[go: up one dir, main page]

CN109752677A - A double bridge type thin film magnetoresistive sensor - Google Patents

A double bridge type thin film magnetoresistive sensor Download PDF

Info

Publication number
CN109752677A
CN109752677A CN201910022171.7A CN201910022171A CN109752677A CN 109752677 A CN109752677 A CN 109752677A CN 201910022171 A CN201910022171 A CN 201910022171A CN 109752677 A CN109752677 A CN 109752677A
Authority
CN
China
Prior art keywords
magnetoresistive
thin film
bridge type
type thin
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910022171.7A
Other languages
Chinese (zh)
Inventor
陈洁
黄旭庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910022171.7A priority Critical patent/CN109752677A/en
Publication of CN109752677A publication Critical patent/CN109752677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种双电桥式薄膜磁阻传感器,各向异性磁阻层由四条完全一样的各向异性磁阻薄膜条A、B、C、D头尾顺序连接组成一个电桥,由另一组四条完全一样的各向异性磁阻薄膜条A’、B’、C’、D’头尾顺序连接组成另一个电桥,该两电桥相并联组成所述双电桥式薄膜磁阻传感器;其中,磁阻薄膜条A、B、C、D相位各相差90°,磁阻薄膜条A’B’C’D’排列方式与磁阻薄膜条ABCD相同,并且磁阻薄膜条A’、B’、C’、D’上都应用了与磁阻薄膜长轴方向成45°夹角的Barber电极(如摘要附图所示)。该薄膜磁阻传感器的结构新颖,首次采用了双电桥形式设计磁阻传感器,扩大了磁阻传感器的线性工作区,提高了灵敏度。

The invention discloses a double-bridge type thin-film magnetoresistive sensor. The anisotropic magnetoresistive layer is composed of four identical anisotropic magnetoresistive thin-film strips A, B, C, and D which are connected head-to-tail in sequence to form a bridge. Another group of four identical anisotropic magnetoresistive thin film strips A', B', C', D' are connected head-to-tail in sequence to form another electric bridge, and the two electric bridges are connected in parallel to form the double-bridge type thin-film magnetic strip. Resistance sensor; wherein, the phases of the magnetoresistive film strips A, B, C, and D are different by 90°, the arrangement of the magnetoresistive film strips A'B'C'D' is the same as that of the magnetoresistive film strips ABCD, and the magnetoresistive film strips A ', B', C', and D' are all applied with Barber electrodes at an angle of 45° with the long axis direction of the magnetoresistive film (as shown in the abstract figure). The structure of the thin film magnetoresistive sensor is novel, and the magnetoresistive sensor is designed in the form of a double bridge for the first time, which expands the linear working area of the magnetoresistive sensor and improves the sensitivity.

Description

一种双电桥式薄膜磁阻传感器A double bridge type thin film magnetoresistive sensor

技术领域technical field

本发明属于磁传感器技术领域,具体来说,涉及一种用于测量磁场方向的双电桥式薄膜磁阻传感器。The invention belongs to the technical field of magnetic sensors, and in particular relates to a double bridge type thin film magnetoresistive sensor for measuring the direction of a magnetic field.

背景技术Background technique

某些金属或半导体在遇到外加磁场时,其电阻值会随着外加磁场的大小发生变化,这种现象叫做磁阻效应,磁阻传感器利用磁阻效应制成。1857年,Thomson发现坡莫合金的各向异性磁阻效应。对于有各向异性特性的强磁性金属,磁阻的变化是与磁场和电流间夹角有关的。当外部磁场与磁体内建磁场方向成零度角时,电阻是不会随着外加磁场变化而发生改变的;但当外部磁场与磁体的内建磁场有一定角度的时候,磁体内部磁化矢量会偏移,薄膜电阻降低,这种特性称为各向异性磁电阻效应When some metals or semiconductors encounter an external magnetic field, their resistance value will change with the magnitude of the external magnetic field. This phenomenon is called the magnetoresistive effect. The magnetoresistive sensor is made of the magnetoresistive effect. In 1857, Thomson discovered the anisotropic magnetoresistance effect of permalloy. For ferromagnetic metals with anisotropic properties, the change of magnetoresistance is related to the angle between the magnetic field and the current. When the external magnetic field and the built-in magnetic field of the magnet form a zero-degree angle, the resistance will not change with the change of the external magnetic field; but when the external magnetic field and the built-in magnetic field of the magnet have a certain angle, the internal magnetization vector of the magnet will be offset. shift, the sheet resistance decreases, this characteristic is called the anisotropic magnetoresistance effect

各向异性薄膜磁阻传感器是70年代中期才出现的新型磁传感器。由于它具有灵敏度高、体积小、可靠性高、温度特性好、耐恶劣环境能力强以及易于与数字电路匹配等优点,不断扩大着其应用领域,取代了不少原先由霍尔器件等传统磁敏器件所占领的市场。但是目前市场上的各向异性磁阻传感器结构单一,在弱磁场或者小角度磁场下并不工作在线性区域,因此研究一种线性区域大的磁阻传感器是目前的热点。The anisotropic thin-film magnetoresistive sensor is a new type of magnetic sensor that appeared in the mid-1970s. Due to its advantages of high sensitivity, small size, high reliability, good temperature characteristics, strong ability to withstand harsh environments, and easy matching with digital circuits, it has continuously expanded its application field and replaced many traditional magnetic fields such as Hall devices. market occupied by sensitive devices. However, the anisotropic magnetoresistive sensors currently on the market have a single structure and do not work in the linear region under weak magnetic fields or small-angle magnetic fields. Therefore, it is a hot topic to study a magnetoresistive sensor with a large linear region.

发明内容SUMMARY OF THE INVENTION

技术问题:本发明所要解决的技术问题是:提供一种双电桥式薄膜磁阻传感器,可以实现磁场方向的测量并且扩大线性工作区,提高传感器的稳定性。Technical problem: The technical problem to be solved by the present invention is to provide a double bridge type thin film magnetoresistive sensor, which can realize the measurement of the magnetic field direction, expand the linear working area, and improve the stability of the sensor.

技术方案:为解决上述技术问题,本发明的一种双电桥式薄膜磁阻传感器采用的技术方案是:Technical scheme: In order to solve the above technical problems, the technical scheme adopted by a double bridge type thin film magnetoresistive sensor of the present invention is:

该双电桥式薄膜磁阻传感器应用Barber电极实现,包括从下到上依次叠加的衬底、绝缘层、各向异性磁阻层、Barber电极层和顶层电极层;各向异性磁阻层由四条完全一样的各向异性磁阻薄膜条A、B、C、D头尾顺序连接组成一个电桥,由另一组四条完全一样的各向异性磁阻薄膜条A’、B’、C’、D’头尾顺序连接组成另一个电桥,该两电桥相并联组成所述双电桥式薄膜磁阻传感器;其中,磁阻薄膜条A和磁阻薄膜条B相差的相位为90°,磁阻薄膜条B和磁阻薄膜条C相位相差90°,磁阻薄膜条C和磁阻薄膜条D相位相差90°,磁阻薄膜条A’B’C’D’排列方式与磁阻薄膜条ABCD相同,并且磁阻薄膜条A’、B’、C’、D’上都应用了与磁阻薄膜长轴方向成45°夹角的Barber电极。The double bridge type thin film magnetoresistive sensor is realized by using Barber electrodes, including the substrate, insulating layer, anisotropic magnetoresistive layer, Barber electrode layer and top electrode layer stacked in sequence from bottom to top; the anisotropic magnetoresistive layer is composed of Four identical anisotropic magnetoresistive thin film strips A, B, C, D are connected in sequence to form a bridge, and another group of four identical anisotropic magnetoresistive thin film strips A', B', C' , D' head and tail are connected in sequence to form another bridge, and the two bridges are connected in parallel to form the double-bridge type thin film magnetoresistive sensor; wherein, the phase difference between the magnetoresistive thin film strip A and the magnetoresistive thin film strip B is 90° , the phase difference between magnetoresistive film strip B and magnetoresistive film strip C is 90°, and the phase difference between magnetoresistive film strip C and magnetoresistive film strip D is 90°. The thin film strips ABCD are the same, and the magnetoresistive thin film strips A', B', C', and D' are all applied with Barber electrodes that form an angle of 45° with the long axis direction of the magnetoresistive thin film.

其中,in,

所述各向异性磁阻层的四条各向异性磁阻效应完全相同的磁阻薄膜条选用的是具有各向异性磁阻效应的铁镍合金。The four magnetoresistive film strips of the anisotropic magnetoresistive layer with identical anisotropic magnetoresistive effects are selected from iron-nickel alloys with anisotropic magnetoresistive effects.

所述铁镍合金中铁的含量为20%。The content of iron in the iron-nickel alloy is 20%.

所述磁阻薄膜条A、磁阻薄膜条B、磁阻薄膜条C、磁阻薄膜条D的平面形状为连续连接的S形。The planar shapes of the magnetoresistive thin film strips A, B, C, and D are continuously connected S shapes.

所述衬底采用的材料是Si。The material used for the substrate is Si.

所述绝缘层采用的是SiO2,具有非磁性、良好的绝缘性、稳定的化学性质、强度硬度高拉伸性好。The insulating layer is made of SiO 2 , which has non-magnetic properties, good insulating properties, stable chemical properties, high strength and hardness, and good tensile properties.

Barber电极层采用的材料为铝。The material used for the Barber electrode layer is aluminum.

顶层电极层所用的材料是铜。The material used for the top electrode layer is copper.

Barber在磁阻材料上与长轴夹角成45°方向排列(如附图2所示)。外加磁场与薄膜平面平行,与膜条B电流方向夹角为θ(如附图2所示)。其等效电路如图3所示,其中a、b、c、d、e、f是铜导电材料制作成的电极。在a、f上施加偏置电压Vb,通过测量b、c和d、e之间分别的电压差,就能转换得到磁场的方向。Barbers are arranged on the magnetoresistive material at an angle of 45° with the long axis (as shown in FIG. 2 ). applied magnetic field It is parallel to the plane of the film, and the included angle with the current direction of the film strip B is θ (as shown in FIG. 2 ). Its equivalent circuit is shown in Figure 3, wherein a, b, c, d, e, f are electrodes made of copper conductive material. A bias voltage V b is applied to a and f, and the direction of the magnetic field can be converted by measuring the voltage difference between b, c and d, e respectively.

有益效果:本发明设计了一种双电桥结构的磁阻传感器,两个电桥共同工作,能使得线性区域扩大一倍,并且在弱磁场或小角度磁场下的灵敏度得到了极大的提高。Beneficial effects: The present invention designs a magnetoresistive sensor with a double bridge structure. The two bridges work together to double the linear region, and the sensitivity under weak magnetic field or small-angle magnetic field is greatly improved. .

本发明的用于测量磁场方向的双电桥式薄膜磁阻传感器具有功耗小、性能可靠、实施便捷等优点,并且具有温度补偿的效益,使得测量更加精确,还扩大了磁阻薄膜的线性工作区,提高了弱磁场下的灵敏度。The double bridge type thin film magnetoresistive sensor for measuring the direction of the magnetic field has the advantages of low power consumption, reliable performance, convenient implementation, etc., and has the benefit of temperature compensation, which makes the measurement more accurate, and also expands the linearity of the magnetoresistive thin film. The working area improves the sensitivity under weak magnetic fields.

附图说明Description of drawings

图1是本发明的正视图。FIG. 1 is a front view of the present invention.

图2是本发明的俯视图。Figure 2 is a plan view of the present invention.

图3是本发明的等效电路图。FIG. 3 is an equivalent circuit diagram of the present invention.

图中有:衬底1、绝缘层2、各向异性磁阻层3、Barber电极层4、顶层电极层5、各向异性磁阻薄膜A、B、C、D、A’、B’、C’、D’、铜电极a、b、c、d、e、f和磁场H。There are: substrate 1, insulating layer 2, anisotropic magnetoresistive layer 3, Barber electrode layer 4, top electrode layer 5, anisotropic magnetoresistive film A, B, C, D, A', B', C', D', copper electrodes a, b, c, d, e, f and magnetic field H.

具体实施方式Detailed ways

下面结合摘要附图,对本发明的技术方案进行详细的说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings.

如图1至图3所示,本发明的一种用于测量磁场方向的双电桥式薄膜磁阻传感器。包括从下到上依次叠加的衬底1、氧化层2、各向异性磁阻层3、Barber电极层4和顶层电极层5。其中衬底1是Si,绝缘层2是SiO2,各向异性磁阻层3是各向异性磁阻薄膜NiFe,Barber电极4材料是铝,顶层电极5是Cu电极。将各向异性磁阻效应完全相同的磁阻薄膜条按附图2方式连接,磁阻薄膜条A和B相差的相位为90°,磁阻薄膜条B、C相位相差90°,磁阻薄膜条C和D相位相差90°,磁阻薄膜条A’B’C’D’排列方式与ABCD相同,上面加了Barber电极。Barber在磁阻材料上与材料的长轴方向成45°夹角(如附图2所示)。也就是说,衬底和基体都是框型,金属层是按照一定的图形进行光刻之后形成的如图2所示图形。Barber电极是通过溅射Al材料并且按照一定图形光刻得到的,Cu电极是通过溅射技术形成一层铜金属层,并且将其图形化,进行光刻,得到所需的六个电极。As shown in FIG. 1 to FIG. 3 , a double bridge type thin film magnetoresistive sensor for measuring the direction of the magnetic field of the present invention is shown. It includes a substrate 1 , an oxide layer 2 , an anisotropic magnetoresistive layer 3 , a Barber electrode layer 4 and a top electrode layer 5 that are sequentially stacked from bottom to top. The substrate 1 is Si, the insulating layer 2 is SiO 2 , the anisotropic magnetoresistive layer 3 is an anisotropic magnetoresistive film NiFe, the Barber electrode 4 is aluminum, and the top electrode 5 is a Cu electrode. The magnetoresistive film strips with the same anisotropic magnetoresistance effect are connected according to the method shown in Figure 2. The phase difference between the magnetoresistive film strips A and B is 90°, and the phase difference between the magnetoresistive film strips B and C is 90°. The phase difference between strips C and D is 90°, and the arrangement of magnetoresistive film strips A'B'C'D' is the same as ABCD, with Barber electrodes added on them. Barber forms an included angle of 45° with the direction of the long axis of the magnetoresistive material (as shown in FIG. 2 ). That is to say, the substrate and the base body are both frame-shaped, and the metal layer is formed by photolithography according to a certain pattern as shown in FIG. 2 . Barber electrode is obtained by sputtering Al material and photolithography according to a certain pattern, Cu electrode is formed by sputtering technology to form a layer of copper metal layer, and patterning and photolithography to obtain the required six electrodes.

如图2所示,包括八条完全相同的各向异性磁阻薄膜条,右侧磁阻材料上采用的Barber电极以及a、b、c、d、e、f六个完全相同的由导电材料制成的电极部分。外加磁场与薄膜平面平行,与磁阻薄膜条B电流方向夹角为θ(如附图2所示)。As shown in Figure 2, it includes eight identical anisotropic magnetoresistive thin film strips, the Barber electrodes used on the right magnetoresistive material and six identical a, b, c, d, e, and f are made of conductive materials. formed electrode part. applied magnetic field It is parallel to the film plane, and the included angle with the current direction of the magnetoresistive film strip B is θ (as shown in FIG. 2 ).

对于左侧区域,磁阻薄膜条B的电阻率为:For the left region, the resistivity of the magnetoresistive thin film strip B is:

pB(θ)=pB⊥sin2θ+pB||cos2θ (1)p B (θ)=p B⊥ sin 2 θ+p B|| cos 2 θ (1)

磁阻薄膜条A的电阻率为:The resistivity of the magnetoresistive film strip A is:

pA(θ)=pA⊥cos2θ+pA||sin2θ (2)p A (θ)=p A⊥ cos 2 θ+p A|| sin 2 θ (2)

由于磁阻薄膜条A和磁阻薄膜条B在空间相位相差90°相位角,它们构成串联电路之后,在同一磁场作用下,当磁场的方向改变时,b、f之间的电压U1+(θ)可以表示为:Since the magnetoresistive film strip A and the magnetoresistive thin film strip B have a 90° phase angle difference in space, after they form a series circuit, under the same magnetic field Under the action, when the direction of the magnetic field changes, the voltage U 1+ (θ) between b and f can be expressed as:

将ρA(θ)和ρB(θ)的表达式代入式(3)中,得到:Substituting the expressions of ρ A (θ) and ρ B (θ) into Equation (3), we get:

同理: Similarly:

所以 so

对于右侧区域A’、B’、C、’D’这四条磁阻膜条,由于加上了Barber电极,使得电流流动方向发生了倾斜,此时对于B’而言,电阻率为:For the four magnetoresistive film strips in the right area A', B', C, and 'D', due to the addition of Barber electrodes, the current flow direction is inclined. At this time, for B', the resistivity is:

磁阻薄膜条A’的电阻率为:The resistivity of the magnetoresistive thin film strip A' is:

此时,df之间的电压U2+(θ)可以表示为:At this time, the voltage U 2+ (θ) between df can be expressed as:

再将ρA′(θ)和pB′(θ)代入方程(9)中,得到:Substituting ρ A' (θ) and p B' (θ) into equation (9), we get:

所以 so

式(10)(11)(12)中,Δρ=ρ||,ρ||表示磁化强度与电流同方向时的电阻率,ρ则表示互相垂直时的电阻率。从Uout1和Uout2表达式中可以看出,当磁场角度发生变化时,Uout1和Uout2也随着θ的改变发生变化,但是其中一个变化时呈正弦关系,另一个呈余弦关系,必定存在一个较大的输出电压。将较大的输出电压作为实际测量电压,实现扩展线性区的目的,使得磁阻薄膜传感器更加灵敏。采用电桥结构具有温度补偿效益,使得传感器更加稳定。In formula (10)(11)(12), Δρ=ρ || , ρ || represents the resistivity when the magnetization and the current are in the same direction, and ρ represents the resistivity when they are perpendicular to each other. It can be seen from the expressions of U out1 and U out2 that when the magnetic field angle changes, U out1 and U out2 also change with the change of θ, but one of them has a sine relationship and the other has a cosine relationship. There is a larger output voltage. The larger output voltage is used as the actual measurement voltage to achieve the purpose of extending the linear region, making the magnetoresistive thin film sensor more sensitive. The use of a bridge structure has the benefit of temperature compensation, making the sensor more stable.

本发明的一种用于测量磁场方向的双电桥式薄膜磁阻传感器的制备过程是:A preparation process of a double bridge type thin film magnetoresistive sensor for measuring the magnetic field direction of the present invention is:

1)准备硅基片,并进行清洗、烘干;1) Prepare the silicon substrate, clean and dry it;

2)在硅基片上氧化形成一层氧化硅膜层;2) Oxidation on the silicon substrate to form a layer of silicon oxide film;

3)溅射NiFe层,退火后,按照一定图形掩模板光刻形成磁阻条;3) Sputtering the NiFe layer, after annealing, forming magnetoresistive strips by photolithography according to a certain pattern mask;

4)溅射Al电极,光刻形成Barber电极图形(用光刻剥离法形成Barber电极);4) Sputtering Al electrodes, photolithography forms Barber electrode patterns (barber electrodes are formed by photolithography lift-off method);

5)溅射Cu电极,光刻形成六个测试电极;5) Sputtering Cu electrodes, and photolithography forms six test electrodes;

6)后续封装。6) Subsequent packaging.

本发明的不同之处在于:The difference of the present invention is:

在本发明中,构成用于测量磁场方向的双电桥式薄膜磁阻传感器采用的是双电桥结构,并且其中一个电桥还应用了Barber电极。由于Barber电极能使得电流方向与易磁化轴的角度发生偏转,使得两个电桥总有一个工作在线性工作区,进而扩展线性工作区,使得器件更加稳定。In the present invention, the double-bridge type thin film magnetoresistive sensor for measuring the direction of the magnetic field adopts a double-bridge structure, and one of the bridges also applies a Barber electrode. Since the Barber electrode can deflect the current direction and the angle of the easy magnetization axis, one of the two bridges always works in the linear working area, thereby expanding the linear working area and making the device more stable.

满足以上条件的结构即视为本发明的用于测量磁场方向的双电桥式薄膜磁阻传感器。The structure satisfying the above conditions is regarded as the double bridge type thin film magnetoresistive sensor for measuring the magnetic field direction of the present invention.

Claims (8)

1.一种双电桥式薄膜磁阻传感器,其特征在于,该双电桥式薄膜磁阻传感器应用Barber电极实现,包括从下到上依次叠加的衬底(1)、绝缘层(2)、各向异性磁阻层(3)、Barber电极层(4)和顶层电极层(5);各向异性磁阻层(3)由四条完全一样的各向异性磁阻薄膜条A、B、C、D头尾顺序连接组成一个电桥,由另一组四条完全一样的各向异性磁阻薄膜条A’、B’、C’、D’头尾顺序连接组成另一个电桥,该两电桥相并联组成所述双电桥式薄膜磁阻传感器;其中,磁阻薄膜条A和磁阻薄膜条B相差的相位为90°,磁阻薄膜条B和磁阻薄膜条C相位相差90°,磁阻薄膜条C和磁阻薄膜条D相位相差90°,磁阻薄膜条A’B’C’D’排列方式与磁阻薄膜条ABCD相同,并且磁阻薄膜条A’、B’、C’、D’上都应用了与磁阻薄膜长轴方向成45°夹角的Barber电极。1. a double bridge type thin film magnetoresistive sensor, it is characterized in that, this double bridge type thin film magnetoresistive sensor is realized by applying Barber electrode, including the substrate (1), insulating layer (2) that are stacked sequentially from bottom to top , anisotropic magnetoresistive layer (3), Barber electrode layer (4) and top electrode layer (5); the anisotropic magnetoresistive layer (3) consists of four identical anisotropic magnetoresistive thin film strips A, B, The head and tail of C and D are connected in sequence to form a bridge, and another set of four identical anisotropic magnetoresistive thin film strips A', B', C', D' are connected in sequence to form another bridge. The bridges are connected in parallel to form the double-bridge type thin film magnetoresistive sensor; wherein, the phase difference between the magnetoresistive thin film strip A and the magnetoresistive thin film strip B is 90°, and the phase difference between the magnetoresistive thin film strip B and the magnetoresistive thin film strip C is 90°. °, the phase difference between the magnetoresistive film strips C and the magnetoresistive film strips D is 90°, the arrangement of the magnetoresistive film strips A'B'C'D' is the same as that of the magnetoresistive film strips ABCD, and the magnetoresistive film strips A', B' , C', and D' are all applied with Barber electrodes that form an angle of 45° with the long axis of the magnetoresistive film. 2.按照权利要求1所述的一种双电桥式薄膜磁阻传感器,其特征在于,所述各向异性磁阻层(3)的四条各向异性磁阻效应完全相同的磁阻薄膜条选用的是具有各向异性磁阻效应的铁镍合金。2 . The double-bridge type thin film magnetoresistive sensor according to claim 1 , wherein the four magnetoresistive thin film strips of the anisotropic magnetoresistive layer (3) have identical anisotropic magnetoresistive effects. 3 . The iron-nickel alloy with anisotropic magnetoresistance effect is selected. 3.按照权利要求2所述的一种双电桥式薄膜磁阻传感器,其特征在于,所述铁镍合金中铁的含量为20%。3 . The double bridge type thin film magnetoresistive sensor according to claim 2 , wherein the content of iron in the iron-nickel alloy is 20%. 4 . 4.按照权利要求1所述的一种双电桥式薄膜磁阻传感器,其特征在于,所述磁阻薄膜条A、磁阻薄膜条B、磁阻薄膜条C、磁阻薄膜条D的平面形状为连续连接的S形。4. A kind of double bridge type thin film magnetoresistive sensor according to claim 1, wherein the magnetoresistive thin film strip A, the magnetoresistive thin film strip B, the magnetoresistive thin film strip C, the The planar shape is a continuously connected S shape. 5.按照权利要求1所述的一种双电桥式薄膜磁阻传感器,其特征在于,所述衬底1采用的材料是Si。5 . The double bridge type thin film magnetoresistive sensor according to claim 1 , wherein the material used for the substrate 1 is Si. 6 . 6.按照权利要求1所述的一种双电桥式薄膜磁阻传感器,其特征在于,所述绝缘层(2)采用的是SiO2,具有非磁性、良好的绝缘性、稳定的化学性质、强度硬度高拉伸性好。6 . The double bridge type thin film magnetoresistive sensor according to claim 1 , wherein the insulating layer ( 2 ) is made of SiO 2 , which has non-magnetic properties, good insulating properties, and stable chemical properties. 7 . , High strength and hardness, good stretchability. 7.按照权利要求书1所述的一种双电桥式薄膜磁阻传感器,其特征在于,Barber电极层(4)采用的材料为铝。7 . The double bridge type thin film magnetoresistive sensor according to claim 1 , wherein the material used for the Barber electrode layer ( 4 ) is aluminum. 8 . 8.按照权利要求书1所述的一种双电桥式薄膜磁阻传感器,其特征在于,顶层电极层(5)所用的材料是铜。8. A double bridge type thin film magnetoresistive sensor according to claim 1, characterized in that the material used in the top electrode layer (5) is copper.
CN201910022171.7A 2019-01-10 2019-01-10 A double bridge type thin film magnetoresistive sensor Pending CN109752677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910022171.7A CN109752677A (en) 2019-01-10 2019-01-10 A double bridge type thin film magnetoresistive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910022171.7A CN109752677A (en) 2019-01-10 2019-01-10 A double bridge type thin film magnetoresistive sensor

Publications (1)

Publication Number Publication Date
CN109752677A true CN109752677A (en) 2019-05-14

Family

ID=66404605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910022171.7A Pending CN109752677A (en) 2019-01-10 2019-01-10 A double bridge type thin film magnetoresistive sensor

Country Status (1)

Country Link
CN (1) CN109752677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904246A (en) * 2019-11-19 2021-06-04 Tdk株式会社 Magnetic sensor
CN114609560A (en) * 2022-05-09 2022-06-10 四川永星电子有限公司 Two-dimensional AMR magnetic sensor and preparation process thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199856A (en) * 1997-05-09 1998-11-25 布朗和沙普·特萨有限公司 Magnetoresistive sensor for measuring dimension
US6100686A (en) * 1997-06-13 2000-08-08 U.S. Philips Corporation Magnetic field sensor with double wheatstone bridge having magneto-resistive elements
US6998839B2 (en) * 2001-12-20 2006-02-14 Koninklijke Philips Electronics N.V. Magnetoresistive sensor having a strip-shaped conductor and a screening strip
CN1934420A (en) * 2004-03-16 2007-03-21 皇家飞利浦电子股份有限公司 Magneto-resistive sensor with test mode activation
JP2009250931A (en) * 2008-04-10 2009-10-29 Rohm Co Ltd Magnetic sensor, operation method thereof, and magnetic sensor system
CN101937063A (en) * 2010-08-11 2011-01-05 上海腾怡半导体有限公司 Magnetic field sensor
CN102466491A (en) * 2010-11-17 2012-05-23 Tdk株式会社 Rotating field sensor
CN102809665A (en) * 2012-06-04 2012-12-05 江苏多维科技有限公司 Magnetic resistance gear sensor
JP2013044641A (en) * 2011-08-24 2013-03-04 Murata Mfg Co Ltd Magnetic sensor
CN103528575A (en) * 2013-10-18 2014-01-22 上海宏力半导体制造有限公司 Three-dimensional AMRMEMS (Anisotropic Magneto Resistive Micro-Electro-Mechanical System) three-axis magnetometer structure and magnetometer
CN104272129A (en) * 2012-05-16 2015-01-07 株式会社村田制作所 Bridge circuit and magnetic sensor comprising same
CN104900801A (en) * 2015-04-23 2015-09-09 美新半导体(无锡)有限公司 Anti-ferromagnetic pinning AMR (Anisotropic Magneto Resistance) sensor
US20150309129A1 (en) * 2013-01-18 2015-10-29 Murata Manufacturing Co., Ltd. Magnetic sensor and production method therefor
CN105866715A (en) * 2016-03-23 2016-08-17 电子科技大学 Preparation method for linear anisotropic magnetoresistive sensor
CN106463612A (en) * 2014-05-30 2017-02-22 株式会社村田制作所 Magnetoresistive element, magnetic sensor and current sensor
US20170261306A1 (en) * 2016-03-09 2017-09-14 Infineon Technologies Ag Extension sensor and reduction of a drift of a bridge circuit caused by an extension
CN108983125A (en) * 2017-06-01 2018-12-11 深迪半导体(上海)有限公司 A kind of magnetoresistive sensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199856A (en) * 1997-05-09 1998-11-25 布朗和沙普·特萨有限公司 Magnetoresistive sensor for measuring dimension
US6100686A (en) * 1997-06-13 2000-08-08 U.S. Philips Corporation Magnetic field sensor with double wheatstone bridge having magneto-resistive elements
US6998839B2 (en) * 2001-12-20 2006-02-14 Koninklijke Philips Electronics N.V. Magnetoresistive sensor having a strip-shaped conductor and a screening strip
CN1934420A (en) * 2004-03-16 2007-03-21 皇家飞利浦电子股份有限公司 Magneto-resistive sensor with test mode activation
JP2009250931A (en) * 2008-04-10 2009-10-29 Rohm Co Ltd Magnetic sensor, operation method thereof, and magnetic sensor system
CN101937063A (en) * 2010-08-11 2011-01-05 上海腾怡半导体有限公司 Magnetic field sensor
CN102466491A (en) * 2010-11-17 2012-05-23 Tdk株式会社 Rotating field sensor
JP2013044641A (en) * 2011-08-24 2013-03-04 Murata Mfg Co Ltd Magnetic sensor
CN104272129A (en) * 2012-05-16 2015-01-07 株式会社村田制作所 Bridge circuit and magnetic sensor comprising same
CN102809665A (en) * 2012-06-04 2012-12-05 江苏多维科技有限公司 Magnetic resistance gear sensor
US20150309129A1 (en) * 2013-01-18 2015-10-29 Murata Manufacturing Co., Ltd. Magnetic sensor and production method therefor
CN103528575A (en) * 2013-10-18 2014-01-22 上海宏力半导体制造有限公司 Three-dimensional AMRMEMS (Anisotropic Magneto Resistive Micro-Electro-Mechanical System) three-axis magnetometer structure and magnetometer
CN106463612A (en) * 2014-05-30 2017-02-22 株式会社村田制作所 Magnetoresistive element, magnetic sensor and current sensor
CN104900801A (en) * 2015-04-23 2015-09-09 美新半导体(无锡)有限公司 Anti-ferromagnetic pinning AMR (Anisotropic Magneto Resistance) sensor
US20170261306A1 (en) * 2016-03-09 2017-09-14 Infineon Technologies Ag Extension sensor and reduction of a drift of a bridge circuit caused by an extension
CN105866715A (en) * 2016-03-23 2016-08-17 电子科技大学 Preparation method for linear anisotropic magnetoresistive sensor
CN108983125A (en) * 2017-06-01 2018-12-11 深迪半导体(上海)有限公司 A kind of magnetoresistive sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
樊之琼 等: "弱磁场ARM薄膜磁传感优化分析与测试", 《仪表技术与传感器》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904246A (en) * 2019-11-19 2021-06-04 Tdk株式会社 Magnetic sensor
CN112904246B (en) * 2019-11-19 2024-03-19 Tdk株式会社 Magnetic sensor
CN114609560A (en) * 2022-05-09 2022-06-10 四川永星电子有限公司 Two-dimensional AMR magnetic sensor and preparation process thereof

Similar Documents

Publication Publication Date Title
CN109752676A (en) An Improved Wheatstone Bridge Thin Film Magnetoresistive Sensor
US20060114098A1 (en) Current sensor
CN102540112B (en) Single chip pull-push bridge type magnetic field sensor
CN103323796B (en) A kind of MTJ magnetic field sensor using Graphene as barrier layer
EP3309572B1 (en) Interdigitated single axis magnetoresistive magnetic field sensor
CN102590768A (en) Magneto-resistance magnetic field gradient sensor
WO2015096744A1 (en) Single chip reference bridge type magnetic sensor for high-intensity magnetic field
WO2015058632A1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
JP2006208278A (en) Current sensor
WO2012136134A1 (en) Single-chip push-pull bridge-type magnetic field sensor
CN108267632A (en) A kind of AMR linear transducers and its design method based on winding bias
WO2017173992A1 (en) Anisotropic magnetoresistance (amr) sensor not requiring set/reset device
CN111044953A (en) Single-chip full-bridge TMR magnetic field sensor
US11249116B2 (en) Magnetic sensor and current sensor
CN109752677A (en) A double bridge type thin film magnetoresistive sensor
WO2017076252A1 (en) High-sensitivity single-chip push-pull type tmr magnetic field sensor
CN204347226U (en) A kind of single-chip has the z axis magnetic resistance sensor of calibration/replacement coil
CN114937736B (en) Wide-range TMR sensor tunnel junction and sensor
RU2436200C1 (en) Magnetoresistive sensor
CN109814050A (en) A Bridge Thin Film Magnetoresistive Sensor Using Barber Electrode
CN202794487U (en) Magneto-resistor magnetic field gradient sensor
CN109752678B (en) A Simple Anisotropic Thin Film Magnetoresistive Sensor
Liu Overview of hall current sensor optimal design
CN114609560B (en) Two-dimensional AMR magnetic sensor and preparation process thereof
CN103792501B (en) The graphene-based Magnetic Sensor of a kind of bridge connected

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190514

RJ01 Rejection of invention patent application after publication