[go: up one dir, main page]

CN109957569B - Base editing system and method based on CPF1 protein - Google Patents

Base editing system and method based on CPF1 protein Download PDF

Info

Publication number
CN109957569B
CN109957569B CN201811578853.8A CN201811578853A CN109957569B CN 109957569 B CN109957569 B CN 109957569B CN 201811578853 A CN201811578853 A CN 201811578853A CN 109957569 B CN109957569 B CN 109957569B
Authority
CN
China
Prior art keywords
lys
leu
glu
ile
asn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811578853.8A
Other languages
Chinese (zh)
Other versions
CN109957569A (en
Inventor
高彩霞
王延鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Qihe Biotechnology Co ltd
Original Assignee
Suzhou Qihe Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Qihe Biotechnology Co ltd filed Critical Suzhou Qihe Biotechnology Co ltd
Publication of CN109957569A publication Critical patent/CN109957569A/en
Application granted granted Critical
Publication of CN109957569B publication Critical patent/CN109957569B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04001Cytosine deaminase (3.5.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to the field of genetic engineering. Specifically, the invention relates to a base editing method based on CPF1 protein. More particularly, the present invention relates to a method for efficient base editing of a target sequence in the genome of an organism (e.g., a plant) by a guide RNA-directed Cpf 1-deaminase fusion protein, and genetically modified organisms (e.g., plants) and progeny thereof produced by said method.

Description

CPF1 protein-based base editing system and method
Technical Field
The present invention relates to the field of genetic engineering. In particular, the invention relates to a base editing system and method based on CPF1 protein. More particularly, the present invention relates to a system and method for efficient base editing of a target sequence in the genome of an organism (e.g., a plant) by a guide RNA-directed Cpf 1-deaminase fusion protein, and genetically modified organisms (e.g., plants) and progeny thereof produced by the method.
Background
A prerequisite for efficient crop improvement is the availability of new genetic mutations, which can be readily introduced into modern cultivars. Genetic studies, especially based on genome-wide association, have shown that single nucleotide changes are a major cause of differences in crop traits. Single base variation leads to amino acid substitutions, resulting in the evolution of superior alleles and superior traits. Targeted induction of local mutations in the genome (TILLING) before genome editing has occurred may serve as a means for generating mutations that are urgently needed in crop improvement. However, TILLING screening is time and labor consuming, and the point mutations identified are often limited in number and type. Genome editing techniques, particularly those based on the CRISPR/Cas9 system, can achieve the introduction of substitutions of specific bases in genomic sites through Homologous Recombination (HR) -mediated DNA repair pathways. However, at present, the successful use of this method is greatly limited, mainly due to the low frequency with which HR-mediated double-strand break repair occurs in plants. In addition, it is currently a major challenge to efficiently provide sufficient quantities of DNA repair templates. These problems make it challenging to achieve site-directed mutagenesis efficiently and simply in plants by way of HR.
In recent years, by fusing Cas9 and deaminase using the binding property of Cas9 and DNA and the property of DNA deaminase, it is possible to realize the conversion of the single base cytosine (C) to thymine (T) and the conversion of adenine (a) to guanine (G) of a target gene with high precision. Currently, systems for C to T transitions include mainly fusions of SpnCas9-BE3, spnCas9-AID and Cas9 variants such as VQR-BE3, EQR-BE3 and VRER-BE3, in addition to SaCas9-BE3 and the variant SaKKH-BE3, which combinations reduce the PAM limit of cytosine (C) to thymine (T) transitions and the extent of the editing window is more variable. In addition, adenine deaminase capable of acting on ssDNA is developed by David Liu laboratories of Harvard university recently in an artificial evolution mode, and a Cas9-ABE system capable of realizing A-to-G conversion of DNA by fusion with Cas9 is developed, so that the action direction of single base editing is further expanded. Although these studies have led to a wide range of uses for single base editing of DNA, there are still a number of problems with current single base editing techniques: first, since PAM for Cas9 and Cas9 variants is generally limited to G/C rich regions, PAM types for single base editing systems still need to be broadened; secondly, as the specificity of Cas9 and editing itself is poor, the single base editing system still needs to be improved in the aspect of specificity; thirdly, since the nCas9-BE3 and variant BE3 thereof, and nCas9-ABE usually generate single-stranded nicks on the non-targeting strand of the target site, it is easy to generate single-base mutation and DNA fidelity and insertion during mismatch repair, so that the high fidelity of single base is also to BE improved. Thus, there remains a great need in the art for new systems and methods for base editing plant genomes.
Description of the drawings
FIG. 1 optimization of CPF1-mediated plant genome cleavage activity.
Cpf 1-mediated mutation of plant genomes C to T.
Cpf 1-mediated mutation of plant genomes a to G.
FIG. 4 simultaneous base editing at multiple sites using the RNA cleavage activity of CPF1.
Disclosure of Invention
1. Definition of
In the present invention, unless otherwise specified, scientific and technical terms used herein have the meanings that are commonly understood by those skilled in the art. Also, protein and nucleic acid chemistry, molecular biology, cell and tissue culture, microbiology, immunology related terms, and laboratory procedures, as used herein, are all terms and routine procedures used extensively in the relevant arts. For example, standard recombinant DNA and molecular cloning techniques used in the present invention are well known to those skilled in the art and are more fully described in the following references: sambrook, j., fritsch, e.f. and manitis, t., molecular Cloning: (iii) an Arabidopsis Manual; cold Spring Harbor Laboratory Press: cold Spring Harbor,1989 (hereinafter referred to as "Sambrook"). Meanwhile, in order to better understand the present invention, the following provides definitions and explanations of related terms.
"Cpf1 nuclease," "Cpf1 protein," and "Cpf1" are used interchangeably herein to refer to RNA-guided nucleases comprising a Cpf1 protein or fragment thereof. Cpf1 is a component of the CRISPR-Cpf1 genome editing system and is capable of targeting and cleaving a DNA target sequence under the direction of a guide RNA (crRNA) to form a DNA Double Strand Break (DSB). The Cpf1 protein comprises a DNA cleavage domain and an independent RNA cleavage domain. The RNA cleavage domain of the Cpf1 protein is capable of processing pre-crRNA to form mature crRNA.
"guide RNA" and "gRNA" are used interchangeably herein. The guide RNA of the Cpf 1-mediated genome editing system typically consists only of mature crRNA molecules, wherein the crRNA comprises a sequence that is sufficiently identical to the target sequence to hybridize to the complement of the target sequence and direct specific binding of the complex (Cpf 1+ crRNA) to the target sequence.
"deaminase" refers to an enzyme that catalyzes a deamination reaction. In some embodiments of the invention, the deaminase refers to a cytosine deaminase that catalyzes the deamination of cytidine or deoxycytidine to uracil or deoxyuracil, respectively. In some embodiments of the invention, the deaminase refers to an adenine deaminase that is capable of catalyzing the formation of inosine (I) from adenosine or deoxyadenosine (a).
"genome" when used in a plant cell encompasses not only chromosomal DNA present in the nucleus, but organelle DNA present in subcellular components of the cell (e.g., mitochondria, plastids).
As used herein, "organism" includes any organism suitable for genome editing, preferably a eukaryote. Examples of organisms include, but are not limited to, mammals such as mice, rats, monkeys, dogs, pigs, sheep, cows, cats; poultry such as chicken, duck, goose; plants include both monocots and dicots, such as rice, maize, wheat, sorghum, barley, soybean, peanut, arabidopsis, and the like.
By "genetically modified organism" or "genetically modified cell" is meant an organism or cell that comprises within its genome an exogenous polynucleotide or modified gene or expression control sequence. For example, an exogenous polynucleotide can be stably integrated into the genome of an organism or cell and be inherited by successive generations. The exogenous polynucleotide may be integrated into the genome alone or as part of a recombinant DNA construct. Modified genes or expression control sequences are those which comprise single or multiple deoxynucleotide substitutions, deletions and additions in the genome of an organism or cell. For example, the genetically modified organism obtained by the present invention may comprise one or more C to T or a to G substitutions relative to the wild type (corresponding organism not genetically modified).
"exogenous" with respect to a sequence means a sequence from a foreign species, or if from the same species, a sequence whose composition and/or locus has been significantly altered from its native form by deliberate human intervention.
"polynucleotide", "nucleic acid sequence", "nucleotide sequence" or "nucleic acid fragment" are used interchangeably and are single-or double-stranded RNA or DNA polymers, optionally containing synthetic, non-natural or altered nucleotide bases. Nucleotides are referred to by their single letter designation as follows: "A" is adenosine or deoxyadenosine (corresponding to RNA or DNA, respectively), "C" represents cytidine or deoxycytidine, "G" represents guanosine or deoxyguanosine, "U" represents uridine, "T" represents deoxythymidine, "R" represents purine (A or G), "Y" represents pyrimidine (C or T), "K" represents G or T, "H" represents A or C or T, "I" represents inosine, and "N" represents any nucleotide.
"polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms "polypeptide", "peptide", "amino acid sequence" and "protein" may also include modifications including, but not limited to, glycosylation, lipid attachment, sulfation, gamma carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation.
As used herein, "expression construct" refers to a vector, such as a recombinant vector, suitable for expression of a nucleotide sequence of interest in an organism. "expression" refers to the production of a functional product. For example, expression of a nucleotide sequence can refer to transcription of the nucleotide sequence (e.g., transcription to produce mRNA or functional RNA) and/or translation of the RNA into a precursor or mature protein.
The "expression construct" of the invention may be a linear nucleic acid fragment, a circular plasmid, a viral vector, or, in some embodiments, may be an RNA (e.g., mRNA) capable of translation.
An "expression construct" of the invention may comprise regulatory sequences and nucleotide sequences of interest of different origin, or regulatory sequences and nucleotide sequences of interest of the same origin but arranged in a manner different from that normally found in nature.
"regulatory sequence" and "regulatory element" are used interchangeably to refer to a nucleotide sequence that is located upstream (5 'non-coding sequence), intermediate, or downstream (3' non-coding sequence) of a coding sequence and that affects the transcription, RNA processing or stability, or translation of the associated coding sequence.
Regulatory sequences may include, but are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
"promoter" refers to a nucleic acid fragment capable of controlling the transcription of another nucleic acid fragment. In some embodiments of the invention, the promoter is a promoter capable of controlling transcription of a gene in a cell of an organism, whether or not it is derived from the organism. The promoter may be a constitutive promoter or a tissue-specific promoter or a developmentally regulated promoter or an inducible promoter.
"constitutive promoter" refers to a promoter that will generally cause a gene to be expressed in most cell types under most circumstances. "tissue-specific promoter" and "tissue-preferred promoter" are used interchangeably and refer to a promoter that is expressed primarily, but not necessarily exclusively, in a tissue or organ, but may also be expressed in a particular cell or cell type. "developmentally regulated promoter" refers to a promoter whose activity is determined by a developmental event. An "inducible promoter" selectively expresses an operably linked DNA sequence in response to an endogenous or exogenous stimulus (environmental, hormonal, chemical signal, etc.).
As used herein, the term "operably linked" refers to a regulatory element (such as, but not limited to, a promoter sequence, a transcription termination sequence, and the like) linked to a nucleic acid sequence (e.g., a coding sequence or an open reading frame) such that transcription of the nucleotide sequence is controlled and regulated by the transcriptional regulatory element. Techniques for operably linking regulatory element regions to nucleic acid molecules are known in the art.
"introducing" a nucleic acid molecule (e.g., a plasmid, linear nucleic acid fragment, RNA, etc.) or a protein into an organism refers to transforming cells of the organism with the nucleic acid or protein such that the nucleic acid or protein is capable of functioning in the cells. "transformation" as used herein includes both stable transformation and transient transformation.
"Stable transformation" refers to the introduction of an exogenous nucleotide sequence into a genome, resulting in the stable inheritance of the exogenous gene. Once stably transformed, the exogenous nucleic acid sequence is stably integrated into the genome of the organism and any successive generation thereof.
"transient transformation" refers to the introduction of a nucleic acid molecule or protein into a cell that performs a function without stable inheritance of a foreign gene. In transient transformation, the foreign nucleic acid sequence is not integrated into the genome.
As used herein, the term "plant" includes whole plants and any progeny, cell, tissue, or part of a plant. The term "plant part" includes any part of a plant, including, for example, but not limited to: seeds (including mature seeds, immature embryos without seed coats, and immature seeds); plant cutting; a plant cell; a plant cell culture; plant organs (e.g., pollen, embryos, flowers, fruits, buds, leaves, roots, stems, and related explants). The plant tissue or plant organ may be a seed, callus, or any other population of plant cells organized into structural or functional units. The plant cell or tissue culture is capable of regenerating a plant having the physiological and morphological characteristics of the plant from which the cell or tissue was derived, and is capable of regenerating a plant having substantially the same genotype as the plant. In contrast, some plant cells are not capable of regenerating to produce plants. The regenerable cells in the plant cell or tissue culture can be embryos, protoplasts, meristematic cells, callus tissue, pollen, leaves, anthers, roots, root tips, silks, flowers, kernels, ears, cobs, shells, or stems.
Plant parts include harvestable parts and parts useful for propagating progeny plants. Plant parts useful for propagation include, for example, but are not limited to: seeds; fruits; cutting; seedling; a tuber; and a rootstock. Harvestable parts of a plant may be any useful part of a plant, including, for example, but not limited to: flower; pollen; seedling; a tuber; leaves; a stem; fruits; seeds; and a root.
Plant cells are the structural and physiological units of plants. As used herein, plant cells include protoplasts and protoplasts having a partial cell wall. Plant cells may be in the form of isolated individual cells or cell aggregates (e.g., loose callus and cultured cells), and may be part of a higher order tissue unit (e.g., plant tissue, plant organs, and plants). Thus, a plant cell may be a protoplast, a gamete producing cell, or a cell or collection of cells capable of regenerating into a whole plant. Thus, in embodiments herein, a seed comprising a plurality of plant cells and capable of regenerating into a whole plant is considered a "plant part".
As used herein, the term "protoplast" refers to a plant cell with a completely or partially removed cell wall and an uncovered lipid bilayer membrane. Typically, protoplasts are isolated plant cells without a cell wall, which have the potential to regenerate into cell cultures or whole plants.
Plant "progeny" includes any subsequent generation of the plant.
"trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or a particular plant material or cell. In some embodiments, these characteristics may be visible to the naked eye, such as the seed, size of the plant, etc.; indexes that can be measured by biochemical techniques, such as the content of protein, starch or oil in seeds or leaves; observable metabolic or physiological processes, such as determining resistance to water stress, specific salt, sugar or nitrogen concentrations; a detectable level of gene expression; or agronomic traits such as resistance to osmotic stress or yield can be observed. In some embodiments, the trait also includes the ploidy (ploidy) of the plant, such as the haploidy (ploidy) important for plant breeding. In some embodiments, the trait further comprises resistance of the plant to a herbicide.
An "agronomic trait" is a measurable indicator parameter including, but not limited to: leaf green, grain yield, growth rate, total biomass or accumulation rate, fresh weight at maturity, dry weight at maturity, fruit yield, seed yield, plant total nitrogen content, fruit nitrogen content, seed nitrogen content, plant vegetative tissue nitrogen content, plant total free amino acid content, fruit free amino acid content, seed free amino acid content, plant vegetative tissue free amino acid content, plant total protein content, fruit protein content, seed protein content, plant vegetative tissue protein content, drought resistance, nitrogen uptake, root lodging, harvest index, stalk lodging, plant height, ear length, disease resistance, cold resistance, salt resistance, tiller number, and the like.
2.Cpf1 protein-based base editing system
The present invention provides a system for base editing of a target sequence in a genome of an organism, comprising at least one of the following i) to v):
i) Base-editing fusion proteins, and guide RNAs;
ii) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein, and a guide RNA;
iii) A base-editing fusion protein, and an expression construct comprising a nucleotide sequence encoding a guide RNA;
iv) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein, and an expression construct comprising a nucleotide sequence encoding a guide RNA;
v) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein and a nucleotide sequence encoding a guide RNA;
wherein the base-editing fusion protein comprises Cpf1 lacking DNA cleavage activity and a deaminase, the guide RNA being capable of targeting the base-editing fusion protein to a target sequence in a genome resulting in a substitution of one or more of C to T or A to G in the target sequence.
Cpf1 contains a DNA cleavage domain (RuvC) which can be mutated to delete the DNA cleavage activity of Cpf1, resulting in "Cpf1 with deleted DNA cleavage activity". Cpf1 with the loss of DNA cleavage activity still retained gRNA-directed DNA binding ability. Thus, in principle, cpf1 lacking DNA cleavage activity may, when fused to another protein, target said other protein to almost any DNA sequence simply by co-expression with a suitable guide RNA.
Cpf1 deleted for DNA cleavage activity according to the invention may be derived from different species of Cpf1, for example the Cpf1 proteins designated FnCpf1 (for example the wild-type amino acid sequence is shown in SEQ ID NO: 19), asCpf1 (for example the wild-type amino acid sequence is shown in SEQ ID NO: 18) and LbCpf1 (for example the wild-type amino acid sequence is shown in SEQ ID NO: 20) derived from Francisella novicida U112, acylaminococcus sp.BV3L6 and Lachnospiraceae bacterium ND2006, respectively.
In some embodiments, the Cpf1 with DNA cleavage activity deletion is FnCpf1 with DNA cleavage activity deletion. In some embodiments, the FnCpf1 lacking DNA cleavage activity comprises a D917A mutation relative to wild-type FnCpf1.
In some embodiments, the Cpf1 deficient in DNA cleaving activity is AsCpf1 deficient in DNA cleaving activity. In some embodiments, the AsCpf1 lacking DNA cleavage activity comprises a D908A mutation relative to wild-type AsCpf1.
In some preferred embodiments, the DNA cleavage activity deleted Cpf1 is DNA cleavage activity deleted LbCpf1. In some embodiments, the LbCpf1 lacking DNA cleavage activity comprises a D832A mutation relative to wild-type LbCpf1.
In some embodiments, the Cpf1 with the deletion of DNA cleavage activity retains its RNA cleavage activity, thereby enabling processing of pre-crRNA to form mature crRNA. Thus, in some embodiments, an expression construct comprising a nucleotide sequence encoding a guide RNA in a system of the invention may comprise a sequence encoding a plurality of different guide RNA (crRNA) precursors in tandem, which upon transcription may be processed by the Cpf1 lacking the DNA cleavage activity to form a plurality of different guide RNAs (crrnas), thereby targeting a plurality of different target sequences simultaneously.
In some embodiments of the invention, the deaminase in the fusion protein is a cytidine deaminase, such as an apolipoprotein B mRNA editing complex (APOBEC) family deaminase.
Cytidine deaminase can catalyze the deamination of cytidine (C) on DNA to form uracil (U). The present inventors have surprisingly found that fusing Cpf1 with a deletion in DNA cleavage activity to a cytidine deaminase allows the fusion protein to target a target sequence in the genome under the guidance of a guide RNA, without cleaving the DNA double strand due to the inactivating deletion in DNA cleavage activity of Cpf1, whereas the cytidine deaminase in the fusion protein allows to deaminate the cytidine of the single stranded DNA generated in the formation of the Cpf 1-guide RNA-DNA complex into U, which in turn allows for C to T substitutions by base mismatch repair.
The cytidine deaminase of the present invention is particularly a cytidine deaminase that can accept single-stranded DNA as a substrate. Examples of cytidine deaminases useful in the present invention include, but are not limited to: APOBEC1 deaminase, activation-induced cytidine deaminase (AID), APOBEC3G or CDA1. In some embodiments of the invention, the cytidine deaminase comprises the amino acid sequence set forth in SEQ ID NO. 1.
In the case where the deaminase in the fusion protein is a cytidine deaminase, the base editing system of the present invention can mutate one or more cs in the genomic target sequence to T, also referred to as the Cpf1-PBE system.
In cells, uracil DNA glycosylase catalyzes the removal of U from DNA and initiates Base Excision Repair (BER), resulting in the repair of U: G to C: G. Thus, without being bound by any theory, the inclusion of a uracil DNA glycosylase inhibitor in a base editing fusion protein of the invention or a system of the invention will enable an increase in the efficiency of base editing.
Thus, in some embodiments of the present invention directed to a Cpf1-PBE system, the base-editing fusion protein further comprises a uracil DNA glycosylase inhibitor (UGI). In some embodiments, the uracil DNA glycosylase inhibitor comprises the amino acid sequence set forth in SEQ ID NO 2.
In some embodiments of the invention, the deaminase is an adenine deaminase.
Naturally occurring adenine deaminases are commonly used with RNA as a substrate to convert adenosine on single-stranded RNA to inosine (I) by deamination. Recently, DNA-dependent adenine deaminases capable of converting deoxyguanosine on a single-stranded DNA into inosine (I) using a single-stranded DNA as a substrate have been obtained based on the tRNA adenine deaminase TadA of Escherichia coli by directed evolution. See Nicloe m. Gaudelli et al, doi:10.1038/nature24644, 2017.
The present inventors have surprisingly found that fusion of Cpf1 with a deletion in DNA cleavage activity, under the direction of guide RNA, to a DNA-dependent adenine deaminase, which can target a target sequence in a plant genome, DNA double strand not being cleaved due to the deletion in DNA cleavage activity of Cpf1, can deaminate adenosine of single stranded DNA generated in Cpf 1-guide RNA-DNA complex formation into inosine (I), which can be substituted a to G by base mismatch repair, since the DNA polymerase would treat inosine (I) as guanine (G). Thus, in the case where the deaminase in the fusion protein is a DNA-dependent adenine deaminase, the base editing system of the invention can mutate one or more a's in the genomic target sequence to G, also referred to as the Cpf1-ABE system.
In some embodiments of the invention, the DNA-dependent adenine deaminase is a variant of escherichia coli tRNA adenine deaminase TadA (ecTadA), in particular a variant that can accept single-stranded DNA as substrate, comprising one or more sets of mutations relative to wild-type ecTadA selected from the group consisting of:
1) A106V and D108N;
2) D147Y and E155V;
3) L84F, H123Y and I156F;
4)A142N;
5) H36L, R51L, S146C and K157N;
6)P48S/T/A;
7)A142N;
8)W23L/R;
9)R152H/P。
in a specific embodiment of the invention, said DNA-dependent adenine deaminase (ABE version 7.9) comprises the following mutations relative to wild-type ecTadA: W23R, H36L, R51L, S146C, K157N, A106V, D108N, P48A, L84F, H123Y, I156F, A142N, D147Y, E155V, and R152P.
In a specific embodiment of the invention, said DNA-dependent adenine deaminase (ABE version 7.10) comprises the following mutations relative to wild-type ecTadA: W23R, H36L, R51L, S146C, K157N, A106V, D108N, P48A, L84F, H123Y, I156F, D147Y, E155V, and R152P.
The wild-type ecTadA amino acid sequence is shown below: <xnotran> MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD (SEQ ID NO: 3). </xnotran> In some embodiments, wherein the initial methionine may be absent.
Preferred ecTadA-derived DNA-dependent adenine deaminase (ABE version 7.10) amino acid sequences are shown below: <xnotran> MSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSTD (SEQ ID NO: 4). </xnotran> In some embodiments, wherein the initial methionine may be absent.
In some embodiments of the invention, the deaminase is fused to the N-terminus of Cpf1 where the DNA cleaving activity is absent. In some embodiments, the deaminase is fused to the C-terminus of Cpf1 in which the DNA cleaving activity is absent.
In some preferred embodiments, the DNA-dependent adenine deaminase is fused to the N-terminus of the corresponding wild-type adenine deaminase. It is expected that the formation of heterodimers of DNA-dependent adenine deaminase with wild-type adenine deaminase can significantly improve the editing activity of fusion proteins A to G.
In some embodiments of the invention, the deaminase and the Cpf1 lacking DNA cleavage activity are fused via a linker. The linker may be a non-functional amino acid sequence of 1 to 50 (e.g., 1,2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 20 to 25, 25 to 50) or more amino acids in length, without secondary or more structure. For example, the linker may be a flexible linker, such as GGGGS, GS, GAP, (GGGGS) x3, GGS, and (GGS) x7, and the like. In some specific embodiments, the linker is an XTEN linker. In some embodiments, the linker is 32 amino acids in length. In some specific embodiments, the amino acid sequence of the linker is: SGGSSGSGSETPGTSESATPESSGGSSGGS.
In some embodiments of the invention, the base-editing fusion protein of the invention further comprises a Nuclear Localization Sequence (NLS). In general, the one or more NLS in the base-editing fusion protein should be of sufficient strength to drive the base-editing fusion protein in the nucleus of the plant cell to accumulate in an amount that can perform its base-editing function. In general, the intensity of the nuclear localization activity is determined by the number, location, one or more specific NLS used, or a combination of these factors in the base-editing fusion protein.
In some embodiments of the invention, the NLS of the base-editing fusion protein of the invention may be located at the N-terminus and/or the C-terminus. In some embodiments, the base-editing fusion protein comprises about 1,2, 3, 4, 5, 6, 7, 8,9, 10, or more NLSs. In some embodiments, the base-editing fusion protein comprises about 1,2, 3, 4, 5, 6, 7, 8,9, 10, or more NLSs at or near the N-terminus. In some embodiments, the base-editing fusion protein comprises about 1,2, 3, 4, 5, 6, 7, 8,9, 10 or more NLS at or near the C-terminus. In some embodiments, the base-editing fusion protein comprises a combination of these, such as comprising one or more NLS at the N-terminus and one or more NLS at the C-terminus. When there is more than one NLS, each can be chosen to be independent of the other NLS. In some preferred embodiments of the invention, the base-editing fusion protein comprises 2NLS, e.g. the 2NLS are at the N-terminus and C-terminus, respectively.
In general, NLS consists of one or more short sequences of positively charged lysines or arginines exposed on the surface of the protein, but other types of NLS are also known. Non-limiting examples of NLS include: KKRKV (nucleotide sequence 5-.
In some embodiments of the invention, the N-terminus of the base-editing fusion protein comprises an NLS of the amino acid sequence shown by PKKKRKV. In some embodiments of the invention, the C-terminus of the base-editing fusion protein comprises an NLS of the amino acid sequence set forth in SGGSPKKKRKV or krpaatkkagqakkkkk.
In addition, the base-editing fusion protein of the present invention may further include other localization sequences, such as a cytoplasmic localization sequence, a chloroplast localization sequence, a mitochondrial localization sequence, and the like, depending on the position of the DNA to be edited.
In some embodiments of the invention involving a Cpf1-PBE system, the base-editing fusion protein further comprises uracil DNA glycosylase inhibitor (UGI), and further followed by two NLS at the N-terminus or C-terminus of the UGI. In some preferred embodiments, the base-editing fusion proteins of the invention comprise an amino acid sequence selected from the group consisting of SEQ ID NOS 24-29.
In order to obtain efficient expression, in some embodiments of the invention, the nucleotide sequence encoding the base-editing fusion protein is codon optimized for the biological species to be base-edited.
Codon optimization refers to a method of modifying a nucleic acid sequence to enhance expression in a host cell of interest by replacing at least one Codon of the native sequence with a Codon that is more frequently or most frequently used in the gene of the host cell (e.g., about or more than about 1,2, 3, 4, 5, 10, 15, 20, 25, 50 or more codons while maintaining the native amino acid sequence. Different species exhibit a specific preference for certain codons of a particular amino acid. Codon preferences (differences in Codon Usage between organisms) are often related to the translation efficiency of messenger RNA (mRNA) which is believed to be dependent on the nature of the codons being translated and the availability of specific transfer RNA (tRNA) molecules.
In some embodiments, the base-editing fusion protein of the invention is encoded by a nucleotide sequence selected from SEQ ID NOS 8-9, 11-12, or 14-15.
In some embodiments of the invention, the nucleotide sequence encoding the base-editing fusion protein and/or the nucleotide sequence encoding the guide RNA is operably linked to an expression control element, such as a promoter.
Examples of promoters that may be used in the present invention include, but are not limited to, polymerase (pol) I, pol II, or pol III promoters. Examples of pol I promoters include chicken RNA pol I promoters. Examples of pol II promoters include, but are not limited to, the cytomegalovirus immediate early (CMV) promoter, the Rous sarcoma virus long terminal repeat (RSV-LTR) promoter, and the Simian Virus 40 (SV 40) immediate early promoter. Examples of pol III promoters include the U6 and H1 promoters. Inducible promoters such as the metallothionein promoter can be used. Other examples of promoters include the T7 phage promoter, the T3 phage promoter, the β -galactosidase promoter, and the Sp6 phage promoter. When used in plants, the promoter may be a cauliflower mosaic virus 35S promoter, a maize Ubi-1 promoter, a wheat U6 promoter, a rice U3 promoter, a maize U3 promoter, a rice actin promoter.
Preferably, the guide RNA (crRNA) is expressed using the Ubi-1 promoter and cleaved to maturity with a ribozyme such as the HDV ribozyme.
In one embodiment, the addition of an intron after the Ubi-1 promoter can enhance the expression of the protein or RNA of interest.
In some embodiments, the expression construct for expressing the base fusion protein of the invention comprises an expression cassette as set forth in SEQ ID NO.10 or 13. Or the expression construct comprises an expression control sequence shown as SEQ ID NO. 30.
3. Method for producing genetically modified organisms
In another aspect, the invention provides a method of producing a genetically modified organism (such as a plant) comprising introducing into a cell of the organism the system for base editing of a target sequence in the genome of an organism of the invention, whereby the guide RNA targets the base editing fusion protein to the target sequence in the genome of the plant, resulting in the substitution of one or more C's by T's or one or more a's by G's in the target sequence.
The design of a target sequence or crRNA coding sequence that can be recognized and targeted by the Cpf1 protein and guide RNA (i.e., crRNA) complex can be found, for example, in Zhang et al, cell 163,1-13, october 22,2015. In general, the 5' end of the target sequence targeted by the genome editing system of the present invention will desirably comprise a pro-spacer adjacent motif (PAM) 5' -TTTN or 5' -YTN, where N is independently selected from A, G, C and T and Y is selected from C and T.
For example, in some embodiments of the invention, the target sequence has the following structure: 5' -TTTN-N X -3 'or 5' -YTN-N X -3', wherein N is independently selected from a, G, C and T, Y is selected from C and T; x is an integer which is more than or equal to 15 and less than or equal to 35; nx represents X consecutive nucleotides.
In the present invention, the target sequence to be modified may be located anywhere in the genome, for example within a functional gene such as a protein-encoding gene, or may be located, for example, in a gene expression regulatory region such as a promoter region or enhancer region, thereby effecting modification of the function of the gene or modification of gene expression.
A to G or C to T base edits in the cell target sequence can be detected by T7EI, PCR/RE or sequencing methods.
In the method of the present invention, the system for base editing can be introduced into a cell by various methods well known to those skilled in the art. Methods that can be used to introduce the genome editing system of the present invention into a cell include, but are not limited to: calcium phosphate transfection, protoplast fusion, electroporation, lipofection, microinjection, viral infection (such as baculovirus, vaccinia, adenovirus, adeno-associated virus, lentivirus and other viruses), particle gun methods, PEG-mediated transformation of protoplasts, agrobacterium tumefaciens-mediated transformation.
The cells whose genome can be edited by the method of the present invention may be derived from, for example, mammals such as mouse, rat, monkey, dog, pig, sheep, cow, cat; poultry such as chicken, duck, goose; plants, including monocots and dicots, such as rice, maize, wheat, sorghum, barley, soybean, peanut, arabidopsis, and the like.
The method of the invention is particularly suitable for producing genetically modified plants, such as crop plants. In the method of producing a genetically modified plant of the present invention, the base editing system may be introduced into a plant in various ways well known to those skilled in the art. Methods that can be used to introduce the base editing system of the present invention into a plant include, but are not limited to: particle gun method, PEG mediated protoplast transformation, agrobacterium tumefaciens mediated transformation, plant virus mediated transformation, pollen tube channel method and ovary injection method.
In the method of producing a genetically modified plant of the present invention, modification of a target sequence can be achieved by introducing or producing the base-editing fusion protein and guide RNA into a plant cell, and the modification can be stably inherited without stably transforming a plant with the base-editing system. This avoids the potential off-target effects of the stably existing base editing system and also avoids the integration of exogenous nucleotide sequences in the plant genome, thus having higher biosafety.
In some preferred embodiments, the introduction is performed in the absence of selective pressure, thereby avoiding integration of the exogenous nucleotide sequence in the plant genome.
In some embodiments, the introducing comprises transforming an isolated plant cell or tissue with the base editing system of the invention and then regenerating the transformed plant cell or tissue into a whole plant. Preferably, the regeneration is carried out in the absence of selective pressure, i.e., without using any selective agent for the selection gene carried on the expression vector during the tissue culture process. The regeneration efficiency of the plant can be improved without using a selection agent, and a modified plant without an exogenous nucleotide sequence can be obtained.
In other embodiments, the base editing system of the invention can be transformed into a specific site on an intact plant, such as a leaf, stem tip, pollen tube, young ear, or hypocotyl. This is particularly suitable for the transformation of plants which are difficult to regenerate by tissue culture.
In some embodiments of the invention, the in vitro expressed protein and/or in vitro transcribed RNA molecule is directly transformed into the plant. The protein and/or RNA molecules are capable of effecting base editing in plant cells and subsequent degradation by the cells, avoiding integration of foreign nucleotide sequences in the plant genome.
Plants that can be base edited by the methods of the invention include monocots and dicots. For example, the plant may be a crop plant, such as wheat, rice, maize, soybean, sunflower, sorghum, canola, alfalfa, cotton, barley, millet, sugarcane, tomato, tobacco, cassava, or potato.
In some embodiments of the invention, wherein the target sequence is associated with a plant trait, such as an agronomic trait, whereby the base editing results in the plant having an altered trait relative to a wild type plant.
In the present invention, the target sequence to be modified may be located anywhere in the genome, for example, within a functional gene such as a protein-encoding gene, or may be located, for example, in a gene expression regulatory region such as a promoter region or an enhancer region, thereby effecting a modification of the function of the gene or a modification of gene expression. Accordingly, in some embodiments of the invention, the C to T or a to G substitution results in an amino acid substitution in the target protein or truncation of the target protein (resulting in a stop codon). In other embodiments of the invention, the substitution of C to T or a to G results in a change in expression of the target gene.
In some embodiments of the invention, the method further comprises obtaining progeny of the genetically modified plant.
In another aspect, the present invention also provides a genetically modified plant or progeny or parts thereof, wherein the plant is obtained by the method of the invention as described above.
In another aspect, the present invention also provides a method of breeding a plant, comprising crossing a first genetically modified plant obtained by the above-described method of the present invention with a second plant not containing said genetic modification, thereby introducing said genetic modification into the second plant.
Examples
Construction of Ubi-CPF1-PBE/ABE expression vector
The ABE, XTEN, dCPF1 sequences were codon optimized for plants and ordered from GenScript (Nanjing). The full-length dCPF1-ABE fragment was amplified using the primer pair HindIII-F (with HindIII restriction site) and EcoRI (with EcoRI restriction site). The PCR product was digested with HindIII and EcoRI and then inserted into the two enzyme-digested pJIT163-GFP vector (the vector sequence is shown in SEQ ID NO: 16) to produce a fusion expression vector dCPF1-ABE.
The PBE, XTEN, dCPF1 sequences were codon optimized for plants and ordered from GenScript (Nanjing). The full-length dCPF1-PBE fragment was amplified using the primer pair HindIII-F (with HindIII restriction site) and EcoRI (with EcoRI restriction site). The PCR product was digested with HindIII and EcoRI and then inserted into the two enzyme-digested pJIT163-GFP vector (the vector sequence is shown in SEQ ID NO: 16) to produce a fusion expression vector dCPF1-PBE.
Construction of sgRNA expression vector
According to the previous description (Wang, Y.et al, simultaneous edition of three homo alloys in hexagonal branched coal compositions with a variable resistance to a pore chemistry of Nat. Biotechnol.32,947-951, shan, Q.et al, targeted genome modification of crop plants using a CRISPR-Cas system of Nat. Biotechnol.31,686-688,2013; and Liang, Z.et al.Targeted mutagenesis in Zea Mays using TALENs and the CRISPR/Cas system.J Genet genomics.41,63-68, 2014) construct sgRNA expression vectors based on pTaU6-sgRNA (Addgene ID 53062) or pOsU3-sgRNA (Addgene ID 53063) or pZmU3-sgRNA (Addgene ID 5306) or OsU3/TaU6-tRNA-sgRNA (Zhang et al.2017.genome biology.DOI:10.1186/s 13059-017-1325-9). In addition, crRNA is produced by promoting hammerhead enzyme and crRNA through type II promoter (Tang et al. Nature plant, doi: 10.1038/nplants.2017.18)
pUbi-mGFPP-crRNA、pUbi-DEP1-sgRNA、pUbi-DEP1-crRNA、pUbi-DME-crRNA.
BFP and GFP expression vectors
pUbi-mGFP, the vector sequence is shown in SEQ ID NO:17.
protoplast assay
In this study, a wheat Bobwhite variety and a rice Nipponbare variety were used. Protoplast transformation was performed as follows. The average conversion efficiency was 55-70%. Each plasmid was transformed with 10. Mu.g by PEG-mediated method, and after 48 hours, protoplasts were collected and DNA was extracted for T7EI and PCR-RE assay.
Wheat protoplast preparation and transformation
1) Taking young and tender leaves of wheat, cutting the middle part of the young and tender leaves into 0.5-1mm threads, putting the young and tender leaves into 0.6M Mannitol solution for 10 minutes in the dark, filtering the leaves by using a filter screen, putting the leaves into 50ml of enzyme solution for digestion at 20-25 ℃ in the dark by slowly shaking for 5 hours at 10 rmp.
2) The enzymatic product was diluted with 10ml of W5 and filtered through a 75 μm nylon filter in a round-bottom centrifuge tube (50 ml).
3) Centrifuge at 23 deg.C for 3min at 100g, and discard the supernatant.
4) The suspension was gently suspended with W5 ml, and the protoplasts were gradually settled by placing on ice for 30min, and the supernatant was discarded.
5) An appropriate amount of MMG was added to suspend and put on ice for transformation.
6) 10-20. Mu.g of plasmid, 200. Mu.l of protoplast (approx. 4X 10) were added to a 2ml centrifuge tube 5 Cell), 220 μ l of newly prepared PEG solution, mixing, and standing in dark at room temperature for 10-20 min to induce transformationAnd (4) transforming.
7) After the induction transformation, slowly adding 880. Mu.l of W5 solution, slightly inverting and mixing, horizontally centrifuging at 100g for 3min, and absorbing and discarding the supernatant.
8) Add 2ml W5 solution for heavy suspension, transfer to six-well plate, room temperature (or 25 degrees C) dark culture. For extracting protoplast genome DNA, 48h of culture is required.
Preparation and transformation of rice protoplasts:
1) The seedling leaf sheath section was selected to isolate protoplasts and cut with a sharp blade to approximately 0.5mm width.
2) Immediately after the incision, the cells were transferred to 0.6M Mannitol solution and left to stand for 10min in the dark.
3) The Mannitol solution was filtered off, transferred to the enzymatic hydrolysate, and evacuated for 30min in the dark.
4) Enzymolysis for 5-6h in the dark while slowly shaking (decolorization shaker, speed 10).
5) After the enzymatic hydrolysis was completed, an equal volume of W5 was added and the protoplasts were released by shaking horizontally for 10 sec.
6) Protoplasts were filtered through a 40 μm nylon membrane into a 50ml round-bottom centrifuge tube and rinsed with W5 solution.
7) 250g of the suspension was horizontally centrifuged for 3min to precipitate protoplasts, and the supernatant was aspirated and discarded.
8) Add 10ml W5 to resuspend the protoplast, centrifuge at 250g for 3min, discard the supernatant.
9) Adding proper amount of MMG solution to resuspend protoplast at a concentration of 2X 10 6 /ml。
Note: all the above steps were carried out at room temperature.
10 2ml centrifuge tube with 10-20. Mu.g plasmid, 200. Mu.l protoplast (approximately 4X 10) 5 Cells), 220 mul of newly prepared PEG solution, mixing, and placing in the dark at room temperature for 10-20 minutes to induce transformation.
11 880. Mu.l of W5 solution was slowly added after the induction transformation was completed, the mixture was gently inverted and mixed, 250g was horizontally centrifuged for 3min, and the supernatant was aspirated.
12 2ml of WI solution, transferred to a six-well plate, and cultured at room temperature (or 25 ℃) in the dark for 48 hours if used for extracting protoplast genomic DNA.
PCR/RE detection:
1) And extracting plant genome DNA.
2) Synthesizing gene specific primer, amplifying the segment containing target site, the length is 350-1000 bp:
10×EasyTaq Buffer 5μl
dNTP(2.5mM) 4μl
forward primer (10. Mu.M) 2μl
Forward primer (10. Mu.M) 2μl
Easy Taq 0.5μl
DNA 2μl
ddH 2 O To 50. Mu.l
3) The general reaction conditions are: denaturation at 94 deg.C for 5min; carrying out denaturation at 94 ℃ for 30s, renaturation at 58 ℃ for 30s, extension at 72 ℃ for 30s, and amplification for 30-35 cycles; keeping the temperature at 72 ℃ for 5min; keeping the temperature at 12 ℃.5 μ l of PCR product was electrophoretically detected.
4) The PCR product is digested by restriction enzymes, and the general digestion system is as follows:
10×Fastdigest Buffer 2μl
restriction enzyme 1μl
PCR product 3-5μl
ddH 2 O To 20. Mu.l
5) And carrying out enzyme digestion for 2-3h at 37 ℃. Detection by 1.2% agarose gel electrophoresis.
6) The non-cut mutation band in the purified PCR product was recovered and TA cloned. The reaction system is as follows:
pEasy-T Vector 1μl
recovered uncut PCR product 4μl
7) Connecting for 10min at 22 ℃, transforming E.coli competent cells, coating LB solid plates (Amp 100, IPTG and X-gal), culturing for 12-16h, selecting white colonies, identifying positive clones, and sequencing.
Deep sequencing
And (3) converting different sgRNA expression vectors and the Ubi-CPF1-PBE/ABE expression vector into wheat and rice plastids for 48 hours, collecting protoplasts, and extracting DNA for deep sequencing. In the first round of PCR, the target region is amplified using site-specific primers. In two rounds of PCR, forward and reverse tags were added to the ends of the PCR products for library construction. Equal amounts of different PCR products were pooled. The samples were then sequenced at the Beijing Genomics Institute using Illumina High-Seq 4000.
Examples
Example 1 CPF1-mediated optimization of plant genome cleavage activity.
The editing activity of CPF1 in plant cells varies greatly among different articles, and the cleavage activity between different types of CPF1 also varies greatly.
In the embodiment, the nucleous state of AsCPF1, fnCPF1 and LbCPF1 is optimized, and the promoter of crRNA is optimized, so that the cutting activity of CPF1 in plant cells is improved. Vectors for 1-4 NLS of AsCPF1, fnCPF1 and LbCPF1 were constructed, as well as different vectors for U3/U6 and UBI-initiated production of crRNA by ribozymes (see FIG. 1). As can be seen from the results of PCR/RE, three CPF1 of 2NLS can work, and the LbCPF1 has high efficiency (the corresponding amino acid sequences can be easily obtained by using the coding sequences of ASCPF1-2NLS, FNCPF1-2NLS and LBCPF1-2NLS as SEQ ID NOS: 5-7, respectively). Aiming at the target site of the OsPDS gene, the efficiency of 2NLS-LbCPF1 is higher than that of NLS-LbCPF1 and higher than that of other reported constructs.
Example 2 CPF1-mediated mutation of plant genome C into T (CPF 1-PBE)
Referring to the characteristics of CPF1 in the plant cell cleavage activity, the following dCPF1-PBE system was constructed: dAsCPF1-2NLS-PBE, dFnCPF1-2NLS-PBE, dLbCPF1-2NLS-PBE. The NLS at the C end is respectively placed at one end of the UGI and at two ends of the UGI. crRNA is initiated with UBIl and cleaved with ribozymes. The editing activity was detected by using PCR/RE test results, and it was shown that the editing activity was detected by dFnCPf1 and dLbCPF1, and the activity of NLS at one end of UGI was high (SEQ ID NO:8,9 shows the coding sequences of dFNCPF1-PBE-2NLS and dLbCPF1-2NLS-PBE, respectively, and the corresponding amino acid sequences were easily obtained). In addition, a boost of dCPF1-PBE2-X was constructed, i.e., an intron was added after the promoter ZmUbi-1 to increase the expression of dCPF1-PBE (SEQ ID NO:10 shows dLBCPF1-PBE-2NLS expression cassette comprising the promoter ZmUbi-1 and intron sequences).
Example 3 CPF1-mediated mutation of plant genomes A to G (CPF 1-ABE)
The following CPF1-ABE system was constructed: dAsCPF1-1NLS-ABE, dFnCPF1-NLS-ABE, dLbCPF1-1NLS-ABE, and dAsCPF1-2NLS-ABE, dFnCPF1-2NLS-ABE, dLbCPF1-2NLS-ABE, which ABE again includes ABE7.9 and ABE7.10 two versions. crRNA is initiated with UBIl and cleaved with ribozymes.
The results using the GFP base editing reporter system of fig. 3E show that: both dFnCPF1-ABE7.10 (SEQ ID NO: 11) and dLbCPF1-ABE7.9 and dLbCPF1-ABE7.10 (SEQ ID NO: 12) work, with 7.10 being higher than 7.9 (FIG. 3F).
The PCR/RE detection result shows that the activity of the dLbCPF1-ABE7.10 is detected, and the 2NLS is higher than 1NLS. In addition, two enhanced versions of dCPF1-ABE2 were constructed, i.e., an intron was added after the UBI1 promoter to increase the expression of dCPF1-ABE (dCPF 1-ABE 2-X1) (SEQ ID NO. 13), and ABE was constructed at the C-terminus of CPF1 (dCPF 1-ABE 2-X2/X3) (SEQ ID NO.14, 15), and the results of the reporter system were compiled using the GFP base of FIG. 3E: the editing activity of dCPF1-ABE2-X2/X3 is higher than that of dLbCPF1-ABE7.10 (FIG. 3G).
Example 4 CPF1-mediated optimization of Gene editing
In order to improve the editing efficiency of CPF1, the CPF1 system is optimized, and all expression vectors for CPF 1-mediated editing are started by BdUbi10 promoter to increase the expression quantity. Furthermore, the coding efficiency of CPF1 was improved by increasing the expression of mRNA by promoting the promoter of crRNA using a type II promoter and inserting crRNA Array into the 5'UTR or 3' UTR region of the expressed gene.
Description of the related sequences:
SEQ ID NO.1 cytidine deaminase amino acid sequence
SEQ ID No.2 uracil DNA glycosylase inhibitor (UGI) amino acid sequence
SEQ ID NO.3 wild type ecTadA amino acid sequence
SEQ ID NO.4 ecTadA-derived DNA-dependent adenine deaminase (ABE version 7.10) amino acid sequence
SEQ ID NO.5 ASCPF1-2NLS coding sequence
SEQ ID NO.6 FNCPF1-2NLS coding sequence
SEQ ID NO.7 LBCPF1-2NLS coding sequence
SEQ ID NO.8 dFNCPF1-PBE-2NLS coding sequence
SEQ ID NO.9 dLBCPF1-PBE-2NLS coding sequence
SEQ ID NO.10 promoter + intron + dLBCPF1-PBE-2NLS coding sequence
SEQ ID NO.11 dFNCPF1-ABE7.10-2NLS coding sequence
SEQ ID NO.12 dLBCPF1-ABE7.10-2NLS coding sequence
SEQ ID NO.13 promoter + Intron + dLBCPF1-ABE2-X coding sequence
SEQ ID NO.14 LBCPF1-ABE2-X2 coding sequence
SEQ ID NO.15 LBCPF1-ABE2-X3 coding sequence
SEQ ID NO.16 PJIT163-GFP
SEQ ID NO:17 pBUI-mGFP
18 ASCPF1 amino acid sequence of SEQ ID NO
19 FNCPF1 amino acid sequence of SEQ ID NO
20 LBCPF1 amino acid sequence of SEQ ID NO
21 ASCPF1-2NLS amino acid sequence of SEQ ID NO
SEQ ID NO 22 FNCPF1-2NLS amino acid sequence
23 LBCPF1-2NLS amino acid sequence of SEQ ID NO
24 dFNCPF1-PBE-2NLS amino acid sequence of SEQ ID NO
25 dLBCPF1-PBE-2NLS amino acid sequence of SEQ ID NO
SEQ ID NO 26 dFNCPF1-ABE7.10-2NLS amino acid sequence
27 dLBCPF1-ABE7.10-2NLS amino acid sequence of SEQ ID NO
28 LBCPF1-ABE2-X2 amino acid sequence of SEQ ID NO
29 LBCPF1-ABE2-X3 amino acid sequence of SEQ ID NO
30 promoter + Intron nucleotide sequence of SEQ ID NO
Sequence listing
<110> institute of genetics and developmental biology of Chinese academy of sciences
<120> CPF1 protein-based base editing system and method
<130> 149132
<150> 201711403490.X
<151> 2017-12-22
<160> 30
<170> PatentIn version 3.5
<210> 1
<211> 227
<212> PRT
<213> Rattus norvegicus
<400> 1
Ser Ser Glu Thr Gly Pro Val Ala Val Asp Pro Thr Leu Arg Arg Arg
1 5 10 15
Ile Glu Pro His Glu Phe Glu Val Phe Phe Asp Pro Arg Glu Leu Arg
20 25 30
Lys Glu Thr Cys Leu Leu Tyr Glu Ile Asn Trp Gly Gly Arg His Ser
35 40 45
Ile Trp Arg His Thr Ser Gln Asn Thr Asn Lys His Val Glu Val Asn
50 55 60
Phe Ile Glu Lys Phe Thr Thr Glu Arg Tyr Phe Cys Pro Asn Thr Arg
65 70 75 80
Cys Ser Ile Thr Trp Phe Leu Ser Trp Ser Pro Cys Gly Glu Cys Ser
85 90 95
Arg Ala Ile Thr Glu Phe Leu Ser Arg Tyr Pro His Val Thr Leu Phe
100 105 110
Ile Tyr Ile Ala Arg Leu Tyr His His Ala Asp Pro Arg Asn Arg Gln
115 120 125
Gly Leu Arg Asp Leu Ile Ser Ser Gly Val Thr Ile Gln Ile Met Thr
130 135 140
Glu Gln Glu Ser Gly Tyr Cys Trp Arg Asn Phe Val Asn Tyr Ser Pro
145 150 155 160
Ser Asn Glu Ala His Trp Pro Arg Tyr Pro His Leu Trp Val Arg Leu
165 170 175
Tyr Val Leu Glu Leu Tyr Cys Ile Ile Leu Gly Leu Pro Pro Cys Leu
180 185 190
Asn Ile Leu Arg Arg Lys Gln Pro Gln Leu Thr Phe Phe Thr Ile Ala
195 200 205
Leu Gln Ser Cys His Tyr Gln Arg Leu Pro Pro His Ile Leu Trp Ala
210 215 220
Thr Gly Leu
225
<210> 2
<211> 87
<212> PRT
<213> Bacillus phage
<400> 2
Thr Asn Leu Ser Asp Ile Ile Glu Lys Glu Thr Gly Lys Gln Leu Val
1 5 10 15
Ile Gln Glu Ser Ile Leu Met Leu Pro Glu Glu Val Glu Glu Val Ile
20 25 30
Gly Asn Lys Pro Glu Ser Asp Ile Leu Val His Thr Ala Tyr Asp Glu
35 40 45
Ser Thr Asp Glu Asn Val Met Leu Leu Thr Ser Asp Ala Pro Glu Tyr
50 55 60
Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn Gly Glu Asn Lys Ile
65 70 75 80
Lys Met Leu Ser Gly Gly Ser
85
<210> 3
<211> 167
<212> PRT
<213> Escherichia coli
<400> 3
Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu
1 5 10 15
Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala
20 25 30
Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro
35 40 45
Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg
50 55 60
Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu
65 70 75 80
Tyr Val Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His
85 90 95
Ser Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly
100 105 110
Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn His
115 120 125
Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu
130 135 140
Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys
145 150 155 160
Lys Ala Gln Ser Ser Thr Asp
165
<210> 4
<211> 167
<212> PRT
<213> Escherichia coli
<400> 4
Met Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu
1 5 10 15
Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala
20 25 30
Val Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala
35 40 45
Ile Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg
50 55 60
Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu
65 70 75 80
Tyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His
85 90 95
Ser Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr Gly
100 105 110
Ala Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn His
115 120 125
Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu
130 135 140
Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys
145 150 155 160
Lys Ala Gln Ser Ser Thr Asp
165
<210> 5
<211> 3990
<212> DNA
<213> Artificial Sequence
<220>
<223> ASCPF1-2NLS
<400> 5
atgacgcagt tcgaggggtt caccaacctc taccaggtca gcaagacgct gcggttcgag 60
ctgattccgc agggcaagac cctcaagcac atccaggagc agggctttat cgaggaggac 120
aaagcgcgga acgaccacta caaggagctc aagccgatca tcgaccggat ctacaagacc 180
tacgcggacc agtgcctgca gctcgtgcag ctcgactggg agaacctctc ggccgccatc 240
gactcctacc gcaaggagaa gacggaggag acacgcaacg cgctcatcga agaacaggct 300
acgtatcgca acgctatcca cgactacttc atcgggcgca cagataatct caccgacgcc 360
atcaacaagc gccacgccga aatctataag gggctgttta aggccgagct gttcaatggc 420
aaagtgctga agcaactggg caccgtcacg accacagagc atgagaacgc cctcctccgg 480
tcgttcgaca agtttacgac atactttagc ggcttttacg agaaccgcaa aaacgtgttc 540
agcgccgagg acattagcac cgccatcccg cataggatcg tgcaagacaa cttcccgaag 600
ttcaaggaga actgccacat cttcacccgc ctcatcacgg ccgtgccgtc cctccgcgag 660
cacttcgaga acgtgaagaa ggccatcggg atcttcgtgt ccacctcgat cgaagaggtg 720
ttctccttcc ccttctacaa tcagctgctg acgcagaccc agatcgacct ctacaaccag 780
ctcctcggcg gcatctcccg cgaggccggc accgagaaga tcaagggcct gaacgaggtg 840
ctcaatctcg ccatccagaa gaacgacgaa accgcgcaca tcattgcctc actcccacat 900
aggtttatcc ccctgtttaa gcagatcctc tccgaccgca acacgttgtc cttcatcctc 960
gaggagttca agagcgacga ggaggtcatc cagtccttct gcaagtacaa gaccctcctc 1020
cgcaacgaga atgtgctcga aaccgccgag gcgctgttca atgagctcaa tagcatcgat 1080
ctcacccaca tcttcatctc ccataagaag ctggaaacca tctccagcgc cctgtgcgac 1140
cactgggaca ccctccgcaa cgccctctac gagcggcgca tcagcgagct caccggcaag 1200
atcacgaagt cggcgaaaga gaaagtgcaa aggagcctca agcacgagga cattaacctg 1260
caggagatca tctccgccgc gggcaaggag ctgtccgagg ctttcaagca gaagacctcg 1320
gagatcctct ctcacgccca cgcggccctg gaccagccgc tgccgacgac cctgaaaaag 1380
caagaggaaa aggaaatcct caagtcccag ctggacagcc tcctggggct gtaccacctt 1440
ctcgactggt tcgccgtgga cgagtccaac gaggtcgatc cggagtttag cgcccgcctc 1500
accgggatca agcttgagat ggaacctagc ttgagcttct ataataaggc gcgcaattac 1560
gcgaccaaga agccgtattc cgtggagaag ttcaagctga acttccaaat gcccaccctg 1620
gccagcgggt gggacgttaa caaagagaag aacaacggag ccattctttt cgtgaaaaat 1680
gggttgtatt atttgggaat tatgccgaaa caaaaaggca ggtacaaggc gctcagcttc 1740
gagccaactg agaagacctc cgagggcttc gacaagatgt actacgatta ttttcctgac 1800
gctgcaaaga tgataccgaa gtgcagcact cagcttaagg cggtgacggc gcactttcag 1860
acccatacca cccccatcct cctctccaac aacttcatcg agccgctcga gatcaccaag 1920
gagatatacg atctgaataa tccagaaaag gaacccaaga agttccagac cgcctacgcc 1980
aagaagacgg gcgatcaaaa ggggtataga gaggcgctct gcaagtggat cgacttcacg 2040
cgcgatttcc tcagcaagta caccaagaca acctccatcg atctctcttc cctccgcccc 2100
tcttcccagt acaaggacct cggggagtac tacgccgaac tcaacccact cctgtatcac 2160
atctcgtttc agcgtatcgc ggaaaaggag atcatggacg ccgtcgaaac cggcaagttg 2220
tatcttttcc aaatctataa caaggacttc gcgaagggcc accacgggaa gccaaacctg 2280
cacaccctct actggacagg cctcttcagc ccggaaaatc tcgcgaagac gagcataaag 2340
ctgaacggcc aggcagaact cttctacagg ccgaagtcca ggatgaagcg catggctcat 2400
cgcctcggtg agaagatgct gaacaagaag ctgaaagatc aaaagacgcc aatccctgat 2460
acactgtatc aggagctgta cgattacgtg aaccaccgcc tctcacacga cctcagcgac 2520
gaggcccgcg cgctcctgcc aaacgtcatc acgaaggagg tcagccacga gatcataaag 2580
gatcggcggt ttacctctga caagttcttt ttccatgtcc ccatcacgct gaactaccag 2640
gccgcgaata gcccgtccaa gttcaaccag cgggtcaacg cgtatctcaa ggagcaccca 2700
gagacaccca taatcgggat tgaccggggg gagcggaacc tcatctacat caccgtcatc 2760
gactccaccg gaaagattct cgagcaacgg tcgctcaata ccatccagca gttcgactac 2820
cagaagaagc tcgacaaccg ggagaaggaa cgcgtcgccg cgaggcaggc ctggtccgta 2880
gtgggcacga tcaaagacct gaagcagggc tatctcagcc aggtcatcca tgagatagtg 2940
gatctcatga tccactacca agccgtcgtg gtcctcgaga atctcaattt cggattcaaa 3000
tccaagcgca caggcatcgc cgagaaggcg gtgtaccaac agttcgagaa aatgcttatc 3060
gacaagctca attgcctggt gctcaaggac tatccggcgg agaaggtcgg gggggtcctc 3120
aatccgtatc agctgaccga ccagtttacg tcatttgcga agatgggcac ccagagcggc 3180
ttccttttct atgtcccggc cccatatacc tcaaagattg atcccttgac cggattcgtg 3240
gacccgtttg tctggaagac catcaagaac catgagtcgc gtaagcattt cctggagggt 3300
ttcgacttcc tgcactatga tgtaaaaacc ggagacttca tcctgcattt caagatgaat 3360
cggaacctct ccttccagcg gggactccct ggcttcatgc ccgcttggga tatcgttttt 3420
gagaaaaatg aaacccaatt cgacgccaaa ggcacgcctt tcatcgcggg caagaggatt 3480
gtccctgtaa ttgagaacca tagattcacc gggcgttacc gtgacctgta ccccgcaaac 3540
gaactcatcg ccctcctgga ggagaaaggc atcgttttcc gcgacgggtc aaatatcctc 3600
cccaaactgc tcgagaacga tgatagccac gctattgaca cgatggtagc gctcatcaga 3660
tccgtgctgc aaatgagaaa ttcaaatgct gccactgggg aggattacat caactcccct 3720
gtgcgtgatc tcaatggcgt gtgcttcgat tctagatttc agaatcctga gtggccgatg 3780
gatgccgatg ctaacggcgc ataccacata gcattgaaag gacaactgtt gttgaaccat 3840
ctcaaggaga gcaaggacct taagctgcag aacggcatca gcaaccagga ttggcttgcc 3900
tatatccaag agctccgcaa ttccggcggc agcccaaaga agaagaggaa ggtgagcggc 3960
ggcagcccaa agaagaagcg caaggtctag 3990
<210> 6
<211> 3969
<212> DNA
<213> Artificial Sequence
<220>
<223> FNCPF1-2NLS
<400> 6
atgtccatct accaggagtt cgtcaataag tactcactct ctaagaccct gcggttcgag 60
ctgatcccgc agggcaagac actcgagaac atcaaggcgc gcggcctgat tctcgacgat 120
gagaagcggg ccaaggacta caagaaggcg aagcagatca ttgataagta ccaccagttc 180
ttcatcgagg agattctgtc cagcgtgtgc atctctgagg atctcctgca gaattactcc 240
gacgtctact tcaagctcaa gaagtctgac gatgacaacc tgcagaagga tttcaagtcc 300
gccaaggaca ccatcaagaa gcagatttct gagtacatca aggattccga gaagttcaag 360
aatctcttca accagaatct gattgatgcg aagaagggcc aggagtctga cctgatcctc 420
tggctgaagc agtccaagga caatggcatt gagctgttca aggccaacag cgatatcacc 480
gatattgacg aggcgctgga gatcattaag tcattcaagg gctggaccac atacttcaag 540
ggcttccatg agaaccggaa gaatgtgtac tcatctaacg acattccgac ctccatcatc 600
tacaggatcg tcgatgacaa tctgccaaag ttcctcgaga acaaggccaa gtacgagtcc 660
ctcaaggaca aggccccgga ggcgattaat tacgagcaga tcaagaagga tctggcggag 720
gagctgacct tcgatatcga ctacaagaca agcgaggtga accagagggt gttctccctc 780
gatgaggtgt tcgagatcgc caatttcaac aattacctga accagtccgg cattaccaag 840
ttcaatacaa tcattggcgg caagttcgtc aacggcgaga ataccaagcg caagggcatt 900
aacgagtaca tcaatctcta ctcccagcag atcaacgaca agaccctgaa gaagtacaag 960
atgtctgtgc tcttcaagca gatcctgtcc gatacagagt ccaagagctt cgtcattgat 1020
aagctcgagg acgacagcga cgtggtcacc acaatgcagt cattctacga gcagatcgcc 1080
gcgttcaaga ccgtggagga gaagagcatt aaggagacac tctcactcct gttcgatgac 1140
ctgaaggccc agaagctcga cctgagcaag atctacttca agaacgataa gagcctcaca 1200
gacctgtcac agcaggtgtt cgatgactac tcagtgattg gcaccgccgt cctcgagtac 1260
attacacagc agatcgcgcc aaagaacctc gataatcctt ctaagaagga gcaggagctg 1320
atcgccaaga aaaccgagaa ggcgaagtac ctctccctgg agacaattaa gctcgccctg 1380
gaggagttca ataagcacag ggatattgac aagcagtgcc gcttcgagga gatcctcgcg 1440
aacttcgccg cgatcccaat gattttcgat gagatcgccc agaacaagga caatctggcg 1500
cagatctcta ttaagtacca gaaccagggc aagaaggacc tcctgcaggc ctccgcagag 1560
gacgacgtga aggccatcaa ggatctcctg gaccagacca acaatctcct gcacaagctc 1620
aagatcttcc atatttcaca gtctgaggat aaggccaata tcctcgataa ggacgagcat 1680
ttctacctgg tgttcgagga gtgctacttc gagctggcga acattgtccc tctgtacaac 1740
aagattagga attacatcac acagaagccg tacagcgacg agaagttcaa gctcaacttc 1800
gagaattcaa ccctggccaa cggctgggat aagaataagg agcctgacaa cacagcgatc 1860
ctcttcatca aggacgacaa gtactacctg ggcgtgatga ataagaagaa caataagatc 1920
ttcgatgaca aggccattaa ggagaacaag ggcgagggct acaagaagat cgtgtacaag 1980
ctcctgcctg gcgccaataa gatgctcccg aaggtgttct tctccgcgaa gtccattaag 2040
ttctacaacc caagcgagga tatcctcagg atcaggaacc actctaccca tacaaagaac 2100
ggctcccctc agaagggcta cgagaagttc gagttcaata tcgaggattg ccggaagttc 2160
attgacttct acaagcagtc catcagcaag caccctgagt ggaaggattt cggcttccgc 2220
ttcagcgaca cccagcggta caactcaatc gatgagttct acagggaggt ggagaatcag 2280
ggctacaagc tcacattcga gaacatttca gagtcttaca tcgactccgt ggtcaatcag 2340
ggcaagctct acctgttcca gatctacaac aaggatttca gcgcctactc aaagggcagg 2400
ccgaacctcc ataccctgta ctggaaggcg ctcttcgatg agcgcaatct gcaggacgtg 2460
gtctacaagc tcaacggcga ggccgagctg ttctaccgca agcagtctat tccgaagaag 2520
atcacacacc cagcgaagga ggccatcgcg aacaagaata aggacaatcc gaagaaggag 2580
tccgtgttcg agtacgatct cattaaggac aagcggttca ccgaggataa gttcttcttc 2640
cattgcccaa tcacaattaa cttcaagtcc agcggcgcca acaagttcaa tgacgagatc 2700
aatctcctgc tcaaggagaa ggcgaacgat gtgcatatcc tctccattga ccgcggcgag 2760
cggcatctcg cctactacac cctggtcgat ggcaagggca atatcattaa gcaggatacc 2820
ttcaacatca ttggcaatga ccgcatgaaa accaactacc acgataagct cgccgcgatc 2880
gagaaggata gggacagcgc gcgcaaggac tggaagaaga tcaacaatat taaggagatg 2940
aaggagggct acctctcaca ggtggtccat gagattgcca agctcgtgat cgagtacaat 3000
gcgattgtgg tgttcgagga cctcaacttc ggcttcaagc ggggcaggtt caaggtggag 3060
aagcaggtct accagaagct ggagaagatg ctcatcgaga agctcaatta cctggtgttc 3120
aaggataacg agttcgacaa gaccggagga gtcctcaggg cataccagct gaccgcgcca 3180
ttcgagacat tcaagaagat gggcaagcag acaggcatca tctactacgt gccagccggc 3240
ttcacctcca agatctgccc tgtgacaggc ttcgtcaacc agctctaccc taagtacgag 3300
tccgtcagca agtcacagga gttcttcagc aagttcgata agatttgcta caatctggac 3360
aagggctact tcgagttctc attcgattac aagaacttcg gcgacaaggc cgcgaagggc 3420
aagtggacca ttgcgtcttt cggctcccgg ctcatcaact tcaggaatag cgataagaac 3480
cacaattggg acaccaggga ggtgtacccg acaaaggagc tggagaagct gctcaaggac 3540
tactcaatcg agtacggcca tggcgagtgc attaaggccg cgatctgcgg cgagagcgat 3600
aagaagttct tcgccaagct gacctcagtc ctcaatacaa tcctgcagat gaggaactct 3660
aagaccggca cagagctgga ctacctgatt tccccagtgg ccgatgtcaa cggcaatttc 3720
ttcgacagcc gccaggcgcc gaagaatatg ccacaggacg ccgacgccaa cggcgcatac 3780
cacatcggcc tcaagggcct gatgctgctc ggacgcatta agaacaatca ggagggcaag 3840
aagctcaacc tcgtgatcaa gaacgaggag tacttcgagt tcgtccaaaa ccggaacaat 3900
tccggcggca gcccaaagaa gaagaggaag gtgagcggcg gcagcccaaa gaagaagcgc 3960
aaggtctag 3969
<210> 7
<211> 3753
<212> DNA
<213> Artificial Sequence
<220>
<223> LBCPF1-2NLS
<400> 7
atgtcaaagc tcgagaaatt caccaactgt tattcgttga gcaaaacact gcggtttaaa 60
gcgattccag tcggcaagac tcaagagaat atagacaata agcggctgtt ggtggaagat 120
gaaaagcgcg cggaagacta caaaggggtg aagaagttgt tggacagata ctacctctct 180
tttatcaatg atgtcttgca ctcaatcaaa ttgaagaatc tgaacaacta catctccctc 240
ttcagaaaga aaacaaggac agaaaaggag aataaggaac ttgaaaattt ggagatcaat 300
ctgaggaaag agatcgcgaa agcctttaaa ggcaacgaag gatacaaaag tctgttcaag 360
aaggatataa ttgagacaat tttgccagag ttcctcgatg acaaggacga gattgcgctg 420
gtcaattcgt tcaacggatt cacaacagca ttcacaggct tctttgataa tcgggaaaat 480
atgttctctg aggaggcaaa gtccacttct attgcgttca ggtgtatcaa tgagaatctc 540
actaggtaca tttccaacat ggatatcttt gagaaggttg acgcaatttt tgacaagcac 600
gaagttcagg agattaagga gaagatcctc aattccgatt atgacgttga ggacttcttc 660
gaaggtgagt tttttaattt cgtgctcact caagagggta tcgacgtgta taatgcgatc 720
atcggtgggt tcgtgactga gtccggtgaa aagattaagg gattgaacga gtatatcaac 780
ctttacaacc aaaagacgaa acagaagctg ccaaagttca agcctcttta caaacaggtt 840
ctttcagacc gcgagtcact ctcgttctat ggggagggct acacttcgga tgaggaagtc 900
ctggaggtgt tcaggaatac tctcaataag aattcggaga ttttctcttc tataaaaaaa 960
ctggaaaagt tgtttaagaa ttttgacgaa tactctagcg ccggcatatt tgtgaaaaac 1020
ggcccggcca tatcaacgat aagtaaagat atcttcggcg aatggaacgt gatcagagac 1080
aaatggaacg cggagtatga cgatattcac ctgaagaaga aggctgtcgt aacggagaag 1140
tacgaggatg atcgcaggaa aagcttcaaa aagatcggaa gtttcagcct ggaacagttg 1200
caggagtatg ctgacgccga tcttagcgtc gtcgagaagt tgaaggagat aatcatccaa 1260
aaggtcgacg agatatataa agtctatgga tcaagtgaaa aactgttcga cgccgacttc 1320
gttttggaga agtccctgaa gaagaacgac gctgttgttg ccattatgaa ggatctgctc 1380
gacagcgtga agagtttcga gaactatatt aaggcttttt tcggggaggg gaaggagact 1440
aacagagatg agtccttcta cggagacttc gtcctcgcgt acgatatact ccttaaggta 1500
gaccacatct acgacgcaat cagaaattac gtgacacaaa agccgtacag caaggacaag 1560
ttcaaactct acttccagaa cccccagttc atgggcggct gggacaagga caaggaaacg 1620
gattacaggg ctacgatcct gaggtatggt tcaaaatact acttggcgat tatggacaag 1680
aagtacgcca agtgtctcca gaagattgac aaagacgatg tcaatggcaa ttatgagaag 1740
atcaactaca agctgcttcc gggtccgaac aagatgctcc caaaggtttt cttcagcaag 1800
aaatggatgg cctactataa cccaagcgag gacatccaga agatttataa gaacggtacg 1860
ttcaagaagg gcgacatgtt caatcttaac gactgtcaca agctgatcga cttcttcaaa 1920
gactcaatta gccggtaccc aaagtggtct aacgcctatg acttcaactt ttcggaaacc 1980
gagaagtaca aggatatagc cggattttat agagaggtgg aagagcaggg ctacaaggtg 2040
tcattcgagt ccgccagcaa gaaggaagtg gacaagctcg tggaagaggg taagctctac 2100
atgttccaga tttataataa agactttagc gataagagcc acgggacacc taatctccac 2160
acaatgtatt tcaagctgct cttcgacgag aataaccacg gccaaatcag gttgtcagga 2220
ggggctgaac tcttcatgcg gcgcgctagc cttaagaagg aggagcttgt agtccaccct 2280
gcgaatagtc caattgcgaa taagaacccg gacaatccta aaaagactac aacattgagc 2340
tacgacgtgt acaaggataa gaggttttcc gaggatcagt acgagctcca catcccgatt 2400
gcgatcaaca agtgcccaaa gaatattttc aagataaaca cagaggtgcg tgtactcctg 2460
aagcatgacg acaatcctta cgtcattggg attgatcggg gcgagaggaa cctcctctat 2520
attgtggtgg tggacgggaa ggggaacata gtcgaacagt actcccttaa cgaaataatt 2580
aacaatttca acggcatccg tatcaagacc gactaccatt cgttgctgga caagaaggag 2640
aaggagagat ttgaggcgcg gcaaaattgg acaagtatcg agaacatcaa ggaactcaaa 2700
gcaggttata tctctcaagt tgtgcataag atatgcgagc tggttgagaa gtatgacgca 2760
gtgatcgctc ttgaggacct caactcgggc tttaagaatt ctagagttaa agtggagaag 2820
caggtctatc aaaagttcga gaagatgctt atagataagc tcaactacat ggtcgataag 2880
aaatcgaacc catgtgccac cggcggcgca ctcaaaggtt accaaataac aaacaaattc 2940
gagtccttca aatcgatgag tactcagaat gggttcatat tttatatacc ggcgtggctt 3000
acgtctaaga tcgacccgtc aactggtttt gtcaacctgt tgaagacgaa atacacgtcc 3060
attgccgatt cgaaaaagtt catatctagt tttgatcgta ttatgtacgt cccagaggaa 3120
gatcttttcg agtttgctct cgactacaaa aacttttcgc ggaccgatgc ggattacatt 3180
aaaaaatgga aactctattc gtacggcaac agaatcagga tttttcgcaa ccctaagaag 3240
aataacgtct ttgattggga ggaagtttgc ttgactagcg cgtacaagga gctctttaat 3300
aagtatggca ttaactacca acagggtgat atcagagcac tgctttgcga acaatctgac 3360
aaggctttct actcatcctt catggctttg atgagcctga tgctccagat gagaaattca 3420
attacaggca gaaccgacgt ggatttcttg atctccccgg ttaaaaattc tgatggcatc 3480
ttttacgata gcaggaacta tgaagcgcaa gagaatgcga ttctgccaaa aaatgcagac 3540
gccaacggtg cctataacat cgccaggaaa gtcctgtggg cgatcggcca gttcaaaaag 3600
gccgaagacg aaaaattgga caaggtcaaa atcgctatca gcaacaaaga gtggctggag 3660
tatgctcaga catccgtaaa gcattccggc ggcagcccaa agaagaagag gaaggtgagc 3720
ggcggcagcc caaagaagaa gcgcaaggtc tag 3753
<210> 8
<211> 4995
<212> DNA
<213> Artificial Sequence
<220>
<223> dFNCPF1-PBE-2NLS
<400> 8
atgccaaaga agaagaggaa ggtttcatcg gagaccggcc ctgttgctgt tgaccccacc 60
ctgcggcgga gaatcgagcc acacgagttc gaggtgttct tcgacccaag ggagctccgc 120
aaggagacgt gcctcctgta cgagatcaac tggggcggca ggcactccat ctggaggcac 180
accagccaaa acaccaacaa gcacgtggag gtcaacttca tcgagaagtt caccaccgag 240
aggtacttct gcccaaacac ccgctgctcc atcacctggt tcctgtcctg gagcccatgc 300
ggcgagtgct ccagggccat caccgagttc ctcagccgct acccacacgt caccctgttc 360
atctacatcg ccaggctcta ccaccacgcc gacccaagga acaggcaggg cctccgcgac 420
ctgatctcca gcggcgtgac catccaaatc atgaccgagc aggagtccgg ctactgctgg 480
aggaacttcg tcaactactc cccaagcaac gaggcccact ggccaaggta cccacacctc 540
tgggtgcgcc tctacgtgct cgagctgtac tgcatcatcc tcggcctgcc accatgcctc 600
aacatcctga ggcgcaagca accacagctg accttcttca ccatcgccct ccaaagctgc 660
cactaccaga ggctcccacc acacatcctg tgggctaccg gcctcaagtc cggcagcgag 720
acgccaggca cctccgagag cgctacgcct gaacttaagt ccatctacca ggagttcgtc 780
aataagtact cactctctaa gaccctgcgg ttcgagctga tcccgcaggg caagacactc 840
gagaacatca aggcgcgcgg cctgattctc gacgatgaga agcgggccaa ggactacaag 900
aaggcgaagc agatcattga taagtaccac cagttcttca tcgaggagat tctgtccagc 960
gtgtgcatct ctgaggatct cctgcagaat tactccgacg tctacttcaa gctcaagaag 1020
tctgacgatg acaacctgca gaaggatttc aagtccgcca aggacaccat caagaagcag 1080
atttctgagt acatcaagga ttccgagaag ttcaagaatc tcttcaacca gaatctgatt 1140
gatgcgaaga agggccagga gtctgacctg atcctctggc tgaagcagtc caaggacaat 1200
ggcattgagc tgttcaaggc caacagcgat atcaccgata ttgacgaggc gctggagatc 1260
attaagtcat tcaagggctg gaccacatac ttcaagggct tccatgagaa ccggaagaat 1320
gtgtactcat ctaacgacat tccgacctcc atcatctaca ggatcgtcga tgacaatctg 1380
ccaaagttcc tcgagaacaa ggccaagtac gagtccctca aggacaaggc cccggaggcg 1440
attaattacg agcagatcaa gaaggatctg gcggaggagc tgaccttcga tatcgactac 1500
aagacaagcg aggtgaacca gagggtgttc tccctcgatg aggtgttcga gatcgccaat 1560
ttcaacaatt acctgaacca gtccggcatt accaagttca atacaatcat tggcggcaag 1620
ttcgtcaacg gcgagaatac caagcgcaag ggcattaacg agtacatcaa tctctactcc 1680
cagcagatca acgacaagac cctgaagaag tacaagatgt ctgtgctctt caagcagatc 1740
ctgtccgata cagagtccaa gagcttcgtc attgataagc tcgaggacga cagcgacgtg 1800
gtcaccacaa tgcagtcatt ctacgagcag atcgccgcgt tcaagaccgt ggaggagaag 1860
agcattaagg agacactctc actcctgttc gatgacctga aggcccagaa gctcgacctg 1920
agcaagatct acttcaagaa cgataagagc ctcacagacc tgtcacagca ggtgttcgat 1980
gactactcag tgattggcac cgccgtcctc gagtacatta cacagcagat cgcgccaaag 2040
aacctcgata atccttctaa gaaggagcag gagctgatcg ccaagaaaac cgagaaggcg 2100
aagtacctct ccctggagac aattaagctc gccctggagg agttcaataa gcacagggat 2160
attgacaagc agtgccgctt cgaggagatc ctcgcgaact tcgccgcgat cccaatgatt 2220
ttcgatgaga tcgcccagaa caaggacaat ctggcgcaga tctctattaa gtaccagaac 2280
cagggcaaga aggacctcct gcaggcctcc gcagaggacg acgtgaaggc catcaaggat 2340
ctcctggacc agaccaacaa tctcctgcac aagctcaaga tcttccatat ttcacagtct 2400
gaggataagg ccaatatcct cgataaggac gagcatttct acctggtgtt cgaggagtgc 2460
tacttcgagc tggcgaacat tgtccctctg tacaacaaga ttaggaatta catcacacag 2520
aagccgtaca gcgacgagaa gttcaagctc aacttcgaga attcaaccct ggccaacggc 2580
tgggataaga ataaggagcc tgacaacaca gcgatcctct tcatcaagga cgacaagtac 2640
tacctgggcg tgatgaataa gaagaacaat aagatcttcg atgacaaggc cattaaggag 2700
aacaagggcg agggctacaa gaagatcgtg tacaagctcc tgcctggcgc caataagatg 2760
ctcccgaagg tgttcttctc cgcgaagtcc attaagttct acaacccaag cgaggatatc 2820
ctcaggatca ggaaccactc tacccataca aagaacggct cccctcagaa gggctacgag 2880
aagttcgagt tcaatatcga ggattgccgg aagttcattg acttctacaa gcagtccatc 2940
agcaagcacc ctgagtggaa ggatttcggc ttccgcttca gcgacaccca gcggtacaac 3000
tcaatcgatg agttctacag ggaggtggag aatcagggct acaagctcac attcgagaac 3060
atttcagagt cttacatcga ctccgtggtc aatcagggca agctctacct gttccagatc 3120
tacaacaagg atttcagcgc ctactcaaag ggcaggccga acctccatac cctgtactgg 3180
aaggcgctct tcgatgagcg caatctgcag gacgtggtct acaagctcaa cggcgaggcc 3240
gagctgttct accgcaagca gtctattccg aagaagatca cacacccagc gaaggaggcc 3300
atcgcgaaca agaataagga caatccgaag aaggagtccg tgttcgagta cgatctcatt 3360
aaggacaagc ggttcaccga ggataagttc ttcttccatt gcccaatcac aattaacttc 3420
aagtccagcg gcgccaacaa gttcaatgac gagatcaatc tcctgctcaa ggagaaggcg 3480
aacgatgtgc atatcctctc cattgcccgc ggcgagcggc atctcgccta ctacaccctg 3540
gtcgatggca agggcaatat cattaagcag gataccttca acatcattgg caatgaccgc 3600
atgaaaacca actaccacga taagctcgcc gcgatcgaga aggataggga cagcgcgcgc 3660
aaggactgga agaagatcaa caatattaag gagatgaagg agggctacct ctcacaggtg 3720
gtccatgaga ttgccaagct cgtgatcgag tacaatgcga ttgtggtgtt cgaggacctc 3780
aacttcggct tcaagcgggg caggttcaag gtggagaagc aggtctacca gaagctggag 3840
aagatgctca tcgagaagct caattacctg gtgttcaagg ataacgagtt cgacaagacc 3900
ggaggagtcc tcagggcata ccagctgacc gcgccattcg agacattcaa gaagatgggc 3960
aagcagacag gcatcatcta ctacgtgcca gccggcttca cctccaagat ctgccctgtg 4020
acaggcttcg tcaaccagct ctaccctaag tacgagtccg tcagcaagtc acaggagttc 4080
ttcagcaagt tcgataagat ttgctacaat ctggacaagg gctacttcga gttctcattc 4140
gattacaaga acttcggcga caaggccgcg aagggcaagt ggaccattgc gtctttcggc 4200
tcccggctca tcaacttcag gaatagcgat aagaaccaca attgggacac cagggaggtg 4260
tacccgacaa aggagctgga gaagctgctc aaggactact caatcgagta cggccatggc 4320
gagtgcatta aggccgcgat ctgcggcgag agcgataaga agttcttcgc caagctgacc 4380
tcagtcctca atacaatcct gcagatgagg aactctaaga ccggcacaga gctggactac 4440
ctgatttccc cagtggccga tgtcaacggc aatttcttcg acagccgcca ggcgccgaag 4500
aatatgccac aggacgccga cgccaacggc gcataccaca tcggcctcaa gggcctgatg 4560
ctgctcggac gcattaagaa caatcaggag ggcaagaagc tcaacctcgt gatcaagaac 4620
gaggagtact tcgagttcgt ccaaaaccgg aacaatacgc gtgactccgg cggcagcacc 4680
aacctgtccg acatcatcga gaaggagacg ggcaagcaac tcgtgatcca ggagagcatc 4740
ctcatgctgc cagaggaggt ggaggaggtc atcggcaaca agccagagtc cgacatcctg 4800
gtgcacaccg cctacgacga gtccaccgac gagaacgtca tgctcctgac cagcgacgcc 4860
ccagagtaca agccatgggc cctcgtcatc caggacagca acggggagaa caagatcaag 4920
atgctgtcgg gggggagccc aaagaagaag cggaaggtga gcggcggcag cccaaagaag 4980
aagcgcaagg tctag 4995
<210> 9
<211> 4779
<212> DNA
<213> Artificial Sequence
<220>
<223> dLBCPF1-PBE-2NLS
<400> 9
atgccaaaga agaagaggaa ggtttcatcg gagaccggcc ctgttgctgt tgaccccacc 60
ctgcggcgga gaatcgagcc acacgagttc gaggtgttct tcgacccaag ggagctccgc 120
aaggagacgt gcctcctgta cgagatcaac tggggcggca ggcactccat ctggaggcac 180
accagccaaa acaccaacaa gcacgtggag gtcaacttca tcgagaagtt caccaccgag 240
aggtacttct gcccaaacac ccgctgctcc atcacctggt tcctgtcctg gagcccatgc 300
ggcgagtgct ccagggccat caccgagttc ctcagccgct acccacacgt caccctgttc 360
atctacatcg ccaggctcta ccaccacgcc gacccaagga acaggcaggg cctccgcgac 420
ctgatctcca gcggcgtgac catccaaatc atgaccgagc aggagtccgg ctactgctgg 480
aggaacttcg tcaactactc cccaagcaac gaggcccact ggccaaggta cccacacctc 540
tgggtgcgcc tctacgtgct cgagctgtac tgcatcatcc tcggcctgcc accatgcctc 600
aacatcctga ggcgcaagca accacagctg accttcttca ccatcgccct ccaaagctgc 660
cactaccaga ggctcccacc acacatcctg tgggctaccg gcctcaagtc cggcagcgag 720
acgccaggca cctccgagag cgctacgcct gaacttaagt caaagctcga gaaattcacc 780
aactgttatt cgttgagcaa aacactgcgg tttaaagcga ttccagtcgg caagactcaa 840
gagaatatag acaataagcg gctgttggtg gaagatgaaa agcgcgcgga agactacaaa 900
ggggtgaaga agttgttgga cagatactac ctctctttta tcaatgatgt cttgcactca 960
atcaaattga agaatctgaa caactacatc tccctcttca gaaagaaaac aaggacagaa 1020
aaggagaata aggaacttga aaatttggag atcaatctga ggaaagagat cgcgaaagcc 1080
tttaaaggca acgaaggata caaaagtctg ttcaagaagg atataattga gacaattttg 1140
ccagagttcc tcgatgacaa ggacgagatt gcgctggtca attcgttcaa cggattcaca 1200
acagcattca caggcttctt tgataatcgg gaaaatatgt tctctgagga ggcaaagtcc 1260
acttctattg cgttcaggtg tatcaatgag aatctcacta ggtacatttc caacatggat 1320
atctttgaga aggttgacgc aatttttgac aagcacgaag ttcaggagat taaggagaag 1380
atcctcaatt ccgattatga cgttgaggac ttcttcgaag gtgagttttt taatttcgtg 1440
ctcactcaag agggtatcga cgtgtataat gcgatcatcg gtgggttcgt gactgagtcc 1500
ggtgaaaaga ttaagggatt gaacgagtat atcaaccttt acaaccaaaa gacgaaacag 1560
aagctgccaa agttcaagcc tctttacaaa caggttcttt cagaccgcga gtcactctcg 1620
ttctatgggg agggctacac ttcggatgag gaagtcctgg aggtgttcag gaatactctc 1680
aataagaatt cggagatttt ctcttctata aaaaaactgg aaaagttgtt taagaatttt 1740
gacgaatact ctagcgccgg catatttgtg aaaaacggcc cggccatatc aacgataagt 1800
aaagatatct tcggcgaatg gaacgtgatc agagacaaat ggaacgcgga gtatgacgat 1860
attcacctga agaagaaggc tgtcgtaacg gagaagtacg aggatgatcg caggaaaagc 1920
ttcaaaaaga tcggaagttt cagcctggaa cagttgcagg agtatgctga cgccgatctt 1980
agcgtcgtcg agaagttgaa ggagataatc atccaaaagg tcgacgagat atataaagtc 2040
tatggatcaa gtgaaaaact gttcgacgcc gacttcgttt tggagaagtc cctgaagaag 2100
aacgacgctg ttgttgccat tatgaaggat ctgctcgaca gcgtgaagag tttcgagaac 2160
tatattaagg cttttttcgg ggaggggaag gagactaaca gagatgagtc cttctacgga 2220
gacttcgtcc tcgcgtacga tatactcctt aaggtagacc acatctacga cgcaatcaga 2280
aattacgtga cacaaaagcc gtacagcaag gacaagttca aactctactt ccagaacccc 2340
cagttcatgg gcggctggga caaggacaag gaaacggatt acagggctac gatcctgagg 2400
tatggttcaa aatactactt ggcgattatg gacaagaagt acgccaagtg tctccagaag 2460
attgacaaag acgatgtcaa tggcaattat gagaagatca actacaagct gcttccgggt 2520
ccgaacaaga tgctcccaaa ggttttcttc agcaagaaat ggatggccta ctataaccca 2580
agcgaggaca tccagaagat ttataagaac ggtacgttca agaagggcga catgttcaat 2640
cttaacgact gtcacaagct gatcgacttc ttcaaagact caattagccg gtacccaaag 2700
tggtctaacg cctatgactt caacttttcg gaaaccgaga agtacaagga tatagccgga 2760
ttttatagag aggtggaaga gcagggctac aaggtgtcat tcgagtccgc cagcaagaag 2820
gaagtggaca agctcgtgga agagggtaag ctctacatgt tccagattta taataaagac 2880
tttagcgata agagccacgg gacacctaat ctccacacaa tgtatttcaa gctgctcttc 2940
gacgagaata accacggcca aatcaggttg tcaggagggg ctgaactctt catgcggcgc 3000
gctagcctta agaaggagga gcttgtagtc caccctgcga atagtccaat tgcgaataag 3060
aacccggaca atcctaaaaa gactacaaca ttgagctacg acgtgtacaa ggataagagg 3120
ttttccgagg atcagtacga gctccacatc ccgattgcga tcaacaagtg cccaaagaat 3180
attttcaaga taaacacaga ggtgcgtgta ctcctgaagc atgacgacaa tccttacgtc 3240
attgggattg ctcggggcga gaggaacctc ctctatattg tggtggtgga cgggaagggg 3300
aacatagtcg aacagtactc ccttaacgaa ataattaaca atttcaacgg catccgtatc 3360
aagaccgact accattcgtt gctggacaag aaggagaagg agagatttga ggcgcggcaa 3420
aattggacaa gtatcgagaa catcaaggaa ctcaaagcag gttatatctc tcaagttgtg 3480
cataagatat gcgagctggt tgagaagtat gacgcagtga tcgctcttga ggacctcaac 3540
tcgggcttta agaattctag agttaaagtg gagaagcagg tctatcaaaa gttcgagaag 3600
atgcttatag ataagctcaa ctacatggtc gataagaaat cgaacccatg tgccaccggc 3660
ggcgcactca aaggttacca aataacaaac aaattcgagt ccttcaaatc gatgagtact 3720
cagaatgggt tcatatttta tataccggcg tggcttacgt ctaagatcga cccgtcaact 3780
ggttttgtca acctgttgaa gacgaaatac acgtccattg ccgattcgaa aaagttcata 3840
tctagttttg atcgtattat gtacgtccca gaggaagatc ttttcgagtt tgctctcgac 3900
tacaaaaact tttcgcggac cgatgcggat tacattaaaa aatggaaact ctattcgtac 3960
ggcaacagaa tcaggatttt tcgcaaccct aagaagaata acgtctttga ttgggaggaa 4020
gtttgcttga ctagcgcgta caaggagctc tttaataagt atggcattaa ctaccaacag 4080
ggtgatatca gagcactgct ttgcgaacaa tctgacaagg ctttctactc atccttcatg 4140
gctttgatga gcctgatgct ccagatgaga aattcaatta caggcagaac cgacgtggat 4200
ttcttgatct ccccggttaa aaattctgat ggcatctttt acgatagcag gaactatgaa 4260
gcgcaagaga atgcgattct gccaaaaaat gcagacgcca acggtgccta taacatcgcc 4320
aggaaagtcc tgtgggcgat cggccagttc aaaaaggccg aagacgaaaa attggacaag 4380
gtcaaaatcg ctatcagcaa caaagagtgg ctggagtatg ctcagacatc cgtaaagcat 4440
acgcgtgact ccggcggcag caccaacctg tccgacatca tcgagaagga gacgggcaag 4500
caactcgtga tccaggagag catcctcatg ctgccagagg aggtggagga ggtcatcggc 4560
aacaagccag agtccgacat cctggtgcac accgcctacg acgagtccac cgacgagaac 4620
gtcatgctcc tgaccagcga cgccccagag tacaagccat gggccctcgt catccaggac 4680
agcaacgggg agaacaagat caagatgctg tcggggggga gcccaaagaa gaagcggaag 4740
gtgagcggcg gcagcccaaa gaagaagcgc aaggtctag 4779
<210> 10
<211> 6305
<212> DNA
<213> Artificial Sequence
<220>
<223> BDUBI10-dLBCPF1-PBE-2NLS
<400> 10
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
tcgacgagtc taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag 660
cagacggcac ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg 720
ttggacttgc tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg 780
gcacggcagg cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc 840
caccgctcct tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc 900
ctctttcccc aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa 960
tccacccgtc ggcacctccg cttcaaggta cgccgctcgt cctccccccc cccccctctc 1020
taccttctct agatcggcgt tccggtccat ggttagggcc cggtagttct acttctgttc 1080
atgtttgtgt tagatccgtg tttgtgttag atccgtgctg ctagcgttcg tacacggatg 1140
cgacctgtac gtcagacacg ttctgattgc taacttgcca gtgtttctct ttggggaatc 1200
ctgggatggc tctagccgtt ccgcagacgg gatcgatcta ggataggtat acatgttgat 1260
gtgggtttta ctgatgcata tacatgatgg catatgcagc atctattcat atgctctaac 1320
cttgagtacc tatctattat aataaacaag tatgttttat aattattttg atcttgatat 1380
acttggatga tggcatatgc agcagctata tgtggatttt tttagccctg ccttcatacg 1440
ctatttattt gcttggtact gtttcttttg tcgatgctca ccctgttgtt tggtgttact 1500
tctgcaggtc gaagcttgaa gcaaacatgc caaagaagaa gaggaaggtt tcatcggaga 1560
ccggccctgt tgctgttgac cccaccctgc ggcggagaat cgagccacac gagttcgagg 1620
tgttcttcga cccaagggag ctccgcaagg agacgtgcct cctgtacgag atcaactggg 1680
gcggcaggca ctccatctgg aggcacacca gccaaaacac caacaagcac gtggaggtca 1740
acttcatcga gaagttcacc accgagaggt acttctgccc aaacacccgc tgctccatca 1800
cctggttcct gtcctggagc ccatgcggcg agtgctccag ggccatcacc gagttcctca 1860
gccgctaccc acacgtcacc ctgttcatct acatcgccag gctctaccac cacgccgacc 1920
caaggaacag gcagggcctc cgcgacctga tctccagcgg cgtgaccatc caaatcatga 1980
ccgagcagga gtccggctac tgctggagga acttcgtcaa ctactcccca agcaacgagg 2040
cccactggcc aaggtaccca cacctctggg tgcgcctcta cgtgctcgag ctgtactgca 2100
tcatcctcgg cctgccacca tgcctcaaca tcctgaggcg caagcaacca cagctgacct 2160
tcttcaccat cgccctccaa agctgccact accagaggct cccaccacac atcctgtggg 2220
ctaccggcct caagtccggc agcgagacgc caggcacctc cgagagcgct acgcctgaac 2280
ttaagtcaaa gctcgagaaa ttcaccaact gttattcgtt gagcaaaaca ctgcggttta 2340
aagcgattcc agtcggcaag actcaagaga atatagacaa taagcggctg ttggtggaag 2400
atgaaaagcg cgcggaagac tacaaagggg tgaagaagtt gttggacaga tactacctct 2460
cttttatcaa tgatgtcttg cactcaatca aattgaagaa tctgaacaac tacatctccc 2520
tcttcagaaa gaaaacaagg acagaaaagg agaataagga acttgaaaat ttggagatca 2580
atctgaggaa agagatcgcg aaagccttta aaggcaacga aggatacaaa agtctgttca 2640
agaaggatat aattgagaca attttgccag agttcctcga tgacaaggac gagattgcgc 2700
tggtcaattc gttcaacgga ttcacaacag cattcacagg cttctttgat aatcgggaaa 2760
atatgttctc tgaggaggca aagtccactt ctattgcgtt caggtgtatc aatgagaatc 2820
tcactaggta catttccaac atggatatct ttgagaaggt tgacgcaatt tttgacaagc 2880
acgaagttca ggagattaag gagaagatcc tcaattccga ttatgacgtt gaggacttct 2940
tcgaaggtga gttttttaat ttcgtgctca ctcaagaggg tatcgacgtg tataatgcga 3000
tcatcggtgg gttcgtgact gagtccggtg aaaagattaa gggattgaac gagtatatca 3060
acctttacaa ccaaaagacg aaacagaagc tgccaaagtt caagcctctt tacaaacagg 3120
ttctttcaga ccgcgagtca ctctcgttct atggggaggg ctacacttcg gatgaggaag 3180
tcctggaggt gttcaggaat actctcaata agaattcgga gattttctct tctataaaaa 3240
aactggaaaa gttgtttaag aattttgacg aatactctag cgccggcata tttgtgaaaa 3300
acggcccggc catatcaacg ataagtaaag atatcttcgg cgaatggaac gtgatcagag 3360
acaaatggaa cgcggagtat gacgatattc acctgaagaa gaaggctgtc gtaacggaga 3420
agtacgagga tgatcgcagg aaaagcttca aaaagatcgg aagtttcagc ctggaacagt 3480
tgcaggagta tgctgacgcc gatcttagcg tcgtcgagaa gttgaaggag ataatcatcc 3540
aaaaggtcga cgagatatat aaagtctatg gatcaagtga aaaactgttc gacgccgact 3600
tcgttttgga gaagtccctg aagaagaacg acgctgttgt tgccattatg aaggatctgc 3660
tcgacagcgt gaagagtttc gagaactata ttaaggcttt tttcggggag gggaaggaga 3720
ctaacagaga tgagtccttc tacggagact tcgtcctcgc gtacgatata ctccttaagg 3780
tagaccacat ctacgacgca atcagaaatt acgtgacaca aaagccgtac agcaaggaca 3840
agttcaaact ctacttccag aacccccagt tcatgggcgg ctgggacaag gacaaggaaa 3900
cggattacag ggctacgatc ctgaggtatg gttcaaaata ctacttggcg attatggaca 3960
agaagtacgc caagtgtctc cagaagattg acaaagacga tgtcaatggc aattatgaga 4020
agatcaacta caagctgctt ccgggtccga acaagatgct cccaaaggtt ttcttcagca 4080
agaaatggat ggcctactat aacccaagcg aggacatcca gaagatttat aagaacggta 4140
cgttcaagaa gggcgacatg ttcaatctta acgactgtca caagctgatc gacttcttca 4200
aagactcaat tagccggtac ccaaagtggt ctaacgccta tgacttcaac ttttcggaaa 4260
ccgagaagta caaggatata gccggatttt atagagaggt ggaagagcag ggctacaagg 4320
tgtcattcga gtccgccagc aagaaggaag tggacaagct cgtggaagag ggtaagctct 4380
acatgttcca gatttataat aaagacttta gcgataagag ccacgggaca cctaatctcc 4440
acacaatgta tttcaagctg ctcttcgacg agaataacca cggccaaatc aggttgtcag 4500
gaggggctga actcttcatg cggcgcgcta gccttaagaa ggaggagctt gtagtccacc 4560
ctgcgaatag tccaattgcg aataagaacc cggacaatcc taaaaagact acaacattga 4620
gctacgacgt gtacaaggat aagaggtttt ccgaggatca gtacgagctc cacatcccga 4680
ttgcgatcaa caagtgccca aagaatattt tcaagataaa cacagaggtg cgtgtactcc 4740
tgaagcatga cgacaatcct tacgtcattg ggattgctcg gggcgagagg aacctcctct 4800
atattgtggt ggtggacggg aaggggaaca tagtcgaaca gtactccctt aacgaaataa 4860
ttaacaattt caacggcatc cgtatcaaga ccgactacca ttcgttgctg gacaagaagg 4920
agaaggagag atttgaggcg cggcaaaatt ggacaagtat cgagaacatc aaggaactca 4980
aagcaggtta tatctctcaa gttgtgcata agatatgcga gctggttgag aagtatgacg 5040
cagtgatcgc tcttgaggac ctcaactcgg gctttaagaa ttctagagtt aaagtggaga 5100
agcaggtcta tcaaaagttc gagaagatgc ttatagataa gctcaactac atggtcgata 5160
agaaatcgaa cccatgtgcc accggcggcg cactcaaagg ttaccaaata acaaacaaat 5220
tcgagtcctt caaatcgatg agtactcaga atgggttcat attttatata ccggcgtggc 5280
ttacgtctaa gatcgacccg tcaactggtt ttgtcaacct gttgaagacg aaatacacgt 5340
ccattgccga ttcgaaaaag ttcatatcta gttttgatcg tattatgtac gtcccagagg 5400
aagatctttt cgagtttgct ctcgactaca aaaacttttc gcggaccgat gcggattaca 5460
ttaaaaaatg gaaactctat tcgtacggca acagaatcag gatttttcgc aaccctaaga 5520
agaataacgt ctttgattgg gaggaagttt gcttgactag cgcgtacaag gagctcttta 5580
ataagtatgg cattaactac caacagggtg atatcagagc actgctttgc gaacaatctg 5640
acaaggcttt ctactcatcc ttcatggctt tgatgagcct gatgctccag atgagaaatt 5700
caattacagg cagaaccgac gtggatttct tgatctcccc ggttaaaaat tctgatggca 5760
tcttttacga tagcaggaac tatgaagcgc aagagaatgc gattctgcca aaaaatgcag 5820
acgccaacgg tgcctataac atcgccagga aagtcctgtg ggcgatcggc cagttcaaaa 5880
aggccgaaga cgaaaaattg gacaaggtca aaatcgctat cagcaacaaa gagtggctgg 5940
agtatgctca gacatccgta aagcatacgc gtgactccgg cggcagcacc aacctgtccg 6000
acatcatcga gaaggagacg ggcaagcaac tcgtgatcca ggagagcatc ctcatgctgc 6060
cagaggaggt ggaggaggtc atcggcaaca agccagagtc cgacatcctg gtgcacaccg 6120
cctacgacga gtccaccgac gagaacgtca tgctcctgac cagcgacgcc ccagagtaca 6180
agccatgggc cctcgtcatc caggacagca acggggagaa caagatcaag atgctgtcgg 6240
gggggagccc aaagaagaag cggaaggtga gcggcggcag cccaaagaag aagcgcaagg 6300
tctag 6305
<210> 11
<211> 5196
<212> DNA
<213> Artificial Sequence
<220>
<223> dFNCPF1-ABE7.10-2NLS
<400> 11
atgccaaaaa agaagagaaa ggtttcaggc ggctcctccg aggtggagtt ctctcacgag 60
tattggatga ggcacgctct tacacttgct aagagagctt gggacgaaag agaagtgcca 120
gttggcgccg ttcttgtgca taataatagg gtgatcggcg agggttggaa tagaccaatt 180
ggaaggcatg atccaacagc tcacgcagag attatggctc tcagacaagg cggcctcgtt 240
atgcagaact acaggctcat tgacgctaca ctctacgtga cactcgaacc ttgcgttatg 300
tgcgccggag ctatgattca ttctaggatt ggcagggtcg tgtttggagc tagggacgct 360
aaaacaggag ccgccggatc tcttatggac gtgttgcatc atccaggcat gaaccatagg 420
gtggagatta cagagggcat tcttgcagac gagtgcgctg ctcttctttc cgatttcttc 480
aggatgagaa ggcaggagat taaggcccag aagaaggctc agtcttctac agatagcgga 540
ggatcttccg gaggatctag cggctccgag acaccaggaa catccgaaag cgctacacca 600
gaatctagcg gaggctcttc cggaggatct tctgaagtgg agttctccca cgagtattgg 660
atgaggcacg ctcttacact tgctaaaagg gctagggacg aaagggaagt tccagttgga 720
gctgttctcg tgctcaataa cagggtgatt ggcgagggtt ggaatagagc cattggactc 780
catgatccaa cagctcacgc agagattatg gctcttagac aaggcggcct cgttatgcag 840
aattacagac tcatcgacgc cacactctac gttaccttcg aaccttgcgt tatgtgcgcc 900
ggagctatga tccattctag gattggcagg gtcgtgttcg gcgttagaaa cgctaagaca 960
ggagctgcag gctctcttat ggacgttctt cattacccag gcatgaatca tagagtggag 1020
atcacagaag gcattcttgc agacgagtgc gcagctctcc tttgctattt cttcaggatg 1080
ccgaggcaag ttttcaacgc tcagaagaag gcccagtctt ctacagattc cggcggatct 1140
tctggaggat ctagcggctc cgagacacca ggaacatccg aatccgctac accagagtct 1200
tctggaggat ctagcggagg atctcttaag tccatctacc aggagttcgt caataagtac 1260
tcactctcta agaccctgcg gttcgagctg atcccgcagg gcaagacact cgagaacatc 1320
aaggcgcgcg gcctgattct cgacgatgag aagcgggcca aggactacaa gaaggcgaag 1380
cagatcattg ataagtacca ccagttcttc atcgaggaga ttctgtccag cgtgtgcatc 1440
tctgaggatc tcctgcagaa ttactccgac gtctacttca agctcaagaa gtctgacgat 1500
gacaacctgc agaaggattt caagtccgcc aaggacacca tcaagaagca gatttctgag 1560
tacatcaagg attccgagaa gttcaagaat ctcttcaacc agaatctgat tgatgcgaag 1620
aagggccagg agtctgacct gatcctctgg ctgaagcagt ccaaggacaa tggcattgag 1680
ctgttcaagg ccaacagcga tatcaccgat attgacgagg cgctggagat cattaagtca 1740
ttcaagggct ggaccacata cttcaagggc ttccatgaga accggaagaa tgtgtactca 1800
tctaacgaca ttccgacctc catcatctac aggatcgtcg atgacaatct gccaaagttc 1860
ctcgagaaca aggccaagta cgagtccctc aaggacaagg ccccggaggc gattaattac 1920
gagcagatca agaaggatct ggcggaggag ctgaccttcg atatcgacta caagacaagc 1980
gaggtgaacc agagggtgtt ctccctcgat gaggtgttcg agatcgccaa tttcaacaat 2040
tacctgaacc agtccggcat taccaagttc aatacaatca ttggcggcaa gttcgtcaac 2100
ggcgagaata ccaagcgcaa gggcattaac gagtacatca atctctactc ccagcagatc 2160
aacgacaaga ccctgaagaa gtacaagatg tctgtgctct tcaagcagat cctgtccgat 2220
acagagtcca agagcttcgt cattgataag ctcgaggacg acagcgacgt ggtcaccaca 2280
atgcagtcat tctacgagca gatcgccgcg ttcaagaccg tggaggagaa gagcattaag 2340
gagacactct cactcctgtt cgatgacctg aaggcccaga agctcgacct gagcaagatc 2400
tacttcaaga acgataagag cctcacagac ctgtcacagc aggtgttcga tgactactca 2460
gtgattggca ccgccgtcct cgagtacatt acacagcaga tcgcgccaaa gaacctcgat 2520
aatccttcta agaaggagca ggagctgatc gccaagaaaa ccgagaaggc gaagtacctc 2580
tccctggaga caattaagct cgccctggag gagttcaata agcacaggga tattgacaag 2640
cagtgccgct tcgaggagat cctcgcgaac ttcgccgcga tcccaatgat tttcgatgag 2700
atcgcccaga acaaggacaa tctggcgcag atctctatta agtaccagaa ccagggcaag 2760
aaggacctcc tgcaggcctc cgcagaggac gacgtgaagg ccatcaagga tctcctggac 2820
cagaccaaca atctcctgca caagctcaag atcttccata tttcacagtc tgaggataag 2880
gccaatatcc tcgataagga cgagcatttc tacctggtgt tcgaggagtg ctacttcgag 2940
ctggcgaaca ttgtccctct gtacaacaag attaggaatt acatcacaca gaagccgtac 3000
agcgacgaga agttcaagct caacttcgag aattcaaccc tggccaacgg ctgggataag 3060
aataaggagc ctgacaacac agcgatcctc ttcatcaagg acgacaagta ctacctgggc 3120
gtgatgaata agaagaacaa taagatcttc gatgacaagg ccattaagga gaacaagggc 3180
gagggctaca agaagatcgt gtacaagctc ctgcctggcg ccaataagat gctcccgaag 3240
gtgttcttct ccgcgaagtc cattaagttc tacaacccaa gcgaggatat cctcaggatc 3300
aggaaccact ctacccatac aaagaacggc tcccctcaga agggctacga gaagttcgag 3360
ttcaatatcg aggattgccg gaagttcatt gacttctaca agcagtccat cagcaagcac 3420
cctgagtgga aggatttcgg cttccgcttc agcgacaccc agcggtacaa ctcaatcgat 3480
gagttctaca gggaggtgga gaatcagggc tacaagctca cattcgagaa catttcagag 3540
tcttacatcg actccgtggt caatcagggc aagctctacc tgttccagat ctacaacaag 3600
gatttcagcg cctactcaaa gggcaggccg aacctccata ccctgtactg gaaggcgctc 3660
ttcgatgagc gcaatctgca ggacgtggtc tacaagctca acggcgaggc cgagctgttc 3720
taccgcaagc agtctattcc gaagaagatc acacacccag cgaaggaggc catcgcgaac 3780
aagaataagg acaatccgaa gaaggagtcc gtgttcgagt acgatctcat taaggacaag 3840
cggttcaccg aggataagtt cttcttccat tgcccaatca caattaactt caagtccagc 3900
ggcgccaaca agttcaatga cgagatcaat ctcctgctca aggagaaggc gaacgatgtg 3960
catatcctct ccattgcccg cggcgagcgg catctcgcct actacaccct ggtcgatggc 4020
aagggcaata tcattaagca ggataccttc aacatcattg gcaatgaccg catgaaaacc 4080
aactaccacg ataagctcgc cgcgatcgag aaggataggg acagcgcgcg caaggactgg 4140
aagaagatca acaatattaa ggagatgaag gagggctacc tctcacaggt ggtccatgag 4200
attgccaagc tcgtgatcga gtacaatgcg attgtggtgt tcgaggacct caacttcggc 4260
ttcaagcggg gcaggttcaa ggtggagaag caggtctacc agaagctgga gaagatgctc 4320
atcgagaagc tcaattacct ggtgttcaag gataacgagt tcgacaagac cggaggagtc 4380
ctcagggcat accagctgac cgcgccattc gagacattca agaagatggg caagcagaca 4440
ggcatcatct actacgtgcc agccggcttc acctccaaga tctgccctgt gacaggcttc 4500
gtcaaccagc tctaccctaa gtacgagtcc gtcagcaagt cacaggagtt cttcagcaag 4560
ttcgataaga tttgctacaa tctggacaag ggctacttcg agttctcatt cgattacaag 4620
aacttcggcg acaaggccgc gaagggcaag tggaccattg cgtctttcgg ctcccggctc 4680
atcaacttca ggaatagcga taagaaccac aattgggaca ccagggaggt gtacccgaca 4740
aaggagctgg agaagctgct caaggactac tcaatcgagt acggccatgg cgagtgcatt 4800
aaggccgcga tctgcggcga gagcgataag aagttcttcg ccaagctgac ctcagtcctc 4860
aatacaatcc tgcagatgag gaactctaag accggcacag agctggacta cctgatttcc 4920
ccagtggccg atgtcaacgg caatttcttc gacagccgcc aggcgccgaa gaatatgcca 4980
caggacgccg acgccaacgg cgcataccac atcggcctca agggcctgat gctgctcgga 5040
cgcattaaga acaatcagga gggcaagaag ctcaacctcg tgatcaagaa cgaggagtac 5100
ttcgagttcg tccaaaaccg gaacaattcc ggcggcagcc caaagaagaa gaggaaggtg 5160
agcggcggca gcccaaagaa gaagcgcaag gtctag 5196
<210> 12
<211> 4980
<212> DNA
<213> Artificial Sequence
<220>
<223> dLBCPF1-ABE7.10-2NLS
<400> 12
atgccaaaaa agaagagaaa ggtttcaggc ggctcctccg aggtggagtt ctctcacgag 60
tattggatga ggcacgctct tacacttgct aagagagctt gggacgaaag agaagtgcca 120
gttggcgccg ttcttgtgca taataatagg gtgatcggcg agggttggaa tagaccaatt 180
ggaaggcatg atccaacagc tcacgcagag attatggctc tcagacaagg cggcctcgtt 240
atgcagaact acaggctcat tgacgctaca ctctacgtga cactcgaacc ttgcgttatg 300
tgcgccggag ctatgattca ttctaggatt ggcagggtcg tgtttggagc tagggacgct 360
aaaacaggag ccgccggatc tcttatggac gtgttgcatc atccaggcat gaaccatagg 420
gtggagatta cagagggcat tcttgcagac gagtgcgctg ctcttctttc cgatttcttc 480
aggatgagaa ggcaggagat taaggcccag aagaaggctc agtcttctac agatagcgga 540
ggatcttccg gaggatctag cggctccgag acaccaggaa catccgaaag cgctacacca 600
gaatctagcg gaggctcttc cggaggatct tctgaagtgg agttctccca cgagtattgg 660
atgaggcacg ctcttacact tgctaaaagg gctagggacg aaagggaagt tccagttgga 720
gctgttctcg tgctcaataa cagggtgatt ggcgagggtt ggaatagagc cattggactc 780
catgatccaa cagctcacgc agagattatg gctcttagac aaggcggcct cgttatgcag 840
aattacagac tcatcgacgc cacactctac gttaccttcg aaccttgcgt tatgtgcgcc 900
ggagctatga tccattctag gattggcagg gtcgtgttcg gcgttagaaa cgctaagaca 960
ggagctgcag gctctcttat ggacgttctt cattacccag gcatgaatca tagagtggag 1020
atcacagaag gcattcttgc agacgagtgc gcagctctcc tttgctattt cttcaggatg 1080
ccgaggcaag ttttcaacgc tcagaagaag gcccagtctt ctacagattc cggcggatct 1140
tctggaggat ctagcggctc cgagacacca ggaacatccg aatccgctac accagagtct 1200
tctggaggat ctagcggagg atctcttaag tcaaagctcg agaaattcac caactgttat 1260
tcgttgagca aaacactgcg gtttaaagcg attccagtcg gcaagactca agagaatata 1320
gacaataagc ggctgttggt ggaagatgaa aagcgcgcgg aagactacaa aggggtgaag 1380
aagttgttgg acagatacta cctctctttt atcaatgatg tcttgcactc aatcaaattg 1440
aagaatctga acaactacat ctccctcttc agaaagaaaa caaggacaga aaaggagaat 1500
aaggaacttg aaaatttgga gatcaatctg aggaaagaga tcgcgaaagc ctttaaaggc 1560
aacgaaggat acaaaagtct gttcaagaag gatataattg agacaatttt gccagagttc 1620
ctcgatgaca aggacgagat tgcgctggtc aattcgttca acggattcac aacagcattc 1680
acaggcttct ttgataatcg ggaaaatatg ttctctgagg aggcaaagtc cacttctatt 1740
gcgttcaggt gtatcaatga gaatctcact aggtacattt ccaacatgga tatctttgag 1800
aaggttgacg caatttttga caagcacgaa gttcaggaga ttaaggagaa gatcctcaat 1860
tccgattatg acgttgagga cttcttcgaa ggtgagtttt ttaatttcgt gctcactcaa 1920
gagggtatcg acgtgtataa tgcgatcatc ggtgggttcg tgactgagtc cggtgaaaag 1980
attaagggat tgaacgagta tatcaacctt tacaaccaaa agacgaaaca gaagctgcca 2040
aagttcaagc ctctttacaa acaggttctt tcagaccgcg agtcactctc gttctatggg 2100
gagggctaca cttcggatga ggaagtcctg gaggtgttca ggaatactct caataagaat 2160
tcggagattt tctcttctat aaaaaaactg gaaaagttgt ttaagaattt tgacgaatac 2220
tctagcgccg gcatatttgt gaaaaacggc ccggccatat caacgataag taaagatatc 2280
ttcggcgaat ggaacgtgat cagagacaaa tggaacgcgg agtatgacga tattcacctg 2340
aagaagaagg ctgtcgtaac ggagaagtac gaggatgatc gcaggaaaag cttcaaaaag 2400
atcggaagtt tcagcctgga acagttgcag gagtatgctg acgccgatct tagcgtcgtc 2460
gagaagttga aggagataat catccaaaag gtcgacgaga tatataaagt ctatggatca 2520
agtgaaaaac tgttcgacgc cgacttcgtt ttggagaagt ccctgaagaa gaacgacgct 2580
gttgttgcca ttatgaagga tctgctcgac agcgtgaaga gtttcgagaa ctatattaag 2640
gcttttttcg gggaggggaa ggagactaac agagatgagt ccttctacgg agacttcgtc 2700
ctcgcgtacg atatactcct taaggtagac cacatctacg acgcaatcag aaattacgtg 2760
acacaaaagc cgtacagcaa ggacaagttc aaactctact tccagaaccc ccagttcatg 2820
ggcggctggg acaaggacaa ggaaacggat tacagggcta cgatcctgag gtatggttca 2880
aaatactact tggcgattat ggacaagaag tacgccaagt gtctccagaa gattgacaaa 2940
gacgatgtca atggcaatta tgagaagatc aactacaagc tgcttccggg tccgaacaag 3000
atgctcccaa aggttttctt cagcaagaaa tggatggcct actataaccc aagcgaggac 3060
atccagaaga tttataagaa cggtacgttc aagaagggcg acatgttcaa tcttaacgac 3120
tgtcacaagc tgatcgactt cttcaaagac tcaattagcc ggtacccaaa gtggtctaac 3180
gcctatgact tcaacttttc ggaaaccgag aagtacaagg atatagccgg attttataga 3240
gaggtggaag agcagggcta caaggtgtca ttcgagtccg ccagcaagaa ggaagtggac 3300
aagctcgtgg aagagggtaa gctctacatg ttccagattt ataataaaga ctttagcgat 3360
aagagccacg ggacacctaa tctccacaca atgtatttca agctgctctt cgacgagaat 3420
aaccacggcc aaatcaggtt gtcaggaggg gctgaactct tcatgcggcg cgctagcctt 3480
aagaaggagg agcttgtagt ccaccctgcg aatagtccaa ttgcgaataa gaacccggac 3540
aatcctaaaa agactacaac attgagctac gacgtgtaca aggataagag gttttccgag 3600
gatcagtacg agctccacat cccgattgcg atcaacaagt gcccaaagaa tattttcaag 3660
ataaacacag aggtgcgtgt actcctgaag catgacgaca atccttacgt cattgggatt 3720
gctcggggcg agaggaacct cctctatatt gtggtggtgg acgggaaggg gaacatagtc 3780
gaacagtact cccttaacga aataattaac aatttcaacg gcatccgtat caagaccgac 3840
taccattcgt tgctggacaa gaaggagaag gagagatttg aggcgcggca aaattggaca 3900
agtatcgaga acatcaagga actcaaagca ggttatatct ctcaagttgt gcataagata 3960
tgcgagctgg ttgagaagta tgacgcagtg atcgctcttg aggacctcaa ctcgggcttt 4020
aagaattcta gagttaaagt ggagaagcag gtctatcaaa agttcgagaa gatgcttata 4080
gataagctca actacatggt cgataagaaa tcgaacccat gtgccaccgg cggcgcactc 4140
aaaggttacc aaataacaaa caaattcgag tccttcaaat cgatgagtac tcagaatggg 4200
ttcatatttt atataccggc gtggcttacg tctaagatcg acccgtcaac tggttttgtc 4260
aacctgttga agacgaaata cacgtccatt gccgattcga aaaagttcat atctagtttt 4320
gatcgtatta tgtacgtccc agaggaagat cttttcgagt ttgctctcga ctacaaaaac 4380
ttttcgcgga ccgatgcgga ttacattaaa aaatggaaac tctattcgta cggcaacaga 4440
atcaggattt ttcgcaaccc taagaagaat aacgtctttg attgggagga agtttgcttg 4500
actagcgcgt acaaggagct ctttaataag tatggcatta actaccaaca gggtgatatc 4560
agagcactgc tttgcgaaca atctgacaag gctttctact catccttcat ggctttgatg 4620
agcctgatgc tccagatgag aaattcaatt acaggcagaa ccgacgtgga tttcttgatc 4680
tccccggtta aaaattctga tggcatcttt tacgatagca ggaactatga agcgcaagag 4740
aatgcgattc tgccaaaaaa tgcagacgcc aacggtgcct ataacatcgc caggaaagtc 4800
ctgtgggcga tcggccagtt caaaaaggcc gaagacgaaa aattggacaa ggtcaaaatc 4860
gctatcagca acaaagagtg gctggagtat gctcagacat ccgtaaagca ttccggcggc 4920
agcccaaaga agaagaggaa ggtgagcggc ggcagcccaa agaagaagcg caaggtctag 4980
<210> 13
<211> 6506
<212> DNA
<213> Artificial Sequence
<220>
<223> dLBCPF1-ABE2-X
<400> 13
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
tcgacgagtc taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag 660
cagacggcac ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg 720
ttggacttgc tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg 780
gcacggcagg cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc 840
caccgctcct tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc 900
ctctttcccc aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa 960
tccacccgtc ggcacctccg cttcaaggta cgccgctcgt cctccccccc cccccctctc 1020
taccttctct agatcggcgt tccggtccat ggttagggcc cggtagttct acttctgttc 1080
atgtttgtgt tagatccgtg tttgtgttag atccgtgctg ctagcgttcg tacacggatg 1140
cgacctgtac gtcagacacg ttctgattgc taacttgcca gtgtttctct ttggggaatc 1200
ctgggatggc tctagccgtt ccgcagacgg gatcgatcta ggataggtat acatgttgat 1260
gtgggtttta ctgatgcata tacatgatgg catatgcagc atctattcat atgctctaac 1320
cttgagtacc tatctattat aataaacaag tatgttttat aattattttg atcttgatat 1380
acttggatga tggcatatgc agcagctata tgtggatttt tttagccctg ccttcatacg 1440
ctatttattt gcttggtact gtttcttttg tcgatgctca ccctgttgtt tggtgttact 1500
tctgcaggtc gaagcttgaa gcaaacatgc caaaaaagaa gagaaaggtt tcaggcggct 1560
cctccgaggt ggagttctct cacgagtatt ggatgaggca cgctcttaca cttgctaaga 1620
gagcttggga cgaaagagaa gtgccagttg gcgccgttct tgtgcataat aatagggtga 1680
tcggcgaggg ttggaataga ccaattggaa ggcatgatcc aacagctcac gcagagatta 1740
tggctctcag acaaggcggc ctcgttatgc agaactacag gctcattgac gctacactct 1800
acgtgacact cgaaccttgc gttatgtgcg ccggagctat gattcattct aggattggca 1860
gggtcgtgtt tggagctagg gacgctaaaa caggagccgc cggatctctt atggacgtgt 1920
tgcatcatcc aggcatgaac catagggtgg agattacaga gggcattctt gcagacgagt 1980
gcgctgctct tctttccgat ttcttcagga tgagaaggca ggagattaag gcccagaaga 2040
aggctcagtc ttctacagat agcggaggat cttccggagg atctagcggc tccgagacac 2100
caggaacatc cgaaagcgct acaccagaat ctagcggagg ctcttccgga ggatcttctg 2160
aagtggagtt ctcccacgag tattggatga ggcacgctct tacacttgct aaaagggcta 2220
gggacgaaag ggaagttcca gttggagctg ttctcgtgct caataacagg gtgattggcg 2280
agggttggaa tagagccatt ggactccatg atccaacagc tcacgcagag attatggctc 2340
ttagacaagg cggcctcgtt atgcagaatt acagactcat cgacgccaca ctctacgtta 2400
ccttcgaacc ttgcgttatg tgcgccggag ctatgatcca ttctaggatt ggcagggtcg 2460
tgttcggcgt tagaaacgct aagacaggag ctgcaggctc tcttatggac gttcttcatt 2520
acccaggcat gaatcataga gtggagatca cagaaggcat tcttgcagac gagtgcgcag 2580
ctctcctttg ctatttcttc aggatgccga ggcaagtttt caacgctcag aagaaggccc 2640
agtcttctac agattccggc ggatcttctg gaggatctag cggctccgag acaccaggaa 2700
catccgaatc cgctacacca gagtcttctg gaggatctag cggaggatct cttaagtcaa 2760
agctcgagaa attcaccaac tgttattcgt tgagcaaaac actgcggttt aaagcgattc 2820
cagtcggcaa gactcaagag aatatagaca ataagcggct gttggtggaa gatgaaaagc 2880
gcgcggaaga ctacaaaggg gtgaagaagt tgttggacag atactacctc tcttttatca 2940
atgatgtctt gcactcaatc aaattgaaga atctgaacaa ctacatctcc ctcttcagaa 3000
agaaaacaag gacagaaaag gagaataagg aacttgaaaa tttggagatc aatctgagga 3060
aagagatcgc gaaagccttt aaaggcaacg aaggatacaa aagtctgttc aagaaggata 3120
taattgagac aattttgcca gagttcctcg atgacaagga cgagattgcg ctggtcaatt 3180
cgttcaacgg attcacaaca gcattcacag gcttctttga taatcgggaa aatatgttct 3240
ctgaggaggc aaagtccact tctattgcgt tcaggtgtat caatgagaat ctcactaggt 3300
acatttccaa catggatatc tttgagaagg ttgacgcaat ttttgacaag cacgaagttc 3360
aggagattaa ggagaagatc ctcaattccg attatgacgt tgaggacttc ttcgaaggtg 3420
agttttttaa tttcgtgctc actcaagagg gtatcgacgt gtataatgcg atcatcggtg 3480
ggttcgtgac tgagtccggt gaaaagatta agggattgaa cgagtatatc aacctttaca 3540
accaaaagac gaaacagaag ctgccaaagt tcaagcctct ttacaaacag gttctttcag 3600
accgcgagtc actctcgttc tatggggagg gctacacttc ggatgaggaa gtcctggagg 3660
tgttcaggaa tactctcaat aagaattcgg agattttctc ttctataaaa aaactggaaa 3720
agttgtttaa gaattttgac gaatactcta gcgccggcat atttgtgaaa aacggcccgg 3780
ccatatcaac gataagtaaa gatatcttcg gcgaatggaa cgtgatcaga gacaaatgga 3840
acgcggagta tgacgatatt cacctgaaga agaaggctgt cgtaacggag aagtacgagg 3900
atgatcgcag gaaaagcttc aaaaagatcg gaagtttcag cctggaacag ttgcaggagt 3960
atgctgacgc cgatcttagc gtcgtcgaga agttgaagga gataatcatc caaaaggtcg 4020
acgagatata taaagtctat ggatcaagtg aaaaactgtt cgacgccgac ttcgttttgg 4080
agaagtccct gaagaagaac gacgctgttg ttgccattat gaaggatctg ctcgacagcg 4140
tgaagagttt cgagaactat attaaggctt ttttcgggga ggggaaggag actaacagag 4200
atgagtcctt ctacggagac ttcgtcctcg cgtacgatat actccttaag gtagaccaca 4260
tctacgacgc aatcagaaat tacgtgacac aaaagccgta cagcaaggac aagttcaaac 4320
tctacttcca gaacccccag ttcatgggcg gctgggacaa ggacaaggaa acggattaca 4380
gggctacgat cctgaggtat ggttcaaaat actacttggc gattatggac aagaagtacg 4440
ccaagtgtct ccagaagatt gacaaagacg atgtcaatgg caattatgag aagatcaact 4500
acaagctgct tccgggtccg aacaagatgc tcccaaaggt tttcttcagc aagaaatgga 4560
tggcctacta taacccaagc gaggacatcc agaagattta taagaacggt acgttcaaga 4620
agggcgacat gttcaatctt aacgactgtc acaagctgat cgacttcttc aaagactcaa 4680
ttagccggta cccaaagtgg tctaacgcct atgacttcaa cttttcggaa accgagaagt 4740
acaaggatat agccggattt tatagagagg tggaagagca gggctacaag gtgtcattcg 4800
agtccgccag caagaaggaa gtggacaagc tcgtggaaga gggtaagctc tacatgttcc 4860
agatttataa taaagacttt agcgataaga gccacgggac acctaatctc cacacaatgt 4920
atttcaagct gctcttcgac gagaataacc acggccaaat caggttgtca ggaggggctg 4980
aactcttcat gcggcgcgct agccttaaga aggaggagct tgtagtccac cctgcgaata 5040
gtccaattgc gaataagaac ccggacaatc ctaaaaagac tacaacattg agctacgacg 5100
tgtacaagga taagaggttt tccgaggatc agtacgagct ccacatcccg attgcgatca 5160
acaagtgccc aaagaatatt ttcaagataa acacagaggt gcgtgtactc ctgaagcatg 5220
acgacaatcc ttacgtcatt gggattgctc ggggcgagag gaacctcctc tatattgtgg 5280
tggtggacgg gaaggggaac atagtcgaac agtactccct taacgaaata attaacaatt 5340
tcaacggcat ccgtatcaag accgactacc attcgttgct ggacaagaag gagaaggaga 5400
gatttgaggc gcggcaaaat tggacaagta tcgagaacat caaggaactc aaagcaggtt 5460
atatctctca agttgtgcat aagatatgcg agctggttga gaagtatgac gcagtgatcg 5520
ctcttgagga cctcaactcg ggctttaaga attctagagt taaagtggag aagcaggtct 5580
atcaaaagtt cgagaagatg cttatagata agctcaacta catggtcgat aagaaatcga 5640
acccatgtgc caccggcggc gcactcaaag gttaccaaat aacaaacaaa ttcgagtcct 5700
tcaaatcgat gagtactcag aatgggttca tattttatat accggcgtgg cttacgtcta 5760
agatcgaccc gtcaactggt tttgtcaacc tgttgaagac gaaatacacg tccattgccg 5820
attcgaaaaa gttcatatct agttttgatc gtattatgta cgtcccagag gaagatcttt 5880
tcgagtttgc tctcgactac aaaaactttt cgcggaccga tgcggattac attaaaaaat 5940
ggaaactcta ttcgtacggc aacagaatca ggatttttcg caaccctaag aagaataacg 6000
tctttgattg ggaggaagtt tgcttgacta gcgcgtacaa ggagctcttt aataagtatg 6060
gcattaacta ccaacagggt gatatcagag cactgctttg cgaacaatct gacaaggctt 6120
tctactcatc cttcatggct ttgatgagcc tgatgctcca gatgagaaat tcaattacag 6180
gcagaaccga cgtggatttc ttgatctccc cggttaaaaa ttctgatggc atcttttacg 6240
atagcaggaa ctatgaagcg caagagaatg cgattctgcc aaaaaatgca gacgccaacg 6300
gtgcctataa catcgccagg aaagtcctgt gggcgatcgg ccagttcaaa aaggccgaag 6360
acgaaaaatt ggacaaggtc aaaatcgcta tcagcaacaa agagtggctg gagtatgctc 6420
agacatccgt aaagcattcc ggcggcagcc caaagaagaa gaggaaggtg agcggcggca 6480
gcccaaagaa gaagcgcaag gtctag 6506
<210> 14
<211> 4971
<212> DNA
<213> Artificial Sequence
<220>
<223> LBCPF1-ABE2-X2
<400> 14
atgtcaaagc tcgagaaatt caccaactgt tattcgttga gcaaaacact gcggtttaaa 60
gcgattccag tcggcaagac tcaagagaat atagacaata agcggctgtt ggtggaagat 120
gaaaagcgcg cggaagacta caaaggggtg aagaagttgt tggacagata ctacctctct 180
tttatcaatg atgtcttgca ctcaatcaaa ttgaagaatc tgaacaacta catctccctc 240
ttcagaaaga aaacaaggac agaaaaggag aataaggaac ttgaaaattt ggagatcaat 300
ctgaggaaag agatcgcgaa agcctttaaa ggcaacgaag gatacaaaag tctgttcaag 360
aaggatataa ttgagacaat tttgccagag ttcctcgatg acaaggacga gattgcgctg 420
gtcaattcgt tcaacggatt cacaacagca ttcacaggct tctttgataa tcgggaaaat 480
atgttctctg aggaggcaaa gtccacttct attgcgttca ggtgtatcaa tgagaatctc 540
actaggtaca tttccaacat ggatatcttt gagaaggttg acgcaatttt tgacaagcac 600
gaagttcagg agattaagga gaagatcctc aattccgatt atgacgttga ggacttcttc 660
gaaggtgagt tttttaattt cgtgctcact caagagggta tcgacgtgta taatgcgatc 720
atcggtgggt tcgtgactga gtccggtgaa aagattaagg gattgaacga gtatatcaac 780
ctttacaacc aaaagacgaa acagaagctg ccaaagttca agcctcttta caaacaggtt 840
ctttcagacc gcgagtcact ctcgttctat ggggagggct acacttcgga tgaggaagtc 900
ctggaggtgt tcaggaatac tctcaataag aattcggaga ttttctcttc tataaaaaaa 960
ctggaaaagt tgtttaagaa ttttgacgaa tactctagcg ccggcatatt tgtgaaaaac 1020
ggcccggcca tatcaacgat aagtaaagat atcttcggcg aatggaacgt gatcagagac 1080
aaatggaacg cggagtatga cgatattcac ctgaagaaga aggctgtcgt aacggagaag 1140
tacgaggatg atcgcaggaa aagcttcaaa aagatcggaa gtttcagcct ggaacagttg 1200
caggagtatg ctgacgccga tcttagcgtc gtcgagaagt tgaaggagat aatcatccaa 1260
aaggtcgacg agatatataa agtctatgga tcaagtgaaa aactgttcga cgccgacttc 1320
gttttggaga agtccctgaa gaagaacgac gctgttgttg ccattatgaa ggatctgctc 1380
gacagcgtga agagtttcga gaactatatt aaggcttttt tcggggaggg gaaggagact 1440
aacagagatg agtccttcta cggagacttc gtcctcgcgt acgatatact ccttaaggta 1500
gaccacatct acgacgcaat cagaaattac gtgacacaaa agccgtacag caaggacaag 1560
ttcaaactct acttccagaa cccccagttc atgggcggct gggacaagga caaggaaacg 1620
gattacaggg ctacgatcct gaggtatggt tcaaaatact acttggcgat tatggacaag 1680
aagtacgcca agtgtctcca gaagattgac aaagacgatg tcaatggcaa ttatgagaag 1740
atcaactaca agctgcttcc gggtccgaac aagatgctcc caaaggtttt cttcagcaag 1800
aaatggatgg cctactataa cccaagcgag gacatccaga agatttataa gaacggtacg 1860
ttcaagaagg gcgacatgtt caatcttaac gactgtcaca agctgatcga cttcttcaaa 1920
gactcaatta gccggtaccc aaagtggtct aacgcctatg acttcaactt ttcggaaacc 1980
gagaagtaca aggatatagc cggattttat agagaggtgg aagagcaggg ctacaaggtg 2040
tcattcgagt ccgccagcaa gaaggaagtg gacaagctcg tggaagaggg taagctctac 2100
atgttccaga tttataataa agactttagc gataagagcc acgggacacc taatctccac 2160
acaatgtatt tcaagctgct cttcgacgag aataaccacg gccaaatcag gttgtcagga 2220
ggggctgaac tcttcatgcg gcgcgctagc cttaagaagg aggagcttgt agtccaccct 2280
gcgaatagtc caattgcgaa taagaacccg gacaatccta aaaagactac aacattgagc 2340
tacgacgtgt acaaggataa gaggttttcc gaggatcagt acgagctcca catcccgatt 2400
gcgatcaaca agtgcccaaa gaatattttc aagataaaca cagaggtgcg tgtactcctg 2460
aagcatgacg acaatcctta cgtcattggg attgctcggg gcgagaggaa cctcctctat 2520
attgtggtgg tggacgggaa ggggaacata gtcgaacagt actcccttaa cgaaataatt 2580
aacaatttca acggcatccg tatcaagacc gactaccatt cgttgctgga caagaaggag 2640
aaggagagat ttgaggcgcg gcaaaattgg acaagtatcg agaacatcaa ggaactcaaa 2700
gcaggttata tctctcaagt tgtgcataag atatgcgagc tggttgagaa gtatgacgca 2760
gtgatcgctc ttgaggacct caactcgggc tttaagaatt ctagagttaa agtggagaag 2820
caggtctatc aaaagttcga gaagatgctt atagataagc tcaactacat ggtcgataag 2880
aaatcgaacc catgtgccac cggcggcgca ctcaaaggtt accaaataac aaacaaattc 2940
gagtccttca aatcgatgag tactcagaat gggttcatat tttatatacc ggcgtggctt 3000
acgtctaaga tcgacccgtc aactggtttt gtcaacctgt tgaagacgaa atacacgtcc 3060
attgccgatt cgaaaaagtt catatctagt tttgatcgta ttatgtacgt cccagaggaa 3120
gatcttttcg agtttgctct cgactacaaa aacttttcgc ggaccgatgc ggattacatt 3180
aaaaaatgga aactctattc gtacggcaac agaatcagga tttttcgcaa ccctaagaag 3240
aataacgtct ttgattggga ggaagtttgc ttgactagcg cgtacaagga gctctttaat 3300
aagtatggca ttaactacca acagggtgat atcagagcac tgctttgcga acaatctgac 3360
aaggctttct actcatcctt catggctttg atgagcctga tgctccagat gagaaattca 3420
attacaggca gaaccgacgt ggatttcttg atctccccgg ttaaaaattc tgatggcatc 3480
ttttacgata gcaggaacta tgaagcgcaa gagaatgcga ttctgccaaa aaatgcagac 3540
gccaacggtg cctataacat cgccaggaaa gtcctgtggg cgatcggcca gttcaaaaag 3600
gccgaagacg aaaaattgga caaggtcaaa atcgctatca gcaacaaaga gtggctggag 3660
tatgctcaga catccgtaaa gcataagctt atgccaaaaa agaagagaaa ggtttcaggc 3720
ggctcctccg aggtggagtt ctctcacgag tattggatga ggcacgctct tacacttgct 3780
aagagagctt gggacgaaag agaagtgcca gttggcgccg ttcttgtgca taataatagg 3840
gtgatcggcg agggttggaa tagaccaatt ggaaggcatg atccaacagc tcacgcagag 3900
attatggctc tcagacaagg cggcctcgtt atgcagaact acaggctcat tgacgctaca 3960
ctctacgtga cactcgaacc ttgcgttatg tgcgccggag ctatgattca ttctaggatt 4020
ggcagggtcg tgtttggagc tagggacgct aaaacaggag ccgccggatc tcttatggac 4080
gtgttgcatc atccaggcat gaaccatagg gtggagatta cagagggcat tcttgcagac 4140
gagtgcgctg ctcttctttc cgatttcttc aggatgagaa ggcaggagat taaggcccag 4200
aagaaggctc agtcttctac agatagcgga ggatcttccg gaggatctag cggctccgag 4260
acaccaggaa catccgaaag cgctacacca gaatctagcg gaggctcttc cggaggatct 4320
tctgaagtgg agttctccca cgagtattgg atgaggcacg ctcttacact tgctaaaagg 4380
gctagggacg aaagggaagt tccagttgga gctgttctcg tgctcaataa cagggtgatt 4440
ggcgagggtt ggaatagagc cattggactc catgatccaa cagctcacgc agagattatg 4500
gctcttagac aaggcggcct cgttatgcag aattacagac tcatcgacgc cacactctac 4560
gttaccttcg aaccttgcgt tatgtgcgcc ggagctatga tccattctag gattggcagg 4620
gtcgtgttcg gcgttagaaa cgctaagaca ggagctgcag gctctcttat ggacgttctt 4680
cattacccag gcatgaatca tagagtggag atcacagaag gcattcttgc agacgagtgc 4740
gcagctctcc tttgctattt cttcaggatg ccgaggcaag ttttcaacgc tcagaagaag 4800
gcccagtctt ctacagattc cggcggatct tctggaggat ctagcggctc cgagacacca 4860
ggaacatccg aatccgctac accagagtct tctggaggat ctagcggagg atctcttaag 4920
aagagaccag cagctacaaa gaaggccgga caagctaaga agaagaagta g 4971
<210> 15
<211> 4992
<212> DNA
<213> Artificial Sequence
<220>
<223> LBCPF1-ABE2-X3
<400> 15
atgccaaaaa agaagagaaa ggtttcaaag ctcgagaaat tcaccaactg ttattcgttg 60
agcaaaacac tgcggtttaa agcgattcca gtcggcaaga ctcaagagaa tatagacaat 120
aagcggctgt tggtggaaga tgaaaagcgc gcggaagact acaaaggggt gaagaagttg 180
ttggacagat actacctctc ttttatcaat gatgtcttgc actcaatcaa attgaagaat 240
ctgaacaact acatctccct cttcagaaag aaaacaagga cagaaaagga gaataaggaa 300
cttgaaaatt tggagatcaa tctgaggaaa gagatcgcga aagcctttaa aggcaacgaa 360
ggatacaaaa gtctgttcaa gaaggatata attgagacaa ttttgccaga gttcctcgat 420
gacaaggacg agattgcgct ggtcaattcg ttcaacggat tcacaacagc attcacaggc 480
ttctttgata atcgggaaaa tatgttctct gaggaggcaa agtccacttc tattgcgttc 540
aggtgtatca atgagaatct cactaggtac atttccaaca tggatatctt tgagaaggtt 600
gacgcaattt ttgacaagca cgaagttcag gagattaagg agaagatcct caattccgat 660
tatgacgttg aggacttctt cgaaggtgag ttttttaatt tcgtgctcac tcaagagggt 720
atcgacgtgt ataatgcgat catcggtggg ttcgtgactg agtccggtga aaagattaag 780
ggattgaacg agtatatcaa cctttacaac caaaagacga aacagaagct gccaaagttc 840
aagcctcttt acaaacaggt tctttcagac cgcgagtcac tctcgttcta tggggagggc 900
tacacttcgg atgaggaagt cctggaggtg ttcaggaata ctctcaataa gaattcggag 960
attttctctt ctataaaaaa actggaaaag ttgtttaaga attttgacga atactctagc 1020
gccggcatat ttgtgaaaaa cggcccggcc atatcaacga taagtaaaga tatcttcggc 1080
gaatggaacg tgatcagaga caaatggaac gcggagtatg acgatattca cctgaagaag 1140
aaggctgtcg taacggagaa gtacgaggat gatcgcagga aaagcttcaa aaagatcgga 1200
agtttcagcc tggaacagtt gcaggagtat gctgacgccg atcttagcgt cgtcgagaag 1260
ttgaaggaga taatcatcca aaaggtcgac gagatatata aagtctatgg atcaagtgaa 1320
aaactgttcg acgccgactt cgttttggag aagtccctga agaagaacga cgctgttgtt 1380
gccattatga aggatctgct cgacagcgtg aagagtttcg agaactatat taaggctttt 1440
ttcggggagg ggaaggagac taacagagat gagtccttct acggagactt cgtcctcgcg 1500
tacgatatac tccttaaggt agaccacatc tacgacgcaa tcagaaatta cgtgacacaa 1560
aagccgtaca gcaaggacaa gttcaaactc tacttccaga acccccagtt catgggcggc 1620
tgggacaagg acaaggaaac ggattacagg gctacgatcc tgaggtatgg ttcaaaatac 1680
tacttggcga ttatggacaa gaagtacgcc aagtgtctcc agaagattga caaagacgat 1740
gtcaatggca attatgagaa gatcaactac aagctgcttc cgggtccgaa caagatgctc 1800
ccaaaggttt tcttcagcaa gaaatggatg gcctactata acccaagcga ggacatccag 1860
aagatttata agaacggtac gttcaagaag ggcgacatgt tcaatcttaa cgactgtcac 1920
aagctgatcg acttcttcaa agactcaatt agccggtacc caaagtggtc taacgcctat 1980
gacttcaact tttcggaaac cgagaagtac aaggatatag ccggatttta tagagaggtg 2040
gaagagcagg gctacaaggt gtcattcgag tccgccagca agaaggaagt ggacaagctc 2100
gtggaagagg gtaagctcta catgttccag atttataata aagactttag cgataagagc 2160
cacgggacac ctaatctcca cacaatgtat ttcaagctgc tcttcgacga gaataaccac 2220
ggccaaatca ggttgtcagg aggggctgaa ctcttcatgc ggcgcgctag ccttaagaag 2280
gaggagcttg tagtccaccc tgcgaatagt ccaattgcga ataagaaccc ggacaatcct 2340
aaaaagacta caacattgag ctacgacgtg tacaaggata agaggttttc cgaggatcag 2400
tacgagctcc acatcccgat tgcgatcaac aagtgcccaa agaatatttt caagataaac 2460
acagaggtgc gtgtactcct gaagcatgac gacaatcctt acgtcattgg gattgctcgg 2520
ggcgagagga acctcctcta tattgtggtg gtggacggga aggggaacat agtcgaacag 2580
tactccctta acgaaataat taacaatttc aacggcatcc gtatcaagac cgactaccat 2640
tcgttgctgg acaagaagga gaaggagaga tttgaggcgc ggcaaaattg gacaagtatc 2700
gagaacatca aggaactcaa agcaggttat atctctcaag ttgtgcataa gatatgcgag 2760
ctggttgaga agtatgacgc agtgatcgct cttgaggacc tcaactcggg ctttaagaat 2820
tctagagtta aagtggagaa gcaggtctat caaaagttcg agaagatgct tatagataag 2880
ctcaactaca tggtcgataa gaaatcgaac ccatgtgcca ccggcggcgc actcaaaggt 2940
taccaaataa caaacaaatt cgagtccttc aaatcgatga gtactcagaa tgggttcata 3000
ttttatatac cggcgtggct tacgtctaag atcgacccgt caactggttt tgtcaacctg 3060
ttgaagacga aatacacgtc cattgccgat tcgaaaaagt tcatatctag ttttgatcgt 3120
attatgtacg tcccagagga agatcttttc gagtttgctc tcgactacaa aaacttttcg 3180
cggaccgatg cggattacat taaaaaatgg aaactctatt cgtacggcaa cagaatcagg 3240
atttttcgca accctaagaa gaataacgtc tttgattggg aggaagtttg cttgactagc 3300
gcgtacaagg agctctttaa taagtatggc attaactacc aacagggtga tatcagagca 3360
ctgctttgcg aacaatctga caaggctttc tactcatcct tcatggcttt gatgagcctg 3420
atgctccaga tgagaaattc aattacaggc agaaccgacg tggatttctt gatctccccg 3480
gttaaaaatt ctgatggcat cttttacgat agcaggaact atgaagcgca agagaatgcg 3540
attctgccaa aaaatgcaga cgccaacggt gcctataaca tcgccaggaa agtcctgtgg 3600
gcgatcggcc agttcaaaaa ggccgaagac gaaaaattgg acaaggtcaa aatcgctatc 3660
agcaacaaag agtggctgga gtatgctcag acatccgtaa agcataagct tatgccaaaa 3720
aagaagagaa aggtttcagg cggctcctcc gaggtggagt tctctcacga gtattggatg 3780
aggcacgctc ttacacttgc taagagagct tgggacgaaa gagaagtgcc agttggcgcc 3840
gttcttgtgc ataataatag ggtgatcggc gagggttgga atagaccaat tggaaggcat 3900
gatccaacag ctcacgcaga gattatggct ctcagacaag gcggcctcgt tatgcagaac 3960
tacaggctca ttgacgctac actctacgtg acactcgaac cttgcgttat gtgcgccgga 4020
gctatgattc attctaggat tggcagggtc gtgtttggag ctagggacgc taaaacagga 4080
gccgccggat ctcttatgga cgtgttgcat catccaggca tgaaccatag ggtggagatt 4140
acagagggca ttcttgcaga cgagtgcgct gctcttcttt ccgatttctt caggatgaga 4200
aggcaggaga ttaaggccca gaagaaggct cagtcttcta cagatagcgg aggatcttcc 4260
ggaggatcta gcggctccga gacaccagga acatccgaaa gcgctacacc agaatctagc 4320
ggaggctctt ccggaggatc ttctgaagtg gagttctccc acgagtattg gatgaggcac 4380
gctcttacac ttgctaaaag ggctagggac gaaagggaag ttccagttgg agctgttctc 4440
gtgctcaata acagggtgat tggcgagggt tggaatagag ccattggact ccatgatcca 4500
acagctcacg cagagattat ggctcttaga caaggcggcc tcgttatgca gaattacaga 4560
ctcatcgacg ccacactcta cgttaccttc gaaccttgcg ttatgtgcgc cggagctatg 4620
atccattcta ggattggcag ggtcgtgttc ggcgttagaa acgctaagac aggagctgca 4680
ggctctctta tggacgttct tcattaccca ggcatgaatc atagagtgga gatcacagaa 4740
ggcattcttg cagacgagtg cgcagctctc ctttgctatt tcttcaggat gccgaggcaa 4800
gttttcaacg ctcagaagaa ggcccagtct tctacagatt ccggcggatc ttctggagga 4860
tctagcggct ccgagacacc aggaacatcc gaatccgcta caccagagtc ttctggagga 4920
tctagcggag gatctcttaa gaagagacca gcagctacaa agaaggccgg acaagctaag 4980
aagaagaagt ag 4992
<210> 16
<211> 5686
<212> DNA
<213> Artificial Sequence
<220>
<223> PJIT163-GFP
<400> 16
gagctcggta cctgacccgg tcgtgcccct ctctagagat aatgagcatt gcatgtctaa 60
gttataaaaa attaccacat attttttttg tcacacttgt ttgaagtgca gtttatctat 120
ctttatacat atatttaaac tttactctac gaataatata atctatagta ctacaataat 180
atcagtgttt tagagaatca tataaatgaa cagttagaca tggtctaaag gacaattgag 240
tattttgaca acaggactct acagttttat ctttttagtg tgcatgtgtt ctcctttttt 300
tttgcaaata gcttcaccta tataatactt catccatttt attagtacat ccatttaggg 360
tttagggtta atggttttta tagactaatt tttttagtac atctatttta ttctatttta 420
gcctctaaat taagaaaact aaaactctat tttagttttt ttatttaata atttagatat 480
aaaatagaat aaaataaagt gactaaaaat taaacaaata ccctttaaga aattaaaaaa 540
actaaggaaa catttttctt gtttcgagta gataatgcca gcctgttaaa cgccgtcgac 600
gagtctaacg gacaccaacc agcgaaccag cagcgtcgcg tcgggccaag cgaagcagac 660
ggcacggcat ctctgtcgct gcctctggac ccctctcgat cgagagttcc gctccaccgt 720
tggacttgct ccgctgtcgg catccagaaa ttgcgtggcg gagcggcaga cgtgagccgg 780
cacggcaggc ggcctcctcc tcctctcacg gcaccggcag ctacggggga ttcctttccc 840
accgctcctt cgctttccct tcctcgcccg ccgtaataaa tagacacccc ctccacaccc 900
tctttcccca acctcgtgtt gttcggagcg cacacacaca caaccagatc tcccccaaat 960
ccacccgtcg gcacctccgc ttcaaggtac gccgctcgtc ctcccccccc ccccctctct 1020
accttctcta gatcggcgtt ccggtccatg gttagggccc ggtagttcta cttctgttca 1080
tgtttgtgtt agatccgtgt ttgtgttaga tccgtgctgc tagcgttcgt acacggatgc 1140
gacctgtacg tcagacacgt tctgattgct aacttgccag tgtttctctt tggggaatcc 1200
tgggatggct ctagccgttc cgcagacggg atcgatttca tgattttttt tgtttcgttg 1260
catagggttt ggtttgccct tttcctttat ttcaatatat gccgtgcact tgtttgtcgg 1320
gtcatctttt catgcttttt tttgtcttgg ttgtgatgat gtggtctggt tgggcggtcg 1380
ttctagatcg gagtagaatt aattctgttt caaactacct ggtggattta ttaattttgg 1440
atctgtatgt gtgtgccata catattcata gttacgaatt gaagatgatg gatggaaata 1500
tcgatctagg ataggtatac atgttgatgc gggttttact gatgcatata cagagatgct 1560
ttttgttcgc ttggttgtga tgatgtggtg tggttgggcg gtcgttcatt cgttctagat 1620
cggagtagaa tactgtttca aactacctgg tgtatttatt aattttggaa ctgtatgtgt 1680
gtgtcataca tcttcatagt tacgagttta agatggatgg aaatatcgat ctaggatagg 1740
tatacatgtt gatgtgggtt ttactgatgc atatacatga tggcatatgc agcatctatt 1800
catatgctct aaccttgagt acctatctat tataataaac aagtatgttt tataattatt 1860
ttgatcttga tatacttgga tgatggcata tgcagcagct atatgtggat ttttttagcc 1920
ctgccttcat acgctattta tttgcttggt actgtttctt ttgtcgatgc tcaccctgtt 1980
gtttggtgtt acttctgcaa agcttgtcga cggatccatg gtgagcaagg gcgaggagct 2040
gttcaccggg gtggtgccca tcctggtcga gctggacggc gacgtaaacg gccacaagtt 2100
cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc aagctgaccc tgaagttcat 2160
ctgcaccacc ggcaagctgc ccgtgccctg gcccaccctc gtgaccacct tcacctacgg 2220
cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc 2280
catgcccgaa ggctacgtcc aggagcgcac catcttcttc aaggacgacg gcaactacaa 2340
gacccgcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg 2400
catcgacttc aaggaggacg gcaacatcct ggggcacaag ctggagtaca actacaacag 2460
ccacaacgtc tatatcatgg ccgacaagca gaagaacggc atcaaggtga acttcaagat 2520
ccgccacaac atcgaggacg gcagcgtgca gctcgccgac cactaccagc agaacacccc 2580
catcggcgac ggccccgtgc tgctgcccga caaccactac ctgagcaccc agtccgccct 2640
gagcaaagac cccaacgaga agcgcgatca catggtcctg ctggagttcg tgaccgccgc 2700
cgggatcact cacggcatgg acgagctgta caagtaaccc gggaattcgg tacgctgaaa 2760
tcaccagtct ctctctacaa atctatctct ctctattttc tccataaata atgtgtgagt 2820
agtttcccga taagggaaat tagggttctt atagggtttc gctcatgtgt tgagcatata 2880
agaaaccctt agtatgtatt tgtatttgta aaatacttct atcaataaaa tttctaattc 2940
ctaaaaccaa aatccagtac taaaatccag atctcctaaa gtccctatag atctttgtcg 3000
tgaatataaa ccagacacga gacgactaaa cctggagccc agacgccgtt cgaagctaga 3060
agtaccgctt aggcaggagg ccgttaggga aaagatgcta aggcagggtt ggttacgttg 3120
actcccccgt aggtttggtt taaatatgat gaagtggacg gaaggaagga ggaagacaag 3180
gaaggataag gttgcaggcc ctgtgcaagg taagaagatg gaaatttgat agaggtacgc 3240
tactatactt atactatacg ctaagggaat gcttgtattt ataccctata ccccctaata 3300
accccttatc aatttaagaa ataatccgca taagcccccg cttaaaaatt ggtatcagag 3360
ccatgaatag gtctatgacc aaaactcaag aggataaaac ctcaccaaaa tacgaaagag 3420
ttcttaactc taaagataaa agatctttca agatcaaaac tagttccctc acaccggagc 3480
atgcgatatc ctcgagagat ctaggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 3540
tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 3600
ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 3660
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 3720
ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 3780
ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 3840
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 3900
gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga 3960
cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 4020
ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc 4080
tttctccctt cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg 4140
gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 4200
tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 4260
ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 4320
ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct 4380
ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 4440
accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 4500
tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 4560
cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat 4620
taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 4680
caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 4740
gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt 4800
gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 4860
ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct 4920
attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt 4980
gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc 5040
tccggttccc aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt 5100
agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg 5160
gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg 5220
actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 5280
tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc 5340
attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt 5400
tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt 5460
tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg 5520
aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat 5580
tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg 5640
cgcacatttc cccgaaaagt gccacctgcc agtgccaagc taattc 5686
<210> 17
<211> 720
<212> DNA
<213> Artificial Sequence
<220>
<223> pBUI-mGFP
<400> 17
atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60
ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctcgtgacca ccttcaccta cggcgtgtag tgcttcagcc gctaccccga ccacatgaag 240
cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300
ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420
aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660
ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaagtaa 720
<210> 18
<211> 1307
<212> PRT
<213> Acidaminococcus sp.
<400> 18
Met Thr Gln Phe Glu Gly Phe Thr Asn Leu Tyr Gln Val Ser Lys Thr
1 5 10 15
Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Lys His Ile Gln
20 25 30
Glu Gln Gly Phe Ile Glu Glu Asp Lys Ala Arg Asn Asp His Tyr Lys
35 40 45
Glu Leu Lys Pro Ile Ile Asp Arg Ile Tyr Lys Thr Tyr Ala Asp Gln
50 55 60
Cys Leu Gln Leu Val Gln Leu Asp Trp Glu Asn Leu Ser Ala Ala Ile
65 70 75 80
Asp Ser Tyr Arg Lys Glu Lys Thr Glu Glu Thr Arg Asn Ala Leu Ile
85 90 95
Glu Glu Gln Ala Thr Tyr Arg Asn Ala Ile His Asp Tyr Phe Ile Gly
100 105 110
Arg Thr Asp Asn Leu Thr Asp Ala Ile Asn Lys Arg His Ala Glu Ile
115 120 125
Tyr Lys Gly Leu Phe Lys Ala Glu Leu Phe Asn Gly Lys Val Leu Lys
130 135 140
Gln Leu Gly Thr Val Thr Thr Thr Glu His Glu Asn Ala Leu Leu Arg
145 150 155 160
Ser Phe Asp Lys Phe Thr Thr Tyr Phe Ser Gly Phe Tyr Glu Asn Arg
165 170 175
Lys Asn Val Phe Ser Ala Glu Asp Ile Ser Thr Ala Ile Pro His Arg
180 185 190
Ile Val Gln Asp Asn Phe Pro Lys Phe Lys Glu Asn Cys His Ile Phe
195 200 205
Thr Arg Leu Ile Thr Ala Val Pro Ser Leu Arg Glu His Phe Glu Asn
210 215 220
Val Lys Lys Ala Ile Gly Ile Phe Val Ser Thr Ser Ile Glu Glu Val
225 230 235 240
Phe Ser Phe Pro Phe Tyr Asn Gln Leu Leu Thr Gln Thr Gln Ile Asp
245 250 255
Leu Tyr Asn Gln Leu Leu Gly Gly Ile Ser Arg Glu Ala Gly Thr Glu
260 265 270
Lys Ile Lys Gly Leu Asn Glu Val Leu Asn Leu Ala Ile Gln Lys Asn
275 280 285
Asp Glu Thr Ala His Ile Ile Ala Ser Leu Pro His Arg Phe Ile Pro
290 295 300
Leu Phe Lys Gln Ile Leu Ser Asp Arg Asn Thr Leu Ser Phe Ile Leu
305 310 315 320
Glu Glu Phe Lys Ser Asp Glu Glu Val Ile Gln Ser Phe Cys Lys Tyr
325 330 335
Lys Thr Leu Leu Arg Asn Glu Asn Val Leu Glu Thr Ala Glu Ala Leu
340 345 350
Phe Asn Glu Leu Asn Ser Ile Asp Leu Thr His Ile Phe Ile Ser His
355 360 365
Lys Lys Leu Glu Thr Ile Ser Ser Ala Leu Cys Asp His Trp Asp Thr
370 375 380
Leu Arg Asn Ala Leu Tyr Glu Arg Arg Ile Ser Glu Leu Thr Gly Lys
385 390 395 400
Ile Thr Lys Ser Ala Lys Glu Lys Val Gln Arg Ser Leu Lys His Glu
405 410 415
Asp Ile Asn Leu Gln Glu Ile Ile Ser Ala Ala Gly Lys Glu Leu Ser
420 425 430
Glu Ala Phe Lys Gln Lys Thr Ser Glu Ile Leu Ser His Ala His Ala
435 440 445
Ala Leu Asp Gln Pro Leu Pro Thr Thr Leu Lys Lys Gln Glu Glu Lys
450 455 460
Glu Ile Leu Lys Ser Gln Leu Asp Ser Leu Leu Gly Leu Tyr His Leu
465 470 475 480
Leu Asp Trp Phe Ala Val Asp Glu Ser Asn Glu Val Asp Pro Glu Phe
485 490 495
Ser Ala Arg Leu Thr Gly Ile Lys Leu Glu Met Glu Pro Ser Leu Ser
500 505 510
Phe Tyr Asn Lys Ala Arg Asn Tyr Ala Thr Lys Lys Pro Tyr Ser Val
515 520 525
Glu Lys Phe Lys Leu Asn Phe Gln Met Pro Thr Leu Ala Ser Gly Trp
530 535 540
Asp Val Asn Lys Glu Lys Asn Asn Gly Ala Ile Leu Phe Val Lys Asn
545 550 555 560
Gly Leu Tyr Tyr Leu Gly Ile Met Pro Lys Gln Lys Gly Arg Tyr Lys
565 570 575
Ala Leu Ser Phe Glu Pro Thr Glu Lys Thr Ser Glu Gly Phe Asp Lys
580 585 590
Met Tyr Tyr Asp Tyr Phe Pro Asp Ala Ala Lys Met Ile Pro Lys Cys
595 600 605
Ser Thr Gln Leu Lys Ala Val Thr Ala His Phe Gln Thr His Thr Thr
610 615 620
Pro Ile Leu Leu Ser Asn Asn Phe Ile Glu Pro Leu Glu Ile Thr Lys
625 630 635 640
Glu Ile Tyr Asp Leu Asn Asn Pro Glu Lys Glu Pro Lys Lys Phe Gln
645 650 655
Thr Ala Tyr Ala Lys Lys Thr Gly Asp Gln Lys Gly Tyr Arg Glu Ala
660 665 670
Leu Cys Lys Trp Ile Asp Phe Thr Arg Asp Phe Leu Ser Lys Tyr Thr
675 680 685
Lys Thr Thr Ser Ile Asp Leu Ser Ser Leu Arg Pro Ser Ser Gln Tyr
690 695 700
Lys Asp Leu Gly Glu Tyr Tyr Ala Glu Leu Asn Pro Leu Leu Tyr His
705 710 715 720
Ile Ser Phe Gln Arg Ile Ala Glu Lys Glu Ile Met Asp Ala Val Glu
725 730 735
Thr Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ala Lys
740 745 750
Gly His His Gly Lys Pro Asn Leu His Thr Leu Tyr Trp Thr Gly Leu
755 760 765
Phe Ser Pro Glu Asn Leu Ala Lys Thr Ser Ile Lys Leu Asn Gly Gln
770 775 780
Ala Glu Leu Phe Tyr Arg Pro Lys Ser Arg Met Lys Arg Met Ala His
785 790 795 800
Arg Leu Gly Glu Lys Met Leu Asn Lys Lys Leu Lys Asp Gln Lys Thr
805 810 815
Pro Ile Pro Asp Thr Leu Tyr Gln Glu Leu Tyr Asp Tyr Val Asn His
820 825 830
Arg Leu Ser His Asp Leu Ser Asp Glu Ala Arg Ala Leu Leu Pro Asn
835 840 845
Val Ile Thr Lys Glu Val Ser His Glu Ile Ile Lys Asp Arg Arg Phe
850 855 860
Thr Ser Asp Lys Phe Phe Phe His Val Pro Ile Thr Leu Asn Tyr Gln
865 870 875 880
Ala Ala Asn Ser Pro Ser Lys Phe Asn Gln Arg Val Asn Ala Tyr Leu
885 890 895
Lys Glu His Pro Glu Thr Pro Ile Ile Gly Ile Asp Arg Gly Glu Arg
900 905 910
Asn Leu Ile Tyr Ile Thr Val Ile Asp Ser Thr Gly Lys Ile Leu Glu
915 920 925
Gln Arg Ser Leu Asn Thr Ile Gln Gln Phe Asp Tyr Gln Lys Lys Leu
930 935 940
Asp Asn Arg Glu Lys Glu Arg Val Ala Ala Arg Gln Ala Trp Ser Val
945 950 955 960
Val Gly Thr Ile Lys Asp Leu Lys Gln Gly Tyr Leu Ser Gln Val Ile
965 970 975
His Glu Ile Val Asp Leu Met Ile His Tyr Gln Ala Val Val Val Leu
980 985 990
Glu Asn Leu Asn Phe Gly Phe Lys Ser Lys Arg Thr Gly Ile Ala Glu
995 1000 1005
Lys Ala Val Tyr Gln Gln Phe Glu Lys Met Leu Ile Asp Lys Leu
1010 1015 1020
Asn Cys Leu Val Leu Lys Asp Tyr Pro Ala Glu Lys Val Gly Gly
1025 1030 1035
Val Leu Asn Pro Tyr Gln Leu Thr Asp Gln Phe Thr Ser Phe Ala
1040 1045 1050
Lys Met Gly Thr Gln Ser Gly Phe Leu Phe Tyr Val Pro Ala Pro
1055 1060 1065
Tyr Thr Ser Lys Ile Asp Pro Leu Thr Gly Phe Val Asp Pro Phe
1070 1075 1080
Val Trp Lys Thr Ile Lys Asn His Glu Ser Arg Lys His Phe Leu
1085 1090 1095
Glu Gly Phe Asp Phe Leu His Tyr Asp Val Lys Thr Gly Asp Phe
1100 1105 1110
Ile Leu His Phe Lys Met Asn Arg Asn Leu Ser Phe Gln Arg Gly
1115 1120 1125
Leu Pro Gly Phe Met Pro Ala Trp Asp Ile Val Phe Glu Lys Asn
1130 1135 1140
Glu Thr Gln Phe Asp Ala Lys Gly Thr Pro Phe Ile Ala Gly Lys
1145 1150 1155
Arg Ile Val Pro Val Ile Glu Asn His Arg Phe Thr Gly Arg Tyr
1160 1165 1170
Arg Asp Leu Tyr Pro Ala Asn Glu Leu Ile Ala Leu Leu Glu Glu
1175 1180 1185
Lys Gly Ile Val Phe Arg Asp Gly Ser Asn Ile Leu Pro Lys Leu
1190 1195 1200
Leu Glu Asn Asp Asp Ser His Ala Ile Asp Thr Met Val Ala Leu
1205 1210 1215
Ile Arg Ser Val Leu Gln Met Arg Asn Ser Asn Ala Ala Thr Gly
1220 1225 1230
Glu Asp Tyr Ile Asn Ser Pro Val Arg Asp Leu Asn Gly Val Cys
1235 1240 1245
Phe Asp Ser Arg Phe Gln Asn Pro Glu Trp Pro Met Asp Ala Asp
1250 1255 1260
Ala Asn Gly Ala Tyr His Ile Ala Leu Lys Gly Gln Leu Leu Leu
1265 1270 1275
Asn His Leu Lys Glu Ser Lys Asp Leu Lys Leu Gln Asn Gly Ile
1280 1285 1290
Ser Asn Gln Asp Trp Leu Ala Tyr Ile Gln Glu Leu Arg Asn
1295 1300 1305
<210> 19
<211> 1300
<212> PRT
<213> Francisella novicida
<400> 19
Met Ser Ile Tyr Gln Glu Phe Val Asn Lys Tyr Ser Leu Ser Lys Thr
1 5 10 15
Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Glu Asn Ile Lys
20 25 30
Ala Arg Gly Leu Ile Leu Asp Asp Glu Lys Arg Ala Lys Asp Tyr Lys
35 40 45
Lys Ala Lys Gln Ile Ile Asp Lys Tyr His Gln Phe Phe Ile Glu Glu
50 55 60
Ile Leu Ser Ser Val Cys Ile Ser Glu Asp Leu Leu Gln Asn Tyr Ser
65 70 75 80
Asp Val Tyr Phe Lys Leu Lys Lys Ser Asp Asp Asp Asn Leu Gln Lys
85 90 95
Asp Phe Lys Ser Ala Lys Asp Thr Ile Lys Lys Gln Ile Ser Glu Tyr
100 105 110
Ile Lys Asp Ser Glu Lys Phe Lys Asn Leu Phe Asn Gln Asn Leu Ile
115 120 125
Asp Ala Lys Lys Gly Gln Glu Ser Asp Leu Ile Leu Trp Leu Lys Gln
130 135 140
Ser Lys Asp Asn Gly Ile Glu Leu Phe Lys Ala Asn Ser Asp Ile Thr
145 150 155 160
Asp Ile Asp Glu Ala Leu Glu Ile Ile Lys Ser Phe Lys Gly Trp Thr
165 170 175
Thr Tyr Phe Lys Gly Phe His Glu Asn Arg Lys Asn Val Tyr Ser Ser
180 185 190
Asn Asp Ile Pro Thr Ser Ile Ile Tyr Arg Ile Val Asp Asp Asn Leu
195 200 205
Pro Lys Phe Leu Glu Asn Lys Ala Lys Tyr Glu Ser Leu Lys Asp Lys
210 215 220
Ala Pro Glu Ala Ile Asn Tyr Glu Gln Ile Lys Lys Asp Leu Ala Glu
225 230 235 240
Glu Leu Thr Phe Asp Ile Asp Tyr Lys Thr Ser Glu Val Asn Gln Arg
245 250 255
Val Phe Ser Leu Asp Glu Val Phe Glu Ile Ala Asn Phe Asn Asn Tyr
260 265 270
Leu Asn Gln Ser Gly Ile Thr Lys Phe Asn Thr Ile Ile Gly Gly Lys
275 280 285
Phe Val Asn Gly Glu Asn Thr Lys Arg Lys Gly Ile Asn Glu Tyr Ile
290 295 300
Asn Leu Tyr Ser Gln Gln Ile Asn Asp Lys Thr Leu Lys Lys Tyr Lys
305 310 315 320
Met Ser Val Leu Phe Lys Gln Ile Leu Ser Asp Thr Glu Ser Lys Ser
325 330 335
Phe Val Ile Asp Lys Leu Glu Asp Asp Ser Asp Val Val Thr Thr Met
340 345 350
Gln Ser Phe Tyr Glu Gln Ile Ala Ala Phe Lys Thr Val Glu Glu Lys
355 360 365
Ser Ile Lys Glu Thr Leu Ser Leu Leu Phe Asp Asp Leu Lys Ala Gln
370 375 380
Lys Leu Asp Leu Ser Lys Ile Tyr Phe Lys Asn Asp Lys Ser Leu Thr
385 390 395 400
Asp Leu Ser Gln Gln Val Phe Asp Asp Tyr Ser Val Ile Gly Thr Ala
405 410 415
Val Leu Glu Tyr Ile Thr Gln Gln Ile Ala Pro Lys Asn Leu Asp Asn
420 425 430
Pro Ser Lys Lys Glu Gln Glu Leu Ile Ala Lys Lys Thr Glu Lys Ala
435 440 445
Lys Tyr Leu Ser Leu Glu Thr Ile Lys Leu Ala Leu Glu Glu Phe Asn
450 455 460
Lys His Arg Asp Ile Asp Lys Gln Cys Arg Phe Glu Glu Ile Leu Ala
465 470 475 480
Asn Phe Ala Ala Ile Pro Met Ile Phe Asp Glu Ile Ala Gln Asn Lys
485 490 495
Asp Asn Leu Ala Gln Ile Ser Ile Lys Tyr Gln Asn Gln Gly Lys Lys
500 505 510
Asp Leu Leu Gln Ala Ser Ala Glu Asp Asp Val Lys Ala Ile Lys Asp
515 520 525
Leu Leu Asp Gln Thr Asn Asn Leu Leu His Lys Leu Lys Ile Phe His
530 535 540
Ile Ser Gln Ser Glu Asp Lys Ala Asn Ile Leu Asp Lys Asp Glu His
545 550 555 560
Phe Tyr Leu Val Phe Glu Glu Cys Tyr Phe Glu Leu Ala Asn Ile Val
565 570 575
Pro Leu Tyr Asn Lys Ile Arg Asn Tyr Ile Thr Gln Lys Pro Tyr Ser
580 585 590
Asp Glu Lys Phe Lys Leu Asn Phe Glu Asn Ser Thr Leu Ala Asn Gly
595 600 605
Trp Asp Lys Asn Lys Glu Pro Asp Asn Thr Ala Ile Leu Phe Ile Lys
610 615 620
Asp Asp Lys Tyr Tyr Leu Gly Val Met Asn Lys Lys Asn Asn Lys Ile
625 630 635 640
Phe Asp Asp Lys Ala Ile Lys Glu Asn Lys Gly Glu Gly Tyr Lys Lys
645 650 655
Ile Val Tyr Lys Leu Leu Pro Gly Ala Asn Lys Met Leu Pro Lys Val
660 665 670
Phe Phe Ser Ala Lys Ser Ile Lys Phe Tyr Asn Pro Ser Glu Asp Ile
675 680 685
Leu Arg Ile Arg Asn His Ser Thr His Thr Lys Asn Gly Ser Pro Gln
690 695 700
Lys Gly Tyr Glu Lys Phe Glu Phe Asn Ile Glu Asp Cys Arg Lys Phe
705 710 715 720
Ile Asp Phe Tyr Lys Gln Ser Ile Ser Lys His Pro Glu Trp Lys Asp
725 730 735
Phe Gly Phe Arg Phe Ser Asp Thr Gln Arg Tyr Asn Ser Ile Asp Glu
740 745 750
Phe Tyr Arg Glu Val Glu Asn Gln Gly Tyr Lys Leu Thr Phe Glu Asn
755 760 765
Ile Ser Glu Ser Tyr Ile Asp Ser Val Val Asn Gln Gly Lys Leu Tyr
770 775 780
Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ser Ala Tyr Ser Lys Gly Arg
785 790 795 800
Pro Asn Leu His Thr Leu Tyr Trp Lys Ala Leu Phe Asp Glu Arg Asn
805 810 815
Leu Gln Asp Val Val Tyr Lys Leu Asn Gly Glu Ala Glu Leu Phe Tyr
820 825 830
Arg Lys Gln Ser Ile Pro Lys Lys Ile Thr His Pro Ala Lys Glu Ala
835 840 845
Ile Ala Asn Lys Asn Lys Asp Asn Pro Lys Lys Glu Ser Val Phe Glu
850 855 860
Tyr Asp Leu Ile Lys Asp Lys Arg Phe Thr Glu Asp Lys Phe Phe Phe
865 870 875 880
His Cys Pro Ile Thr Ile Asn Phe Lys Ser Ser Gly Ala Asn Lys Phe
885 890 895
Asn Asp Glu Ile Asn Leu Leu Leu Lys Glu Lys Ala Asn Asp Val His
900 905 910
Ile Leu Ser Ile Asp Arg Gly Glu Arg His Leu Ala Tyr Tyr Thr Leu
915 920 925
Val Asp Gly Lys Gly Asn Ile Ile Lys Gln Asp Thr Phe Asn Ile Ile
930 935 940
Gly Asn Asp Arg Met Lys Thr Asn Tyr His Asp Lys Leu Ala Ala Ile
945 950 955 960
Glu Lys Asp Arg Asp Ser Ala Arg Lys Asp Trp Lys Lys Ile Asn Asn
965 970 975
Ile Lys Glu Met Lys Glu Gly Tyr Leu Ser Gln Val Val His Glu Ile
980 985 990
Ala Lys Leu Val Ile Glu Tyr Asn Ala Ile Val Val Phe Glu Asp Leu
995 1000 1005
Asn Phe Gly Phe Lys Arg Gly Arg Phe Lys Val Glu Lys Gln Val
1010 1015 1020
Tyr Gln Lys Leu Glu Lys Met Leu Ile Glu Lys Leu Asn Tyr Leu
1025 1030 1035
Val Phe Lys Asp Asn Glu Phe Asp Lys Thr Gly Gly Val Leu Arg
1040 1045 1050
Ala Tyr Gln Leu Thr Ala Pro Phe Glu Thr Phe Lys Lys Met Gly
1055 1060 1065
Lys Gln Thr Gly Ile Ile Tyr Tyr Val Pro Ala Gly Phe Thr Ser
1070 1075 1080
Lys Ile Cys Pro Val Thr Gly Phe Val Asn Gln Leu Tyr Pro Lys
1085 1090 1095
Tyr Glu Ser Val Ser Lys Ser Gln Glu Phe Phe Ser Lys Phe Asp
1100 1105 1110
Lys Ile Cys Tyr Asn Leu Asp Lys Gly Tyr Phe Glu Phe Ser Phe
1115 1120 1125
Asp Tyr Lys Asn Phe Gly Asp Lys Ala Ala Lys Gly Lys Trp Thr
1130 1135 1140
Ile Ala Ser Phe Gly Ser Arg Leu Ile Asn Phe Arg Asn Ser Asp
1145 1150 1155
Lys Asn His Asn Trp Asp Thr Arg Glu Val Tyr Pro Thr Lys Glu
1160 1165 1170
Leu Glu Lys Leu Leu Lys Asp Tyr Ser Ile Glu Tyr Gly His Gly
1175 1180 1185
Glu Cys Ile Lys Ala Ala Ile Cys Gly Glu Ser Asp Lys Lys Phe
1190 1195 1200
Phe Ala Lys Leu Thr Ser Val Leu Asn Thr Ile Leu Gln Met Arg
1205 1210 1215
Asn Ser Lys Thr Gly Thr Glu Leu Asp Tyr Leu Ile Ser Pro Val
1220 1225 1230
Ala Asp Val Asn Gly Asn Phe Phe Asp Ser Arg Gln Ala Pro Lys
1235 1240 1245
Asn Met Pro Gln Asp Ala Asp Ala Asn Gly Ala Tyr His Ile Gly
1250 1255 1260
Leu Lys Gly Leu Met Leu Leu Gly Arg Ile Lys Asn Asn Gln Glu
1265 1270 1275
Gly Lys Lys Leu Asn Leu Val Ile Lys Asn Glu Glu Tyr Phe Glu
1280 1285 1290
Phe Val Gln Asn Arg Asn Asn
1295 1300
<210> 20
<211> 1228
<212> PRT
<213> Lachnospiraceae bacterium
<400> 20
Met Ser Lys Leu Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser Lys Thr
1 5 10 15
Leu Arg Phe Lys Ala Ile Pro Val Gly Lys Thr Gln Glu Asn Ile Asp
20 25 30
Asn Lys Arg Leu Leu Val Glu Asp Glu Lys Arg Ala Glu Asp Tyr Lys
35 40 45
Gly Val Lys Lys Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile Asn Asp
50 55 60
Val Leu His Ser Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile Ser Leu
65 70 75 80
Phe Arg Lys Lys Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu Glu Asn
85 90 95
Leu Glu Ile Asn Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys Gly Asn
100 105 110
Glu Gly Tyr Lys Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr Ile Leu
115 120 125
Pro Glu Phe Leu Asp Asp Lys Asp Glu Ile Ala Leu Val Asn Ser Phe
130 135 140
Asn Gly Phe Thr Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg Glu Asn
145 150 155 160
Met Phe Ser Glu Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg Cys Ile
165 170 175
Asn Glu Asn Leu Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe Glu Lys
180 185 190
Val Asp Ala Ile Phe Asp Lys His Glu Val Gln Glu Ile Lys Glu Lys
195 200 205
Ile Leu Asn Ser Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly Glu Phe
210 215 220
Phe Asn Phe Val Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn Ala Ile
225 230 235 240
Ile Gly Gly Phe Val Thr Glu Ser Gly Glu Lys Ile Lys Gly Leu Asn
245 250 255
Glu Tyr Ile Asn Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu Pro Lys
260 265 270
Phe Lys Pro Leu Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser Leu Ser
275 280 285
Phe Tyr Gly Glu Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu Val Phe
290 295 300
Arg Asn Thr Leu Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile Lys Lys
305 310 315 320
Leu Glu Lys Leu Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala Gly Ile
325 330 335
Phe Val Lys Asn Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp Ile Phe
340 345 350
Gly Glu Trp Asn Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr Asp Asp
355 360 365
Ile His Leu Lys Lys Lys Ala Val Val Thr Glu Lys Tyr Glu Asp Asp
370 375 380
Arg Arg Lys Ser Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu Gln Leu
385 390 395 400
Gln Glu Tyr Ala Asp Ala Asp Leu Ser Val Val Glu Lys Leu Lys Glu
405 410 415
Ile Ile Ile Gln Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly Ser Ser
420 425 430
Glu Lys Leu Phe Asp Ala Asp Phe Val Leu Glu Lys Ser Leu Lys Lys
435 440 445
Asn Asp Ala Val Val Ala Ile Met Lys Asp Leu Leu Asp Ser Val Lys
450 455 460
Ser Phe Glu Asn Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys Glu Thr
465 470 475 480
Asn Arg Asp Glu Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr Asp Ile
485 490 495
Leu Leu Lys Val Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr Val Thr
500 505 510
Gln Lys Pro Tyr Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln Asn Pro
515 520 525
Gln Phe Met Gly Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr Arg Ala
530 535 540
Thr Ile Leu Arg Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met Asp Lys
545 550 555 560
Lys Tyr Ala Lys Cys Leu Gln Lys Ile Asp Lys Asp Asp Val Asn Gly
565 570 575
Asn Tyr Glu Lys Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn Lys Met
580 585 590
Leu Pro Lys Val Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr Asn Pro
595 600 605
Ser Glu Asp Ile Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys Lys Gly
610 615 620
Asp Met Phe Asn Leu Asn Asp Cys His Lys Leu Ile Asp Phe Phe Lys
625 630 635 640
Asp Ser Ile Ser Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp Phe Asn
645 650 655
Phe Ser Glu Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr Arg Glu
660 665 670
Val Glu Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser Lys Lys
675 680 685
Glu Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe Gln Ile
690 695 700
Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn Leu His
705 710 715 720
Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly Gln Ile
725 730 735
Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala Ser Leu Lys
740 745 750
Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro Ile Ala Asn Lys
755 760 765
Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp Val Tyr
770 775 780
Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile Pro Ile
785 790 795 800
Ala Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr Glu Val
805 810 815
Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly Ile Asp
820 825 830
Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly Lys Gly
835 840 845
Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn Asn Phe Asn
850 855 860
Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu Asp Lys Lys Glu
865 870 875 880
Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu Asn Ile
885 890 895
Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys Ile Cys
900 905 910
Glu Leu Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp Leu Asn
915 920 925
Ser Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val Tyr Gln
930 935 940
Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val Asp Lys
945 950 955 960
Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr Gln Ile
965 970 975
Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln Asn Gly Phe
980 985 990
Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile Asp Pro Ser Thr
995 1000 1005
Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile Ala Asp
1010 1015 1020
Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr Val Pro
1025 1030 1035
Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn Phe Ser
1040 1045 1050
Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr Ser Tyr
1055 1060 1065
Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys Lys Asn Asn Val
1070 1075 1080
Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys Glu Leu
1085 1090 1095
Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile Arg Ala
1100 1105 1110
Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser Phe Met
1115 1120 1125
Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser Ile Thr Gly
1130 1135 1140
Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys Asn Ser Asp
1145 1150 1155
Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu Asn Ala
1160 1165 1170
Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn Ile Ala
1175 1180 1185
Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala Glu Asp
1190 1195 1200
Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn Lys Glu Trp
1205 1210 1215
Leu Glu Tyr Ala Gln Thr Ser Val Lys His
1220 1225
<210> 21
<211> 1329
<212> PRT
<213> Artificial Sequence
<220>
<223> ASCPF1-2NLS
<400> 21
Met Thr Gln Phe Glu Gly Phe Thr Asn Leu Tyr Gln Val Ser Lys Thr
1 5 10 15
Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Lys His Ile Gln
20 25 30
Glu Gln Gly Phe Ile Glu Glu Asp Lys Ala Arg Asn Asp His Tyr Lys
35 40 45
Glu Leu Lys Pro Ile Ile Asp Arg Ile Tyr Lys Thr Tyr Ala Asp Gln
50 55 60
Cys Leu Gln Leu Val Gln Leu Asp Trp Glu Asn Leu Ser Ala Ala Ile
65 70 75 80
Asp Ser Tyr Arg Lys Glu Lys Thr Glu Glu Thr Arg Asn Ala Leu Ile
85 90 95
Glu Glu Gln Ala Thr Tyr Arg Asn Ala Ile His Asp Tyr Phe Ile Gly
100 105 110
Arg Thr Asp Asn Leu Thr Asp Ala Ile Asn Lys Arg His Ala Glu Ile
115 120 125
Tyr Lys Gly Leu Phe Lys Ala Glu Leu Phe Asn Gly Lys Val Leu Lys
130 135 140
Gln Leu Gly Thr Val Thr Thr Thr Glu His Glu Asn Ala Leu Leu Arg
145 150 155 160
Ser Phe Asp Lys Phe Thr Thr Tyr Phe Ser Gly Phe Tyr Glu Asn Arg
165 170 175
Lys Asn Val Phe Ser Ala Glu Asp Ile Ser Thr Ala Ile Pro His Arg
180 185 190
Ile Val Gln Asp Asn Phe Pro Lys Phe Lys Glu Asn Cys His Ile Phe
195 200 205
Thr Arg Leu Ile Thr Ala Val Pro Ser Leu Arg Glu His Phe Glu Asn
210 215 220
Val Lys Lys Ala Ile Gly Ile Phe Val Ser Thr Ser Ile Glu Glu Val
225 230 235 240
Phe Ser Phe Pro Phe Tyr Asn Gln Leu Leu Thr Gln Thr Gln Ile Asp
245 250 255
Leu Tyr Asn Gln Leu Leu Gly Gly Ile Ser Arg Glu Ala Gly Thr Glu
260 265 270
Lys Ile Lys Gly Leu Asn Glu Val Leu Asn Leu Ala Ile Gln Lys Asn
275 280 285
Asp Glu Thr Ala His Ile Ile Ala Ser Leu Pro His Arg Phe Ile Pro
290 295 300
Leu Phe Lys Gln Ile Leu Ser Asp Arg Asn Thr Leu Ser Phe Ile Leu
305 310 315 320
Glu Glu Phe Lys Ser Asp Glu Glu Val Ile Gln Ser Phe Cys Lys Tyr
325 330 335
Lys Thr Leu Leu Arg Asn Glu Asn Val Leu Glu Thr Ala Glu Ala Leu
340 345 350
Phe Asn Glu Leu Asn Ser Ile Asp Leu Thr His Ile Phe Ile Ser His
355 360 365
Lys Lys Leu Glu Thr Ile Ser Ser Ala Leu Cys Asp His Trp Asp Thr
370 375 380
Leu Arg Asn Ala Leu Tyr Glu Arg Arg Ile Ser Glu Leu Thr Gly Lys
385 390 395 400
Ile Thr Lys Ser Ala Lys Glu Lys Val Gln Arg Ser Leu Lys His Glu
405 410 415
Asp Ile Asn Leu Gln Glu Ile Ile Ser Ala Ala Gly Lys Glu Leu Ser
420 425 430
Glu Ala Phe Lys Gln Lys Thr Ser Glu Ile Leu Ser His Ala His Ala
435 440 445
Ala Leu Asp Gln Pro Leu Pro Thr Thr Leu Lys Lys Gln Glu Glu Lys
450 455 460
Glu Ile Leu Lys Ser Gln Leu Asp Ser Leu Leu Gly Leu Tyr His Leu
465 470 475 480
Leu Asp Trp Phe Ala Val Asp Glu Ser Asn Glu Val Asp Pro Glu Phe
485 490 495
Ser Ala Arg Leu Thr Gly Ile Lys Leu Glu Met Glu Pro Ser Leu Ser
500 505 510
Phe Tyr Asn Lys Ala Arg Asn Tyr Ala Thr Lys Lys Pro Tyr Ser Val
515 520 525
Glu Lys Phe Lys Leu Asn Phe Gln Met Pro Thr Leu Ala Ser Gly Trp
530 535 540
Asp Val Asn Lys Glu Lys Asn Asn Gly Ala Ile Leu Phe Val Lys Asn
545 550 555 560
Gly Leu Tyr Tyr Leu Gly Ile Met Pro Lys Gln Lys Gly Arg Tyr Lys
565 570 575
Ala Leu Ser Phe Glu Pro Thr Glu Lys Thr Ser Glu Gly Phe Asp Lys
580 585 590
Met Tyr Tyr Asp Tyr Phe Pro Asp Ala Ala Lys Met Ile Pro Lys Cys
595 600 605
Ser Thr Gln Leu Lys Ala Val Thr Ala His Phe Gln Thr His Thr Thr
610 615 620
Pro Ile Leu Leu Ser Asn Asn Phe Ile Glu Pro Leu Glu Ile Thr Lys
625 630 635 640
Glu Ile Tyr Asp Leu Asn Asn Pro Glu Lys Glu Pro Lys Lys Phe Gln
645 650 655
Thr Ala Tyr Ala Lys Lys Thr Gly Asp Gln Lys Gly Tyr Arg Glu Ala
660 665 670
Leu Cys Lys Trp Ile Asp Phe Thr Arg Asp Phe Leu Ser Lys Tyr Thr
675 680 685
Lys Thr Thr Ser Ile Asp Leu Ser Ser Leu Arg Pro Ser Ser Gln Tyr
690 695 700
Lys Asp Leu Gly Glu Tyr Tyr Ala Glu Leu Asn Pro Leu Leu Tyr His
705 710 715 720
Ile Ser Phe Gln Arg Ile Ala Glu Lys Glu Ile Met Asp Ala Val Glu
725 730 735
Thr Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ala Lys
740 745 750
Gly His His Gly Lys Pro Asn Leu His Thr Leu Tyr Trp Thr Gly Leu
755 760 765
Phe Ser Pro Glu Asn Leu Ala Lys Thr Ser Ile Lys Leu Asn Gly Gln
770 775 780
Ala Glu Leu Phe Tyr Arg Pro Lys Ser Arg Met Lys Arg Met Ala His
785 790 795 800
Arg Leu Gly Glu Lys Met Leu Asn Lys Lys Leu Lys Asp Gln Lys Thr
805 810 815
Pro Ile Pro Asp Thr Leu Tyr Gln Glu Leu Tyr Asp Tyr Val Asn His
820 825 830
Arg Leu Ser His Asp Leu Ser Asp Glu Ala Arg Ala Leu Leu Pro Asn
835 840 845
Val Ile Thr Lys Glu Val Ser His Glu Ile Ile Lys Asp Arg Arg Phe
850 855 860
Thr Ser Asp Lys Phe Phe Phe His Val Pro Ile Thr Leu Asn Tyr Gln
865 870 875 880
Ala Ala Asn Ser Pro Ser Lys Phe Asn Gln Arg Val Asn Ala Tyr Leu
885 890 895
Lys Glu His Pro Glu Thr Pro Ile Ile Gly Ile Asp Arg Gly Glu Arg
900 905 910
Asn Leu Ile Tyr Ile Thr Val Ile Asp Ser Thr Gly Lys Ile Leu Glu
915 920 925
Gln Arg Ser Leu Asn Thr Ile Gln Gln Phe Asp Tyr Gln Lys Lys Leu
930 935 940
Asp Asn Arg Glu Lys Glu Arg Val Ala Ala Arg Gln Ala Trp Ser Val
945 950 955 960
Val Gly Thr Ile Lys Asp Leu Lys Gln Gly Tyr Leu Ser Gln Val Ile
965 970 975
His Glu Ile Val Asp Leu Met Ile His Tyr Gln Ala Val Val Val Leu
980 985 990
Glu Asn Leu Asn Phe Gly Phe Lys Ser Lys Arg Thr Gly Ile Ala Glu
995 1000 1005
Lys Ala Val Tyr Gln Gln Phe Glu Lys Met Leu Ile Asp Lys Leu
1010 1015 1020
Asn Cys Leu Val Leu Lys Asp Tyr Pro Ala Glu Lys Val Gly Gly
1025 1030 1035
Val Leu Asn Pro Tyr Gln Leu Thr Asp Gln Phe Thr Ser Phe Ala
1040 1045 1050
Lys Met Gly Thr Gln Ser Gly Phe Leu Phe Tyr Val Pro Ala Pro
1055 1060 1065
Tyr Thr Ser Lys Ile Asp Pro Leu Thr Gly Phe Val Asp Pro Phe
1070 1075 1080
Val Trp Lys Thr Ile Lys Asn His Glu Ser Arg Lys His Phe Leu
1085 1090 1095
Glu Gly Phe Asp Phe Leu His Tyr Asp Val Lys Thr Gly Asp Phe
1100 1105 1110
Ile Leu His Phe Lys Met Asn Arg Asn Leu Ser Phe Gln Arg Gly
1115 1120 1125
Leu Pro Gly Phe Met Pro Ala Trp Asp Ile Val Phe Glu Lys Asn
1130 1135 1140
Glu Thr Gln Phe Asp Ala Lys Gly Thr Pro Phe Ile Ala Gly Lys
1145 1150 1155
Arg Ile Val Pro Val Ile Glu Asn His Arg Phe Thr Gly Arg Tyr
1160 1165 1170
Arg Asp Leu Tyr Pro Ala Asn Glu Leu Ile Ala Leu Leu Glu Glu
1175 1180 1185
Lys Gly Ile Val Phe Arg Asp Gly Ser Asn Ile Leu Pro Lys Leu
1190 1195 1200
Leu Glu Asn Asp Asp Ser His Ala Ile Asp Thr Met Val Ala Leu
1205 1210 1215
Ile Arg Ser Val Leu Gln Met Arg Asn Ser Asn Ala Ala Thr Gly
1220 1225 1230
Glu Asp Tyr Ile Asn Ser Pro Val Arg Asp Leu Asn Gly Val Cys
1235 1240 1245
Phe Asp Ser Arg Phe Gln Asn Pro Glu Trp Pro Met Asp Ala Asp
1250 1255 1260
Ala Asn Gly Ala Tyr His Ile Ala Leu Lys Gly Gln Leu Leu Leu
1265 1270 1275
Asn His Leu Lys Glu Ser Lys Asp Leu Lys Leu Gln Asn Gly Ile
1280 1285 1290
Ser Asn Gln Asp Trp Leu Ala Tyr Ile Gln Glu Leu Arg Asn Ser
1295 1300 1305
Gly Gly Ser Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Pro
1310 1315 1320
Lys Lys Lys Arg Lys Val
1325
<210> 22
<211> 1322
<212> PRT
<213> Artificial Sequence
<220>
<223> FNCPF1-2NLS
<400> 22
Met Ser Ile Tyr Gln Glu Phe Val Asn Lys Tyr Ser Leu Ser Lys Thr
1 5 10 15
Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Glu Asn Ile Lys
20 25 30
Ala Arg Gly Leu Ile Leu Asp Asp Glu Lys Arg Ala Lys Asp Tyr Lys
35 40 45
Lys Ala Lys Gln Ile Ile Asp Lys Tyr His Gln Phe Phe Ile Glu Glu
50 55 60
Ile Leu Ser Ser Val Cys Ile Ser Glu Asp Leu Leu Gln Asn Tyr Ser
65 70 75 80
Asp Val Tyr Phe Lys Leu Lys Lys Ser Asp Asp Asp Asn Leu Gln Lys
85 90 95
Asp Phe Lys Ser Ala Lys Asp Thr Ile Lys Lys Gln Ile Ser Glu Tyr
100 105 110
Ile Lys Asp Ser Glu Lys Phe Lys Asn Leu Phe Asn Gln Asn Leu Ile
115 120 125
Asp Ala Lys Lys Gly Gln Glu Ser Asp Leu Ile Leu Trp Leu Lys Gln
130 135 140
Ser Lys Asp Asn Gly Ile Glu Leu Phe Lys Ala Asn Ser Asp Ile Thr
145 150 155 160
Asp Ile Asp Glu Ala Leu Glu Ile Ile Lys Ser Phe Lys Gly Trp Thr
165 170 175
Thr Tyr Phe Lys Gly Phe His Glu Asn Arg Lys Asn Val Tyr Ser Ser
180 185 190
Asn Asp Ile Pro Thr Ser Ile Ile Tyr Arg Ile Val Asp Asp Asn Leu
195 200 205
Pro Lys Phe Leu Glu Asn Lys Ala Lys Tyr Glu Ser Leu Lys Asp Lys
210 215 220
Ala Pro Glu Ala Ile Asn Tyr Glu Gln Ile Lys Lys Asp Leu Ala Glu
225 230 235 240
Glu Leu Thr Phe Asp Ile Asp Tyr Lys Thr Ser Glu Val Asn Gln Arg
245 250 255
Val Phe Ser Leu Asp Glu Val Phe Glu Ile Ala Asn Phe Asn Asn Tyr
260 265 270
Leu Asn Gln Ser Gly Ile Thr Lys Phe Asn Thr Ile Ile Gly Gly Lys
275 280 285
Phe Val Asn Gly Glu Asn Thr Lys Arg Lys Gly Ile Asn Glu Tyr Ile
290 295 300
Asn Leu Tyr Ser Gln Gln Ile Asn Asp Lys Thr Leu Lys Lys Tyr Lys
305 310 315 320
Met Ser Val Leu Phe Lys Gln Ile Leu Ser Asp Thr Glu Ser Lys Ser
325 330 335
Phe Val Ile Asp Lys Leu Glu Asp Asp Ser Asp Val Val Thr Thr Met
340 345 350
Gln Ser Phe Tyr Glu Gln Ile Ala Ala Phe Lys Thr Val Glu Glu Lys
355 360 365
Ser Ile Lys Glu Thr Leu Ser Leu Leu Phe Asp Asp Leu Lys Ala Gln
370 375 380
Lys Leu Asp Leu Ser Lys Ile Tyr Phe Lys Asn Asp Lys Ser Leu Thr
385 390 395 400
Asp Leu Ser Gln Gln Val Phe Asp Asp Tyr Ser Val Ile Gly Thr Ala
405 410 415
Val Leu Glu Tyr Ile Thr Gln Gln Ile Ala Pro Lys Asn Leu Asp Asn
420 425 430
Pro Ser Lys Lys Glu Gln Glu Leu Ile Ala Lys Lys Thr Glu Lys Ala
435 440 445
Lys Tyr Leu Ser Leu Glu Thr Ile Lys Leu Ala Leu Glu Glu Phe Asn
450 455 460
Lys His Arg Asp Ile Asp Lys Gln Cys Arg Phe Glu Glu Ile Leu Ala
465 470 475 480
Asn Phe Ala Ala Ile Pro Met Ile Phe Asp Glu Ile Ala Gln Asn Lys
485 490 495
Asp Asn Leu Ala Gln Ile Ser Ile Lys Tyr Gln Asn Gln Gly Lys Lys
500 505 510
Asp Leu Leu Gln Ala Ser Ala Glu Asp Asp Val Lys Ala Ile Lys Asp
515 520 525
Leu Leu Asp Gln Thr Asn Asn Leu Leu His Lys Leu Lys Ile Phe His
530 535 540
Ile Ser Gln Ser Glu Asp Lys Ala Asn Ile Leu Asp Lys Asp Glu His
545 550 555 560
Phe Tyr Leu Val Phe Glu Glu Cys Tyr Phe Glu Leu Ala Asn Ile Val
565 570 575
Pro Leu Tyr Asn Lys Ile Arg Asn Tyr Ile Thr Gln Lys Pro Tyr Ser
580 585 590
Asp Glu Lys Phe Lys Leu Asn Phe Glu Asn Ser Thr Leu Ala Asn Gly
595 600 605
Trp Asp Lys Asn Lys Glu Pro Asp Asn Thr Ala Ile Leu Phe Ile Lys
610 615 620
Asp Asp Lys Tyr Tyr Leu Gly Val Met Asn Lys Lys Asn Asn Lys Ile
625 630 635 640
Phe Asp Asp Lys Ala Ile Lys Glu Asn Lys Gly Glu Gly Tyr Lys Lys
645 650 655
Ile Val Tyr Lys Leu Leu Pro Gly Ala Asn Lys Met Leu Pro Lys Val
660 665 670
Phe Phe Ser Ala Lys Ser Ile Lys Phe Tyr Asn Pro Ser Glu Asp Ile
675 680 685
Leu Arg Ile Arg Asn His Ser Thr His Thr Lys Asn Gly Ser Pro Gln
690 695 700
Lys Gly Tyr Glu Lys Phe Glu Phe Asn Ile Glu Asp Cys Arg Lys Phe
705 710 715 720
Ile Asp Phe Tyr Lys Gln Ser Ile Ser Lys His Pro Glu Trp Lys Asp
725 730 735
Phe Gly Phe Arg Phe Ser Asp Thr Gln Arg Tyr Asn Ser Ile Asp Glu
740 745 750
Phe Tyr Arg Glu Val Glu Asn Gln Gly Tyr Lys Leu Thr Phe Glu Asn
755 760 765
Ile Ser Glu Ser Tyr Ile Asp Ser Val Val Asn Gln Gly Lys Leu Tyr
770 775 780
Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ser Ala Tyr Ser Lys Gly Arg
785 790 795 800
Pro Asn Leu His Thr Leu Tyr Trp Lys Ala Leu Phe Asp Glu Arg Asn
805 810 815
Leu Gln Asp Val Val Tyr Lys Leu Asn Gly Glu Ala Glu Leu Phe Tyr
820 825 830
Arg Lys Gln Ser Ile Pro Lys Lys Ile Thr His Pro Ala Lys Glu Ala
835 840 845
Ile Ala Asn Lys Asn Lys Asp Asn Pro Lys Lys Glu Ser Val Phe Glu
850 855 860
Tyr Asp Leu Ile Lys Asp Lys Arg Phe Thr Glu Asp Lys Phe Phe Phe
865 870 875 880
His Cys Pro Ile Thr Ile Asn Phe Lys Ser Ser Gly Ala Asn Lys Phe
885 890 895
Asn Asp Glu Ile Asn Leu Leu Leu Lys Glu Lys Ala Asn Asp Val His
900 905 910
Ile Leu Ser Ile Asp Arg Gly Glu Arg His Leu Ala Tyr Tyr Thr Leu
915 920 925
Val Asp Gly Lys Gly Asn Ile Ile Lys Gln Asp Thr Phe Asn Ile Ile
930 935 940
Gly Asn Asp Arg Met Lys Thr Asn Tyr His Asp Lys Leu Ala Ala Ile
945 950 955 960
Glu Lys Asp Arg Asp Ser Ala Arg Lys Asp Trp Lys Lys Ile Asn Asn
965 970 975
Ile Lys Glu Met Lys Glu Gly Tyr Leu Ser Gln Val Val His Glu Ile
980 985 990
Ala Lys Leu Val Ile Glu Tyr Asn Ala Ile Val Val Phe Glu Asp Leu
995 1000 1005
Asn Phe Gly Phe Lys Arg Gly Arg Phe Lys Val Glu Lys Gln Val
1010 1015 1020
Tyr Gln Lys Leu Glu Lys Met Leu Ile Glu Lys Leu Asn Tyr Leu
1025 1030 1035
Val Phe Lys Asp Asn Glu Phe Asp Lys Thr Gly Gly Val Leu Arg
1040 1045 1050
Ala Tyr Gln Leu Thr Ala Pro Phe Glu Thr Phe Lys Lys Met Gly
1055 1060 1065
Lys Gln Thr Gly Ile Ile Tyr Tyr Val Pro Ala Gly Phe Thr Ser
1070 1075 1080
Lys Ile Cys Pro Val Thr Gly Phe Val Asn Gln Leu Tyr Pro Lys
1085 1090 1095
Tyr Glu Ser Val Ser Lys Ser Gln Glu Phe Phe Ser Lys Phe Asp
1100 1105 1110
Lys Ile Cys Tyr Asn Leu Asp Lys Gly Tyr Phe Glu Phe Ser Phe
1115 1120 1125
Asp Tyr Lys Asn Phe Gly Asp Lys Ala Ala Lys Gly Lys Trp Thr
1130 1135 1140
Ile Ala Ser Phe Gly Ser Arg Leu Ile Asn Phe Arg Asn Ser Asp
1145 1150 1155
Lys Asn His Asn Trp Asp Thr Arg Glu Val Tyr Pro Thr Lys Glu
1160 1165 1170
Leu Glu Lys Leu Leu Lys Asp Tyr Ser Ile Glu Tyr Gly His Gly
1175 1180 1185
Glu Cys Ile Lys Ala Ala Ile Cys Gly Glu Ser Asp Lys Lys Phe
1190 1195 1200
Phe Ala Lys Leu Thr Ser Val Leu Asn Thr Ile Leu Gln Met Arg
1205 1210 1215
Asn Ser Lys Thr Gly Thr Glu Leu Asp Tyr Leu Ile Ser Pro Val
1220 1225 1230
Ala Asp Val Asn Gly Asn Phe Phe Asp Ser Arg Gln Ala Pro Lys
1235 1240 1245
Asn Met Pro Gln Asp Ala Asp Ala Asn Gly Ala Tyr His Ile Gly
1250 1255 1260
Leu Lys Gly Leu Met Leu Leu Gly Arg Ile Lys Asn Asn Gln Glu
1265 1270 1275
Gly Lys Lys Leu Asn Leu Val Ile Lys Asn Glu Glu Tyr Phe Glu
1280 1285 1290
Phe Val Gln Asn Arg Asn Asn Ser Gly Gly Ser Pro Lys Lys Lys
1295 1300 1305
Arg Lys Val Ser Gly Gly Ser Pro Lys Lys Lys Arg Lys Val
1310 1315 1320
<210> 23
<211> 1252
<212> PRT
<213> Artificial Sequence
<220>
<223> LBCPF1-2NLS
<400> 23
Met Ser Lys Leu Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser Lys Thr
1 5 10 15
Leu Arg Phe Lys Ala Ile Pro Val Gly Lys Thr Gln Glu Asn Ile Asp
20 25 30
Asn Lys Arg Leu Leu Val Glu Asp Glu Lys Arg Ala Glu Asp Tyr Lys
35 40 45
Gly Val Lys Lys Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile Asn Asp
50 55 60
Val Leu His Ser Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile Ser Leu
65 70 75 80
Phe Arg Lys Lys Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu Glu Asn
85 90 95
Leu Glu Ile Asn Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys Gly Asn
100 105 110
Glu Gly Tyr Lys Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr Ile Leu
115 120 125
Pro Glu Phe Leu Asp Asp Lys Asp Glu Ile Ala Leu Val Asn Ser Phe
130 135 140
Asn Gly Phe Thr Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg Glu Asn
145 150 155 160
Met Glu Thr Phe Ser Glu Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg
165 170 175
Cys Ile Asn Glu Asn Leu Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe
180 185 190
Glu Lys Val Asp Ala Ile Phe Asp Lys His Glu Val Gln Glu Ile Lys
195 200 205
Glu Lys Ile Leu Asn Ser Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly
210 215 220
Glu Phe Phe Asn Phe Val Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn
225 230 235 240
Ala Ile Ile Gly Gly Phe Val Thr Glu Ser Gly Glu Lys Ile Lys Gly
245 250 255
Leu Asn Glu Tyr Ile Asn Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu
260 265 270
Pro Lys Phe Lys Pro Leu Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser
275 280 285
Leu Ser Phe Tyr Gly Glu Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu
290 295 300
Val Phe Arg Asn Thr Leu Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile
305 310 315 320
Lys Lys Leu Glu Lys Leu Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala
325 330 335
Gly Ile Phe Val Lys Asn Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp
340 345 350
Ile Phe Gly Glu Trp Asn Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr
355 360 365
Asp Asp Ile His Leu Lys Lys Lys Ala Val Val Thr Glu Lys Tyr Glu
370 375 380
Asp Asp Arg Arg Lys Ser Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu
385 390 395 400
Gln Leu Gln Glu Tyr Ala Asp Ala Asp Leu Ser Val Val Glu Lys Leu
405 410 415
Lys Glu Ile Ile Ile Gln Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly
420 425 430
Ser Ser Glu Lys Leu Phe Asp Ala Asp Phe Val Leu Glu Lys Ser Leu
435 440 445
Lys Lys Asn Asp Ala Val Val Ala Ile Met Lys Asp Leu Leu Asp Ser
450 455 460
Val Lys Ser Phe Glu Asn Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys
465 470 475 480
Glu Thr Asn Arg Asp Glu Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr
485 490 495
Asp Ile Leu Leu Lys Val Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr
500 505 510
Val Thr Gln Lys Pro Tyr Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln
515 520 525
Asn Pro Gln Phe Met Gly Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr
530 535 540
Arg Ala Thr Ile Leu Arg Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met
545 550 555 560
Asp Lys Lys Tyr Ala Lys Cys Leu Gln Lys Ile Asp Lys Asp Asp Val
565 570 575
Asn Gly Asn Tyr Glu Lys Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn
580 585 590
Lys Met Leu Pro Lys Val Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr
595 600 605
Asn Pro Ser Glu Asp Ile Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys
610 615 620
Lys Gly Asp Met Phe Asn Leu Asn Asp Cys His Lys Leu Ile Asp Phe
625 630 635 640
Phe Lys Asp Ser Ile Ser Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp
645 650 655
Phe Asn Phe Ser Glu Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr
660 665 670
Arg Glu Val Glu Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser
675 680 685
Lys Lys Glu Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe
690 695 700
Gln Ile Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn
705 710 715 720
Leu His Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly
725 730 735
Gln Ile Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala Ser
740 745 750
Leu Lys Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro Ile Ala
755 760 765
Asn Lys Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp
770 775 780
Val Tyr Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile
785 790 795 800
Pro Ile Ala Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr
805 810 815
Glu Val Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly
820 825 830
Ile Asp Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly
835 840 845
Lys Gly Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn Asn
850 855 860
Phe Asn Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu Asp Lys
865 870 875 880
Lys Glu Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu
885 890 895
Asn Ile Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys
900 905 910
Ile Cys Glu Leu Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp
915 920 925
Leu Asn Ser Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val
930 935 940
Tyr Gln Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val
945 950 955 960
Asp Lys Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr
965 970 975
Gln Ile Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln Asn
980 985 990
Gly Phe Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile Asp Pro
995 1000 1005
Ser Thr Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile
1010 1015 1020
Ala Asp Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr
1025 1030 1035
Val Pro Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn
1040 1045 1050
Phe Ser Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr
1055 1060 1065
Ser Tyr Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys Lys Asn
1070 1075 1080
Asn Val Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys
1085 1090 1095
Glu Leu Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile
1100 1105 1110
Arg Ala Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser
1115 1120 1125
Phe Met Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser Ile
1130 1135 1140
Thr Gly Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys Asn
1145 1150 1155
Ser Asp Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu
1160 1165 1170
Asn Ala Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn
1175 1180 1185
Ile Ala Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala
1190 1195 1200
Glu Asp Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn Lys
1205 1210 1215
Glu Trp Leu Glu Tyr Ala Gln Thr Ser Val Lys His Ser Gly Gly
1220 1225 1230
Ser Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Pro Lys Lys
1235 1240 1245
Lys Arg Lys Val
1250
<210> 24
<211> 1664
<212> PRT
<213> Artificial Sequence
<220>
<223> dFNCPF1-PBE-2NLS
<400> 24
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Glu Thr Gly Pro Val Ala
1 5 10 15
Val Asp Pro Thr Leu Arg Arg Arg Ile Glu Pro His Glu Phe Glu Val
20 25 30
Phe Phe Asp Pro Arg Glu Leu Arg Lys Glu Thr Cys Leu Leu Tyr Glu
35 40 45
Ile Asn Trp Gly Gly Arg His Ser Ile Trp Arg His Thr Ser Gln Asn
50 55 60
Thr Asn Lys His Val Glu Val Asn Phe Ile Glu Lys Phe Thr Thr Glu
65 70 75 80
Arg Tyr Phe Cys Pro Asn Thr Arg Cys Ser Ile Thr Trp Phe Leu Ser
85 90 95
Trp Ser Pro Cys Gly Glu Cys Ser Arg Ala Ile Thr Glu Phe Leu Ser
100 105 110
Arg Tyr Pro His Val Thr Leu Phe Ile Tyr Ile Ala Arg Leu Tyr His
115 120 125
His Ala Asp Pro Arg Asn Arg Gln Gly Leu Arg Asp Leu Ile Ser Ser
130 135 140
Gly Val Thr Ile Gln Ile Met Thr Glu Gln Glu Ser Gly Tyr Cys Trp
145 150 155 160
Arg Asn Phe Val Asn Tyr Ser Pro Ser Asn Glu Ala His Trp Pro Arg
165 170 175
Tyr Pro His Leu Trp Val Arg Leu Tyr Val Leu Glu Leu Tyr Cys Ile
180 185 190
Ile Leu Gly Leu Pro Pro Cys Leu Asn Ile Leu Arg Arg Lys Gln Pro
195 200 205
Gln Leu Thr Phe Phe Thr Ile Ala Leu Gln Ser Cys His Tyr Gln Arg
210 215 220
Leu Pro Pro His Ile Leu Trp Ala Thr Gly Leu Lys Ser Gly Ser Glu
225 230 235 240
Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Leu Lys Ser Ile Tyr
245 250 255
Gln Glu Phe Val Asn Lys Tyr Ser Leu Ser Lys Thr Leu Arg Phe Glu
260 265 270
Leu Ile Pro Gln Gly Lys Thr Leu Glu Asn Ile Lys Ala Arg Gly Leu
275 280 285
Ile Leu Asp Asp Glu Lys Arg Ala Lys Asp Tyr Lys Lys Ala Lys Gln
290 295 300
Ile Ile Asp Lys Tyr His Gln Phe Phe Ile Glu Glu Ile Leu Ser Ser
305 310 315 320
Val Cys Ile Ser Glu Asp Leu Leu Gln Asn Tyr Ser Asp Val Tyr Phe
325 330 335
Lys Leu Lys Lys Ser Asp Asp Asp Asn Leu Gln Lys Asp Phe Lys Ser
340 345 350
Ala Lys Asp Thr Ile Lys Lys Gln Ile Ser Glu Tyr Ile Lys Asp Ser
355 360 365
Glu Lys Phe Lys Asn Leu Phe Asn Gln Asn Leu Ile Asp Ala Lys Lys
370 375 380
Gly Gln Glu Ser Asp Leu Ile Leu Trp Leu Lys Gln Ser Lys Asp Asn
385 390 395 400
Gly Ile Glu Leu Phe Lys Ala Asn Ser Asp Ile Thr Asp Ile Asp Glu
405 410 415
Ala Leu Glu Ile Ile Lys Ser Phe Lys Gly Trp Thr Thr Tyr Phe Lys
420 425 430
Gly Phe His Glu Asn Arg Lys Asn Val Tyr Ser Ser Asn Asp Ile Pro
435 440 445
Thr Ser Ile Ile Tyr Arg Ile Val Asp Asp Asn Leu Pro Lys Phe Leu
450 455 460
Glu Asn Lys Ala Lys Tyr Glu Ser Leu Lys Asp Lys Ala Pro Glu Ala
465 470 475 480
Ile Asn Tyr Glu Gln Ile Lys Lys Asp Leu Ala Glu Glu Leu Thr Phe
485 490 495
Asp Ile Asp Tyr Lys Thr Ser Glu Val Asn Gln Arg Val Phe Ser Leu
500 505 510
Asp Glu Val Phe Glu Ile Ala Asn Phe Asn Asn Tyr Leu Asn Gln Ser
515 520 525
Gly Ile Thr Lys Phe Asn Thr Ile Ile Gly Gly Lys Phe Val Asn Gly
530 535 540
Glu Asn Thr Lys Arg Lys Gly Ile Asn Glu Tyr Ile Asn Leu Tyr Ser
545 550 555 560
Gln Gln Ile Asn Asp Lys Thr Leu Lys Lys Tyr Lys Met Ser Val Leu
565 570 575
Phe Lys Gln Ile Leu Ser Asp Thr Glu Ser Lys Ser Phe Val Ile Asp
580 585 590
Lys Leu Glu Asp Asp Ser Asp Val Val Thr Thr Met Gln Ser Phe Tyr
595 600 605
Glu Gln Ile Ala Ala Phe Lys Thr Val Glu Glu Lys Ser Ile Lys Glu
610 615 620
Thr Leu Ser Leu Leu Phe Asp Asp Leu Lys Ala Gln Lys Leu Asp Leu
625 630 635 640
Ser Lys Ile Tyr Phe Lys Asn Asp Lys Ser Leu Thr Asp Leu Ser Gln
645 650 655
Gln Val Phe Asp Asp Tyr Ser Val Ile Gly Thr Ala Val Leu Glu Tyr
660 665 670
Ile Thr Gln Gln Ile Ala Pro Lys Asn Leu Asp Asn Pro Ser Lys Lys
675 680 685
Glu Gln Glu Leu Ile Ala Lys Lys Thr Glu Lys Ala Lys Tyr Leu Ser
690 695 700
Leu Glu Thr Ile Lys Leu Ala Leu Glu Glu Phe Asn Lys His Arg Asp
705 710 715 720
Ile Asp Lys Gln Cys Arg Phe Glu Glu Ile Leu Ala Asn Phe Ala Ala
725 730 735
Ile Pro Met Ile Phe Asp Glu Ile Ala Gln Asn Lys Asp Asn Leu Ala
740 745 750
Gln Ile Ser Ile Lys Tyr Gln Asn Gln Gly Lys Lys Asp Leu Leu Gln
755 760 765
Ala Ser Ala Glu Asp Asp Val Lys Ala Ile Lys Asp Leu Leu Asp Gln
770 775 780
Thr Asn Asn Leu Leu His Lys Leu Lys Ile Phe His Ile Ser Gln Ser
785 790 795 800
Glu Asp Lys Ala Asn Ile Leu Asp Lys Asp Glu His Phe Tyr Leu Val
805 810 815
Phe Glu Glu Cys Tyr Phe Glu Leu Ala Asn Ile Val Pro Leu Tyr Asn
820 825 830
Lys Ile Arg Asn Tyr Ile Thr Gln Lys Pro Tyr Ser Asp Glu Lys Phe
835 840 845
Lys Leu Asn Phe Glu Asn Ser Thr Leu Ala Asn Gly Trp Asp Lys Asn
850 855 860
Lys Glu Pro Asp Asn Thr Ala Ile Leu Phe Ile Lys Asp Asp Lys Tyr
865 870 875 880
Tyr Leu Gly Val Met Asn Lys Lys Asn Asn Lys Ile Phe Asp Asp Lys
885 890 895
Ala Ile Lys Glu Asn Lys Gly Glu Gly Tyr Lys Lys Ile Val Tyr Lys
900 905 910
Leu Leu Pro Gly Ala Asn Lys Met Leu Pro Lys Val Phe Phe Ser Ala
915 920 925
Lys Ser Ile Lys Phe Tyr Asn Pro Ser Glu Asp Ile Leu Arg Ile Arg
930 935 940
Asn His Ser Thr His Thr Lys Asn Gly Ser Pro Gln Lys Gly Tyr Glu
945 950 955 960
Lys Phe Glu Phe Asn Ile Glu Asp Cys Arg Lys Phe Ile Asp Phe Tyr
965 970 975
Lys Gln Ser Ile Ser Lys His Pro Glu Trp Lys Asp Phe Gly Phe Arg
980 985 990
Phe Ser Asp Thr Gln Arg Tyr Asn Ser Ile Asp Glu Phe Tyr Arg Glu
995 1000 1005
Val Glu Asn Gln Gly Tyr Lys Leu Thr Phe Glu Asn Ile Ser Glu
1010 1015 1020
Ser Tyr Ile Asp Ser Val Val Asn Gln Gly Lys Leu Tyr Leu Phe
1025 1030 1035
Gln Ile Tyr Asn Lys Asp Phe Ser Ala Tyr Ser Lys Gly Arg Pro
1040 1045 1050
Asn Leu His Thr Leu Tyr Trp Lys Ala Leu Phe Asp Glu Arg Asn
1055 1060 1065
Leu Gln Asp Val Val Tyr Lys Leu Asn Gly Glu Ala Glu Leu Phe
1070 1075 1080
Tyr Arg Lys Gln Ser Ile Pro Lys Lys Ile Thr His Pro Ala Lys
1085 1090 1095
Glu Ala Ile Ala Asn Lys Asn Lys Asp Asn Pro Lys Lys Glu Ser
1100 1105 1110
Val Phe Glu Tyr Asp Leu Ile Lys Asp Lys Arg Phe Thr Glu Asp
1115 1120 1125
Lys Phe Phe Phe His Cys Pro Ile Thr Ile Asn Phe Lys Ser Ser
1130 1135 1140
Gly Ala Asn Lys Phe Asn Asp Glu Ile Asn Leu Leu Leu Lys Glu
1145 1150 1155
Lys Ala Asn Asp Val His Ile Leu Ser Ile Ala Arg Gly Glu Arg
1160 1165 1170
His Leu Ala Tyr Tyr Thr Leu Val Asp Gly Lys Gly Asn Ile Ile
1175 1180 1185
Lys Gln Asp Thr Phe Asn Ile Ile Gly Asn Asp Arg Met Lys Thr
1190 1195 1200
Asn Tyr His Asp Lys Leu Ala Ala Ile Glu Lys Asp Arg Asp Ser
1205 1210 1215
Ala Arg Lys Asp Trp Lys Lys Ile Asn Asn Ile Lys Glu Met Lys
1220 1225 1230
Glu Gly Tyr Leu Ser Gln Val Val His Glu Ile Ala Lys Leu Val
1235 1240 1245
Ile Glu Tyr Asn Ala Ile Val Val Phe Glu Asp Leu Asn Phe Gly
1250 1255 1260
Phe Lys Arg Gly Arg Phe Lys Val Glu Lys Gln Val Tyr Gln Lys
1265 1270 1275
Leu Glu Lys Met Leu Ile Glu Lys Leu Asn Tyr Leu Val Phe Lys
1280 1285 1290
Asp Asn Glu Phe Asp Lys Thr Gly Gly Val Leu Arg Ala Tyr Gln
1295 1300 1305
Leu Thr Ala Pro Phe Glu Thr Phe Lys Lys Met Gly Lys Gln Thr
1310 1315 1320
Gly Ile Ile Tyr Tyr Val Pro Ala Gly Phe Thr Ser Lys Ile Cys
1325 1330 1335
Pro Val Thr Gly Phe Val Asn Gln Leu Tyr Pro Lys Tyr Glu Ser
1340 1345 1350
Val Ser Lys Ser Gln Glu Phe Phe Ser Lys Phe Asp Lys Ile Cys
1355 1360 1365
Tyr Asn Leu Asp Lys Gly Tyr Phe Glu Phe Ser Phe Asp Tyr Lys
1370 1375 1380
Asn Phe Gly Asp Lys Ala Ala Lys Gly Lys Trp Thr Ile Ala Ser
1385 1390 1395
Phe Gly Ser Arg Leu Ile Asn Phe Arg Asn Ser Asp Lys Asn His
1400 1405 1410
Asn Trp Asp Thr Arg Glu Val Tyr Pro Thr Lys Glu Leu Glu Lys
1415 1420 1425
Leu Leu Lys Asp Tyr Ser Ile Glu Tyr Gly His Gly Glu Cys Ile
1430 1435 1440
Lys Ala Ala Ile Cys Gly Glu Ser Asp Lys Lys Phe Phe Ala Lys
1445 1450 1455
Leu Thr Ser Val Leu Asn Thr Ile Leu Gln Met Arg Asn Ser Lys
1460 1465 1470
Thr Gly Thr Glu Leu Asp Tyr Leu Ile Ser Pro Val Ala Asp Val
1475 1480 1485
Asn Gly Asn Phe Phe Asp Ser Arg Gln Ala Pro Lys Asn Met Pro
1490 1495 1500
Gln Asp Ala Asp Ala Asn Gly Ala Tyr His Ile Gly Leu Lys Gly
1505 1510 1515
Leu Met Leu Leu Gly Arg Ile Lys Asn Asn Gln Glu Gly Lys Lys
1520 1525 1530
Leu Asn Leu Val Ile Lys Asn Glu Glu Tyr Phe Glu Phe Val Gln
1535 1540 1545
Asn Arg Asn Asn Thr Arg Asp Ser Gly Gly Ser Thr Asn Leu Ser
1550 1555 1560
Asp Ile Ile Glu Lys Glu Thr Gly Lys Gln Leu Val Ile Gln Glu
1565 1570 1575
Ser Ile Leu Met Leu Pro Glu Glu Val Glu Glu Val Ile Gly Asn
1580 1585 1590
Lys Pro Glu Ser Asp Ile Leu Val His Thr Ala Tyr Asp Glu Ser
1595 1600 1605
Thr Asp Glu Asn Val Met Leu Leu Thr Ser Asp Ala Pro Glu Tyr
1610 1615 1620
Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn Gly Glu Asn Lys
1625 1630 1635
Ile Lys Met Leu Ser Gly Gly Ser Pro Lys Lys Lys Arg Lys Val
1640 1645 1650
Ser Gly Gly Ser Pro Lys Lys Lys Arg Lys Val
1655 1660
<210> 25
<211> 1592
<212> PRT
<213> Artificial Sequence
<220>
<223> dLBCPF1-PBE-2NLS
<400> 25
Met Pro Lys Lys Lys Arg Lys Val Ser Ser Glu Thr Gly Pro Val Ala
1 5 10 15
Val Asp Pro Thr Leu Arg Arg Arg Ile Glu Pro His Glu Phe Glu Val
20 25 30
Phe Phe Asp Pro Arg Glu Leu Arg Lys Glu Thr Cys Leu Leu Tyr Glu
35 40 45
Ile Asn Trp Gly Gly Arg His Ser Ile Trp Arg His Thr Ser Gln Asn
50 55 60
Thr Asn Lys His Val Glu Val Asn Phe Ile Glu Lys Phe Thr Thr Glu
65 70 75 80
Arg Tyr Phe Cys Pro Asn Thr Arg Cys Ser Ile Thr Trp Phe Leu Ser
85 90 95
Trp Ser Pro Cys Gly Glu Cys Ser Arg Ala Ile Thr Glu Phe Leu Ser
100 105 110
Arg Tyr Pro His Val Thr Leu Phe Ile Tyr Ile Ala Arg Leu Tyr His
115 120 125
His Ala Asp Pro Arg Asn Arg Gln Gly Leu Arg Asp Leu Ile Ser Ser
130 135 140
Gly Val Thr Ile Gln Ile Met Thr Glu Gln Glu Ser Gly Tyr Cys Trp
145 150 155 160
Arg Asn Phe Val Asn Tyr Ser Pro Ser Asn Glu Ala His Trp Pro Arg
165 170 175
Tyr Pro His Leu Trp Val Arg Leu Tyr Val Leu Glu Leu Tyr Cys Ile
180 185 190
Ile Leu Gly Leu Pro Pro Cys Leu Asn Ile Leu Arg Arg Lys Gln Pro
195 200 205
Gln Leu Thr Phe Phe Thr Ile Ala Leu Gln Ser Cys His Tyr Gln Arg
210 215 220
Leu Pro Pro His Ile Leu Trp Ala Thr Gly Leu Lys Ser Gly Ser Glu
225 230 235 240
Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Leu Lys Ser Lys Leu
245 250 255
Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser Lys Thr Leu Arg Phe Lys
260 265 270
Ala Ile Pro Val Gly Lys Thr Gln Glu Asn Ile Asp Asn Lys Arg Leu
275 280 285
Leu Val Glu Asp Glu Lys Arg Ala Glu Asp Tyr Lys Gly Val Lys Lys
290 295 300
Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile Asn Asp Val Leu His Ser
305 310 315 320
Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile Ser Leu Phe Arg Lys Lys
325 330 335
Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu Glu Asn Leu Glu Ile Asn
340 345 350
Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys Gly Asn Glu Gly Tyr Lys
355 360 365
Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr Ile Leu Pro Glu Phe Leu
370 375 380
Asp Asp Lys Asp Glu Ile Ala Leu Val Asn Ser Phe Asn Gly Phe Thr
385 390 395 400
Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg Glu Asn Met Phe Ser Glu
405 410 415
Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg Cys Ile Asn Glu Asn Leu
420 425 430
Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe Glu Lys Val Asp Ala Ile
435 440 445
Phe Asp Lys His Glu Val Gln Glu Ile Lys Glu Lys Ile Leu Asn Ser
450 455 460
Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly Glu Phe Phe Asn Phe Val
465 470 475 480
Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn Ala Ile Ile Gly Gly Phe
485 490 495
Val Thr Glu Ser Gly Glu Lys Ile Lys Gly Leu Asn Glu Tyr Ile Asn
500 505 510
Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu Pro Lys Phe Lys Pro Leu
515 520 525
Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser Leu Ser Phe Tyr Gly Glu
530 535 540
Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu Val Phe Arg Asn Thr Leu
545 550 555 560
Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile Lys Lys Leu Glu Lys Leu
565 570 575
Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala Gly Ile Phe Val Lys Asn
580 585 590
Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp Ile Phe Gly Glu Trp Asn
595 600 605
Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr Asp Asp Ile His Leu Lys
610 615 620
Lys Lys Ala Val Val Thr Glu Lys Tyr Glu Asp Asp Arg Arg Lys Ser
625 630 635 640
Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu Gln Leu Gln Glu Tyr Ala
645 650 655
Asp Ala Asp Leu Ser Val Val Glu Lys Leu Lys Glu Ile Ile Ile Gln
660 665 670
Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly Ser Ser Glu Lys Leu Phe
675 680 685
Asp Ala Asp Phe Val Leu Glu Lys Ser Leu Lys Lys Asn Asp Ala Val
690 695 700
Val Ala Ile Met Lys Asp Leu Leu Asp Ser Val Lys Ser Phe Glu Asn
705 710 715 720
Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys Glu Thr Asn Arg Asp Glu
725 730 735
Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr Asp Ile Leu Leu Lys Val
740 745 750
Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr Val Thr Gln Lys Pro Tyr
755 760 765
Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln Asn Pro Gln Phe Met Gly
770 775 780
Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr Arg Ala Thr Ile Leu Arg
785 790 795 800
Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met Asp Lys Lys Tyr Ala Lys
805 810 815
Cys Leu Gln Lys Ile Asp Lys Asp Asp Val Asn Gly Asn Tyr Glu Lys
820 825 830
Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn Lys Met Leu Pro Lys Val
835 840 845
Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr Asn Pro Ser Glu Asp Ile
850 855 860
Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys Lys Gly Asp Met Phe Asn
865 870 875 880
Leu Asn Asp Cys His Lys Leu Ile Asp Phe Phe Lys Asp Ser Ile Ser
885 890 895
Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp Phe Asn Phe Ser Glu Thr
900 905 910
Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr Arg Glu Val Glu Glu Gln
915 920 925
Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser Lys Lys Glu Val Asp Lys
930 935 940
Leu Val Glu Glu Gly Lys Leu Tyr Met Phe Gln Ile Tyr Asn Lys Asp
945 950 955 960
Phe Ser Asp Lys Ser His Gly Thr Pro Asn Leu His Thr Met Tyr Phe
965 970 975
Lys Leu Leu Phe Asp Glu Asn Asn His Gly Gln Ile Arg Leu Ser Gly
980 985 990
Gly Ala Glu Leu Phe Met Arg Arg Ala Ser Leu Lys Lys Glu Glu Leu
995 1000 1005
Val Val His Pro Ala Asn Ser Pro Ile Ala Asn Lys Asn Pro Asp
1010 1015 1020
Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp Val Tyr Lys Asp
1025 1030 1035
Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile Pro Ile Ala
1040 1045 1050
Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr Glu Val
1055 1060 1065
Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly Ile
1070 1075 1080
Ala Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly
1085 1090 1095
Lys Gly Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn
1100 1105 1110
Asn Phe Asn Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu
1115 1120 1125
Asp Lys Lys Glu Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr
1130 1135 1140
Ser Ile Glu Asn Ile Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln
1145 1150 1155
Val Val His Lys Ile Cys Glu Leu Val Glu Lys Tyr Asp Ala Val
1160 1165 1170
Ile Ala Leu Glu Asp Leu Asn Ser Gly Phe Lys Asn Ser Arg Val
1175 1180 1185
Lys Val Glu Lys Gln Val Tyr Gln Lys Phe Glu Lys Met Leu Ile
1190 1195 1200
Asp Lys Leu Asn Tyr Met Val Asp Lys Lys Ser Asn Pro Cys Ala
1205 1210 1215
Thr Gly Gly Ala Leu Lys Gly Tyr Gln Ile Thr Asn Lys Phe Glu
1220 1225 1230
Ser Phe Lys Ser Met Ser Thr Gln Asn Gly Phe Ile Phe Tyr Ile
1235 1240 1245
Pro Ala Trp Leu Thr Ser Lys Ile Asp Pro Ser Thr Gly Phe Val
1250 1255 1260
Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile Ala Asp Ser Lys Lys
1265 1270 1275
Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr Val Pro Glu Glu Asp
1280 1285 1290
Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn Phe Ser Arg Thr Asp
1295 1300 1305
Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr Ser Tyr Gly Asn Arg
1310 1315 1320
Ile Arg Ile Phe Arg Asn Pro Lys Lys Asn Asn Val Phe Asp Trp
1325 1330 1335
Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys Glu Leu Phe Asn Lys
1340 1345 1350
Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile Arg Ala Leu Leu Cys
1355 1360 1365
Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser Phe Met Ala Leu Met
1370 1375 1380
Ser Leu Met Leu Gln Met Arg Asn Ser Ile Thr Gly Arg Thr Asp
1385 1390 1395
Val Asp Phe Leu Ile Ser Pro Val Lys Asn Ser Asp Gly Ile Phe
1400 1405 1410
Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu Asn Ala Ile Leu Pro
1415 1420 1425
Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn Ile Ala Arg Lys Val
1430 1435 1440
Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala Glu Asp Glu Lys Leu
1445 1450 1455
Asp Lys Val Lys Ile Ala Ile Ser Asn Lys Glu Trp Leu Glu Tyr
1460 1465 1470
Ala Gln Thr Ser Val Lys His Thr Arg Asp Ser Gly Gly Ser Thr
1475 1480 1485
Asn Leu Ser Asp Ile Ile Glu Lys Glu Thr Gly Lys Gln Leu Val
1490 1495 1500
Ile Gln Glu Ser Ile Leu Met Leu Pro Glu Glu Val Glu Glu Val
1505 1510 1515
Ile Gly Asn Lys Pro Glu Ser Asp Ile Leu Val His Thr Ala Tyr
1520 1525 1530
Asp Glu Ser Thr Asp Glu Asn Val Met Leu Leu Thr Ser Asp Ala
1535 1540 1545
Pro Glu Tyr Lys Pro Trp Ala Leu Val Ile Gln Asp Ser Asn Gly
1550 1555 1560
Glu Asn Lys Ile Lys Met Leu Ser Gly Gly Ser Pro Lys Lys Lys
1565 1570 1575
Arg Lys Val Ser Gly Gly Ser Pro Lys Lys Lys Arg Lys Val
1580 1585 1590
<210> 26
<211> 1731
<212> PRT
<213> Artificial Sequence
<220>
<223> dFNCPF1-ABE7.10-2NLS
<400> 26
Met Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Ser Glu Val Glu
1 5 10 15
Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr Leu Ala Lys Arg
20 25 30
Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala Val Leu Val His Asn
35 40 45
Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro Ile Gly Arg His Asp
50 55 60
Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln Gly Gly Leu Val
65 70 75 80
Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr Val Thr Leu Glu
85 90 95
Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg
100 105 110
Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly Ala Ala Gly Ser Leu
115 120 125
Met Asp Val Leu His His Pro Gly Met Asn His Arg Val Glu Ile Thr
130 135 140
Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu Ser Asp Phe Phe
145 150 155 160
Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys Lys Ala Gln Ser Ser
165 170 175
Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro
180 185 190
Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly
195 200 205
Gly Ser Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala
210 215 220
Leu Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly
225 230 235 240
Ala Val Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg
245 250 255
Ala Ile Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu
260 265 270
Arg Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr
275 280 285
Leu Tyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile
290 295 300
His Ser Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr
305 310 315 320
Gly Ala Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn
325 330 335
His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala
340 345 350
Leu Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln
355 360 365
Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser
370 375 380
Ser Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser
385 390 395 400
Ser Gly Gly Ser Ser Gly Gly Ser Leu Lys Ser Ile Tyr Gln Glu Phe
405 410 415
Val Asn Lys Tyr Ser Leu Ser Lys Thr Leu Arg Phe Glu Leu Ile Pro
420 425 430
Gln Gly Lys Thr Leu Glu Asn Ile Lys Ala Arg Gly Leu Ile Leu Asp
435 440 445
Asp Glu Lys Arg Ala Lys Asp Tyr Lys Lys Ala Lys Gln Ile Ile Asp
450 455 460
Lys Tyr His Gln Phe Phe Ile Glu Glu Ile Leu Ser Ser Val Cys Ile
465 470 475 480
Ser Glu Asp Leu Leu Gln Asn Tyr Ser Asp Val Tyr Phe Lys Leu Lys
485 490 495
Lys Ser Asp Asp Asp Asn Leu Gln Lys Asp Phe Lys Ser Ala Lys Asp
500 505 510
Thr Ile Lys Lys Gln Ile Ser Glu Tyr Ile Lys Asp Ser Glu Lys Phe
515 520 525
Lys Asn Leu Phe Asn Gln Asn Leu Ile Asp Ala Lys Lys Gly Gln Glu
530 535 540
Ser Asp Leu Ile Leu Trp Leu Lys Gln Ser Lys Asp Asn Gly Ile Glu
545 550 555 560
Leu Phe Lys Ala Asn Ser Asp Ile Thr Asp Ile Asp Glu Ala Leu Glu
565 570 575
Ile Ile Lys Ser Phe Lys Gly Trp Thr Thr Tyr Phe Lys Gly Phe His
580 585 590
Glu Asn Arg Lys Asn Val Tyr Ser Ser Asn Asp Ile Pro Thr Ser Ile
595 600 605
Ile Tyr Arg Ile Val Asp Asp Asn Leu Pro Lys Phe Leu Glu Asn Lys
610 615 620
Ala Lys Tyr Glu Ser Leu Lys Asp Lys Ala Pro Glu Ala Ile Asn Tyr
625 630 635 640
Glu Gln Ile Lys Lys Asp Leu Ala Glu Glu Leu Thr Phe Asp Ile Asp
645 650 655
Tyr Lys Thr Ser Glu Val Asn Gln Arg Val Phe Ser Leu Asp Glu Val
660 665 670
Phe Glu Ile Ala Asn Phe Asn Asn Tyr Leu Asn Gln Ser Gly Ile Thr
675 680 685
Lys Phe Asn Thr Ile Ile Gly Gly Lys Phe Val Asn Gly Glu Asn Thr
690 695 700
Lys Arg Lys Gly Ile Asn Glu Tyr Ile Asn Leu Tyr Ser Gln Gln Ile
705 710 715 720
Asn Asp Lys Thr Leu Lys Lys Tyr Lys Met Ser Val Leu Phe Lys Gln
725 730 735
Ile Leu Ser Asp Thr Glu Ser Lys Ser Phe Val Ile Asp Lys Leu Glu
740 745 750
Asp Asp Ser Asp Val Val Thr Thr Met Gln Ser Phe Tyr Glu Gln Ile
755 760 765
Ala Ala Phe Lys Thr Val Glu Glu Lys Ser Ile Lys Glu Thr Leu Ser
770 775 780
Leu Leu Phe Asp Asp Leu Lys Ala Gln Lys Leu Asp Leu Ser Lys Ile
785 790 795 800
Tyr Phe Lys Asn Asp Lys Ser Leu Thr Asp Leu Ser Gln Gln Val Phe
805 810 815
Asp Asp Tyr Ser Val Ile Gly Thr Ala Val Leu Glu Tyr Ile Thr Gln
820 825 830
Gln Ile Ala Pro Lys Asn Leu Asp Asn Pro Ser Lys Lys Glu Gln Glu
835 840 845
Leu Ile Ala Lys Lys Thr Glu Lys Ala Lys Tyr Leu Ser Leu Glu Thr
850 855 860
Ile Lys Leu Ala Leu Glu Glu Phe Asn Lys His Arg Asp Ile Asp Lys
865 870 875 880
Gln Cys Arg Phe Glu Glu Ile Leu Ala Asn Phe Ala Ala Ile Pro Met
885 890 895
Ile Phe Asp Glu Ile Ala Gln Asn Lys Asp Asn Leu Ala Gln Ile Ser
900 905 910
Ile Lys Tyr Gln Asn Gln Gly Lys Lys Asp Leu Leu Gln Ala Ser Ala
915 920 925
Glu Asp Asp Val Lys Ala Ile Lys Asp Leu Leu Asp Gln Thr Asn Asn
930 935 940
Leu Leu His Lys Leu Lys Ile Phe His Ile Ser Gln Ser Glu Asp Lys
945 950 955 960
Ala Asn Ile Leu Asp Lys Asp Glu His Phe Tyr Leu Val Phe Glu Glu
965 970 975
Cys Tyr Phe Glu Leu Ala Asn Ile Val Pro Leu Tyr Asn Lys Ile Arg
980 985 990
Asn Tyr Ile Thr Gln Lys Pro Tyr Ser Asp Glu Lys Phe Lys Leu Asn
995 1000 1005
Phe Glu Asn Ser Thr Leu Ala Asn Gly Trp Asp Lys Asn Lys Glu
1010 1015 1020
Pro Asp Asn Thr Ala Ile Leu Phe Ile Lys Asp Asp Lys Tyr Tyr
1025 1030 1035
Leu Gly Val Met Asn Lys Lys Asn Asn Lys Ile Phe Asp Asp Lys
1040 1045 1050
Ala Ile Lys Glu Asn Lys Gly Glu Gly Tyr Lys Lys Ile Val Tyr
1055 1060 1065
Lys Leu Leu Pro Gly Ala Asn Lys Met Leu Pro Lys Val Phe Phe
1070 1075 1080
Ser Ala Lys Ser Ile Lys Phe Tyr Asn Pro Ser Glu Asp Ile Leu
1085 1090 1095
Arg Ile Arg Asn His Ser Thr His Thr Lys Asn Gly Ser Pro Gln
1100 1105 1110
Lys Gly Tyr Glu Lys Phe Glu Phe Asn Ile Glu Asp Cys Arg Lys
1115 1120 1125
Phe Ile Asp Phe Tyr Lys Gln Ser Ile Ser Lys His Pro Glu Trp
1130 1135 1140
Lys Asp Phe Gly Phe Arg Phe Ser Asp Thr Gln Arg Tyr Asn Ser
1145 1150 1155
Ile Asp Glu Phe Tyr Arg Glu Val Glu Asn Gln Gly Tyr Lys Leu
1160 1165 1170
Thr Phe Glu Asn Ile Ser Glu Ser Tyr Ile Asp Ser Val Val Asn
1175 1180 1185
Gln Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ser
1190 1195 1200
Ala Tyr Ser Lys Gly Arg Pro Asn Leu His Thr Leu Tyr Trp Lys
1205 1210 1215
Ala Leu Phe Asp Glu Arg Asn Leu Gln Asp Val Val Tyr Lys Leu
1220 1225 1230
Asn Gly Glu Ala Glu Leu Phe Tyr Arg Lys Gln Ser Ile Pro Lys
1235 1240 1245
Lys Ile Thr His Pro Ala Lys Glu Ala Ile Ala Asn Lys Asn Lys
1250 1255 1260
Asp Asn Pro Lys Lys Glu Ser Val Phe Glu Tyr Asp Leu Ile Lys
1265 1270 1275
Asp Lys Arg Phe Thr Glu Asp Lys Phe Phe Phe His Cys Pro Ile
1280 1285 1290
Thr Ile Asn Phe Lys Ser Ser Gly Ala Asn Lys Phe Asn Asp Glu
1295 1300 1305
Ile Asn Leu Leu Leu Lys Glu Lys Ala Asn Asp Val His Ile Leu
1310 1315 1320
Ser Ile Ala Arg Gly Glu Arg His Leu Ala Tyr Tyr Thr Leu Val
1325 1330 1335
Asp Gly Lys Gly Asn Ile Ile Lys Gln Asp Thr Phe Asn Ile Ile
1340 1345 1350
Gly Asn Asp Arg Met Lys Thr Asn Tyr His Asp Lys Leu Ala Ala
1355 1360 1365
Ile Glu Lys Asp Arg Asp Ser Ala Arg Lys Asp Trp Lys Lys Ile
1370 1375 1380
Asn Asn Ile Lys Glu Met Lys Glu Gly Tyr Leu Ser Gln Val Val
1385 1390 1395
His Glu Ile Ala Lys Leu Val Ile Glu Tyr Asn Ala Ile Val Val
1400 1405 1410
Phe Glu Asp Leu Asn Phe Gly Phe Lys Arg Gly Arg Phe Lys Val
1415 1420 1425
Glu Lys Gln Val Tyr Gln Lys Leu Glu Lys Met Leu Ile Glu Lys
1430 1435 1440
Leu Asn Tyr Leu Val Phe Lys Asp Asn Glu Phe Asp Lys Thr Gly
1445 1450 1455
Gly Val Leu Arg Ala Tyr Gln Leu Thr Ala Pro Phe Glu Thr Phe
1460 1465 1470
Lys Lys Met Gly Lys Gln Thr Gly Ile Ile Tyr Tyr Val Pro Ala
1475 1480 1485
Gly Phe Thr Ser Lys Ile Cys Pro Val Thr Gly Phe Val Asn Gln
1490 1495 1500
Leu Tyr Pro Lys Tyr Glu Ser Val Ser Lys Ser Gln Glu Phe Phe
1505 1510 1515
Ser Lys Phe Asp Lys Ile Cys Tyr Asn Leu Asp Lys Gly Tyr Phe
1520 1525 1530
Glu Phe Ser Phe Asp Tyr Lys Asn Phe Gly Asp Lys Ala Ala Lys
1535 1540 1545
Gly Lys Trp Thr Ile Ala Ser Phe Gly Ser Arg Leu Ile Asn Phe
1550 1555 1560
Arg Asn Ser Asp Lys Asn His Asn Trp Asp Thr Arg Glu Val Tyr
1565 1570 1575
Pro Thr Lys Glu Leu Glu Lys Leu Leu Lys Asp Tyr Ser Ile Glu
1580 1585 1590
Tyr Gly His Gly Glu Cys Ile Lys Ala Ala Ile Cys Gly Glu Ser
1595 1600 1605
Asp Lys Lys Phe Phe Ala Lys Leu Thr Ser Val Leu Asn Thr Ile
1610 1615 1620
Leu Gln Met Arg Asn Ser Lys Thr Gly Thr Glu Leu Asp Tyr Leu
1625 1630 1635
Ile Ser Pro Val Ala Asp Val Asn Gly Asn Phe Phe Asp Ser Arg
1640 1645 1650
Gln Ala Pro Lys Asn Met Pro Gln Asp Ala Asp Ala Asn Gly Ala
1655 1660 1665
Tyr His Ile Gly Leu Lys Gly Leu Met Leu Leu Gly Arg Ile Lys
1670 1675 1680
Asn Asn Gln Glu Gly Lys Lys Leu Asn Leu Val Ile Lys Asn Glu
1685 1690 1695
Glu Tyr Phe Glu Phe Val Gln Asn Arg Asn Asn Ser Gly Gly Ser
1700 1705 1710
Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Pro Lys Lys Lys
1715 1720 1725
Arg Lys Val
1730
<210> 27
<211> 1659
<212> PRT
<213> Artificial Sequence
<220>
<223> dLBCPF1-ABE7.10-2NLS
<400> 27
Met Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Ser Glu Val Glu
1 5 10 15
Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr Leu Ala Lys Arg
20 25 30
Ala Trp Asp Glu Arg Glu Val Pro Val Gly Ala Val Leu Val His Asn
35 40 45
Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro Ile Gly Arg His Asp
50 55 60
Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln Gly Gly Leu Val
65 70 75 80
Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr Val Thr Leu Glu
85 90 95
Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg
100 105 110
Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly Ala Ala Gly Ser Leu
115 120 125
Met Asp Val Leu His His Pro Gly Met Asn His Arg Val Glu Ile Thr
130 135 140
Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu Ser Asp Phe Phe
145 150 155 160
Arg Met Arg Arg Gln Glu Ile Lys Ala Gln Lys Lys Ala Gln Ser Ser
165 170 175
Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro
180 185 190
Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly
195 200 205
Gly Ser Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala
210 215 220
Leu Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly
225 230 235 240
Ala Val Leu Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg
245 250 255
Ala Ile Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu
260 265 270
Arg Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr
275 280 285
Leu Tyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile
290 295 300
His Ser Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala Lys Thr
305 310 315 320
Gly Ala Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro Gly Met Asn
325 330 335
His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala
340 345 350
Leu Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln
355 360 365
Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser
370 375 380
Ser Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser
385 390 395 400
Ser Gly Gly Ser Ser Gly Gly Ser Leu Lys Ser Lys Leu Glu Lys Phe
405 410 415
Thr Asn Cys Tyr Ser Leu Ser Lys Thr Leu Arg Phe Lys Ala Ile Pro
420 425 430
Val Gly Lys Thr Gln Glu Asn Ile Asp Asn Lys Arg Leu Leu Val Glu
435 440 445
Asp Glu Lys Arg Ala Glu Asp Tyr Lys Gly Val Lys Lys Leu Leu Asp
450 455 460
Arg Tyr Tyr Leu Ser Phe Ile Asn Asp Val Leu His Ser Ile Lys Leu
465 470 475 480
Lys Asn Leu Asn Asn Tyr Ile Ser Leu Phe Arg Lys Lys Thr Arg Thr
485 490 495
Glu Lys Glu Asn Lys Glu Leu Glu Asn Leu Glu Ile Asn Leu Arg Lys
500 505 510
Glu Ile Ala Lys Ala Phe Lys Gly Asn Glu Gly Tyr Lys Ser Leu Phe
515 520 525
Lys Lys Asp Ile Ile Glu Thr Ile Leu Pro Glu Phe Leu Asp Asp Lys
530 535 540
Asp Glu Ile Ala Leu Val Asn Ser Phe Asn Gly Phe Thr Thr Ala Phe
545 550 555 560
Thr Gly Phe Phe Asp Asn Arg Glu Asn Met Phe Ser Glu Glu Ala Lys
565 570 575
Ser Thr Ser Ile Ala Phe Arg Cys Ile Asn Glu Asn Leu Thr Arg Tyr
580 585 590
Ile Ser Asn Met Asp Ile Phe Glu Lys Val Asp Ala Ile Phe Asp Lys
595 600 605
His Glu Val Gln Glu Ile Lys Glu Lys Ile Leu Asn Ser Asp Tyr Asp
610 615 620
Val Glu Asp Phe Phe Glu Gly Glu Phe Phe Asn Phe Val Leu Thr Gln
625 630 635 640
Glu Gly Ile Asp Val Tyr Asn Ala Ile Ile Gly Gly Phe Val Thr Glu
645 650 655
Ser Gly Glu Lys Ile Lys Gly Leu Asn Glu Tyr Ile Asn Leu Tyr Asn
660 665 670
Gln Lys Thr Lys Gln Lys Leu Pro Lys Phe Lys Pro Leu Tyr Lys Gln
675 680 685
Val Leu Ser Asp Arg Glu Ser Leu Ser Phe Tyr Gly Glu Gly Tyr Thr
690 695 700
Ser Asp Glu Glu Val Leu Glu Val Phe Arg Asn Thr Leu Asn Lys Asn
705 710 715 720
Ser Glu Ile Phe Ser Ser Ile Lys Lys Leu Glu Lys Leu Phe Lys Asn
725 730 735
Phe Asp Glu Tyr Ser Ser Ala Gly Ile Phe Val Lys Asn Gly Pro Ala
740 745 750
Ile Ser Thr Ile Ser Lys Asp Ile Phe Gly Glu Trp Asn Val Ile Arg
755 760 765
Asp Lys Trp Asn Ala Glu Tyr Asp Asp Ile His Leu Lys Lys Lys Ala
770 775 780
Val Val Thr Glu Lys Tyr Glu Asp Asp Arg Arg Lys Ser Phe Lys Lys
785 790 795 800
Ile Gly Ser Phe Ser Leu Glu Gln Leu Gln Glu Tyr Ala Asp Ala Asp
805 810 815
Leu Ser Val Val Glu Lys Leu Lys Glu Ile Ile Ile Gln Lys Val Asp
820 825 830
Glu Ile Tyr Lys Val Tyr Gly Ser Ser Glu Lys Leu Phe Asp Ala Asp
835 840 845
Phe Val Leu Glu Lys Ser Leu Lys Lys Asn Asp Ala Val Val Ala Ile
850 855 860
Met Lys Asp Leu Leu Asp Ser Val Lys Ser Phe Glu Asn Tyr Ile Lys
865 870 875 880
Ala Phe Phe Gly Glu Gly Lys Glu Thr Asn Arg Asp Glu Ser Phe Tyr
885 890 895
Gly Asp Phe Val Leu Ala Tyr Asp Ile Leu Leu Lys Val Asp His Ile
900 905 910
Tyr Asp Ala Ile Arg Asn Tyr Val Thr Gln Lys Pro Tyr Ser Lys Asp
915 920 925
Lys Phe Lys Leu Tyr Phe Gln Asn Pro Gln Phe Met Gly Gly Trp Asp
930 935 940
Lys Asp Lys Glu Thr Asp Tyr Arg Ala Thr Ile Leu Arg Tyr Gly Ser
945 950 955 960
Lys Tyr Tyr Leu Ala Ile Met Asp Lys Lys Tyr Ala Lys Cys Leu Gln
965 970 975
Lys Ile Asp Lys Asp Asp Val Asn Gly Asn Tyr Glu Lys Ile Asn Tyr
980 985 990
Lys Leu Leu Pro Gly Pro Asn Lys Met Leu Pro Lys Val Phe Phe Ser
995 1000 1005
Lys Lys Trp Met Ala Tyr Tyr Asn Pro Ser Glu Asp Ile Gln Lys
1010 1015 1020
Ile Tyr Lys Asn Gly Thr Phe Lys Lys Gly Asp Met Phe Asn Leu
1025 1030 1035
Asn Asp Cys His Lys Leu Ile Asp Phe Phe Lys Asp Ser Ile Ser
1040 1045 1050
Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp Phe Asn Phe Ser Glu
1055 1060 1065
Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr Arg Glu Val Glu
1070 1075 1080
Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser Lys Lys Glu
1085 1090 1095
Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe Gln Ile
1100 1105 1110
Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn Leu
1115 1120 1125
His Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly
1130 1135 1140
Gln Ile Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala
1145 1150 1155
Ser Leu Lys Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro
1160 1165 1170
Ile Ala Asn Lys Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu
1175 1180 1185
Ser Tyr Asp Val Tyr Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr
1190 1195 1200
Glu Leu His Ile Pro Ile Ala Ile Asn Lys Cys Pro Lys Asn Ile
1205 1210 1215
Phe Lys Ile Asn Thr Glu Val Arg Val Leu Leu Lys His Asp Asp
1220 1225 1230
Asn Pro Tyr Val Ile Gly Ile Ala Arg Gly Glu Arg Asn Leu Leu
1235 1240 1245
Tyr Ile Val Val Val Asp Gly Lys Gly Asn Ile Val Glu Gln Tyr
1250 1255 1260
Ser Leu Asn Glu Ile Ile Asn Asn Phe Asn Gly Ile Arg Ile Lys
1265 1270 1275
Thr Asp Tyr His Ser Leu Leu Asp Lys Lys Glu Lys Glu Arg Phe
1280 1285 1290
Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu Asn Ile Lys Glu Leu
1295 1300 1305
Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys Ile Cys Glu Leu
1310 1315 1320
Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp Leu Asn Ser
1325 1330 1335
Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val Tyr Gln
1340 1345 1350
Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val Asp
1355 1360 1365
Lys Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr
1370 1375 1380
Gln Ile Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln
1385 1390 1395
Asn Gly Phe Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile
1400 1405 1410
Asp Pro Ser Thr Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr
1415 1420 1425
Ser Ile Ala Asp Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile
1430 1435 1440
Met Tyr Val Pro Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr
1445 1450 1455
Lys Asn Phe Ser Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys
1460 1465 1470
Leu Tyr Ser Tyr Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys
1475 1480 1485
Lys Asn Asn Val Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala
1490 1495 1500
Tyr Lys Glu Leu Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly
1505 1510 1515
Asp Ile Arg Ala Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr
1520 1525 1530
Ser Ser Phe Met Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn
1535 1540 1545
Ser Ile Thr Gly Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val
1550 1555 1560
Lys Asn Ser Asp Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala
1565 1570 1575
Gln Glu Asn Ala Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala
1580 1585 1590
Tyr Asn Ile Ala Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys
1595 1600 1605
Lys Ala Glu Asp Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser
1610 1615 1620
Asn Lys Glu Trp Leu Glu Tyr Ala Gln Thr Ser Val Lys His Ser
1625 1630 1635
Gly Gly Ser Pro Lys Lys Lys Arg Lys Val Ser Gly Gly Ser Pro
1640 1645 1650
Lys Lys Lys Arg Lys Val
1655
<210> 28
<211> 1656
<212> PRT
<213> Artificial Sequence
<220>
<223> LBCPF1-ABE2-X2
<400> 28
Met Ser Lys Leu Glu Lys Phe Thr Asn Cys Tyr Ser Leu Ser Lys Thr
1 5 10 15
Leu Arg Phe Lys Ala Ile Pro Val Gly Lys Thr Gln Glu Asn Ile Asp
20 25 30
Asn Lys Arg Leu Leu Val Glu Asp Glu Lys Arg Ala Glu Asp Tyr Lys
35 40 45
Gly Val Lys Lys Leu Leu Asp Arg Tyr Tyr Leu Ser Phe Ile Asn Asp
50 55 60
Val Leu His Ser Ile Lys Leu Lys Asn Leu Asn Asn Tyr Ile Ser Leu
65 70 75 80
Phe Arg Lys Lys Thr Arg Thr Glu Lys Glu Asn Lys Glu Leu Glu Asn
85 90 95
Leu Glu Ile Asn Leu Arg Lys Glu Ile Ala Lys Ala Phe Lys Gly Asn
100 105 110
Glu Gly Tyr Lys Ser Leu Phe Lys Lys Asp Ile Ile Glu Thr Ile Leu
115 120 125
Pro Glu Phe Leu Asp Asp Lys Asp Glu Ile Ala Leu Val Asn Ser Phe
130 135 140
Asn Gly Phe Thr Thr Ala Phe Thr Gly Phe Phe Asp Asn Arg Glu Asn
145 150 155 160
Met Phe Ser Glu Glu Ala Lys Ser Thr Ser Ile Ala Phe Arg Cys Ile
165 170 175
Asn Glu Asn Leu Thr Arg Tyr Ile Ser Asn Met Asp Ile Phe Glu Lys
180 185 190
Val Asp Ala Ile Phe Asp Lys His Glu Val Gln Glu Ile Lys Glu Lys
195 200 205
Ile Leu Asn Ser Asp Tyr Asp Val Glu Asp Phe Phe Glu Gly Glu Phe
210 215 220
Phe Asn Phe Val Leu Thr Gln Glu Gly Ile Asp Val Tyr Asn Ala Ile
225 230 235 240
Ile Gly Gly Phe Val Thr Glu Ser Gly Glu Lys Ile Lys Gly Leu Asn
245 250 255
Glu Tyr Ile Asn Leu Tyr Asn Gln Lys Thr Lys Gln Lys Leu Pro Lys
260 265 270
Phe Lys Pro Leu Tyr Lys Gln Val Leu Ser Asp Arg Glu Ser Leu Ser
275 280 285
Phe Tyr Gly Glu Gly Tyr Thr Ser Asp Glu Glu Val Leu Glu Val Phe
290 295 300
Arg Asn Thr Leu Asn Lys Asn Ser Glu Ile Phe Ser Ser Ile Lys Lys
305 310 315 320
Leu Glu Lys Leu Phe Lys Asn Phe Asp Glu Tyr Ser Ser Ala Gly Ile
325 330 335
Phe Val Lys Asn Gly Pro Ala Ile Ser Thr Ile Ser Lys Asp Ile Phe
340 345 350
Gly Glu Trp Asn Val Ile Arg Asp Lys Trp Asn Ala Glu Tyr Asp Asp
355 360 365
Ile His Leu Lys Lys Lys Ala Val Val Thr Glu Lys Tyr Glu Asp Asp
370 375 380
Arg Arg Lys Ser Phe Lys Lys Ile Gly Ser Phe Ser Leu Glu Gln Leu
385 390 395 400
Gln Glu Tyr Ala Asp Ala Asp Leu Ser Val Val Glu Lys Leu Lys Glu
405 410 415
Ile Ile Ile Gln Lys Val Asp Glu Ile Tyr Lys Val Tyr Gly Ser Ser
420 425 430
Glu Lys Leu Phe Asp Ala Asp Phe Val Leu Glu Lys Ser Leu Lys Lys
435 440 445
Asn Asp Ala Val Val Ala Ile Met Lys Asp Leu Leu Asp Ser Val Lys
450 455 460
Ser Phe Glu Asn Tyr Ile Lys Ala Phe Phe Gly Glu Gly Lys Glu Thr
465 470 475 480
Asn Arg Asp Glu Ser Phe Tyr Gly Asp Phe Val Leu Ala Tyr Asp Ile
485 490 495
Leu Leu Lys Val Asp His Ile Tyr Asp Ala Ile Arg Asn Tyr Val Thr
500 505 510
Gln Lys Pro Tyr Ser Lys Asp Lys Phe Lys Leu Tyr Phe Gln Asn Pro
515 520 525
Gln Phe Met Gly Gly Trp Asp Lys Asp Lys Glu Thr Asp Tyr Arg Ala
530 535 540
Thr Ile Leu Arg Tyr Gly Ser Lys Tyr Tyr Leu Ala Ile Met Asp Lys
545 550 555 560
Lys Tyr Ala Lys Cys Leu Gln Lys Ile Asp Lys Asp Asp Val Asn Gly
565 570 575
Asn Tyr Glu Lys Ile Asn Tyr Lys Leu Leu Pro Gly Pro Asn Lys Met
580 585 590
Leu Pro Lys Val Phe Phe Ser Lys Lys Trp Met Ala Tyr Tyr Asn Pro
595 600 605
Ser Glu Asp Ile Gln Lys Ile Tyr Lys Asn Gly Thr Phe Lys Lys Gly
610 615 620
Asp Met Phe Asn Leu Asn Asp Cys His Lys Leu Ile Asp Phe Phe Lys
625 630 635 640
Asp Ser Ile Ser Arg Tyr Pro Lys Trp Ser Asn Ala Tyr Asp Phe Asn
645 650 655
Phe Ser Glu Thr Glu Lys Tyr Lys Asp Ile Ala Gly Phe Tyr Arg Glu
660 665 670
Val Glu Glu Gln Gly Tyr Lys Val Ser Phe Glu Ser Ala Ser Lys Lys
675 680 685
Glu Val Asp Lys Leu Val Glu Glu Gly Lys Leu Tyr Met Phe Gln Ile
690 695 700
Tyr Asn Lys Asp Phe Ser Asp Lys Ser His Gly Thr Pro Asn Leu His
705 710 715 720
Thr Met Tyr Phe Lys Leu Leu Phe Asp Glu Asn Asn His Gly Gln Ile
725 730 735
Arg Leu Ser Gly Gly Ala Glu Leu Phe Met Arg Arg Ala Ser Leu Lys
740 745 750
Lys Glu Glu Leu Val Val His Pro Ala Asn Ser Pro Ile Ala Asn Lys
755 760 765
Asn Pro Asp Asn Pro Lys Lys Thr Thr Thr Leu Ser Tyr Asp Val Tyr
770 775 780
Lys Asp Lys Arg Phe Ser Glu Asp Gln Tyr Glu Leu His Ile Pro Ile
785 790 795 800
Ala Ile Asn Lys Cys Pro Lys Asn Ile Phe Lys Ile Asn Thr Glu Val
805 810 815
Arg Val Leu Leu Lys His Asp Asp Asn Pro Tyr Val Ile Gly Ile Ala
820 825 830
Arg Gly Glu Arg Asn Leu Leu Tyr Ile Val Val Val Asp Gly Lys Gly
835 840 845
Asn Ile Val Glu Gln Tyr Ser Leu Asn Glu Ile Ile Asn Asn Phe Asn
850 855 860
Gly Ile Arg Ile Lys Thr Asp Tyr His Ser Leu Leu Asp Lys Lys Glu
865 870 875 880
Lys Glu Arg Phe Glu Ala Arg Gln Asn Trp Thr Ser Ile Glu Asn Ile
885 890 895
Lys Glu Leu Lys Ala Gly Tyr Ile Ser Gln Val Val His Lys Ile Cys
900 905 910
Glu Leu Val Glu Lys Tyr Asp Ala Val Ile Ala Leu Glu Asp Leu Asn
915 920 925
Ser Gly Phe Lys Asn Ser Arg Val Lys Val Glu Lys Gln Val Tyr Gln
930 935 940
Lys Phe Glu Lys Met Leu Ile Asp Lys Leu Asn Tyr Met Val Asp Lys
945 950 955 960
Lys Ser Asn Pro Cys Ala Thr Gly Gly Ala Leu Lys Gly Tyr Gln Ile
965 970 975
Thr Asn Lys Phe Glu Ser Phe Lys Ser Met Ser Thr Gln Asn Gly Phe
980 985 990
Ile Phe Tyr Ile Pro Ala Trp Leu Thr Ser Lys Ile Asp Pro Ser Thr
995 1000 1005
Gly Phe Val Asn Leu Leu Lys Thr Lys Tyr Thr Ser Ile Ala Asp
1010 1015 1020
Ser Lys Lys Phe Ile Ser Ser Phe Asp Arg Ile Met Tyr Val Pro
1025 1030 1035
Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr Lys Asn Phe Ser
1040 1045 1050
Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys Leu Tyr Ser Tyr
1055 1060 1065
Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys Lys Asn Asn Val
1070 1075 1080
Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala Tyr Lys Glu Leu
1085 1090 1095
Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly Asp Ile Arg Ala
1100 1105 1110
Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr Ser Ser Phe Met
1115 1120 1125
Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn Ser Ile Thr Gly
1130 1135 1140
Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val Lys Asn Ser Asp
1145 1150 1155
Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala Gln Glu Asn Ala
1160 1165 1170
Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala Tyr Asn Ile Ala
1175 1180 1185
Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys Lys Ala Glu Asp
1190 1195 1200
Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser Asn Lys Glu Trp
1205 1210 1215
Leu Glu Tyr Ala Gln Thr Ser Val Lys His Lys Leu Met Pro Lys
1220 1225 1230
Lys Lys Arg Lys Val Ser Gly Gly Ser Ser Glu Val Glu Phe Ser
1235 1240 1245
His Glu Tyr Trp Met Arg His Ala Leu Thr Leu Ala Lys Arg Ala
1250 1255 1260
Trp Asp Glu Arg Glu Val Pro Val Gly Ala Val Leu Val His Asn
1265 1270 1275
Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Pro Ile Gly Arg His
1280 1285 1290
Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg Gln Gly Gly
1295 1300 1305
Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr Leu Tyr Val
1310 1315 1320
Thr Leu Glu Pro Cys Val Met Cys Ala Gly Ala Met Ile His Ser
1325 1330 1335
Arg Ile Gly Arg Val Val Phe Gly Ala Arg Asp Ala Lys Thr Gly
1340 1345 1350
Ala Ala Gly Ser Leu Met Asp Val Leu His His Pro Gly Met Asn
1355 1360 1365
His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala
1370 1375 1380
Ala Leu Leu Ser Asp Phe Phe Arg Met Arg Arg Gln Glu Ile Lys
1385 1390 1395
Ala Gln Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser
1400 1405 1410
Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala
1415 1420 1425
Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser Ser Glu Val
1430 1435 1440
Glu Phe Ser His Glu Tyr Trp Met Arg His Ala Leu Thr Leu Ala
1445 1450 1455
Lys Arg Ala Arg Asp Glu Arg Glu Val Pro Val Gly Ala Val Leu
1460 1465 1470
Val Leu Asn Asn Arg Val Ile Gly Glu Gly Trp Asn Arg Ala Ile
1475 1480 1485
Gly Leu His Asp Pro Thr Ala His Ala Glu Ile Met Ala Leu Arg
1490 1495 1500
Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu Ile Asp Ala Thr
1505 1510 1515
Leu Tyr Val Thr Phe Glu Pro Cys Val Met Cys Ala Gly Ala Met
1520 1525 1530
Ile His Ser Arg Ile Gly Arg Val Val Phe Gly Val Arg Asn Ala
1535 1540 1545
Lys Thr Gly Ala Ala Gly Ser Leu Met Asp Val Leu His Tyr Pro
1550 1555 1560
Gly Met Asn His Arg Val Glu Ile Thr Glu Gly Ile Leu Ala Asp
1565 1570 1575
Glu Cys Ala Ala Leu Leu Cys Tyr Phe Phe Arg Met Pro Arg Gln
1580 1585 1590
Val Phe Asn Ala Gln Lys Lys Ala Gln Ser Ser Thr Asp Ser Gly
1595 1600 1605
Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr Pro Gly Thr Ser
1610 1615 1620
Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser Ser Gly Gly Ser
1625 1630 1635
Leu Lys Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys
1640 1645 1650
Lys Lys Lys
1655
<210> 29
<211> 1663
<212> PRT
<213> Artificial Sequence
<220>
<223> LBCPF1-ABE2-X3
<400> 29
Met Pro Lys Lys Lys Arg Lys Val Ser Lys Leu Glu Lys Phe Thr Asn
1 5 10 15
Cys Tyr Ser Leu Ser Lys Thr Leu Arg Phe Lys Ala Ile Pro Val Gly
20 25 30
Lys Thr Gln Glu Asn Ile Asp Asn Lys Arg Leu Leu Val Glu Asp Glu
35 40 45
Lys Arg Ala Glu Asp Tyr Lys Gly Val Lys Lys Leu Leu Asp Arg Tyr
50 55 60
Tyr Leu Ser Phe Ile Asn Asp Val Leu His Ser Ile Lys Leu Lys Asn
65 70 75 80
Leu Asn Asn Tyr Ile Ser Leu Phe Arg Lys Lys Thr Arg Thr Glu Lys
85 90 95
Glu Asn Lys Glu Leu Glu Asn Leu Glu Ile Asn Leu Arg Lys Glu Ile
100 105 110
Ala Lys Ala Phe Lys Gly Asn Glu Gly Tyr Lys Ser Leu Phe Lys Lys
115 120 125
Asp Ile Ile Glu Thr Ile Leu Pro Glu Phe Leu Asp Asp Lys Asp Glu
130 135 140
Ile Ala Leu Val Asn Ser Phe Asn Gly Phe Thr Thr Ala Phe Thr Gly
145 150 155 160
Phe Phe Asp Asn Arg Glu Asn Met Phe Ser Glu Glu Ala Lys Ser Thr
165 170 175
Ser Ile Ala Phe Arg Cys Ile Asn Glu Asn Leu Thr Arg Tyr Ile Ser
180 185 190
Asn Met Asp Ile Phe Glu Lys Val Asp Ala Ile Phe Asp Lys His Glu
195 200 205
Val Gln Glu Ile Lys Glu Lys Ile Leu Asn Ser Asp Tyr Asp Val Glu
210 215 220
Asp Phe Phe Glu Gly Glu Phe Phe Asn Phe Val Leu Thr Gln Glu Gly
225 230 235 240
Ile Asp Val Tyr Asn Ala Ile Ile Gly Gly Phe Val Thr Glu Ser Gly
245 250 255
Glu Lys Ile Lys Gly Leu Asn Glu Tyr Ile Asn Leu Tyr Asn Gln Lys
260 265 270
Thr Lys Gln Lys Leu Pro Lys Phe Lys Pro Leu Tyr Lys Gln Val Leu
275 280 285
Ser Asp Arg Glu Ser Leu Ser Phe Tyr Gly Glu Gly Tyr Thr Ser Asp
290 295 300
Glu Glu Val Leu Glu Val Phe Arg Asn Thr Leu Asn Lys Asn Ser Glu
305 310 315 320
Ile Phe Ser Ser Ile Lys Lys Leu Glu Lys Leu Phe Lys Asn Phe Asp
325 330 335
Glu Tyr Ser Ser Ala Gly Ile Phe Val Lys Asn Gly Pro Ala Ile Ser
340 345 350
Thr Ile Ser Lys Asp Ile Phe Gly Glu Trp Asn Val Ile Arg Asp Lys
355 360 365
Trp Asn Ala Glu Tyr Asp Asp Ile His Leu Lys Lys Lys Ala Val Val
370 375 380
Thr Glu Lys Tyr Glu Asp Asp Arg Arg Lys Ser Phe Lys Lys Ile Gly
385 390 395 400
Ser Phe Ser Leu Glu Gln Leu Gln Glu Tyr Ala Asp Ala Asp Leu Ser
405 410 415
Val Val Glu Lys Leu Lys Glu Ile Ile Ile Gln Lys Val Asp Glu Ile
420 425 430
Tyr Lys Val Tyr Gly Ser Ser Glu Lys Leu Phe Asp Ala Asp Phe Val
435 440 445
Leu Glu Lys Ser Leu Lys Lys Asn Asp Ala Val Val Ala Ile Met Lys
450 455 460
Asp Leu Leu Asp Ser Val Lys Ser Phe Glu Asn Tyr Ile Lys Ala Phe
465 470 475 480
Phe Gly Glu Gly Lys Glu Thr Asn Arg Asp Glu Ser Phe Tyr Gly Asp
485 490 495
Phe Val Leu Ala Tyr Asp Ile Leu Leu Lys Val Asp His Ile Tyr Asp
500 505 510
Ala Ile Arg Asn Tyr Val Thr Gln Lys Pro Tyr Ser Lys Asp Lys Phe
515 520 525
Lys Leu Tyr Phe Gln Asn Pro Gln Phe Met Gly Gly Trp Asp Lys Asp
530 535 540
Lys Glu Thr Asp Tyr Arg Ala Thr Ile Leu Arg Tyr Gly Ser Lys Tyr
545 550 555 560
Tyr Leu Ala Ile Met Asp Lys Lys Tyr Ala Lys Cys Leu Gln Lys Ile
565 570 575
Asp Lys Asp Asp Val Asn Gly Asn Tyr Glu Lys Ile Asn Tyr Lys Leu
580 585 590
Leu Pro Gly Pro Asn Lys Met Leu Pro Lys Val Phe Phe Ser Lys Lys
595 600 605
Trp Met Ala Tyr Tyr Asn Pro Ser Glu Asp Ile Gln Lys Ile Tyr Lys
610 615 620
Asn Gly Thr Phe Lys Lys Gly Asp Met Phe Asn Leu Asn Asp Cys His
625 630 635 640
Lys Leu Ile Asp Phe Phe Lys Asp Ser Ile Ser Arg Tyr Pro Lys Trp
645 650 655
Ser Asn Ala Tyr Asp Phe Asn Phe Ser Glu Thr Glu Lys Tyr Lys Asp
660 665 670
Ile Ala Gly Phe Tyr Arg Glu Val Glu Glu Gln Gly Tyr Lys Val Ser
675 680 685
Phe Glu Ser Ala Ser Lys Lys Glu Val Asp Lys Leu Val Glu Glu Gly
690 695 700
Lys Leu Tyr Met Phe Gln Ile Tyr Asn Lys Asp Phe Ser Asp Lys Ser
705 710 715 720
His Gly Thr Pro Asn Leu His Thr Met Tyr Phe Lys Leu Leu Phe Asp
725 730 735
Glu Asn Asn His Gly Gln Ile Arg Leu Ser Gly Gly Ala Glu Leu Phe
740 745 750
Met Arg Arg Ala Ser Leu Lys Lys Glu Glu Leu Val Val His Pro Ala
755 760 765
Asn Ser Pro Ile Ala Asn Lys Asn Pro Asp Asn Pro Lys Lys Thr Thr
770 775 780
Thr Leu Ser Tyr Asp Val Tyr Lys Asp Lys Arg Phe Ser Glu Asp Gln
785 790 795 800
Tyr Glu Leu His Ile Pro Ile Ala Ile Asn Lys Cys Pro Lys Asn Ile
805 810 815
Phe Lys Ile Asn Thr Glu Val Arg Val Leu Leu Lys His Asp Asp Asn
820 825 830
Pro Tyr Val Ile Gly Ile Ala Arg Gly Glu Arg Asn Leu Leu Tyr Ile
835 840 845
Val Val Val Asp Gly Lys Gly Asn Ile Val Glu Gln Tyr Ser Leu Asn
850 855 860
Glu Ile Ile Asn Asn Phe Asn Gly Ile Arg Ile Lys Thr Asp Tyr His
865 870 875 880
Ser Leu Leu Asp Lys Lys Glu Lys Glu Arg Phe Glu Ala Arg Gln Asn
885 890 895
Trp Thr Ser Ile Glu Asn Ile Lys Glu Leu Lys Ala Gly Tyr Ile Ser
900 905 910
Gln Val Val His Lys Ile Cys Glu Leu Val Glu Lys Tyr Asp Ala Val
915 920 925
Ile Ala Leu Glu Asp Leu Asn Ser Gly Phe Lys Asn Ser Arg Val Lys
930 935 940
Val Glu Lys Gln Val Tyr Gln Lys Phe Glu Lys Met Leu Ile Asp Lys
945 950 955 960
Leu Asn Tyr Met Val Asp Lys Lys Ser Asn Pro Cys Ala Thr Gly Gly
965 970 975
Ala Leu Lys Gly Tyr Gln Ile Thr Asn Lys Phe Glu Ser Phe Lys Ser
980 985 990
Met Ser Thr Gln Asn Gly Phe Ile Phe Tyr Ile Pro Ala Trp Leu Thr
995 1000 1005
Ser Lys Ile Asp Pro Ser Thr Gly Phe Val Asn Leu Leu Lys Thr
1010 1015 1020
Lys Tyr Thr Ser Ile Ala Asp Ser Lys Lys Phe Ile Ser Ser Phe
1025 1030 1035
Asp Arg Ile Met Tyr Val Pro Glu Glu Asp Leu Phe Glu Phe Ala
1040 1045 1050
Leu Asp Tyr Lys Asn Phe Ser Arg Thr Asp Ala Asp Tyr Ile Lys
1055 1060 1065
Lys Trp Lys Leu Tyr Ser Tyr Gly Asn Arg Ile Arg Ile Phe Arg
1070 1075 1080
Asn Pro Lys Lys Asn Asn Val Phe Asp Trp Glu Glu Val Cys Leu
1085 1090 1095
Thr Ser Ala Tyr Lys Glu Leu Phe Asn Lys Tyr Gly Ile Asn Tyr
1100 1105 1110
Gln Gln Gly Asp Ile Arg Ala Leu Leu Cys Glu Gln Ser Asp Lys
1115 1120 1125
Ala Phe Tyr Ser Ser Phe Met Ala Leu Met Ser Leu Met Leu Gln
1130 1135 1140
Met Arg Asn Ser Ile Thr Gly Arg Thr Asp Val Asp Phe Leu Ile
1145 1150 1155
Ser Pro Val Lys Asn Ser Asp Gly Ile Phe Tyr Asp Ser Arg Asn
1160 1165 1170
Tyr Glu Ala Gln Glu Asn Ala Ile Leu Pro Lys Asn Ala Asp Ala
1175 1180 1185
Asn Gly Ala Tyr Asn Ile Ala Arg Lys Val Leu Trp Ala Ile Gly
1190 1195 1200
Gln Phe Lys Lys Ala Glu Asp Glu Lys Leu Asp Lys Val Lys Ile
1205 1210 1215
Ala Ile Ser Asn Lys Glu Trp Leu Glu Tyr Ala Gln Thr Ser Val
1220 1225 1230
Lys His Lys Leu Met Pro Lys Lys Lys Arg Lys Val Ser Gly Gly
1235 1240 1245
Ser Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met Arg His Ala
1250 1255 1260
Leu Thr Leu Ala Lys Arg Ala Trp Asp Glu Arg Glu Val Pro Val
1265 1270 1275
Gly Ala Val Leu Val His Asn Asn Arg Val Ile Gly Glu Gly Trp
1280 1285 1290
Asn Arg Pro Ile Gly Arg His Asp Pro Thr Ala His Ala Glu Ile
1295 1300 1305
Met Ala Leu Arg Gln Gly Gly Leu Val Met Gln Asn Tyr Arg Leu
1310 1315 1320
Ile Asp Ala Thr Leu Tyr Val Thr Leu Glu Pro Cys Val Met Cys
1325 1330 1335
Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg Val Val Phe Gly
1340 1345 1350
Ala Arg Asp Ala Lys Thr Gly Ala Ala Gly Ser Leu Met Asp Val
1355 1360 1365
Leu His His Pro Gly Met Asn His Arg Val Glu Ile Thr Glu Gly
1370 1375 1380
Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu Ser Asp Phe Phe Arg
1385 1390 1395
Met Arg Arg Gln Glu Ile Lys Ala Gln Lys Lys Ala Gln Ser Ser
1400 1405 1410
Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly Ser Glu Thr
1415 1420 1425
Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser Gly Gly Ser
1430 1435 1440
Ser Gly Gly Ser Ser Glu Val Glu Phe Ser His Glu Tyr Trp Met
1445 1450 1455
Arg His Ala Leu Thr Leu Ala Lys Arg Ala Arg Asp Glu Arg Glu
1460 1465 1470
Val Pro Val Gly Ala Val Leu Val Leu Asn Asn Arg Val Ile Gly
1475 1480 1485
Glu Gly Trp Asn Arg Ala Ile Gly Leu His Asp Pro Thr Ala His
1490 1495 1500
Ala Glu Ile Met Ala Leu Arg Gln Gly Gly Leu Val Met Gln Asn
1505 1510 1515
Tyr Arg Leu Ile Asp Ala Thr Leu Tyr Val Thr Phe Glu Pro Cys
1520 1525 1530
Val Met Cys Ala Gly Ala Met Ile His Ser Arg Ile Gly Arg Val
1535 1540 1545
Val Phe Gly Val Arg Asn Ala Lys Thr Gly Ala Ala Gly Ser Leu
1550 1555 1560
Met Asp Val Leu His Tyr Pro Gly Met Asn His Arg Val Glu Ile
1565 1570 1575
Thr Glu Gly Ile Leu Ala Asp Glu Cys Ala Ala Leu Leu Cys Tyr
1580 1585 1590
Phe Phe Arg Met Pro Arg Gln Val Phe Asn Ala Gln Lys Lys Ala
1595 1600 1605
Gln Ser Ser Thr Asp Ser Gly Gly Ser Ser Gly Gly Ser Ser Gly
1610 1615 1620
Ser Glu Thr Pro Gly Thr Ser Glu Ser Ala Thr Pro Glu Ser Ser
1625 1630 1635
Gly Gly Ser Ser Gly Gly Ser Leu Lys Lys Arg Pro Ala Ala Thr
1640 1645 1650
Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys
1655 1660
<210> 30
<211> 1526
<212> DNA
<213> Artificial Sequence
<220>
<223> Artificial Sequence
<400> 30
ctgcagtgca gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta 60
agttataaaa aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta 120
tctttataca tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa 180
tatcagtgtt ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga 240
gtattttgac aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt 300
ttttgcaaat agcttcacct atataatact tcatccattt tattagtaca tccatttagg 360
gtttagggtt aatggttttt atagactaat ttttttagta catctatttt attctatttt 420
agcctctaaa ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata 480
taaaatagaa taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa 540
aactaaggaa acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga 600
tcgacgagtc taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag 660
cagacggcac ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg 720
ttggacttgc tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg 780
gcacggcagg cggcctcctc ctcctctcac ggcaccggca gctacggggg attcctttcc 840
caccgctcct tcgctttccc ttcctcgccc gccgtaataa atagacaccc cctccacacc 900
ctctttcccc aacctcgtgt tgttcggagc gcacacacac acaaccagat ctcccccaaa 960
tccacccgtc ggcacctccg cttcaaggta cgccgctcgt cctccccccc cccccctctc 1020
taccttctct agatcggcgt tccggtccat ggttagggcc cggtagttct acttctgttc 1080
atgtttgtgt tagatccgtg tttgtgttag atccgtgctg ctagcgttcg tacacggatg 1140
cgacctgtac gtcagacacg ttctgattgc taacttgcca gtgtttctct ttggggaatc 1200
ctgggatggc tctagccgtt ccgcagacgg gatcgatcta ggataggtat acatgttgat 1260
gtgggtttta ctgatgcata tacatgatgg catatgcagc atctattcat atgctctaac 1320
cttgagtacc tatctattat aataaacaag tatgttttat aattattttg atcttgatat 1380
acttggatga tggcatatgc agcagctata tgtggatttt tttagccctg ccttcatacg 1440
ctatttattt gcttggtact gtttcttttg tcgatgctca ccctgttgtt tggtgttact 1500
tctgcaggtc gaagcttgaa gcaaac 1526

Claims (8)

1. A system for base editing a target sequence in a plant genome, comprising at least one of the following i) to v):
i) Base-editing fusion proteins, and guide RNAs;
ii) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein, and a guide RNA;
iii) A base-editing fusion protein, and an expression construct comprising a nucleotide sequence encoding a guide RNA;
iv) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein, and an expression construct comprising a nucleotide sequence encoding a guide RNA;
v) an expression construct comprising a nucleotide sequence encoding a base-editing fusion protein and a nucleotide sequence encoding a guide RNA;
wherein the base-editing fusion protein comprises Cpf1 lacking DNA cleavage activity and a deaminase, the guide RNA being capable of targeting the base-editing fusion protein to a target sequence in a genome resulting in a substitution of one or more of C to T or A to G in the target sequence,
wherein the Cpf1 with the DNA cleavage activity deletion is FnCpf1 with the DNA cleavage activity deletion or LbCpf1 with the DNA cleavage activity deletion,
wherein the base-editing fusion protein further comprises 3 Nuclear Localization Sequences (NLS), wherein 1 is located at the N-terminus of the base-editing fusion protein and 2 is located at the C-terminus of the base-editing fusion protein,
wherein the plant is wheat or rice,
wherein the amino acid sequence of the FnCpf1 base editing fusion protein containing DNA cutting activity deletion is shown as SEQ ID NO. 24 or SEQ ID NO. 26, and the amino acid sequence of the LbCpf1 base editing fusion protein containing DNA cutting activity deletion is shown as SEQ ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 28 or SEQ ID NO. 29.
2. The system of claim 1, wherein the nucleotide sequence encoding the base-editing fusion protein is codon optimized for an organism to be base-edited.
3. The system of claim 1, wherein the nucleotide sequence encoding the base-editing fusion protein and/or the nucleotide sequence encoding the guide RNA is operably linked to an expression control element.
4. The system of claim 3, wherein the regulatory element is a promoter.
5. The system of claim 4, wherein the promoter is a 35S promoter, a maize Ubi-1 promoter, a wheat U6 promoter, a rice U3 promoter, or a maize U3 promoter.
6. A method of producing a genetically modified plant comprising introducing the system of any one of claims 1-5 into a cell of an organism, whereby the guide RNA targets the base-editing fusion protein to a target sequence in the genome of the cell, resulting in one or more C to T or a to G substitutions in the target sequence.
7. The method of claim 6, wherein the plant comprises a monocot and a dicot.
8. The method of claim 6 or 7, wherein the plant is rice or wheat.
CN201811578853.8A 2017-12-22 2018-12-21 Base editing system and method based on CPF1 protein Active CN109957569B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711403490 2017-12-22
CN201711403490X 2017-12-22

Publications (2)

Publication Number Publication Date
CN109957569A CN109957569A (en) 2019-07-02
CN109957569B true CN109957569B (en) 2022-10-25

Family

ID=66992485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811578853.8A Active CN109957569B (en) 2017-12-22 2018-12-21 Base editing system and method based on CPF1 protein

Country Status (3)

Country Link
CN (1) CN109957569B (en)
AR (1) AR114014A1 (en)
WO (1) WO2019120310A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210023831A (en) 2018-05-11 2021-03-04 빔 테라퓨틱스, 인크. How to Replace Pathogenic Amino Acids Using a Programmable Base Editor System
SG11202106977PA (en) * 2018-12-27 2021-07-29 Lifeedit Therapeutics Inc Polypeptides useful for gene editing and methods of use
WO2020168133A1 (en) * 2019-02-13 2020-08-20 Beam Therapeutics Inc. Compositions and methods for treating hemoglobinopathies
CN114375335A (en) * 2019-07-19 2022-04-19 成对植物服务股份有限公司 Optimized protein linkers and methods of use
WO2021032155A1 (en) * 2019-08-20 2021-02-25 中国科学院遗传与发育生物学研究所 Base editing system and use method therefor
CN110551752B (en) * 2019-08-30 2023-03-14 北京市农林科学院 xCas9n-epBE base editing system and application thereof in genome base replacement
US20230075877A1 (en) * 2019-09-09 2023-03-09 Beam Therapeutics Inc. Novel nucleobase editors and methods of using same
US20230257761A1 (en) 2019-09-12 2023-08-17 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Herbicide resistant plant
WO2021056302A1 (en) * 2019-09-26 2021-04-01 Syngenta Crop Protection Ag Methods and compositions for dna base editing
US11866745B2 (en) * 2019-10-17 2024-01-09 Pairwise Plants Services, Inc. Variants of CAS12A nucleases and methods of making and use thereof
JP2023501223A (en) * 2019-10-30 2023-01-18 ペアーワイズ プランツ サービシズ, インコーポレイテッド Type V CRISPR-CAS base editor and method of use
CN111019967A (en) * 2019-11-27 2020-04-17 南京农业大学 Application of GmU3-19g-1 and GmU6-16g-1 promoters in soybean polygene editing system
CN110964741B (en) * 2019-12-20 2022-03-01 北京市农林科学院 A nuclear localization signal FNB and its application in improving base editing efficiency
CN111518794B (en) * 2020-04-13 2023-05-16 中山大学 Preparation and application of inducible mutant protein based on activation-inducible cytidine deaminase
CN112851776B (en) * 2020-04-20 2022-08-30 中国科学院天津工业生物技术研究所 Gene site-directed mutagenesis method and stress resistance breeding application thereof
EP4185699A1 (en) 2020-07-21 2023-05-31 Pairwise Plants Services, Inc. Optimized protein linkers and methods of use
CN114317596B (en) * 2020-09-30 2024-01-16 北京市农林科学院 A method for mutating A to G in target sequence of plant genome
CN114317518B (en) * 2020-09-30 2024-01-12 北京市农林科学院 Application of SpRYn-CBE base editing system in base replacement in plant genomes
CN114317589B (en) * 2020-09-30 2024-01-16 北京市农林科学院 Application of SpRYn-ABE base editing system in plant genome base substitution
CN112430622A (en) * 2020-10-26 2021-03-02 扬州大学 FokI and dCpf1 fusion protein expression vector and site-directed gene editing method mediated by same
CN113005141A (en) * 2021-01-05 2021-06-22 温州医科大学 Gene editing tool composed of high-activity mutant, preparation method and method for repairing congenital retinoschisis disease pathogenic gene
CA3216308A1 (en) * 2021-04-21 2022-10-27 Zhejiang University Negative-strand rna viral vector and plant genome editing method without transformation
CN115704015A (en) * 2021-08-12 2023-02-17 清华大学 Targeted mutagenesis system based on adenine and cytosine dual base editor
CN114045302A (en) * 2021-11-12 2022-02-15 三亚中国农业科学院国家南繁研究院 Single-base editing vector and construction and application thereof
CN114835818B (en) * 2022-03-17 2024-03-22 江南大学 Gene editing fusion protein, adenine base editor constructed by same and application thereof
EP4499819A1 (en) * 2022-03-30 2025-02-05 Basf Agricultural Solutions Seed Us Llc Optimized base editors
WO2023207607A1 (en) * 2022-04-29 2023-11-02 北京大学 Deaminase mutant, composition, and method for modifying mitochondrial dna
CN114686456B (en) * 2022-05-10 2023-02-17 中山大学 Base editing system based on bimolecular deaminase complementation and application thereof
CN115820691B (en) * 2022-07-25 2023-08-22 安徽农业大学 LbCPf1 variant-based rice base editing system and application
CN116376948B (en) * 2022-07-25 2023-12-15 广州医科大学 Plasmid vector and preparation method of MS2 phage similar particles for displaying exogenous proteins
CN116286734B (en) * 2022-11-29 2024-04-02 武汉大学 Mutants of wild-type LbCas12a protein and their uses for SNP detection
CN116751799B (en) * 2023-06-14 2024-01-26 江南大学 Multi-site double-base editor and application thereof
CN117965505A (en) * 2023-06-28 2024-05-03 微光基因(苏州)有限公司 Engineered adenosine deaminase and base editors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184786A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Cpf1 complexes with reduced indel activity
WO2017184768A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Novel crispr enzymes and systems
WO2017189308A1 (en) * 2016-04-19 2017-11-02 The Broad Institute Inc. Novel crispr enzymes and systems
CN110214183A (en) * 2016-08-03 2019-09-06 哈佛大学的校长及成员们 Adenosine nucleobase editing machine and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3374494A4 (en) * 2015-11-11 2019-05-01 Coda Biotherapeutics, Inc. Crispr compositions and methods of using the same for gene therapy
EP3405570A1 (en) * 2016-01-22 2018-11-28 The Broad Institute, Inc. Crystal structure of crispr cpf1

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184786A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Cpf1 complexes with reduced indel activity
WO2017184768A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Novel crispr enzymes and systems
WO2017189308A1 (en) * 2016-04-19 2017-11-02 The Broad Institute Inc. Novel crispr enzymes and systems
CN110214183A (en) * 2016-08-03 2019-09-06 哈佛大学的校长及成员们 Adenosine nucleobase editing machine and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage》;Nicole M. Gaudelli等;《nature》;20171025;第551卷(第7681期);第3页左栏第1段,补充数据图2c *

Also Published As

Publication number Publication date
AR114014A1 (en) 2020-07-08
CN109957569A (en) 2019-07-02
WO2019120310A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN109957569B (en) Base editing system and method based on CPF1 protein
CN110157727A (en) Alkaloid edit methods
KR102061438B1 (en) A method for converting monocot genome sequences in which a nucleic acid base in a targeting DNA sequence is specifically converted, and a molecular complex used therein.
AU2022201319B2 (en) Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a
US20200283807A1 (en) Method and cell line for production of phytocannabinoids and phytocannabinoid analogues in yeast
DK2324120T3 (en) Manipulating SNF1 protein kinase OF REVISION OF OIL CONTENT IN OLEAGINOUS ORGANISMS
KR20080071190A (en) Delta-June Elongase, and Their Use in the Production of Polyunsaturated Fatty Acids
CN112608940B (en) Construction method and application of animal model of congenital cataract disease
CN114540424A (en) IGFBP7 muscle tissue specific knockout mouse animal model and construction method thereof
CN109652381A (en) The CAR-T cell preparation method and application of CD133 is targeted based on base editor
CN113943737A (en) Application of chicken CTGF gene in inhibiting differentiation of chicken preadipocytes
CN114150001A (en) A construction method of CRISPR/Cas9 vector for gene editing of Toxoplasma gondii
CN114395020B (en) Application of GmRALF1 protein in promoting phosphorus element absorption of plants
KR102009270B1 (en) Recombinant foot-and-mouth disease virus expressing protective antigen of type O-Thi60
CN114134170A (en) Preparation method and application of HA tag fusion expression vector
CN111100874B (en) Targeting vector and method and application of integrating exogenous gene into mouse DC-SIGN exon 7 site to construct BAC clone
CN110747186B (en) CRISPR/Cas9 systems and methods for efficient generation of mutants that do not carry transgenic elements in plants
CN103305541A (en) Activating tag Ac/Ds transposons system and application thereof in building of plant mutant library
CN101300358A (en) Astaxanthine biosynthesis in eukaryotes
CN106978432A (en) Knock out carrier construction method and the application of chlamydomonas endogenous gene and expression alien gene
KR102247462B1 (en) Recombinant Lactic acid bacteria having enhanced Productivity for Riboflavin
KR101246884B1 (en) Transformed Pseudomonas Aeruginosa for Over-expression of Fatty Acid Biosynthesis Pathway and Method of Preparing the Same
CN111909957B (en) A kind of genetic transformation method of Haematococcus pluvialis
CN107345210A (en) The disinsection engineering bacteria strain and its application of one plant of furocoumarin genetic transformation
JP2003274972A (en) Flowering control gene and its use

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220623

Address after: Room D340, F3, building 2, No. 2250, Pudong South Road, Pudong New Area, Shanghai 200120

Applicant after: Shanghai Blue Cross Medical Science Research Institute

Address before: No. 2, No. 1, Beichen West Road, Beichen, Beijing

Applicant before: INSTITUTE OF GENETICS AND DEVELOPMENTAL BIOLOGY, CHINESE ACADEMY OF SCIENCES

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220921

Address after: Unit E598, 5th Floor, Lecheng Plaza, Phase II, Biomedical Industrial Park, No. 218, Sangtian Street, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215127

Applicant after: Suzhou Qihe Biotechnology Co.,Ltd.

Address before: Room D340, F3, building 2, No. 2250, Pudong South Road, Pudong New Area, Shanghai 200120

Applicant before: Shanghai Blue Cross Medical Science Research Institute

GR01 Patent grant
GR01 Patent grant