CN109545744B - A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection - Google Patents
A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection Download PDFInfo
- Publication number
- CN109545744B CN109545744B CN201710858217.XA CN201710858217A CN109545744B CN 109545744 B CN109545744 B CN 109545744B CN 201710858217 A CN201710858217 A CN 201710858217A CN 109545744 B CN109545744 B CN 109545744B
- Authority
- CN
- China
- Prior art keywords
- bottom electrode
- hole
- electrode contact
- metal
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
本发明提供了一种磁性随机存储器单元阵列及周边电路连线的制造方法,提供在两层金属之间进行磁性随机存储器件及其周围逻辑电路的制作工艺和对准方式。在存储区域,采用在金属连线上依次制作底电极通孔、底电极接触、磁性隧道结结构单元和顶电极通孔,并依次对齐;在逻辑电路区域,则采用顶电极通孔和底电极接触直接相连接的方式实现,顶电极通孔、底电极接触、底电极通孔依次对齐;最后,在顶电极通孔上制作一层金属连线以实现磁性随机存储器逻辑区域和存储区域之间的连接。由于在磁性隧道结单元阵列下面,增加了一层底电极接触,有效的隔断了CMOS后段铜和磁性隧道结阵列底部的直接连接,有利于器件电学性能和良率的提升。
The present invention provides a manufacturing method of a magnetic random access memory cell array and peripheral circuit wiring, and provides a manufacturing process and an alignment method of a magnetic random access memory device and its surrounding logic circuit between two layers of metals. In the storage area, bottom electrode vias, bottom electrode contacts, magnetic tunnel junction structural units and top electrode vias are sequentially fabricated on the metal connection lines, and aligned in sequence; in the logic circuit area, top electrode vias and bottom electrodes are used The contact is directly connected, and the top electrode through hole, the bottom electrode contact, and the bottom electrode through hole are aligned in sequence; finally, a layer of metal wiring is made on the top electrode through hole to realize the magnetic random access memory between the logic area and the storage area. Connection. Because a layer of bottom electrode contact is added under the magnetic tunnel junction unit array, the direct connection between the copper in the rear section of the CMOS and the bottom of the magnetic tunnel junction array is effectively blocked, which is beneficial to the improvement of the electrical performance and yield of the device.
Description
技术领域technical field
本发明涉及一种磁性随机存储器(MRAM)单元阵列及周边电路连线的制造方法,属于磁性随机存储器(MRAM,Magnetic Radom Access Memory)制造技术领域。The invention relates to a manufacturing method of a magnetic random access memory (MRAM) cell array and peripheral circuit connections, belonging to the technical field of magnetic random access memory (MRAM, Magnetic Radom Access Memory).
背景技术Background technique
近年来,采用磁性隧道结(MTJ,Magnetic Tunnel Junction)的MRAM被人们认为是未来的固态非易失性记忆体,它具有高速读写、大容量以及低能耗的特点。铁磁性MTJ通常为三明治结构,其中有:磁性记忆层,它可以改变磁化方向以记录不同的数据;位于中间的绝缘的隧道势垒层;磁性参考层,位于隧道势垒层的另一侧,它的磁化方向不变。In recent years, MRAM using Magnetic Tunnel Junction (MTJ) is considered to be the future solid-state non-volatile memory, which has the characteristics of high-speed read and write, large capacity and low power consumption. Ferromagnetic MTJs are usually sandwich structures, which include: a magnetic memory layer, which can change the direction of magnetization to record different data; an insulating tunnel barrier layer in the middle; a magnetic reference layer, located on the other side of the tunnel barrier layer, Its magnetization direction does not change.
为能在这种磁电阻元件中记录信息,建议使用基于自旋动量转移或称自旋转移矩(STT,Spin Transfer Torque)转换技术的写方法,这样的MRAM称为STT-MRAM。根据磁极化方向的不同,STT-MRAM又分为面内STT-MRAM和垂直STT-MRAM(即pSTT-MRAM),后者有更好的性能。依此方法,即可通过向磁电阻元件提供自旋极化电流来反转磁性记忆层的磁化强度方向。此外,随着磁性记忆层的体积的缩减,写或转换操作需注入的自旋极化电流也越小。因此,这种写方法可同时实现器件微型化和降低电流。In order to be able to record information in such a magnetoresistive element, a writing method based on a spin-momentum transfer or spin transfer torque (STT, Spin Transfer Torque) conversion technology is proposed, and such MRAM is called STT-MRAM. According to the different magnetic polarization directions, STT-MRAM is divided into in-plane STT-MRAM and vertical STT-MRAM (ie pSTT-MRAM), the latter has better performance. In this way, the magnetization direction of the magnetic memory layer can be reversed by supplying a spin-polarized current to the magnetoresistive element. In addition, as the volume of the magnetic memory layer is reduced, the spin-polarized current that needs to be injected for writing or switching operations is also smaller. Therefore, this writing method enables device miniaturization and current reduction at the same time.
同时,鉴于减小MTJ元件尺寸时所需的切换电流也会减小,所以在尺度方面pSTT-MRAM可以很好的与最先进的技术节点相契合。因此,期望是将pSTT-MRAM元件做成极小尺寸,并具有非常好的均匀性,以及把对MTJ磁性的影响减至最小,所采用的制备方法还可实现高良莠率、高精确度、高可靠性、低能耗,以及保持适于数据良好保存的温度系数。同时,非易失性记忆体中写操作是基于阻态变化,从而需要控制由此引起的对MTJ记忆器件寿命的破坏与缩短。然而,制备一个小型MTJ元件可能会增加MTJ电阻的波动,使得pSTT-MRAM的写电压或电流也会随之有较大的波动,这样会损伤MRAM的性能。At the same time, pSTT-MRAM can fit well with the most advanced technology nodes in terms of scale, since the switching current required to reduce the size of the MTJ element will also decrease. Therefore, it is desirable to make pSTT-MRAM elements very small in size, with very good uniformity, and minimize the influence on the magnetic properties of MTJ, and the adopted preparation method can also achieve high yield, high precision, High reliability, low power consumption, and maintaining a temperature coefficient suitable for good data preservation. At the same time, the write operation in the non-volatile memory is based on the change of the resistance state, so it is necessary to control the damage and shorten the life of the MTJ memory device caused thereby. However, fabricating a small MTJ element may increase the fluctuation of the MTJ resistance, which will lead to large fluctuations in the write voltage or current of the pSTT-MRAM, which will impair the performance of the MRAM.
在现在的MRAM制造工艺中,为了实现MRAM电路缩微化的要求,通常在表面抛光的CMOS通孔(VIAx(x>=1))上直接制作MTJ单元,即:所谓的on-axis结构。在采用铜制程的CMOS电路中,所有通孔(VIA)和连线(M,Metal)所采用的材料都是金属铜。然而,由于MTJ结构单元的尺寸要比VIAx(x>=1)顶部开口尺寸小,在刻蚀磁性隧道结及其底电极的时候,为了使MTJ单元之间完全隔断,必须进行过刻蚀,在过刻蚀中,没有被磁性隧道结及其底电极覆盖的铜VIAx(x>=1)的区域将会被部分刻蚀,同时也会损伤其扩散阻挡层(Ta/TaN),这样将会形成铜VIAx(x>=1)到其外面的low-k电介质的扩散通道,Cu原子将会扩散到low-k电介质中,这势必会对磁性随机存储器的电学性能,比如:时间相关介质击穿(TDDB,TimeDependent Dielectric Breakdown)和电子迁移率(EM,Electron Mobility)等,造成损伤。In the current MRAM manufacturing process, in order to achieve the requirements of MRAM circuit miniaturization, MTJ cells are usually fabricated directly on surface-polished CMOS through holes (VIA x (x>=1)), that is, the so-called on-axis structure. In a CMOS circuit using a copper process, all through holes (VIA) and wires (M, Metal) are made of metal copper. However, since the size of the MTJ structural unit is smaller than that of the top opening of VIA x (x>=1), when the magnetic tunnel junction and its bottom electrode are etched, in order to completely isolate the MTJ units, over-etching must be performed. , in over-etching, the area of copper VIA x (x>=1) that is not covered by the magnetic tunnel junction and its bottom electrode will be partially etched, and its diffusion barrier (Ta/TaN) will also be damaged, This will form a diffusion channel of copper VIA x (x>=1) to the low-k dielectric outside it, and the Cu atoms will diffuse into the low-k dielectric, which will inevitably affect the electrical properties of the magnetic random access memory, such as: Time-dependent dielectric breakdown (TDDB, TimeDependent Dielectric Breakdown) and electron mobility (EM, Electron Mobility), etc., cause damage.
另外,在磁性隧道结及其底电极过刻蚀过程中,由于离子轰击(IonBombardment),将会把铜原子及其形成化合物溅射到磁性隧道结的侧壁和被刻蚀的low-k材料的表面,从而对整个MRAM器件造成污染和电短路。In addition, during the over-etching process of the magnetic tunnel junction and its bottom electrode, copper atoms and their forming compounds will be sputtered to the sidewalls of the magnetic tunnel junction and the etched low-k material due to ion bombardment (Ion Bombardment). surface, thereby causing contamination and electrical shorting of the entire MRAM device.
发明内容SUMMARY OF THE INVENTION
本发明的一种磁性随机存储器单元阵列及周边电路连线的制造方法,提供在两层金属之间进行磁性随机存储器件及其周围逻辑电路的制作工艺和对准方式。在存储区域,采用在金属连线(Mx(x>=1))上,依次制作底电极通孔(BEV,Bottom Electrode Via)、底电极接触(BEC,Bottom Electrode Contact)、磁性隧道结结构单元(MTJ)和顶电极通孔(TEV,Top Electrode Via);BEV、BEC、MTJ和TEV依次对齐;在逻辑电路区域,则采用顶电极通孔(TEV)和底电极接触(BEC)直接相连接的方式实现,BEV、BEC和TEV依次对齐;最后,在顶电极通孔(TEV)上制作一层金属连线(Mx+1(x>=1))以实现磁性随机存储器逻辑区域和存储区域之间的连接。The invention provides a manufacturing method of a magnetic random access memory cell array and peripheral circuit wiring, which provides a manufacturing process and an alignment method of a magnetic random access memory device and its surrounding logic circuits between two layers of metals. In the storage area, a bottom electrode via (BEV, Bottom Electrode Via), a bottom electrode contact (BEC, Bottom Electrode Contact), and a magnetic tunnel junction structure are sequentially fabricated on the metal connection line (M x (x>=1)). Cell (MTJ) and top electrode via (TEV, Top Electrode Via); BEV, BEC, MTJ and TEV are aligned in sequence; in the logic circuit area, top electrode via (TEV) and bottom electrode contact (BEC) are used to directly connect to each other. The connection method is realized, BEV, BEC and TEV are aligned in sequence; finally, a layer of metal connection (M x+1 (x>=1)) is made on the top electrode through hole (TEV) to realize the magnetic random access memory logic area and Connections between storage areas.
本发明包括但不只限于制备磁性随机存储器(MRAM),也不限于任何工艺顺序或流程,只要制备得到的产品或装置与以下优选工艺顺序或流程制备得到的相同或相似方法,其具体技术方案如下:The present invention includes, but is not limited to, the preparation of magnetic random access memory (MRAM), nor is it limited to any process sequence or process, as long as the prepared product or device is the same or similar to the method prepared by the following preferred process sequence or process, its specific technical scheme is as follows :
一种磁性随机存储器单元阵列及周边电路连线的制造方法,包括如下步骤:A manufacturing method of a magnetic random access memory cell array and peripheral circuit wiring, comprising the following steps:
步骤1:提供表面抛光的带金属连线的CMOS基底,并在基底上制作底电极通孔,然后在底电极通孔中填充金属;Step 1: provide a surface-polished CMOS substrate with metal wiring, and make bottom electrode through holes on the substrate, and then fill the bottom electrode through holes with metal;
步骤2:在底电极通孔上制作底电极接触;Step 2: making bottom electrode contacts on bottom electrode vias;
步骤3:在底电极接触上制作磁性隧道结结构单元;Step 3: fabricating a magnetic tunnel junction structural unit on the bottom electrode contact;
步骤4:在磁性隧道结结构单元上制作顶电极通孔和实现逻辑单元/存储单元相连接的金属连线。Step 4: forming top electrode through holes and metal interconnects for connecting logic cells/memory cells on the magnetic tunnel junction structure unit.
进一步地,步骤2包括如下细分步骤:Further, step 2 includes the following subdivision steps:
步骤2.1:沉积底电极接触金属;底电极接触金属选自Ta、TaN、Ti、TiN、W或WN之中的一种;底电极接触金属沉积的厚度为20nm~80nm;采用化学气相沉积、物理气相沉积、原子层沉积、或离子束沉积之中的一种方式实现底电极接触金属的沉积;Step 2.1: deposit the bottom electrode contact metal; the bottom electrode contact metal is selected from one of Ta, TaN, Ti, TiN, W or WN; the thickness of the bottom electrode contact metal deposition is 20nm-80nm; chemical vapor deposition, physical One of vapor deposition, atomic layer deposition, or ion beam deposition to achieve bottom electrode contact metal deposition;
步骤2.2:图形化定义底电极接触图案使之与底电极通孔对齐,刻蚀底电极接触金属形成底电极接触,刻蚀之后除去残留的杂质;刻蚀采用反应离子刻蚀或离子束刻蚀工艺实现;Step 2.2: Graphically define the bottom electrode contact pattern to align it with the bottom electrode through hole, etch the bottom electrode contact metal to form the bottom electrode contact, and remove residual impurities after etching; the etching uses reactive ion etching or ion beam etching process realization;
步骤2.3:在刻蚀形成的空隙中填充底电极接触电介质,平坦化底电极接触电介质顶部直到与底电极接触的顶部齐平;底电极接触电介质为SiO2、SiON或低介电常数电介质,低介电常数电介质是指介电常数低于SiO2的材料。Step 2.3: Fill the bottom electrode contact dielectric in the void formed by etching, and planarize the top of the bottom electrode contact dielectric until the top of the bottom electrode contact is flush; the bottom electrode contact dielectric is SiO 2 , SiON or a low dielectric constant dielectric, low A dielectric constant dielectric refers to a material with a lower dielectric constant than SiO2 .
进一步地,步骤3中磁性隧道结结构单元包括磁性隧道结多层膜和硬掩模。优选地,在磁性隧道结多层膜下沉积一层种子层或刻蚀阻挡层。Further, in step 3, the magnetic tunnel junction structural unit includes a magnetic tunnel junction multilayer film and a hard mask. Preferably, a seed layer or etch barrier layer is deposited under the magnetic tunnel junction multilayer film.
进一步地,步骤4中采用两次单镶嵌或者一次双镶嵌工艺实现金属连线的制作。Further, in step 4, two single damascene or one dual damascene process is used to realize the fabrication of the metal connection.
本发明的有益效果:由于在磁性隧道结单元阵列下面,增加了一层底电极接触(BEC),有效的隔断了CMOS后段铜和磁性隧道结阵列底部的直接连接,有利于器件电学性能和良率的提升。Beneficial effects of the present invention: Because a layer of bottom electrode contact (BEC) is added under the magnetic tunnel junction unit array, the direct connection between the copper in the rear section of the CMOS and the bottom of the magnetic tunnel junction array is effectively cut off, which is beneficial to the electrical performance and good performance of the device. rate increase.
附图说明Description of drawings
附图是根据本发明优选实施例的一种磁性随机存器单元阵列及周边电路连线的制造方法的各个步骤的示意图。其中:The accompanying drawings are schematic diagrams of various steps of a method for manufacturing a magnetic random access memory cell array and a peripheral circuit connection according to a preferred embodiment of the present invention. in:
图1(a)至图1(c)是制作底电极通孔填充的步骤示意图;1(a) to 1(c) are schematic diagrams of steps for making bottom electrode through-hole filling;
图2(a)至图2(b)是制作底电极接触的步骤示意图;2(a) to 2(b) are schematic diagrams of steps for making bottom electrode contacts;
图3(a)至图3(c)是制作磁性隧道结结构单元的步骤示意图;3(a) to 3(c) are schematic diagrams of steps for fabricating a magnetic tunnel junction structural unit;
图4(a)至图4(d)是两次单镶嵌工艺制作金属连线的步骤示意图;4(a) to FIG. 4(d) are schematic diagrams of steps of two single damascene processes for fabricating metal interconnects;
图5是一次双镶嵌工艺制作金属连线的步骤示意图;FIG. 5 is a schematic diagram of the steps of making a metal connection by a dual damascene process;
其中,图4(d)和图5中两条虚曲线说明左右两部分实际上相隔甚远,只是为了方便展示,图中才把左右两部分画在一起;其他各图中,左右两部分实际上也是相隔的,为了使图简洁,两条虚曲线未标出。Among them, the two dashed curves in Figure 4(d) and Figure 5 indicate that the left and right parts are actually far apart, and only for the convenience of display, the left and right parts are drawn together in the figure; in other figures, the left and right parts are actually The upper and lower curves are also separated. In order to make the figure concise, the two dashed curves are not marked.
附图标记说明:100-表面抛光的带金属连线(Mx(x>=1))的CMOS基底;201-底电极通孔(BEV)扩散阻挡层;202-底电极通孔(BEV)电介质;203-底电极通孔(BEV);204-底电极通孔(BEV)填充扩散阻挡层;205-底电极通孔(BEV)填充;301-底电极接触(BEC)金属层;302-底电极接触(BEC);303-底电极接触(BEC)电介质;401-包括种子层的磁性隧道结(MTJ)多层膜;402-顶硬掩模;403-电介质覆盖层;501-顶电极通孔(TEV)电介质;502-顶电极通孔(TEV);503-顶电极通孔(TEV)填充扩散阻挡层;504-顶电极通孔(TEV)填充;601-金属连线(Mx+1(x>=1))刻蚀阻挡层;602-金属连线(Mx+1(x>=1))电介质;603-金属连线(Mx+1(x>=1))扩散阻挡层;604-金属连线(Mx+1(x>=1))。DESCRIPTION OF REFERENCE NUMERALS: 100 - Surface-polished CMOS substrate with metal interconnects (M x (x>=1)); 201 - Bottom Electrode Via (BEV) diffusion barrier; 202 - Bottom Electrode Via (BEV) Dielectric; 203 - Bottom Electrode Via (BEV); 204 - Bottom Electrode Via (BEV) Fill Diffusion Barrier; 205 - Bottom Electrode Via (BEV) Fill; 301 - Bottom Electrode Contact (BEC) Metal Layer; 302 - bottom electrode contact (BEC); 303 - bottom electrode contact (BEC) dielectric; 401 - magnetic tunnel junction (MTJ) multilayer including seed layer; 402 - top hard mask; 403 - dielectric capping layer; 501 - top electrode 502 - Top Electrode Via (TEV); 503 - Top Electrode Via (TEV) Fill Diffusion Barrier; 504 - Top Electrode Via (TEV) Fill; 601 - Metal Connection (M x +1 (x>=1)) etch barrier; 602-metal connection (M x+1 (x>=1)) dielectric; 603-metal connection (M x+1 (x>=1)) Diffusion Barrier; 604 - Metal Connection (M x+1 (x>=1)).
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。需说明的是,本发明附图均采用简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the accompanying drawings of the present invention are all in a simplified form and use inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
本发明提供的一种磁性随机存储器单元阵列及周边电路连线的制造方法,提供在两层金属之间,进行磁性随机存储器件及其周围逻辑电路的制作工艺和对准方式;在存储区域,采用在金属连线(Mx)上依次制作底电极通孔(BEV)、底电极接触(BEC)、磁性隧道结结构单元(MTJ)和顶电极通孔(TEV)的方式实现;在逻辑电路区域,则采用顶电极通孔(TEV)和底电极接触(BEC)直接相连接的方式实现,最后,在顶电极通孔(TEV)上制作一层金属连线(Mx+1)以实现磁性随机存储器逻辑区域和存储区域之间的连接。这样,在存储区域实现BEV、BEC、MTJ和TEV依次对齐,在存储区域实现BEV、BEC和TEV依次对齐。本发明包括但不只限于制备磁性随机存储器(MRAM),也不限于任何工艺顺序或流程,只要制备得到的产品或装置与以下优选工艺顺序或流程制备得到的相同或相似方法,其具体步骤如下:The present invention provides a method for manufacturing a magnetic random access memory cell array and a peripheral circuit connection, which is provided between two layers of metal to perform the manufacturing process and alignment method of a magnetic random access memory device and its surrounding logic circuits; in the storage area, It is realized by making bottom electrode through holes (BEV), bottom electrode contacts (BEC), magnetic tunnel junction structure units (MTJ) and top electrode through holes (TEV) in sequence on the metal connection line (M x ); in the logic circuit area, the top electrode through hole (TEV) and the bottom electrode contact ( BEC ) are directly connected. The connection between the logical area and the storage area of the magnetic random access memory. In this way, the BEV, BEC, MTJ, and TEV are sequentially aligned in the storage area, and the BEV, BEC, and TEV are sequentially aligned in the storage area. The present invention includes, but is not limited to, the preparation of magnetic random access memory (MRAM), nor is it limited to any process sequence or process, as long as the prepared product or device is the same or similar to the method prepared by the following preferred process sequence or process, and the specific steps are as follows:
步骤1:提供表面抛光的带金属连线(Mx(x>=1))的CMOS基底100,并在其上制作底电极通孔(BEV,Bottom Electrode Via)203,然后采用标准的单镶嵌(SD,SingleDamascene)工艺进行金属铜的填充。Step 1: Provide a surface-polished
更进一步地,上述步骤1可以分为如下的形成步骤:Further, the above-mentioned step 1 can be divided into the following forming steps:
步骤1.1:在CMOS基底100上沉积扩散阻挡层201和底电极通孔电介质202,如图1(a)所示,其中,扩散阻挡层201既可以作为阻挡金属连线(Mx)中铜向底电极通孔电介质202的扩散保护层,又可以做为底电极通孔203刻蚀的刻蚀阻挡层,扩散阻挡层201厚度为10nm~50nm,形成材料可以为SiN、SiC或SiCN等;底电极通孔电介质202的厚度为60nm~200nm,形成材料可以为SiO2、SiON或low-k等。Step 1.1: Deposit a
其中,低介电常数(low-k)电介质是指介电常数(k)低于二氧化硅(k=3.9)的材料,在具体实施时,low-k材料可以是含氢硅酸盐(Hydrogen Silsequioxane,HSQ,k=2.8~3.0)、含有Si-CH3官能基的含甲基硅酸盐类(Methylsilsesquioxane,MSQ,k=2.5~2.7)、综合含氢硅酸盐类(HSQ)和含甲基硅酸盐类(MSQ)所合成的混合式有机硅氧烷聚合物(Hybrid Organic Siloxane Polymer,HOSP)薄膜(k=2.5),多孔SiOCH薄膜(k=2.3~2.7),甚至可以采用超低介电常数(k<2.0)的多孔性硅酸盐(Porous Silicate)等有机类高分子化合物及介电常数(k)为1.9的多孔SiOCH薄膜。The low dielectric constant (low-k) dielectric refers to a material whose dielectric constant (k) is lower than that of silicon dioxide (k=3.9). Hydrogen Silsequioxane, HSQ, k=2.8~3.0), Methylsilsesquioxane containing Si-CH 3 functional group (Methylsilsesquioxane, MSQ, k=2.5~2.7), comprehensive hydrosilicates (HSQ) and Hybrid Organic Siloxane Polymer (HOSP) films (k=2.5) and porous SiOCH films (k=2.3-2.7) synthesized with methyl silicates (MSQ) can even be used Organic polymer compounds such as Porous Silicate with ultra-low dielectric constant (k<2.0) and porous SiOCH film with dielectric constant (k) of 1.9.
步骤1.2:在存储区域和逻辑区域同时图形化定义底电极通孔(BEV)203图案,刻蚀形成底电极通孔(BEV)203,如图1(b)所示,在刻蚀之后,一般采用干法工艺和/或湿法清洗工艺除去残留的聚合物。Step 1.2: Graphically define the bottom electrode through hole (BEV) 203 pattern in the storage area and the logic area at the same time, and etch to form the bottom electrode through hole (BEV) 203, as shown in Figure 1(b), after etching, generally Residual polymer is removed using a dry process and/or a wet cleaning process.
步骤1.3:采用电镀的方法填充金属铜到底电极通孔(BEV)203里面,并采用化学机械抛光(CMP,Chemical Mechanical Planarization)磨平,形成底电极通孔填充205,如图1(c)所示,其中,通常在电镀铜之前,都会事先沉积一层Ti/TiN或Ta/TaN扩散阻挡层204和铜种子层。Step 1.3: Fill the bottom electrode through hole (BEV) 203 with metal copper by electroplating, and use chemical mechanical polishing (CMP, Chemical Mechanical Planarization) to smooth it to form the bottom electrode through hole filling 205, as shown in FIG. 1(c). As shown, before copper electroplating, a Ti/TiN or Ta/TaN
步骤2:制作底电极接触(BEC,Bottom Electrode Contact)302;其中,底电极接触(BEC)302可以是Ta、TaN、Ti、TiN、W或WN等,并通常在其上生长一层Ta或TaN刻蚀硬掩膜层(未标出)。Step 2: making a bottom electrode contact (BEC, Bottom Electrode Contact) 302; wherein, the bottom electrode contact (BEC) 302 can be Ta, TaN, Ti, TiN, W or WN, etc., and a layer of Ta or WN is usually grown thereon. The TaN etch hard mask layer (not shown).
更进一步地,上述步骤2可以分为如下的形成步骤:Further, the above-mentioned step 2 can be divided into the following formation steps:
步骤2.1:沉积底电极接触(BEC)金属层301,如图2(a)所示,其中,沉积底电极接触(BEC)金属层301为20nm~80nm,可以采用化学气相沉积(CVD,Chemical VaporDeposition)、物理气相沉积(PVD,Physical Vapor Deposition)、原子层沉积(ALD,AtomicLayer Deposition)或离子束沉积(IBD,Ion Beam Deposition)等方式实现。Step 2.1: depositing a bottom electrode contact (BEC)
步骤2.2:图形化定义底电极接触(BEC)302图案使之与底电极通孔(BEV)203对齐,并采用刻蚀工艺形成底电极接触302,刻蚀工艺可以采用反应离子刻蚀(RIE,Reactive IonEtching)或离子束刻蚀(IBE,Ion Beam Etching)等工艺实现,在刻蚀之后,采用清洗工艺除去残留的聚合物等。Step 2.2: Graphically define the bottom electrode contact (BEC) 302 pattern to align it with the bottom electrode via (BEV) 203, and use an etching process to form the
其中,IBE主要采用Ar、Kr或者Xe等作为离子源;RIE主要采用Cl2或CF4等作为主要刻蚀气体。Among them, IBE mainly uses Ar, Kr or Xe as the ion source; RIE mainly uses Cl 2 or CF 4 as the main etching gas.
步骤2.3:填充底电极接触(BEC)电介质303,并采用平坦化工艺磨平直到底电极接触(BEC)302顶部,如图2(b)所示。其中,底电极接触(BEC)电介质303为SiO2、SiON或low-k等材料。Step 2.3: The bottom electrode contact (BEC) dielectric 303 is filled and smoothed using a planarization process until the top of the bottom electrode contact (BEC) 302, as shown in Figure 2(b). The bottom electrode contact (BEC) dielectric 303 is made of materials such as SiO 2 , SiON or low-k.
步骤3:在存储区域,制作包括底部的种子层和顶部的硬掩模层的磁性隧道结结构单元(MTJ)。Step 3: In the storage area, a magnetic tunnel junction structure unit (MTJ) including a bottom seed layer and a top hard mask layer is fabricated.
更进一步地,上述步骤3可以分为如下的形成步骤:Further, the above-mentioned step 3 can be divided into the following formation steps:
步骤3.1:在磨平的底电极接触(BEC)302上,依次形成种子层、磁性隧道结多层膜401和顶硬掩模402,如图3(a)所示。Step 3.1: On the ground bottom electrode contact (BEC) 302, a seed layer, a magnetic tunnel
磁性隧道结(MTJ)多层膜的总厚度为15nm~40nm,可以是由参考层、势垒层和记忆层的依次向上叠加的Bottom Pinned结构或者是由记忆层、势垒层和参考层的依次向上叠加的Top Pinned结构。The total thickness of the magnetic tunnel junction (MTJ) multilayer film is 15nm to 40nm, which can be a Bottom Pinned structure consisting of a reference layer, a barrier layer and a memory layer stacked in sequence, or a memory layer, a barrier layer and a reference layer. Top Pinned structures stacked up in sequence.
进一步地,参考层具有磁极化不变性,根据其是面内型(iSTT-MRAM)或垂直(pSTT-MRAM)结构有所不同。面内型(iSTT-MRAM)的参考层一般具有(IrMn或PtMn)/CoFe/Ru/CoFe/CoFeB结构,其优选总厚度为10~30nm;垂直型(pSTT-MRAM)的参考层一般具有TbCoFe或[Co/Pt]/Co/Ru/[CoPt]/CoFeB超晶格多层膜结构,通常下面需要一层种子层,例如Ta/Pt,其优选参考层总厚度为8~20nm。Further, the reference layer has magnetic polarization invariance, which differs depending on whether it is an in-plane (iSTT-MRAM) or vertical (pSTT-MRAM) structure. The reference layer of in-plane type (iSTT-MRAM) generally has a (IrMn or PtMn)/CoFe/Ru/CoFe/CoFeB structure, and its preferred total thickness is 10-30 nm; the reference layer of vertical type (pSTT-MRAM) generally has TbCoFe Or [Co/Pt]/Co/Ru/[CoPt]/CoFeB superlattice multilayer film structure, usually a seed layer, such as Ta/Pt, is required below, and the total thickness of the reference layer is preferably 8-20 nm.
进一步地,势垒层为非磁性金属氧化物,优选MgO、MgZnO或Al2O3,其厚度为0.5nm~3nm。Further, the barrier layer is a non-magnetic metal oxide, preferably MgO, MgZnO or Al 2 O 3 , and its thickness is 0.5 nm˜3 nm.
更进一步地,可以采用双层MgO的结构。Further, a structure of double-layer MgO can be adopted.
进一步地,记忆层具有可变磁极化,根据其是面内型(iSTT-MRAM)或垂直(pSTT-MRAM)结构有所不同。面内型iSTT-MRAM的记忆层一般为CoFe/CoFeB或CoFe/NiFe,其优选厚度为2nm~6nm,垂直型pSTT-MRAM记忆层一般为CoFeB、CoFe/CoFeB、Fe/CoFeB、CoFeB/(Ta,W,Mo)/CoFeB,其优选厚度为0.8nm~2nm。Further, the memory layer has variable magnetic polarization, depending on whether it is an in-plane (iSTT-MRAM) or vertical (pSTT-MRAM) structure. The memory layer of in-plane iSTT-MRAM is generally CoFe/CoFeB or CoFe/NiFe, and its preferred thickness is 2nm to 6nm, and the memory layer of vertical pSTT-MRAM is generally CoFeB, CoFe/CoFeB, Fe/CoFeB, CoFeB/(Ta , W, Mo)/CoFeB, its preferred thickness is 0.8nm~2nm.
顶硬掩模402的厚度为20nm~100nm,选择Ta、TaN、W或WN等以期在卤素电浆中获得更好刻轮廓。The thickness of the top
步骤3.2:图形化定义磁性隧道结图案,并对顶电极、磁性隧道结多层膜401和底电极进行刻蚀,如图3(b)所示;Step 3.2: Graphically define the magnetic tunnel junction pattern, and etch the top electrode, the magnetic tunnel
在此过程中,采用一次光刻一次刻蚀(LE,lithography-etching)或者两次光刻两次刻蚀(LELE,lithography-etching-lithography-etching)的方法完成对磁性隧道结的定义和顶硬掩模402的反应离子(RIE)刻蚀,并同时采用RIE工艺除去残留的聚合物,以使图案转移到磁性隧道结的顶部。In this process, a method of lithography-etching (LE, lithography-etching) or lithography-etching-lithography-etching twice (LELE, lithography-etching-lithography-etching) is used to complete the definition and top of the magnetic tunnel junction. A reactive ion (RIE) etch of the
采用反应离子刻蚀(RIE,Reactive Ion Etching)和/或者离子束刻蚀(IBE,IonBeam Etching)的方法完成对磁性隧道结和底电极的刻蚀;The magnetic tunnel junction and the bottom electrode are etched by means of reactive ion etching (RIE, Reactive Ion Etching) and/or ion beam etching (IBE, Ion Beam Etching);
其中,IBE主要采用Ar、Kr或者Xe等作为离子源;RIE方面,主要采用CF4、CF3H、Cl2等作为硬掩模的主要刻蚀气体,主要采用CH3OH、CH4/Ar、C2H5OH、CH3OH/Ar或者CO/NH3等作为磁性隧道结多层膜的主要刻蚀气体。Among them, IBE mainly uses Ar, Kr or Xe as the ion source; for RIE, CF 4 , CF 3 H, Cl 2 etc. are mainly used as the main etching gas for the hard mask, and CH 3 OH, CH 4 /Ar are mainly used , C 2 H 5 OH, CH 3 OH/Ar or CO/NH 3 etc. as the main etching gas for the magnetic tunnel junction multilayer film.
步骤3.3:在磁性隧道结多层膜401和顶硬掩模402周围沉积一层电介质覆盖层403并覆盖整个被刻蚀的区域,包括顶部的硬掩模层;如图3(c)所示;其中,电介质覆盖层403材料为SiC、SiN或者SiCN等,其形成方法可以采用化学气相沉积(CVD,Chemical VaporDeposition),原子层沉积(ALD,Atomic Layer Deposition)或者离子束沉积(IBD,IonBeam Deposition)等方式实现。Step 3.3: deposit a
步骤4:制作顶电极通孔(TEV,Top Electrode Via)和实现逻辑单元/存储单元相连接的金属连线(Mx+1)604。在此步骤中,可以采用两次单镶嵌(SD,Single Damascene)或者一次双镶嵌(DD,Dual Damascene)工艺实现。Step 4: Fabricate a top electrode via (TEV, Top Electrode Via) and a metal connection line (M x+1 ) 604 for connecting logic cells/memory cells. In this step, two single damascene (SD, Single Damascene) or one double damascene (DD, Dual Damascene) processes can be used.
实施案例一:两次单镶嵌(SD,Single Damascene)工艺,其步骤如下:Implementation case 1: two single damascene (SD, Single Damascene) process, the steps are as follows:
步骤4.1.1:在电介质覆盖层403上,沉积顶电极通孔电介质501,并采用平坦化工艺磨平顶电极通孔(TEV)电介质501,如图4(a)所示;顶电极通孔(TEV)电介质501为SiO2、SiON或low-k等材料,其厚度为120nm~400nm;Step 4.1.1: On the
步骤4.1.2:图形化定义并采用刻蚀工艺形成顶电极通孔(TEV)502,在逻辑区域,使之连接到底电极通孔填充205,在存储区域,使之连接到顶硬掩模402,通常,在刻蚀之后采用清洗工艺除去聚合物,如图4(b)所示;Step 4.1.2: Pattern definition and use an etching process to form a top electrode through hole (TEV) 502, in the logic area, connect it to the bottom electrode through hole filling 205, in the storage area, connect it to the top
步骤4.1.3:填充金属形成顶电极通孔填充504,并采用化学机械抛光(CMP)磨平,如图4(c)所示;其中,通常在电镀(ECP,Electro Chemical Plating)铜之前,都会事先沉积一层Ti/TiN或Ta/TaN扩散阻挡层503和铜种子层。Step 4.1.3: Fill metal to form the top electrode through hole filling 504, and use chemical mechanical polishing (CMP) to smooth it, as shown in FIG. 4(c); wherein, before electroplating (ECP, Electro Chemical Plating) copper, A Ti/TiN or Ta/TaN
步骤4.1.4:沉积金属连线(Mx+1)电介质602,图形化定义并刻蚀形成连接逻辑区域和存储区域的金属连线槽,电镀铜到连线槽里面,并采用化学机械抛光磨平,以形成连接逻辑区域和存储区域的金属连线(Mx+1)604,如图4(d)所示;其中,金属连线(Mx+1)电介质602的厚度为50nm~300nm,其材料为SiO2、SiON或low-k等,通常在沉积之前,都会沉积一层厚度为几十纳米的刻蚀阻挡层601,其材料为SiN、SiC或SiCN等;在电镀铜之前,都会事先沉积一层Ta/TaN扩散阻挡层603和铜种子层。Step 4.1.4: Deposit metal interconnect (M x+1 ) dielectric 602, pattern and etch to form metal interconnect grooves connecting the logic area and storage area, electroplate copper into the interconnect grooves, and use chemical mechanical polishing Polished to form a metal connection line (M x+1 ) 604 connecting the logic area and the storage area, as shown in FIG. 4(d); wherein, the thickness of the metal connection line (M x+1 ) dielectric 602 is 50nm~ 300nm, its material is SiO 2 , SiON or low-k, etc., usually before deposition, an
实施案例二:一次性次双镶嵌(DD,Dual Damascene)工艺,如图5所示;其步骤如下:Implementation case 2: One-time dual damascene (DD, Dual Damascene) process, as shown in Figure 5; the steps are as follows:
步骤4.2.1:在电介质覆盖层403上,沉积顶电极通孔电介质501,并采用平坦化工艺磨平顶电极通孔(TEV)电介质501,沉积金属连线(Mx+1)电介质602;顶电极通孔(TEV)电介质501为SiO2、SiON或low-k等材料,其厚度为120nm~400nm;金属连线(Mx+1)电介质602的厚度为50nm~300nm,其材料为SiO2、SiON或low-k等,通常在沉积之前,都会沉积一层厚度为几十纳米的刻蚀阻挡层601,其材料为SiN、SiC或SiCN等;Step 4.2.1: On the
步骤4.2.2:图形化定义并采用刻蚀工艺形成顶电极通孔(TEV)502和连接逻辑区域和存储区域的金属连线槽,在逻辑区域,使顶电极通孔502连接到底电极接触302,在存储区域,使顶电极通孔502连接到顶硬掩模402,通常,在刻蚀之后采用清洗工艺除去聚合物;Step 4.2.2: Graphically define and use an etching process to form a top electrode through hole (TEV) 502 and a metal wiring groove connecting the logic area and the storage area. In the logic area, the top electrode through
步骤4.2.3:电镀填充金属形成顶电极通孔填充504和金属连线(Mx+1)604,并采用化学机械抛光磨平;其中,通常在电镀铜之前,都会事先沉积一层Ta/TaN扩散阻挡层503和铜种子层。Step 4.2.3: Electroplating filling metal to form top electrode through-hole filling 504 and metal connection (M x+1 ) 604, and use chemical mechanical polishing to smooth; wherein, before copper electroplating, a layer of Ta/ TaN
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710858217.XA CN109545744B (en) | 2017-09-21 | 2017-09-21 | A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710858217.XA CN109545744B (en) | 2017-09-21 | 2017-09-21 | A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109545744A CN109545744A (en) | 2019-03-29 |
CN109545744B true CN109545744B (en) | 2020-08-21 |
Family
ID=65827748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710858217.XA Active CN109545744B (en) | 2017-09-21 | 2017-09-21 | A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109545744B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111816764B (en) * | 2019-04-11 | 2024-05-28 | 上海磁宇信息科技有限公司 | Method for preparing magnetic tunnel junction cell array |
CN111816224B (en) * | 2019-04-11 | 2024-03-12 | 上海磁宇信息科技有限公司 | Preparation method of magnetic tunnel junction memory array unit and peripheral circuit thereof |
CN110112288B (en) * | 2019-06-14 | 2022-11-04 | 上海磁宇信息科技有限公司 | Method for preparing magnetic tunnel junction unit array |
CN112186096B (en) * | 2019-07-01 | 2023-03-21 | 上海磁宇信息科技有限公司 | Magnetic random access memory and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050214953A1 (en) * | 2004-03-29 | 2005-09-29 | Heon Lee | Method of fabricating a mram device |
CN102376651A (en) * | 2010-08-24 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Method for improving capacity of filling dielectric medium between magnetic tunnel junction (MTJ) metals in magnetic random access memory (MRAM) |
US20150325622A1 (en) * | 2014-05-08 | 2015-11-12 | GlobalFoundries, Inc. | Integrated circuits having magnetic tunnel junctions (mtj) and methods for fabricating the same |
US20170092845A1 (en) * | 2015-09-30 | 2017-03-30 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor integrated circuit and method of making the same |
CN106601904A (en) * | 2015-10-20 | 2017-04-26 | 台湾积体电路制造股份有限公司 | Magnetic tunnel junction with reduced damage |
CN106887443A (en) * | 2015-12-15 | 2017-06-23 | 台湾积体电路制造股份有限公司 | Semiconductor structure and forming method thereof |
CN107039580A (en) * | 2015-11-20 | 2017-08-11 | 台湾积体电路制造股份有限公司 | Semiconductor structure and forming method thereof |
-
2017
- 2017-09-21 CN CN201710858217.XA patent/CN109545744B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050214953A1 (en) * | 2004-03-29 | 2005-09-29 | Heon Lee | Method of fabricating a mram device |
CN102376651A (en) * | 2010-08-24 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Method for improving capacity of filling dielectric medium between magnetic tunnel junction (MTJ) metals in magnetic random access memory (MRAM) |
US20150325622A1 (en) * | 2014-05-08 | 2015-11-12 | GlobalFoundries, Inc. | Integrated circuits having magnetic tunnel junctions (mtj) and methods for fabricating the same |
US20170092845A1 (en) * | 2015-09-30 | 2017-03-30 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor integrated circuit and method of making the same |
CN106601904A (en) * | 2015-10-20 | 2017-04-26 | 台湾积体电路制造股份有限公司 | Magnetic tunnel junction with reduced damage |
CN107039580A (en) * | 2015-11-20 | 2017-08-11 | 台湾积体电路制造股份有限公司 | Semiconductor structure and forming method thereof |
CN106887443A (en) * | 2015-12-15 | 2017-06-23 | 台湾积体电路制造股份有限公司 | Semiconductor structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109545744A (en) | 2019-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12069958B2 (en) | Semiconductor device | |
CN108232009B (en) | A method of making magnetic random access memory | |
CN109994602B (en) | Method for preparing magnetic random access memory storage unit and logic unit | |
CN109713006B (en) | Method for manufacturing magnetic random access memory cell array and peripheral circuit thereof | |
EP3772117A1 (en) | Semiconductor structure and method for forming the same | |
CN108232008B (en) | A magnetic random access memory bottom electrode contact and preparation method thereof | |
CN109713121B (en) | Method for manufacturing magnetic random access memory cell array and peripheral circuit thereof | |
CN109545744B (en) | A kind of magnetic random access memory cell array and manufacturing method of peripheral circuit connection | |
CN111613572A (en) | Method for preparing magnetic random access memory storage unit and peripheral circuit thereof | |
CN109545745A (en) | A kind of manufacturing method of magnetic RAM cell array and peripheral circuit line | |
CN109994600B (en) | Method for manufacturing magnetic random access memory | |
CN109545958A (en) | A kind of manufacturing method of magnetic RAM cell array and peripheral circuit line | |
CN109545957A (en) | A kind of manufacturing method of magnetic RAM cell array and peripheral circuit line | |
CN108735895B (en) | Magnetic random access memory bottom electrode contact and method of forming the same | |
CN109994601B (en) | Method for manufacturing magnetic random access memory circuit connection | |
CN109713120A (en) | A kind of manufacturing method of magnetic RAM cell array and peripheral circuit line | |
CN111613571B (en) | Method for manufacturing magnetic random access memory cell array | |
CN109713119A (en) | A kind of manufacturing method of magnetic RAM cell array and peripheral circuit line | |
CN111668368B (en) | Preparation method of pseudo-magnetic tunnel junction unit structure | |
CN108735893B (en) | Bottom electrode contact of magnetic random access memory and forming method thereof | |
CN111816224B (en) | Preparation method of magnetic tunnel junction memory array unit and peripheral circuit thereof | |
CN111668366A (en) | Top electrode contact of magnetic random access memory and preparation method thereof | |
CN111816763B (en) | Preparation method of magnetic tunnel junction memory array unit and peripheral circuit thereof | |
CN109994476B (en) | Method for preparing magnetic random access memory array unit | |
CN111816764B (en) | Method for preparing magnetic tunnel junction cell array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |