[go: up one dir, main page]

CN116286734B - Mutants of wild-type LbCas12a protein and their uses for SNP detection - Google Patents

Mutants of wild-type LbCas12a protein and their uses for SNP detection Download PDF

Info

Publication number
CN116286734B
CN116286734B CN202211514174.0A CN202211514174A CN116286734B CN 116286734 B CN116286734 B CN 116286734B CN 202211514174 A CN202211514174 A CN 202211514174A CN 116286734 B CN116286734 B CN 116286734B
Authority
CN
China
Prior art keywords
mutant
wild
crrna
type
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211514174.0A
Other languages
Chinese (zh)
Other versions
CN116286734A (en
Inventor
张楹
张红霞
殷昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202211514174.0A priority Critical patent/CN116286734B/en
Publication of CN116286734A publication Critical patent/CN116286734A/en
Application granted granted Critical
Publication of CN116286734B publication Critical patent/CN116286734B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The application discloses a mutant of a wild type LbCAs12a protein and SNP detection application thereof, wherein the amino acid sequence of the wild type LbCAs12a protein is shown as a seq_1, and the mutant has mutation at least at the 174 th position of the amino acid sequence shown as the seq_1. Compared with the wild LbCAs12a protein, the mutant has SNP identification capability, and based on the CRISPR-Cas system designed by the mutant, the SNP in the genome can be identified within 30 minutes, and the sample preparation process of the system is very simple, so that cross contamination can be avoided, and the operation difficulty and detection cost can be reduced.

Description

野生型LbCas12a蛋白的突变体及SNP检测用途Mutants of wild-type LbCas12a protein and their uses for SNP detection

技术领域Technical field

本申请属于生物领域,具体涉及一种野生型LbCas12a蛋白的突变体及其SNP检测用途。This application belongs to the biological field, and specifically relates to a mutant of wild-type LbCas12a protein and its SNP detection use.

背景技术Background technique

单核苷酸多态性(SNP)主要包括单个碱基转换、碱基颠换、碱基缺失或碱基插入,是人类基因组中最常见的可遗传变异类型,平均每1-1.9kb中就有一个SNP。SNP参与了许多生物学过程,包括遗传疾病、肿瘤发生、药物代谢等。药代基因组学SNP按其功能可以分为药物吸收、药物转运、药物代谢和药物排泄相关的SNP四大类,与个体对药物治疗的敏感性密切相关。细胞色素P450(CYP)家族是最重要的药物代谢酶,介导多种药物代谢。目前已报道的CYP单核苷酸多态性有两千多种,其中一些突变对其酶活性有重大影响。例如,CYP2C9是参与抗凝药物华法林代谢的关键酶之一,而华法林的使用需要精确的个性化处方,方能在过度抗凝(血栓)和抗凝不足(出血)之间的达到精准平衡。研究发现,CYP2C9的两种常见变体,即CYP2C9*2(3608C>T)和CYP2C9*3(42614A>C),会导致其酶活降低。与正常人相比,携带上述突变的杂合或者纯合个体对华法林更加敏感,因此,他们在华法林治疗期间面临更大的出血风险,故而需要更低的剂量。再如,CYP2C19是氯吡格雷的关键代谢酶。氯吡格雷是一种有效的抗血小板凝集药物,经CYP2C19代谢后产生2-氧-氯吡格雷,并最终代谢为有活性的硫醇代谢物,发挥抑制血小板聚集的功能。基因组中携带CYP2C19*2(681G>A)等位基因的患者,由于其体内CYP2C19酶活性丧失,故用氯吡格雷治疗时会导致治疗无效,延误病情,发生出血风险。因此,在使用高风险药物时,快速准确地检测关键药代基因组学SNP对个体化用药至关重要。由于CYP2C9和CYP2C19在华法林、氯吡格雷、苯妥英钠、辛波莫德、丙戊酸盐等多种药物的代谢过程中发挥重要功能,因此,以CYP2C9和CYP2C19为检测靶点开发出快速准确的检测方法非常重要。Single nucleotide polymorphism (SNP) mainly includes single base conversion, base transversion, base deletion or base insertion. It is the most common type of heritable variation in the human genome, with an average of 1-1.9kb. There is a SNP. SNPs are involved in many biological processes, including genetic diseases, tumorigenesis, drug metabolism, etc. Pharmacogenomic SNPs can be divided into four major categories according to their functions: SNPs related to drug absorption, drug transport, drug metabolism and drug excretion, which are closely related to individual sensitivity to drug treatment. The cytochrome P450 (CYP) family is the most important drug metabolizing enzyme, mediating the metabolism of various drugs. There are more than 2,000 CYP single nucleotide polymorphisms reported so far, and some of these mutations have a significant impact on its enzyme activity. For example, CYP2C9 is one of the key enzymes involved in the metabolism of the anticoagulant drug warfarin, and the use of warfarin requires precise personalized prescription to balance between over-anticoagulation (blood clots) and under-anticoagulation (bleeding). Achieve precise balance. Studies have found that two common variants of CYP2C9, namely CYP2C9*2(3608C>T) and CYP2C9*3(42614A>C), lead to reduced enzyme activity. Heterozygous or homozygous individuals carrying the above mutations are more sensitive to warfarin than normal individuals. Therefore, they face a greater risk of bleeding during warfarin treatment and require lower doses. For another example, CYP2C19 is the key metabolic enzyme of clopidogrel. Clopidogrel is an effective anti-platelet aggregation drug. It is metabolized by CYP2C19 to produce 2-oxo-clopidogrel, and is eventually metabolized into an active thiol metabolite, which exerts the function of inhibiting platelet aggregation. For patients who carry the CYP2C19*2 (681G>A) allele in their genome, due to the loss of CYP2C19 enzyme activity in their bodies, treatment with clopidogrel will result in ineffective treatment, delayed disease progression, and risk of bleeding. Therefore, rapid and accurate detection of key pharmacogenomic SNPs is crucial for personalized medicine when using high-risk drugs. Since CYP2C9 and CYP2C19 play important functions in the metabolism of warfarin, clopidogrel, phenytoin, siponimod, valproate and other drugs, a rapid test was developed using CYP2C9 and CYP2C19 as detection targets. Accurate detection methods are very important.

目前,已有多种多样的SNP检测方法被开发出来,可以大致分为基于电泳的方法和高通量鉴定方法两大类。基于电泳的SNP检测,如变性梯度凝胶电泳、等位基因特异性PCR和切割扩增多态性序列标记等,都具有耗时长、准确率低、能够识别但无法鉴定具体SNP类型的特点。高通量鉴定方法,如DNA测序和高分辨率熔融,具有高精度的优势,但它们也很耗时且相对昂贵。At present, a variety of SNP detection methods have been developed, which can be roughly divided into two categories: electrophoresis-based methods and high-throughput identification methods. SNP detection based on electrophoresis, such as denaturing gradient gel electrophoresis, allele-specific PCR, and cleavage-amplified polymorphic sequence tags, all have the characteristics of being time-consuming, low in accuracy, and capable of identifying but unable to identify specific SNP types. High-throughput identification methods, such as DNA sequencing and high-resolution melting, have the advantage of high accuracy, but they are also time-consuming and relatively expensive.

CRISPR-Cas系统广泛用于基因组编辑和核酸检测等领域,其中V型和VI型Cas蛋白,如Cas12a、Cas12b、Cas13a和Cas14等,能够在产生特异性顺式切割时启动非特异性反式切割,这一特性是CRISPR检测系统的基础。这些Cas蛋白在crRNA的引导下能够识别并切割靶DNA序列,继而产生非特异的反式切割活性,开始切割单链DNA或者RNA。利用上述特性,通过在检测系统中加入报告DNA或RNA序列,就可以实现检测信号放大。在上述Cas蛋白中,Cas13a和Cas14分别能够区分RNA或单链DNA底物中的SNP。但由于RNA底物和单链DNA底物的扩增需要反转录或单链DNA生成步骤,故无法应用于一步式检测系统中;在Cas12b的crRNA中引入突变,可以区分双链DNA底物中的SNP,但其最佳切割温度为48℃,这极大限制了其与等温扩增技术的兼容性。由于重组酶聚合酶扩增技术(RPA)的最佳反应温度为37-42℃,Cas12b必须与环介导等温扩增反应(LAMP)配合使用,而LAMP的最佳反应温度为55-65℃,反应温度的变化会使Cas12b的切割活性降低、孵育时间延长,最终导致检测速度减慢。CRISPR-Cas systems are widely used in fields such as genome editing and nucleic acid detection. Among them, V-type and VI-type Cas proteins, such as Cas12a, Cas12b, Cas13a and Cas14, can initiate non-specific trans-cleavage when specific cis-cleavage is generated. This property is the basis of CRISPR detection systems. These Cas proteins can recognize and cut target DNA sequences under the guidance of crRNA, and then generate non-specific trans-cleaving activity to start cutting single-stranded DNA or RNA. Taking advantage of the above characteristics, the detection signal amplification can be achieved by adding reporter DNA or RNA sequences to the detection system. Among the above-mentioned Cas proteins, Cas13a and Cas14 can distinguish SNPs in RNA or single-stranded DNA substrates respectively. However, since the amplification of RNA substrates and single-stranded DNA substrates requires reverse transcription or single-stranded DNA generation steps, it cannot be applied to a one-step detection system; introducing mutations in the crRNA of Cas12b can distinguish double-stranded DNA substrates. SNP in , but its optimal cutting temperature is 48°C, which greatly limits its compatibility with isothermal amplification technology. Since the optimal reaction temperature of recombinase polymerase amplification (RPA) is 37-42°C, Cas12b must be used in conjunction with loop-mediated isothermal amplification (LAMP), and the optimal reaction temperature of LAMP is 55-65°C. , changes in reaction temperature will reduce the cleavage activity of Cas12b and extend the incubation time, ultimately leading to a slowdown in detection speed.

相比之下,Cas12a可以与RPA完美匹配,Cas12a以双链DNA为底物,广泛应用于核酸检测。但对TTTV-PAM的需求和低特异性限制了其在SNP检测中的应用。即使crRNA延长,包括在crRNA的3'端添加额外的富含TA的DNA序列,在间隔区插入核苷酸(crRNA的3'端和间隔区的核苷酸),也不能很好地区分底物中的SNP。通过在PCR扩增期间在靶位点上游添加经典PAM序列并在crRNA上引入额外的错配,Cas12a可以在两步反应中区分SNP。最近的研究公开了一种基于LbCas12a的一步式核酸检测系统,名为“sPAMC”,该系统在SARS-CoV-2检测中显示出了很强的特异性和高灵敏度。但是,LbCas12a并不具备区分SNP的能力,也无法应用在一步式SNP检测中。In contrast, Cas12a is a perfect match for RPA. Cas12a uses double-stranded DNA as a substrate and is widely used in nucleic acid detection. However, the need for TTTV-PAM and low specificity limit its application in SNP detection. Even if crRNA is extended, including adding an additional TA-rich DNA sequence to the 3' end of crRNA and inserting nucleotides in the spacer (nucleotides at the 3' end of crRNA and the spacer), SNPs in the substrate cannot be distinguished well. By adding a classic PAM sequence upstream of the target site during PCR amplification and introducing additional mismatches on crRNA, Cas12a can distinguish SNPs in a two-step reaction. Recent studies have disclosed a one-step nucleic acid detection system based on LbCas12a, named "sPAMC", which showed strong specificity and high sensitivity in SARS-CoV-2 detection. However, LbCas12a does not have the ability to distinguish SNPs and cannot be used in one-step SNP detection.

发明内容Contents of the invention

针对现有技术中存在的野生型LbCas12a蛋白不具备区分SNP的能力、无法应用在一步式SNP检测技术中的问题,本申请对野生型LbCas12a蛋白进行了结构改造,获得具备SNP区分能力的突变体,并提供一种基于该突变体的一步式SNP检测系统。In order to solve the problem in the existing technology that the wild-type LbCas12a protein does not have the ability to distinguish SNPs and cannot be used in one-step SNP detection technology, this application structurally modified the wild-type LbCas12a protein to obtain a mutant with the ability to distinguish SNPs. , and provide a one-step SNP detection system based on this mutant.

本申请提供的技术方案如下:The technical solutions provided by this application are as follows:

第一方面,本申请提供一种野生型LbCas12a蛋白的突变体,野生型LbCas12a蛋白的氨基酸序列如Seq_1所示,该突变体至少在Seq_1所示的氨基酸序列的第174位存在突变。Seq_1所示的氨基酸序列的第174位为Arg174(序列中简称为R),其位于Cas12a的REC域中,与crRNA存在相互作用,Arg174突变可能干扰了Cas12a-RNP的底物结合能力。优选的,第174位氨基酸由R突变为K或A。In the first aspect, this application provides a mutant of the wild-type LbCas12a protein. The amino acid sequence of the wild-type LbCas12a protein is shown in Seq_1, and the mutant has a mutation at least at position 174 of the amino acid sequence shown in Seq_1. Position 174 of the amino acid sequence shown in Seq_1 is Arg174 (abbreviated as R in the sequence), which is located in the REC domain of Cas12a and interacts with crRNA. The Arg174 mutation may interfere with the substrate binding ability of Cas12a-RNP. Preferably, the amino acid at position 174 is mutated from R to K or A.

在本申请提供的一些实施方式中,该突变体还在Seq_1所示的氨基酸序列的第538位、第897位、第945位中至少一处存在突变。Seq_1所示的氨基酸序列的第538位、第897位、第945位分别为Lys538、Lys897、Lys945,Lys897、Lys945均位于RuvC结构域中,Lys538位于WED结构域中,这几处任意一处发生突变都能够增强上述突变体识别SNP的特异性。优选的,第538位氨基酸由K突变为R,第897位由K突变为A,第945位由K突变为A。进一步优选地,突变体为R174A、R174K、K538R/R174K、K897A/R174A、K945A/R174A中的任意一种,这些突变体具备更强的SNP区分能力,且其酶活性未受影响。In some embodiments provided herein, the mutant also has a mutation in at least one of the 538th, 897th, and 945th positions of the amino acid sequence shown in Seq_1. The 538th, 897th, and 945th positions of the amino acid sequence shown in Seq_1 are Lys538, Lys897, and Lys945, respectively. Lys897 and Lys945 are both located in the RuvC domain, and Lys538 is located in the WED domain. Mutations in any of these positions can enhance the specificity of the mutant in recognizing SNPs. Preferably, the amino acid at position 538 mutates from K to R, the amino acid at position 897 mutates from K to A, and the amino acid at position 945 mutates from K to A. Further preferably, the mutant is any one of R174A, R174K, K538R/R174K, K897A/R174A, and K945A/R174A, which have stronger SNP differentiation capabilities and their enzyme activities are not affected.

第二方面,本申请提供一种融合蛋白,该融合蛋白包括上述野生型LbCas12a蛋白的突变体以及其他的修饰部分。In a second aspect, the present application provides a fusion protein that includes a mutant of the above wild-type LbCas12a protein and other modified parts.

第三方面,本申请提供一种多核苷酸,该多核苷酸编码上述野生型LbCas12a蛋白的突变体或上述融合蛋白。In a third aspect, the present application provides a polynucleotide encoding a mutant of the above wild-type LbCas12a protein or the above fusion protein.

第四方面,本申请提供一种载体,该载体包含上述多核苷酸以及与之可操作连接的调控元件。In a fourth aspect, the present application provides a vector comprising the above polynucleotide and a regulatory element operably connected thereto.

第五方面,本申请提供一种工程化的宿主细胞,该宿主细胞包含上述野生型LbCas12a蛋白的突变体,或上述融合蛋白,或上述多核苷酸,或上述载体。In a fifth aspect, the present application provides an engineered host cell, which comprises a mutant of the wild-type LbCas12a protein, or the fusion protein, or the polynucleotide, or the vector.

第六方面,本申请提供一种一步式检测双链DNA上SNP的CRISPR-Cas系统或试剂盒,该CRISPR-Cas系统或试剂盒包括上述野生型LbCas12a蛋白的突变体或上述融合蛋白以及至少一种gRNA;In the sixth aspect, the present application provides a CRISPR-Cas system or kit for one-step detection of SNPs on double-stranded DNA. The CRISPR-Cas system or kit includes a mutant of the above-mentioned wild-type LbCas12a protein or the above-mentioned fusion protein and at least one kind of gRNA;

上述gRNA包括能够结合上述野生型LbCas12a蛋白的突变体的同向重复序列和能够靶向靶序列的引导序列crRNA。The above-mentioned gRNA includes a direct repeat sequence of a mutant capable of binding to the above-mentioned wild-type LbCas12a protein and a guide sequence crRNA capable of targeting a target sequence.

第七方面,本申请提供一种组合物,该组合物包含:In a seventh aspect, the present application provides a composition comprising:

(i)蛋白组分,其选自:上述野生型LbCas12a蛋白的突变体或上述融合蛋白;(i) Protein component, which is selected from: a mutant of the above wild-type LbCas12a protein or the above fusion protein;

(ii)核酸组分,其为gRNA,该gRNA包括能够结合上述野生型LbCas12a蛋白的突变体的同向重复序列和能够靶向靶序列的引导序列;(ii) a nucleic acid component, which is a gRNA, which includes a direct repeat sequence capable of binding the mutant of the wild-type LbCas12a protein and a guide sequence capable of targeting the target sequence;

上述蛋白组分与上述核酸组分相互结合形成复合物。The above-mentioned protein component and the above-mentioned nucleic acid component combine with each other to form a complex.

与现有技术相比,本申请具有如下有益效果:Compared with the prior art, this application has the following beneficial effects:

本申请提供了一种野生型LbCas12a蛋白的突变体,该突变体与野生型LbCas12a蛋白相比,具有SNP识别能力,基于该突变体设计的CRISPR-Cas系统非经典PAM、截短crRNA后,可以在30分钟内准确识别基因组中的SNP,该系统的样品制备过程非常简单,既可以避免交叉污染,又可以降低操作难度和检测成本。The present application provides a mutant of a wild-type LbCas12a protein, which has SNP recognition ability compared with the wild-type LbCas12a protein. The CRISPR-Cas system designed based on the mutant can accurately identify SNPs in the genome within 30 minutes after non-classical PAM and truncated crRNA. The sample preparation process of the system is very simple, which can avoid cross-contamination and reduce the operation difficulty and detection cost.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为基于SeCas12a的SNP检测方法的示意图。在一步式反应中,RPA和Cas12a检测同时反应。靶向SNP的crRNA与具有SNP的DNA底物反应时产生高荧光,与不完全配对底物反应时产生微弱荧光。Figure 1 is a schematic diagram of the SNP detection method based on SeCas12a. In a one-step reaction, RPA and Cas12a detection react simultaneously. SNP-targeting crRNA produces high fluorescence when reacting with DNA substrates containing SNP, and weak fluorescence when reacting with incompletely paired substrates.

图2为crRNA设计示意图。其中,crRNA G/681G或crRNAA/681A分别指与CYP2C19*2681G或A等位基因完全互补的crRNA。Figure 2 is a schematic diagram of crRNA design. Among them, crRNA G/681G or crRNAA/681A refers to crRNA that is completely complementary to CYP2C19*2681G or A allele respectively.

图3为LbCas12a候选突变体在CYP2C19*2681G和A等位基因上产生的终点(第60分钟)荧光信号值汇总热图。该实验使用crRNA G/681G去检测CYP2C19*2681G(靶向)和A(非靶向)等位基因。Figure 3 is a heat map summarizing the end-point (60th minute) fluorescence signal values produced by LbCas12a candidate mutants on CYP2C19*2681G and A alleles. This experiment uses crRNA G/681G to detect CYP2C19*2681G (targeting) and A (non-targeting) alleles.

图4为对图3中的候选蛋白进行复筛所产生的终点(第60分钟)荧光信号值汇总热图。该实验使用crRNAA/681A去检测CYP2C19*2681A和G等位基因。高荧光和低荧光信号分别以红色和蓝色表示。Figure 4 is a heat map summarizing the endpoint (60th minute) fluorescence signal values generated by re-screening the candidate proteins in Figure 3. This experiment uses crRNAA/681A to detect CYP2C19*2681A and G alleles. High and low fluorescence signals are shown in red and blue, respectively.

图5展示了CrRNA截短可以进一步提高SeCas12a的SNP区分能力,其中:Figure 5 shows that CrRNA truncation can further improve the SNP discrimination ability of SeCas12a, where:

(A-B)SeCas12a(K538R/R174K)与长度为19nt的crRNA联用产生了最佳的SNP区分效果。该实验使用了crRNAA/42614A和crRNA C/42614C去区分CYP2C9*342614A和C等位基因。(A-B) SeCas12a (K538R/R174K) combined with 19 nt crRNA produced the best SNP discrimination effect. This experiment used crRNAA/42614A and crRNA C/42614C to distinguish CYP2C9*342614A and C alleles.

(A)四种LbCas12a RNP的实时荧光曲线。该实验每隔2分钟读取1次荧光信号(λex=485nm;λem=528nm)。(虚线是平均值±标准差的值,n=3)。(A) Real-time fluorescence curves of four LbCas12a RNPs. In this experiment, the fluorescence signal was read every 2 minutes (λex=485nm; λem=528nm). (The dashed line is the mean ± standard deviation value, n = 3).

(B)图(A)中各LbCas12a RNP产生的终点(30分钟)荧光信号值的条形图。(n=3,平均值±标准差)。(B) Bar chart of end-point (30 minutes) fluorescence signal values generated by each LbCas12a RNP in panel (A). (n=3, mean ± standard deviation).

(C)图(A)中各RNP的体外顺式切割活性。(C) In vitro cis-cleaving activity of each RNP in panel (A).

(D)展示了LbCas12a与SeCas12a的顺式切割动力学曲线。(D) shows the cis-cleavage kinetic curves of LbCas12a and SeCas12a.

(E)展示了顺式切割活性与一步法信噪比的相关性。(E) Shows the correlation of cis-cleaving activity with the signal-to-noise ratio of the one-step method.

图6展示了基于SeCas12a的一步式SNP检测系统的优点,其中:FIG6 shows the advantages of the one-step SNP detection system based on SeCas12a, where:

(A)人类基因组中LbCas12a的经典PAM(灰色)和非经典PAM(蓝色)分布情况。(A) Distribution of classical PAM (gray) and non-classical PAM (blue) of LbCas12a in the human genome.

(B)非经典PAM(5’-TCCA-3’)和经典PAM(5’-TTTA-3’)在一步式SNP检测反应中产生的实时荧光曲线。本实验使用crRNAA/42614A(19nt)和crRNA C/42614C(19nt)去检测CYP2C9*342614A和C等位基因。(n=3,平均值±标准差)。(B) Real-time fluorescence curves generated by non-classical PAM (5’-TCCA-3’) and classic PAM (5’-TTTA-3’) in a one-step SNP detection reaction. This experiment uses crRNAA/42614A (19nt) and crRNA C/42614C (19nt) to detect CYP2C9*342614A and C alleles. (n=3, mean ± standard deviation).

(C)SNP位点在crRNA中所处的位置示意图。(C) Schematic diagram of the location of the SNP site in crRNA.

(D)M1-M19的荧光信号。SNP位点在crRNA中所处的位置会影响一步式SNP检测的特异性。该实验以crRNAA/42614A为基础,依次突变crRNAA中的碱基,使得SNP处在crRNA的不同位置。(D) Fluorescence signal of M1-M19. The location of the SNP site in crRNA will affect the specificity of one-step SNP detection. This experiment is based on crRNAA/42614A and sequentially mutates the bases in crRNAA so that the SNP is at different positions of crRNA.

(E)图(D)中的终点荧光值(第60分钟)直方图。(E) Histogram of endpoint fluorescence values (60 minutes) in panel (D).

(F)一步式SNP检测系统不受限于碱基突变类型。直方图是终点荧光值(第60分钟)的统计信息。该实验使用crRNAA/42614A。荧光信号的读取间隔为2分钟(λex=485nm;λem=528nm)。数据为平均值±标准差,(n=3)。(F) The one-step SNP detection system is not limited to base mutation types. The histogram is the statistical information of the end-point fluorescence value (at 60 minutes). This experiment used crRNAA/42614A. The fluorescence signal was read at an interval of 2 minutes (λex=485nm; λem=528nm). Data are means ± standard deviation, (n=3).

图7利用基于SeCas12a的反应检测人类药代基因组学SNP,其中:Figure 7 Detection of human pharmacogenomic SNPs using SeCas12a-based reactions, where:

(A)使用截短的crRNA检测人源样本中的CYP2C9*342614A和C等位基因。该实验使用了crRNAA/42614A(19nt)和crRNAC/42614C(19nt),样本容量为3。NC为阴性对照,不含任何DNA底物。数据为平均值±标准差。(n=3)。(A) Detection of CYP2C9*342614A and C alleles in human samples using truncated crRNA. This experiment used crRNAA/42614A (19nt) and crRNAC/42614C (19nt) with a sample size of 3. NC is a negative control and does not contain any DNA substrate. Data are means ± standard deviation. (n=3).

(B)使用全长crRNA检测人源样本中的CYP2C19*2681G和A等位基因。该实验使用了crRNAG/681G(20nt)和crRNAA/681A(20nt),样本容量为6。NC为阴性对照,不含任何DNA底物。数据为平均值±标准差,(n=3)。(B) Detection of CYP2C19*2681G and A alleles in human samples using full-length crRNA. This experiment used crRNAG/681G (20 nt) and crRNAA/681A (20 nt), with a sample size of 6. NC is a negative control without any DNA substrate. Data are mean ± SD, (n = 3).

图8展示了Cas12a的特异性和活性,其中:Figure 8 demonstrates the specificity and activity of Cas12a, where:

(A)CYP2C19*2681G和A等位基因的crRNA筛选结果。高荧光和低荧光信号分别以红色和蓝色显示。(A) Results of crRNA screening for CYP2C19*2681G and A alleles. High and low fluorescence signals are shown in red and blue, respectively.

(B)野生型LbCas12a蛋白不具备SNP区分能力。该实验使用了使用全长或截短的crRNAA/42614A。(B) Wild-type LbCas12a protein does not have the ability to distinguish SNPs. This experiment used full-length or truncated crRNAA/42614A.

(C-D)展示了图3中LbCas12a的各候选突变体的反式切割活性。该实验使用了crRNAG/681G(图8C)和crRNAA/681A(图8D)。(C-D) shows the trans-cleaving activity of each candidate mutant of LbCas12a in Figure 3. This experiment used crRNAG/681G (Fig. 8C) and crRNAA/681A (Fig. 8D).

具体实施方式Detailed ways

本申请以晶体结构为指导对野生型LbCas12a蛋白进行改造,构建野生型LbCas12a蛋白的突变体系列,筛选出具有更好的特异性和较弱的活性的突变体SeCas12a,该突变体SNP区分能力最强,本申请利用突变体将一步式核酸检测拓展到了一步式SNP检测,基于SeCas12a设计了一个简化的SNP检测系统,让Cas12a介导的SNP检测和RPA扩增在同一反应体系中同时进行,并在每个独立的反应中添加等位基因特异性crRNA,通过检测每个等位基因特异性的荧光读数,就可以判断底物DNA序列所对应的SNP类型(图1)。该SNP检测系统使用Cas12a系统中的非经典PAM,以更高的灵敏度、重复性和灵活性进行了超快速核酸检测。Cas12a系统样本基因组中具有数目庞大的非经典PAM,极大拓宽了其在基因组上的检测范围。经典PAM和非经典PAM在基于SeCas12a的一步式反应中均表现良好,这使得本申请可以检测基因组中几乎任何位置的SNP而不受PAM困扰。另外,对于不同的靶标,本申请可以通过调整crRNA的长度,使检测效果达到最佳状态。因此,本申请的SNP检测系统几乎可以检测分布在基因组任何位置的SNP。This application uses the crystal structure as a guide to transform the wild-type LbCas12a protein, construct a mutant series of the wild-type LbCas12a protein, and screen out the mutant SeCas12a with better specificity and weaker activity, which has the best SNP distinguishing ability. Strong, this application uses mutants to expand one-step nucleic acid detection to one-step SNP detection. A simplified SNP detection system is designed based on SeCas12a, so that Cas12a-mediated SNP detection and RPA amplification can be performed simultaneously in the same reaction system, and Allele-specific crRNA is added to each independent reaction, and by detecting the fluorescence reading specific to each allele, the SNP type corresponding to the substrate DNA sequence can be determined (Figure 1). This SNP detection system uses non-classical PAM in the Cas12a system to perform ultra-fast nucleic acid detection with higher sensitivity, reproducibility and flexibility. There are a large number of non-classical PAMs in the genome of Cas12a system samples, which greatly broadens its detection range on the genome. Both classical PAM and non-classical PAM perform well in the one-step reaction based on SeCas12a, which allows this application to detect SNPs at almost any position in the genome without being troubled by PAM. In addition, for different targets, this application can adjust the length of crRNA to achieve the best detection effect. Therefore, the SNP detection system of the present application can detect SNPs distributed at almost any position in the genome.

下面结合实施例对本申请进一步描述,该描述只是为了更好地说明本申请的技术方案而不是对权利要求进行限制。本申请并不限于这里所描述的特殊实施例和实施方案。任何本领域中的技术人员很容易在不脱离本申请精神和范围的情况下进行进一步的改进和完善,都落入本申请的保护范围。The present application is further described below in conjunction with the examples, which are only intended to better illustrate the technical solution of the present application rather than to limit the claims. The present application is not limited to the specific embodiments and implementation schemes described herein. Any technician in the art can easily make further improvements and perfections without departing from the spirit and scope of the present application, which fall within the scope of protection of the present application.

实施例Example

(1)野生型LbCas12a蛋白的突变体设计:(1) Design of mutants of wild-type LbCas12a protein:

据报道,野生型LbCas12a蛋白不能识别底物中的单核苷酸错配。It has been reported that the wild-type LbCas12a protein cannot recognize single nucleotide mismatches in the substrate.

申请人推测Cas12a-RNP与底物之间的结合强度可能对其特异性至关重要。为了验证这一假设,本申请将负责crRNA结合和DNA识别的氨基酸,如野生型LbCas12a蛋白REC1结构域中的Ser168、Arg174、Asn260、Ser286、Lys897、Ile896、Gln944、Lys945、Phe983、Lys984和螺旋结构域中的Arg883,分别突变为丙氨酸A或赖氨酸K以改变结合亲和力。本申请将野生型LbCas12a蛋白中的氨基酸(分别为Asp156、Asn260、Gly532和Lys538)也进行了突变,突变情况见表1。Applicants speculate that the binding strength between Cas12a-RNP and substrate may be critical to its specificity. To test this hypothesis, this application will identify the amino acids responsible for crRNA binding and DNA recognition, such as Ser168, Arg174, Asn260, Ser286, Lys897, Ile896, Gln944, Lys945, Phe983, Lys984 and the helical structure in the REC1 domain of the wild-type LbCas12a protein. Arg883 in the domain, was mutated to alanine A or lysine K respectively to change the binding affinity. In this application, the amino acids in the wild-type LbCas12a protein (Asp156, Asn260, Gly532 and Lys538 respectively) were also mutated. The mutation status is shown in Table 1.

野生型LbCas12a蛋白的氨基酸序列如Seq_1所示(下划线处为候选突变位点,分别为第156位、第168位、第174位、第260位、第286位、第532位、第538位、第883位、第897位、第896位、第944位、第945位、第983位、第984位):The amino acid sequence of the wild-type LbCas12a protein is shown in Seq_1 (the candidate mutation sites are underlined, which are positions 156, 168, 174, 260, 286, 532, 538, and No. 883, 897, 896, 944, 945, 983, 984):

MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFFDNRENMFSEEAKSTSIAFRCINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYINLYNQKTKQKLPKFKPLYKQVLSDRESLSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGDFVLAYDILLKVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFMGGWDKDKETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKKEVDKLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLSGGAELFMRRASLKKEELVVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKERFEARQNWTSIENIKELKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVYQKFEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFESFKSMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWAIGQFKKAEDEKLDKVKIAISNKEWLEYAQTSVKH。MSKLEKFTNCYSLSKTLRFKAIPVGKTQENIDNKRLLVEDEKRAEDYKGVKKLLDRYYLSFINDVLHSIKLKNLNNYISLFRKKTRTEKENKELENLEINLRKEIAKAFKGNEGYKSLFKKDIIETILPEFLDDKDEIALVNSFNGFTTAFTGFF D NRENMFSEEAK S TSIAF R CINENLTRYISNMDIFEKVDAIFDKHEVQEIKEKILNSDYDVEDFFEGEFFNFVLTQEGIDVYNAIIGGFVTESGEKIKGLNEYI N LYNQKTKQKLPKFKPLYKQVLSDRE S LSFYGEGYTSDEEVLEVFRNTLNKNSEIFSSIKKLEKLFKNFDEYSSAGIFVKNGPAISTISKDIFGEWNVIRDKWNAEYDDIHLKKKAVVTEKYEDDRRKSFKKIGSFSLEQLQEYADADLSVVEKLKEIIIQKVDEIYKVYGSSEKLFDADFVLEKSLKKNDAVVAIMKDLLDSVKSFENYIKAFFGEGKETNRDESFYGDFVLAYD KVDHIYDAIRNYVTQKPYSKDKFKLYFQNPQFM G GWKD K ETDYRATILRYGSKYYLAIMDKKYAKCLQKIDKDDVNGNYEKINYKLLPGPNKMLPKVFFSKKWMAYYNPSEDIQKIYKNGTFKKGDMFNLNDCHKLIDFFKDSISRYPKWSNAYDFNFSETEKYKDIAGFYREVEEQGYKVSFESASKEVDKLVEEGKLYMFQIYNKDFSDKSHGTPNLHTMYFKLLFDENNHGQIRLS GGAELFMRRASLKKEELVVHPANSPIANKNPDNPKKTTTLSYDVYKDKRFSEDQYELHIPIAINKCPKNIFKINTEVRVLLKHDDNPYVIGIDRGERNLLYIVVVDGKGNIVEQYSLNEIINNFNGIRIKTDYHSLLDKKEKE R FEARQNWTSIEN IK ELKAGYISQVVHKICELVEKYDAVIALEDLNSGFKNSRVKVEKQVY QK FEKMLIDKLNYMVDKKSNPCATGGALKGYQITNKFES FK SMSTQNGFIFYIPAWLTSKIDPSTGFVNLLKTKYTSIADSKKFISSFDRIMYVPEEDLFEFALDYKNFSRTDADYIKKWKLYSYGNRIRIFRNPKKNNVFDWEEVCLTSAYKELFNKYGINYQQGDIRALLCEQSDKAFYSSFMALMSLMLQMRNSITGRTDVDFLISPVKNSDGIFYDSRNYEAQENAILPKNADANGAYNIARKVLWAIGQFKKAEDE KLDKVKIAISNKEWLEYAQTSVKH.

表1本申请对野生型LbCas12a蛋白的突变情况Table 1 The mutation status of wild-type LbCas12a protein in this application

(2)CrRNA的设计和筛选(2)Design and screening of CrRNA

CrRNA的设计和筛选是检测反应的基础,本申请首先设计并筛选了靶向CYP2C9*3(42614A>C)和CYP2C19*2(681G>A)两个临床相关靶点的crRNA。通过比较分析等位基因特异性crRNA与其匹配基因型或不匹配基因型产生的荧光信号的强度,筛选出特异性信号较高且非特异性信号较低的crRNA进行后续实验。The design and screening of crRNA is the basis of the detection reaction. This application first designed and screened crRNAs targeting two clinically relevant targets, CYP2C9*3 (42614A>C) and CYP2C19*2 (681G>A). By comparing and analyzing the intensity of the fluorescence signal generated by the allele-specific crRNA and its matching genotype or mismatched genotype, the crRNA with higher specific signal and lower nonspecific signal was screened for subsequent experiments.

表2针对CYP2C19*2位点设计出的42个候选crRNATable 2 42 candidate crRNAs designed for the CYP2C19*2 locus

针对CYP2C19*2位点设计的42个候选crRNA中,crRNA#17和crRNA#30对其各自的基因型具有最高的特异性(图8A),并被用于进一步优化。Among the 42 candidate crRNAs designed for the CYP2C19*2 locus, crRNA#17 and crRNA#30 had the highest specificity for their respective genotypes ( Figure 8A ) and were used for further optimization.

(3)野生型LbCas12a蛋白的突变体筛选(3) Screening of mutants of wild-type LbCas12a protein

本申请使用靶向CYP2C19*2(681G>A)中G等位基因的crRNA#17对表1中构建的一系列野生型LbCas12a蛋白的突变体进行了第一轮筛选(图2)。如图3所示,与野生型LbCas12a蛋白相比,含有R174A、R174K、K538R/R174K、K897A/R174A或K945A/R174A突变位点的突变体具备更强的SNP区分能力,且其酶活性未受影响。在以上突变体中,R174A和R174K识别SNP的特异性最为突出,这表明Arg174与LbCas12a的特异性有关。申请人认为,Arg174位于Cas12a的REC域中,与crRNA存在相互作用,Arg174发生突变可能干扰了Cas12a-RNP的底物结合能力。本申请将Arg174与其他氨基酸进行联合突变,以期进一步提高其特异性。其中,K538R/R174K、K897A/R174A和K945A/R174A三个含两突变位点的突变体表现出较高的特异性,而只有一个突变位点的K538R、K897A、K945A三个突变体的特异性较差,这进一步突出了突变位点Arg174的重要性。本申请最终选用含两突变位点的突变体K538R/R174K作为最佳的识别SNP的突变体,因为其在不同靶点上具有很好的稳定性。The present application uses crRNA#17 targeting the G allele in CYP2C19*2 (681G>A) to screen the mutants of a series of wild-type LbCas12a proteins constructed in Table 1 in the first round (Fig. 2). As shown in Figure 3, compared with wild-type LbCas12a protein, mutants containing R174A, R174K, K538R/R174K, K897A/R174A or K945A/R174A mutation sites have stronger SNP differentiation ability, and their enzyme activity is not affected. In the above mutants, the specificity of R174A and R174K recognition of SNP is the most prominent, which shows that Arg174 is related to the specificity of LbCas12a. The applicant believes that Arg174 is located in the REC domain of Cas12a, interacts with crRNA, and the mutation of Arg174 may interfere with the substrate binding ability of Cas12a-RNP. The present application mutates Arg174 in combination with other amino acids in order to further improve its specificity. Among them, three mutants containing two mutation sites, K538R/R174K, K897A/R174A and K945A/R174A, showed high specificity, while the three mutants K538R, K897A and K945A, which had only one mutation site, had poor specificity, which further highlighted the importance of the mutation site Arg174. The present application finally selected the mutant K538R/R174K containing two mutation sites as the best mutant for identifying SNPs because it has good stability at different target sites.

(4)突变体靶向稳定性筛选:(4) Targeted stability screening of mutants:

为了确定第一轮筛选出的5个突变体(R174A、R174K、K538R/R174K、K897A/R174A、K945A/R174A)在靶向CYP2C19*2中A等位基因时功能是否稳定,本申请使用crRNA#30对这5个突变体进行了第二轮筛选(图2)。实验结果显示,在这5个突变体中,只有K538R/R174K在靶向CYP2C19*2中A等位基因时表现出较高的特异性,即在靶向CYP2C19*2中A等位基因时产生很高的荧光信号,而靶向G等位基因时只产生微弱的背景荧光(图4)。In order to determine whether the 5 mutants (R174A, R174K, K538R/R174K, K897A/R174A, K945A/R174A) screened in the first round are functionally stable when targeting the A allele in CYP2C19*2, the present application used crRNA#30 to perform a second round of screening on these 5 mutants (Figure 2). The experimental results showed that among these 5 mutants, only K538R/R174K showed high specificity when targeting the A allele in CYP2C19*2, that is, it produced a high fluorescence signal when targeting the A allele in CYP2C19*2, and only produced weak background fluorescence when targeting the G allele (Figure 4).

(5)验证crRNA#17和crRNA#30对第一轮筛选出的5个突变体的酶活性影响:(5) Verify the impact of crRNA#17 and crRNA#30 on the enzyme activity of the five mutants selected in the first round:

为了评估第一轮筛选出的5个突变体的酶活性是否受到影响,本申请进行了一个简单的反式切割实验,其反应体系中不包含RPA扩增成分。在该实验中,本申请使用了靶向CYP2C19*2(681)G或A等位基因的crRNA#17和crRNA#30及其相对应的底物DNA(图8C和图8D)。实验结果表明,第一轮筛选出的5个突变体在特异性提高的同时,其酶活性有不同程度的下降。其中特异性最高的K538R/R174K突变体酶活性最弱,具有更强SNP区分能力,将其命名为SeCas12(敏感型Cas12a)。In order to evaluate whether the enzyme activity of the five mutants screened in the first round was affected, the present application conducted a simple trans-cleavage experiment, and the RPA amplification component was not included in the reaction system. In this experiment, the present application used crRNA#17 and crRNA#30 targeting CYP2C19*2(681)G or A alleles and their corresponding substrate DNA (Figures 8C and 8D). The experimental results showed that the enzyme activity of the five mutants screened in the first round decreased to varying degrees while the specificity was improved. Among them, the K538R/R174K mutant with the highest specificity has the weakest enzyme activity and has a stronger SNP differentiation ability, and is named SeCas12 (sensitive Cas12a).

(6)截短crRNA进一步增强SeCas12a的敏感性:(6) Truncated crRNA further enhances the sensitivity of SeCas12a:

为了探索crRNA截短能否进一步提高基于SeCas12a的一步式SNP检测系统的特异性,本申请使用了靶向CYP2C9*3(42614)A或C等位基因的crRNAA或crRNAC。由于CYP2C9*3(42614A>C)靶点中PAM的数量有限,只有一条crRNA可用,没有筛选余地,本申请对靶向该SNP位点的crRNA进行了一系列截短,并比较了crRNA截短体的特异性(图8B)。实验表明,crRNA截短在一定程度上提高了crRNA的特异性,但整体区分效果并不理想,因此,仅crRNA截短并不能作为区分SNP的主要手段。To explore whether crRNA truncation can further improve the specificity of the one-step SNP detection system based on SeCas12a, this application used crRNAA or crRNAC targeting the A or C allele of CYP2C9*3(42614). Since the number of PAMs in the CYP2C9*3 (42614A>C) target site is limited, only one crRNA is available, and there is no room for screening. This application conducted a series of truncation of the crRNA targeting this SNP site, and compared the crRNA truncation body specificity (Figure 8B). Experiments show that crRNA truncation improves the specificity of crRNA to a certain extent, but the overall discrimination effect is not ideal. Therefore, crRNA truncation alone cannot be used as the main means to distinguish SNPs.

表3本申请针对CYP2C9*3设计的候选crRNATable 3 Candidate crRNA designed in this application for CYP2C9*3

通过分析比较终点荧光信号值发现,只有长度为18nt的crRNAC与SeCas12a联用时不能产生足够强的荧光信号,长度为19nt的crRNAC与SeCas12a联用时SeCas12a检测系统具有最高的特异性(图5A)。与之不同,长度为19nt的crRNA C与野生型LbCas12a蛋白联用的CRISPR-Cas系统能靶向A等位基因,但产生大量非特异性荧光信号(图5A)。本申请还发现crRNAA在三种长度时均表现出高度特异性(图5B)。By analyzing and comparing the end-point fluorescence signal values, it was found that only crRNAC with a length of 18 nt cannot produce a strong enough fluorescence signal when combined with SeCas12a. When crRNAC with a length of 19 nt is combined with SeCas12a, the SeCas12a detection system has the highest specificity (Figure 5A). In contrast, the CRISPR-Cas system combining crRNA C with a length of 19 nt and wild-type LbCas12a protein can target the A allele, but generates a large amount of non-specific fluorescence signal (Figure 5A). The present application also found that crRNAA showed high specificity at all three lengths (Figure 5B).

(7)基于SeCas12a的一步式SNP检测系统设计(7) Design of a one-step SNP detection system based on SeCas12a

研究表明,CRISPR活性和RPA扩增之间的动态平衡是一步式检测反应的关键。一方面,CRISPR检测需要通过RPA扩增大量的靶DNA以产生足够强的荧光信号;另一方面,CRISPR检测系统需要切割目标DNA来产生荧光信号。为达到上述平衡,需要下调CRISPR动力学,以便在一步式检测反应的早期阶段实现RPA介导的靶序列大量扩增。而在SNP检测中,靶向DNA序列和非靶向DNA序列只有一个核苷酸差异,故需要在靶向和非靶向之间更严格地平衡CRISPR动力学。Research shows that the dynamic balance between CRISPR activity and RPA amplification is key to the one-step detection reaction. On the one hand, CRISPR detection requires the amplification of a large amount of target DNA through RPA to generate a strong enough fluorescence signal; on the other hand, the CRISPR detection system needs to cleave the target DNA to generate a fluorescence signal. To achieve the above balance, CRISPR kinetics need to be downregulated to achieve RPA-mediated massive amplification of the target sequence in the early stages of the one-step detection reaction. In SNP detection, there is only one nucleotide difference between the targeted and non-targeted DNA sequences, so a more stringent balance of CRISPR dynamics between targeting and non-targeting is required.

本申请用crRNAA和crRNA C对SeCas12a的顺式切割活性进行了量化(图5C)。当与野生型Cas12a蛋白或SeCas12a联用时,crRNAA表现出较弱的顺式切割活性;而当与SeCas12a配对时,crRNAC表现出较高的顺式切割活性(图5C)。此外,当与野生型Cas12a蛋白或SeCas12a联用时,长度为18nt的crRNA表现出非常弱甚至没有顺式切割活性(图5C)。这可以解释为何长度为18nt的crRNA不能产生足够的荧光信号。这些数据表明,只有当顺式切割活性低到一定阈值时,它才能特异性切割完美配对底物而不切割不完美配对底物,从而选择性地产生荧光信号。This application quantified the cis-cleaving activity of SeCas12a using crRNAA and crRNA C (Figure 5C). When combined with wild-type Cas12a protein or SeCas12a, crRNAA showed weak cis-cleaving activity; while when paired with SeCas12a, crRNAC showed higher cis-cleaving activity (Figure 5C). In addition, crRNA with a length of 18 nt exhibited very weak or even no cis-cleaving activity when combined with wild-type Cas12a protein or SeCas12a (Figure 5C). This may explain why crRNA with a length of 18 nt cannot produce sufficient fluorescence signal. These data indicate that only when the cis-cleaving activity is low to a certain threshold, it can specifically cleave perfectly paired substrates but not imperfectly paired substrates, thereby selectively generating a fluorescent signal.

综上所述,crRNA长度在基于SeCas12a的一步式SNP检测中至关重要。对于显示强顺式切割活性的靶位点,需要截短的crRNA(19nt),而显示弱顺式切割活性的靶位点则需要长度为20nt的crRNA。In summary, crRNA length is crucial in one-step SNP detection based on SeCas12a. For target sites showing strong cis-cleaving activity, a truncated crRNA (19nt) is required, while for target sites showing weak cis-cleaving activity, a crRNA with a length of 20nt is required.

(8)基于SeCas12a的一步式SNP检测系统(8) One-step SNP detection system based on SeCas12a

本申请设计了一种基于SeCas12a的一步式SNP检测系统中,在该系统中本申请使用了非经典PAM,而不是经典PAM。因此,该一步式SNP检测系统可作为一个通用化的平台用来检测基因组中几乎任何靶点。统计数据表明,人类基因组中LbCas12a的非经典PAM的数量是经典PAM的4.62倍(图6A)。This application designs a one-step SNP detection system based on SeCas12a. In this system, this application uses non-classical PAM instead of classic PAM. Therefore, this one-step SNP detection system can be used as a universal platform to detect almost any target in the genome. Statistics show that the number of non-canonical PAMs of LbCas12a in the human genome is 4.62 times higher than that of canonical PAMs (Figure 6A).

为了验证经典PAM是否适用于基于SeCas12a的一步式SNP检测系统,本申请将靶向CYP2C9*3(42614如Seq_50所示)A或C等位基因的crRNAA或crRNA C的非经典PAM(TCCA)突变为经典PAM(TTTA),作为一步式SNP检测系统的底物。Seq_50的氨基酸序列为:In order to verify whether classical PAM is suitable for the one-step SNP detection system based on SeCas12a, this application will target non-classical PAM (TCCA) mutations of crRNAA or crRNA C of CYP2C9*3 (42614 as shown in Seq_50) A or C allele It is the classic PAM (TTTA) and serves as the substrate for the one-step SNP detection system. The amino acid sequence of Seq_50 is:

tgtgcatctgtaaccatcctctctttaagtttgcatatacttccagcactataatttaaatttataatgatgtttggataccttcatgattcatatacccctgaattgctacaacaaatgtgccatttttctccttttccatcagtttttacttgtgtcttatcagctaaagtccaggaagagattgaacgtgtgattggcagaaaccggagcccctgcatgcaagacaggagccacatgccctacacagatgctgtggtgcacgaggTCCAgagatacattgaccttctccccaccagcctgccccatgcagtgacctgtgacattaaattcagaaactatctcattcccaaggtaagtttgtttctcctacactgcaactccatgttttcgaagtccccaaattcatagtatcatttttaaacctctaccatcaccgggtgagagaagtgcataactcatatgtatggcagtttaactggactttctcttgtttggtacctcgcgaatgcatctagatatcggatcccgggcccgtcgactgcagaggcctgcatgcaagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagcta,注:大写的TCCA为非经典PAM,带下划线的为spacer区。tgtgcatctgtaaccatcctctctttaagtttgcatatacttccagcactataatttaaatttataatgatgtttggataccttcatgattcatatacccctgaattgctacaacaaatgtgccatttttctccttttccatcagtttttacttgtgtcttatcagctaaagtccaggaagagattgaacgtgtgattggcagaaac cggagcccctgcatgcaagacaggagccacatgccctacacagatgctgtggtgcacgaggTCCA gagatacattgaccttctc cccaccagcctgccccatgcagtgacctgtgacattaaattcagaaactatctcattcccaaggtaagtttgtttctcctacactgcaactccatgttttcgaagtccccaaattcatagtatcatttttaaacctctaccatcaccgggtgagagaagtgcataactcatatgtatggcagtttaactggactttctcttgtttggtacctc gcgaatgcatctagatatcggatcccgggcccgtcgactgcagaggcctgcatgcaagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaaagcctggggtgcctaatgagtgagcta, Note: The uppercase TCCA is non-classic PAM, underlined is the spacer area.

研究发现,19nt的CrRNAA在含有经典或非经典PAM的底物上表现出相似的特异性,而19nt的crRNAC在靶向含有经典PAM的底物时产生了一定强度的背景信号(图6B),这表明PAM选择必须针对每个crRNA进行单独测试和筛选,以满足其动力学需求。The study found that 19nt crRNAA showed similar specificity on substrates containing canonical or non-canonical PAMs, while 19nt crRNAC produced a certain intensity of background signal when targeting substrates containing canonical PAMs (Figure 6B), indicating that PAM selection must be tested and screened individually for each crRNA to meet its kinetic requirements.

接下来,本申请通过依次单个突变底物DNA上的spacer区域内的核苷酸,来确定SNP在spacer内的位置是否会影响一步式检测反应的检测效果。其中,M0表示无突变,M1到M19表示指定位置的突变(图6C)。如图6D所示,除了M18和M19产生高荧光信号,M1至M7及M14-M17均产生弱荧光信号,可与野生型底物(M0)区分,而M8至M13产生背景级信号。综上所述,基于SeCas12a的一步式反应可以区分PAM近端区域和中间间隔区的突变,但不能区分PAM远端区域的突变。简言之,在设计crRNA时,只要SNP在1-13位置(从PAM侧计),就可以实现特异性荧光信号与背景信号的明显区分。如表4所示:Next, this application determines whether the position of the SNP in the spacer will affect the detection effect of the one-step detection reaction by sequentially mutating the nucleotides in the spacer region on the substrate DNA. Among them, M0 indicates no mutation, and M1 to M19 indicate mutations at the specified positions (Figure 6C). As shown in Figure 6D , in addition to M18 and M19 producing high fluorescence signals, M1 to M7 and M14-M17 all produced weak fluorescence signals that could be distinguished from the wild-type substrate (M0), while M8 to M13 produced background-level signals. In summary, the one-step reaction based on SeCas12a can distinguish mutations in the proximal region of PAM and the middle spacer region, but cannot distinguish mutations in the distal region of PAM. In short, when designing crRNA, as long as the SNP is at positions 1-13 (from the PAM side), the specific fluorescence signal can be clearly distinguished from the background signal. As shown in Table 4:

表4 M0-M19 crRNA序列(19nt)的突变位点Table 4 Mutation sites of M0-M19 crRNA sequence (19nt)

注:带下划线的为突变位点。Note: Underlined are mutation sites.

为了探索基于SeCas12a的一步式SNP检测系统是否能够检测碱基转换和碱基颠换,本申请将CYP2C9*3(42614)A等位基因分别突变为C、G和T,进行SNP检测实验。结果显示,crRNAA和crRNAC都可以有效区分碱基转换或碱基颠换(图6E)。终点荧光信号的量化分析也证实,crRNAA在特异性靶点(A)上产生的荧光信号比在C、G和T靶点明显更高。同样,crRNAC在特异性靶点(C)上产生了很高的荧光信号,而在A、G和T靶点上仅产生了背景级别的荧光信号(图6E)。综上所述,基于SeCas12a的一步式SNP检测系统可以利用经典和非经典PAM,并且几乎不受突变位置和突变类型的限制。In order to explore whether the one-step SNP detection system based on SeCas12a can detect base conversion and base transversion, this application mutated the CYP2C9*3 (42614) A allele to C, G and T respectively to conduct SNP detection experiments. The results showed that both crRNAA and crRNAC could effectively distinguish base transitions or base transversions (Figure 6E). Quantitative analysis of end-point fluorescence signals also confirmed that crRNAA produced significantly higher fluorescence signals at the specific target site (A) than at the C, G, and T target sites. Similarly, crRNAC produced a high fluorescence signal on the specific target site (C), while only producing background-level fluorescence signals on the A, G, and T target sites (Figure 6E). In summary, the one-step SNP detection system based on SeCas12a can utilize both classical and non-classical PAMs and is almost unrestricted by mutation location and mutation type.

(9)利用基于SeCas12a的一步式SNP检测系统检测药代基因组学SNP(9) Detecting pharmacogenomic SNPs using a one-step SNP detection system based on SeCas12a

本申请利用基于SeCas12a的一步式SNP检测系统检测了人源样本中的CYP2C9*3(42614A>C)和CYP2C19*2(681G>A)。本申请使用长度为19nt的crRNAA和crRNA C去检测CYP2C9*342614A和C等位基因,使用crRNA#17和crRNA#30去检测CYP2C19*2681G和A等位基因。This application uses a one-step SNP detection system based on SeCas12a to detect CYP2C9*3 (42614A>C) and CYP2C19*2 (681G>A) in human samples. This application uses crRNAA and crRNA C with a length of 19nt to detect CYP2C9*342614A and C alleles, and crRNA#17 and crRNA#30 to detect CYP2C19*2681G and A alleles.

表5实验用到的RPA引物Table 5 RPA primers used in experiments

实验步骤如下:The experimental steps are as follows:

S1.制备样本:轻轻刮去人口腔上皮细胞至500μL的PBS缓冲液中,300rcf离心5分钟(200g离心10min)。弃去上清,加入100ul的PBS(弃去上清液400μL)和蛋白酶K(终浓度为200μg/ml)。55℃消化60分钟,80℃加热10分钟使蛋白酶K失活。S1. Sample preparation: Gently scrape human oral epithelial cells into 500 μL PBS buffer, centrifuge at 300 rcf for 5 minutes (200 g for 10 minutes). Discard the supernatant, add 100 ul PBS (discard 400 μL supernatant) and proteinase K (final concentration 200 μg/ml). Digest at 55°C for 60 minutes, and heat at 80°C for 10 minutes to inactivate proteinase K.

S2.准备反应体系。S2. Prepare the reaction system.

向每管RPA粉剂(安普未来)中加入30μLABuffer,10μL无核酶水,4μL正向RPA引物,4μL反向RPA引物,震荡混匀后室温放置2min使粉剂溶解;每个检测体系加入9μL溶解好的RPA试剂,3μL seCas12a(1μM),3μLcrRNA(1μM),4μL ssDNAreport(4μM,5'-TTATT-3'),震荡10s混匀,室温静置10min以孵育形成RNP;依次加入2μL样品,2.5μLB buffer,快速封口后立即置于酶标仪中检测。Add 30 μL of LABuffer, 10 μL of ribozyme-free water, 4 μL of forward RPA primer, and 4 μL of reverse RPA primer to each tube of RPA powder (Amp Future). Shake and mix and place at room temperature for 2 minutes to dissolve the powder. Add 9 μL of each detection system to dissolve. Good RPA reagent, 3μL seCas12a (1μM), 3μL crRNA (1μM), 4μL ssDNAreport (4μM, 5'-TTATT-3'), shake for 10s to mix, let stand at room temperature for 10min to incubate to form RNP; add 2μL of sample in sequence, 2.5 μLB buffer, seal it quickly and immediately place it in a microplate reader for detection.

S3.用酶标仪检测荧光。在37℃下每分钟读取荧光值(激发光485nm,发射光528nm),生成动力学曲线。S3. Use a microplate reader to detect fluorescence. The fluorescence value (excitation light 485nm, emission light 528nm) was read every minute at 37°C to generate a kinetic curve.

以上实验中,志愿者的口腔上皮细胞被快速溶解至缓冲液,不需要进行纯化即可直接用作检测模板。在CYP2C9*3靶点对应的3个样本中,SeCas12检测系统在30分钟内准确检测出了相应的SNP(图7A)。在本申请使用crRNA#17和crRNA#30检测CYP2C19*2681G和A等位基因的6个样本中,crRNA#17和crRNA#30均在30分钟内成功产生等位基因特异性荧光信号(图7B)。综上所述,基于SeCas12a的一步SNP检测系统可以准确地检测出人类样本粗溶物中的两个药代基因组学SNP。In the above experiments, volunteers' oral epithelial cells were quickly dissolved into buffer and could be directly used as detection templates without purification. In the three samples corresponding to the CYP2C9*3 target, the SeCas12 detection system accurately detected the corresponding SNP within 30 minutes (Figure 7A). In this application, crRNA#17 and crRNA#30 were used to detect the 6 samples of CYP2C19*2681G and A alleles. Both crRNA#17 and crRNA#30 successfully generated allele-specific fluorescence signals within 30 minutes (Figure 7B ). In summary, the one-step SNP detection system based on SeCas12a can accurately detect two pharmacogenomic SNPs in crude lysates of human samples.

以上所述是本申请的优选实施方式而已,当然不能以此来限定本申请之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本申请的保护范围。The above is only the preferred implementation mode of the present application, which certainly cannot be used to limit the scope of rights of the present application. It should be pointed out that for ordinary technicians in this technical field, several improvements and changes can be made without departing from the principles of the present application, and these improvements and changes are also regarded as the scope of protection of the present application.

Claims (8)

1. A mutant of a wild-type LbCas12a protein, the amino acid sequence of which is shown in seq_1, characterized in that: the mutant is any one of R174A, R, 174K, K538R and R174K, K897A and R174A, K945A and R174A, and the mutant is a mutation based on the amino acid sequence shown in seq_1.
2. A polynucleotide, characterized in that: a mutant encoding the wild-type LbCas12a protein of claim 1.
3. A vector comprising the polynucleotide of claim 2 and operably linked thereto a regulatory element.
4. An engineered host cell comprising a mutant of the wild-type LbCas12a protein of claim 1, or the polynucleotide of claim 2, or the vector of claim 3.
5. A CRISPR-Cas system or kit for one-step detection of SNPs on double-stranded DNA, characterized in that the CRISPR-Cas system or kit comprises a mutant of the wild-type LbCas12a protein of claim 1 and at least one gRNA;
the gRNA comprises a cognate repeat sequence capable of binding to a mutant of the wild-type LbCas12a protein of claim 1 and a guide sequence crRNA capable of targeting a target sequence.
6. The CRISPR-Cas system or kit for one-step detection of SNPs on double-stranded DNA according to claim 5, characterized by: the crRNA has a sequence length of 19nt.
7. The CRISPR-Cas system or kit for one-step detection of SNPs on double-stranded DNA according to claim 5, characterized in that: the SNPs are located 1 st to 13 th nt on the double-stranded DNA from the PAM side.
8. A composition, characterized in that it comprises:
(i) A protein component selected from the group consisting of: a mutant of the wild-type LbCas12a protein of claim 1;
(ii) A nucleic acid component that is a gRNA comprising a direct repeat sequence capable of binding to a mutant of the wild-type LbCas12a protein of claim 1 and a guide sequence capable of targeting a target sequence;
the protein component and the nucleic acid component are bound to each other to form a complex.
CN202211514174.0A 2022-11-29 2022-11-29 Mutants of wild-type LbCas12a protein and their uses for SNP detection Active CN116286734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211514174.0A CN116286734B (en) 2022-11-29 2022-11-29 Mutants of wild-type LbCas12a protein and their uses for SNP detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211514174.0A CN116286734B (en) 2022-11-29 2022-11-29 Mutants of wild-type LbCas12a protein and their uses for SNP detection

Publications (2)

Publication Number Publication Date
CN116286734A CN116286734A (en) 2023-06-23
CN116286734B true CN116286734B (en) 2024-04-02

Family

ID=86827509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211514174.0A Active CN116286734B (en) 2022-11-29 2022-11-29 Mutants of wild-type LbCas12a protein and their uses for SNP detection

Country Status (1)

Country Link
CN (1) CN116286734B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184786A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Cpf1 complexes with reduced indel activity
CA3026055A1 (en) * 2016-04-19 2017-10-26 The Broad Institute, Inc. Novel crispr enzymes and systems
CN109957569A (en) * 2017-12-22 2019-07-02 中国科学院遗传与发育生物学研究所 Base editing system and method based on CPF1 protein
CN110878343A (en) * 2019-12-03 2020-03-13 国家卫生健康委科学技术研究所 Cpf1 kit for quickly detecting genetic deafness pathogenic gene SLC26A4 mutation and detection method thereof
WO2020142754A2 (en) * 2019-01-04 2020-07-09 Mammoth Biosciences, Inc. Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection
WO2021076682A1 (en) * 2019-10-17 2021-04-22 Pairwise Plants Services, Inc. Variants of cas12a nucleases and methods of making and use thereof
CN112980933A (en) * 2020-12-30 2021-06-18 南方科技大学 SNP (Single nucleotide polymorphism) typing detection method based on CRISPR-Cas (clustered regularly interspaced short palindromic repeats) system and application thereof
CN113136376A (en) * 2021-05-26 2021-07-20 武汉大学 A Cas12a variant and its application in gene editing
CN114214348A (en) * 2021-11-16 2022-03-22 河南农业大学 Crispr/LbCas12a mutant protein used in nucleic acid detection and preparation method and application thereof
CN115335536A (en) * 2021-01-08 2022-11-11 武汉大学 Compositions and methods for point-of-care nucleic acid detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184786A1 (en) * 2016-04-19 2017-10-26 The Broad Institute Inc. Cpf1 complexes with reduced indel activity
CA3026055A1 (en) * 2016-04-19 2017-10-26 The Broad Institute, Inc. Novel crispr enzymes and systems
CN110382692A (en) * 2016-04-19 2019-10-25 博德研究所 Novel C RISPR enzyme and system
CN109957569A (en) * 2017-12-22 2019-07-02 中国科学院遗传与发育生物学研究所 Base editing system and method based on CPF1 protein
WO2020142754A2 (en) * 2019-01-04 2020-07-09 Mammoth Biosciences, Inc. Programmable nuclease improvements and compositions and methods for nucleic acid amplification and detection
WO2021076682A1 (en) * 2019-10-17 2021-04-22 Pairwise Plants Services, Inc. Variants of cas12a nucleases and methods of making and use thereof
CN110878343A (en) * 2019-12-03 2020-03-13 国家卫生健康委科学技术研究所 Cpf1 kit for quickly detecting genetic deafness pathogenic gene SLC26A4 mutation and detection method thereof
CN112980933A (en) * 2020-12-30 2021-06-18 南方科技大学 SNP (Single nucleotide polymorphism) typing detection method based on CRISPR-Cas (clustered regularly interspaced short palindromic repeats) system and application thereof
CN115335536A (en) * 2021-01-08 2022-11-11 武汉大学 Compositions and methods for point-of-care nucleic acid detection
CN113136376A (en) * 2021-05-26 2021-07-20 武汉大学 A Cas12a variant and its application in gene editing
CN114214348A (en) * 2021-11-16 2022-03-22 河南农业大学 Crispr/LbCas12a mutant protein used in nucleic acid detection and preparation method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Cas12a-based one-pot SNP detection with high accuracy;Hong-Xia Zhang等;Cell insight;第2卷(第2期);100080 *
Ciurkot,K.DNase-dead CRISPR-associated endonuclease Cas12a [synthetic construct].GenBank DataBase.2021,QWN56480.1. *
LbCas12a蛋白的原核表达及活性检测;刘茹等;中国畜牧兽医;第49卷(第5期);第1621-1629页 *
TRIM27调控IL-6诱导的STAT3激活的分子机制及其在肿瘤发生中的作用;张红霞;中国博士学位论文全文数据库(电子期刊)医药卫生科技辑(第6期);E072-2 *

Also Published As

Publication number Publication date
CN116286734A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
Chen et al. Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip
White et al. Digital PCR provides sensitive and absolute calibration for high throughput sequencing
US6165714A (en) Devices and methods for detecting nucleic acid analytes in samples
EP2623613B1 (en) Increasing confidence of allele calls with molecular counting
US10072260B2 (en) Target enrichment of randomly sheared genomic DNA fragments
CN103898199B (en) A kind of high-throughput nucleic acid analysis method and application thereof
Zhang et al. Lighting up single-nucleotide variation in situ in single cells and tissues
WO2020215652A1 (en) Detection technology system for enriching low-abundance dna mutation on the basis of nuclease-coupled pcr principle and application thereof
US20030027150A1 (en) Method of haplotyping and kit therefor
CN104120080B (en) A kind of α-globin gene mutation detection kit and preparation method thereof and application
US20010049102A1 (en) Methods for determining single nucleotide variations
KR20140010093A (en) Kit and method for sequencing a target dna in a mixed population
CN111073961A (en) High-throughput detection method for gene rare mutation
CN104962609B (en) Detect primer, kit and its PCR method of CYP2C9 and VKORC1 gene pleiomorphisms
CN107217107A (en) The method and kit of a kind of quick detection CYP2C19 gene pleiomorphisms
CN102634587A (en) Method for combined and extended detection of continuous mutation of base by deoxyribonucleic acid (DNA) chips
KR20210112350A (en) Quantitative amplicon sequencing for detection of multiple copy number variations and quantification of allele ratios
CN104450869A (en) Dideoxyribonucleoside modified primer, method, reaction system and application thereof to mutation detection
JP2010535501A (en) Methods to identify individuals at risk of thiopurine drug resistance and thiopurine drug intolerance
CN116042865A (en) Primer composition, kit and design method for human CYP2D6 genotyping
CN116286734B (en) Mutants of wild-type LbCas12a protein and their uses for SNP detection
CN111593115B (en) Primer and probe combination and kit for multiplex real-time fluorescence PCR detection of beta-thalassemia gene mutation
CN105463108A (en) SNP (Single nucleotide polymorphism) typing detection method by utilizing padlock probe rolling circle amplification
CN108060213A (en) Isothermal duplication method detection SNP site probe and kit based on the recombinase-mediated that probe is oriented to
CN1810989B (en) Constant temperature reaction process for detecting DNA and RNA with sequence specificity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant