching device and its method for fetching water | |
CN114279254B (en) | Flue gas waste heat utilization and carbon dioxide capturing and recycling process | |
CN109999618A (en) | System and method for separating carbon dioxide from medium-high pressure gas source | |
CN106362551A (en) | System and technology for trapping CO2 in smoke | |
CN105749728B (en) | Method and apparatus for capturing carbon dioxide | |
CN218544490U (en) | Flue gas waste heat recovery device of coupling carbon entrapment | |
CN111841064A (en) | Low temperature pentane wash carbon dioxide capture system and method | |
CN202393293U (en) | Device for improving cooling effect of cooling tower by means of reducing air moisture | |
CN102519299B (en) | System capable of improving cooling effect of cooling tower by means of reducing moisture content of air | |
CN209093018U (en) | A low-energy carbon dioxide capture and storage system | |
CN115463521A (en) | Low-energy-consumption carbon capture device and method | |
CN110513905B (en) | Cold and heat combined supply system based on open type absorption cycle | |
CN115608133A (en) | Flue gas carbon capture system and method for capturing carbon in flue gas | |
CN109939459A (en) | A low-temperature dust-laden flue gas eliminating white smoke device and working method with two-stage condensation and solution dehumidification | |
CN107138024B (en) | Integrated particle fluidized carbon dioxide capture method and apparatus for power plants | |
CN207277427U (en) | Island air water intake device | |
CN221376002U (en) | Coal-fired cogeneration system integrating absorption heat pump and carbon trapping device | |
CN205481067U (en) | System for indirect heating power drive desorption carbon dioxide of independent solar energy phase transition step heat accumulation | |
CN220669435U (en) | Condensate recovery system of carbon dioxide trapping device | |
CN217410286U (en) | A flue gas deep carbon capture device for recovering waste heat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120822 Termination date: 20131215 |