[go: up one dir, main page]

CN109244203B - Epitaxial wafer of light emitting diode and preparation method thereof - Google Patents

Epitaxial wafer of light emitting diode and preparation method thereof Download PDF

Info

Publication number
CN109244203B
CN109244203B CN201811063187.4A CN201811063187A CN109244203B CN 109244203 B CN109244203 B CN 109244203B CN 201811063187 A CN201811063187 A CN 201811063187A CN 109244203 B CN109244203 B CN 109244203B
Authority
CN
China
Prior art keywords
layer
gan layer
aln
low
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811063187.4A
Other languages
Chinese (zh)
Other versions
CN109244203A (en
Inventor
顾俊
胡任浩
韦春余
胡加辉
周飚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boe Huacan Optoelectronics Suzhou Co ltd
Original Assignee
HC Semitek Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Suzhou Co Ltd filed Critical HC Semitek Suzhou Co Ltd
Priority to CN201811063187.4A priority Critical patent/CN109244203B/en
Publication of CN109244203A publication Critical patent/CN109244203A/en
Application granted granted Critical
Publication of CN109244203B publication Critical patent/CN109244203B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • H10H20/01335Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses an epitaxial wafer of a light emitting diode and a preparation method thereof, belonging to a light emitting diodeThe field of pole tube manufacture. In disposed between the AlN layer and the low-temperature GaN layerxAl1‑xWhen x of the N layer is In the range of 0.16 to 0.18, In is presentxAl1‑xAl atoms and N atoms In the N layer structure are shared with those In the AlN layer structure, whereby In can be securedxAl1‑xGood connection and growth of N layer on AlN layer, InxAl1‑xThe quality and the surface smoothness of the N layer are good; on the other hand, In at this timexAl1‑xThe lattice constant of the unit cell In the N layer is closer to that of the unit cell In the low-temperature GaN layer, the lattice mismatch between the N layer and the unit cell is smaller, and In can be obtainedxAl1‑xAnd a low-temperature GaN layer with good crystal quality is grown on the N layer. InxAl1‑xThe N layer relieves the original lattice mismatch between the AlN layer and the low-temperature GaN layer, the AlN layer and the low-temperature GaN layer are connected, the quality of the finally grown low-temperature GaN layer can be guaranteed, the crystal defects in the epitaxial layer can be reduced, the overall quality of the light-emitting diode can be improved, and the light-emitting efficiency of the light-emitting diode can be further improved.

Description

一种发光二极管的外延片及其制备方法Epitaxial wafer of light-emitting diode and preparation method thereof

技术领域technical field

本发明涉及发光二极管制造领域,特别涉及一种发光二极管的外延片及其制备方法。The invention relates to the field of light-emitting diode manufacturing, in particular to an epitaxial wafer of a light-emitting diode and a preparation method thereof.

背景技术Background technique

发光二极管是一种可以把电能转化成光能的半导体二极管,具有体积小、寿命长、功耗低等优点,目前被广泛应用于汽车信号灯、交通信号灯、显示屏以及照明设备。外延片是制作发光二极管的基础结构,外延片的结构包括衬底及在衬底上生长出的外延层。其中,外延层的结构主要包括:依次生长在衬底上的AlN层、低温GaN层、未掺杂GaN层、N型GaN层、有源层及P型GaN层。Light-emitting diodes are semiconductor diodes that can convert electrical energy into light energy. They have the advantages of small size, long life and low power consumption. They are currently widely used in car signal lights, traffic lights, display screens and lighting equipment. The epitaxial wafer is the basic structure for making light-emitting diodes, and the structure of the epitaxial wafer includes a substrate and an epitaxial layer grown on the substrate. The structure of the epitaxial layer mainly includes: an AlN layer, a low temperature GaN layer, an undoped GaN layer, an N-type GaN layer, an active layer and a P-type GaN layer sequentially grown on the substrate.

AlN层、低温GaN层与未掺杂GaN层可缓解衬底与N型GaN层之间的晶格失配,减小外延层中由衬底与N型GaN层之间的晶格失配引起的缺陷,提高发光二极管的晶体质量,进而提高发光二极管的发光效率。但由于AlN层与低温GaN层之间同样存在一定的晶格失配,AlN层与低温GaN层之间的晶格失配也会给外延层带来质量缺陷,使得发光二极管的发光效率没有得到较大提高。The AlN layer, the low-temperature GaN layer and the undoped GaN layer can alleviate the lattice mismatch between the substrate and the N-type GaN layer, and reduce the lattice mismatch between the substrate and the N-type GaN layer in the epitaxial layer. defects, improve the crystal quality of the light-emitting diode, thereby improving the luminous efficiency of the light-emitting diode. However, since there is also a certain lattice mismatch between the AlN layer and the low-temperature GaN layer, the lattice mismatch between the AlN layer and the low-temperature GaN layer will also bring quality defects to the epitaxial layer, so that the luminous efficiency of the light-emitting diode cannot be obtained. greatly improved.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种发光二极管的外延片及其制备方法,能够进一步提高发光二极管的发光效率。所述技术方案如下:The embodiments of the present invention provide an epitaxial wafer of a light emitting diode and a preparation method thereof, which can further improve the luminous efficiency of the light emitting diode. The technical solution is as follows:

本发明实施例提供了一种发光二极管的外延片,所述外延片包括衬底及依次层叠设置在所述衬底上的AlN层、InxAl1-xN层、低温GaN层、未掺杂GaN层、N型GaN层、有源层及P型GaN层,其中,0.16≤x≤0.18。An embodiment of the present invention provides an epitaxial wafer of a light emitting diode, the epitaxial wafer includes a substrate and an AlN layer, an InxAl1 - xN layer, a low-temperature GaN layer, an undoped layer and an AlN layer, an InxAl1- xN layer, a low-temperature GaN layer, and an AlN layer, which are sequentially stacked on the substrate. The hetero GaN layer, the N-type GaN layer, the active layer and the P-type GaN layer, wherein 0.16≤x≤0.18.

可选地,所述InxAl1-xN层的厚度为20~30nm。Optionally, the thickness of the In x Al 1-x N layer is 20-30 nm.

可选地,所述AlN层的厚度为5~10nm。Optionally, the thickness of the AlN layer is 5-10 nm.

本发明实施例提供了一种发光二极管的外延片的制备方法,所述制备方法包括:An embodiment of the present invention provides a method for preparing an epitaxial wafer of a light-emitting diode, and the preparation method includes:

提供一衬底;providing a substrate;

在所述衬底上生长AlN层;growing an AlN layer on the substrate;

在所述AlN层上生长InxAl1-xN层,其中,0.16≤x≤0.18;growing an In x Al 1-x N layer on the AlN layer, wherein 0.16≤x≤0.18;

在所述InxAl1-xN层上生长低温GaN层;growing a low temperature GaN layer on the InxAl1 -xN layer ;

在所述低温GaN层上生长未掺杂GaN层;growing an undoped GaN layer on the low temperature GaN layer;

在所述未掺杂GaN层上生长N型GaN层;growing an N-type GaN layer on the undoped GaN layer;

在所述N型GaN层上生长有源层;growing an active layer on the N-type GaN layer;

在所述有源层上生长P型GaN层。A P-type GaN layer is grown on the active layer.

可选地,在生长所述InxAl1-xN层时,向反应腔内通入气态Al与气态In,向所述反应腔内通入的气态Al与向所述反应腔内通入的气态In的比例为1:0.25~1:0.28。Optionally, when growing the In x Al 1-x N layer, gaseous Al and gaseous In are introduced into the reaction chamber, and the gaseous Al introduced into the reaction chamber and the gaseous Al introduced into the reaction chamber are introduced into the reaction chamber. The ratio of gaseous In is 1:0.25~1:0.28.

可选地,在生长所述InxAl1-xN层时:Optionally, when growing the InxAl1 - xN layer:

向反应腔内通入50~100sccm的气态Al。Gaseous Al of 50-100 sccm was introduced into the reaction chamber.

可选地,在生长所述InxAl1-xN层时:Optionally, when growing the InxAl1 - xN layer:

向所述反应腔内通入100~120sccm的气态In。Gaseous In of 100-120 sccm was introduced into the reaction chamber.

可选地,所述AlN层的生长温度为450~700℃。Optionally, the growth temperature of the AlN layer is 450-700°C.

可选地,所述InxAl1-xN层的生长温度为500~600℃。Optionally, the growth temperature of the InxAl1 - xN layer is 500-600°C.

可选地,所述AlN层的生长压力与所述InxAl1-xN层的生长压力均为30~100Torr。Optionally, the growth pressure of the AlN layer and the growth pressure of the InxAl1 - xN layer are both 30-100 Torr.

本发明实施例提供的技术方案带来的有益效果是:设置在AlN层与低温GaN层之间的InxAl1-xN层,在x的范围为0.16~0.18时,一方面由于InxAl1-xN层结构中与AlN层结构中有共用的Al原子与N原子,由此可保证InxAl1-xN层在AlN层上的良好连接与生长,InxAl1-xN层本身的质量与表面平整性较好;另一方面,此时InxAl1-xN层中晶胞的晶格常数与低温GaN层中晶胞的晶格常数较为接近,二者之间的晶格失配较小,可得到在InxAl1-xN层上生长的晶体质量良好的低温GaN层,InxAl1-xN层缓解了AlN层与低温GaN层之间原有的晶格失配,起到连接AlN层与低温GaN层的同时也可保证最终生长得到的低温GaN层的质量、减小外延层中晶体缺陷的作用,进而可提高发光二极管的整体质量,进一步提高发光二极管的发光效率。The beneficial effects brought about by the technical solutions provided in the embodiments of the present invention are: when the In x Al 1-x N layer disposed between the AlN layer and the low-temperature GaN layer, when x is in the range of 0.16 to 0.18, on the one hand, due to the In x In the Al 1-x N layer structure and the AlN layer structure, there are shared Al atoms and N atoms, which can ensure the good connection and growth of the In x Al 1-x N layer on the AlN layer, and the In x Al 1-x The quality and surface flatness of the N layer itself are better; on the other hand, the lattice constant of the unit cell in the In x Al 1-x N layer is relatively close to the lattice constant of the unit cell in the low temperature GaN layer. The lattice mismatch between them is small, and a low-temperature GaN layer with good crystal quality can be obtained on the In x Al 1-x N layer . Some lattice mismatches can not only connect the AlN layer and the low-temperature GaN layer, but also ensure the quality of the final grown low-temperature GaN layer and reduce the crystal defects in the epitaxial layer, thereby improving the overall quality of the light-emitting diode. The luminous efficiency of the light-emitting diode is further improved.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的一种发光二极管的外延片的结构示意图;1 is a schematic structural diagram of an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention;

图2是本发明实施例提供的另一种发光二极管的外延片的结构示意图;2 is a schematic structural diagram of an epitaxial wafer of another light-emitting diode provided by an embodiment of the present invention;

图3是本发明实施例提供的一种发光二极管的外延片的制备方法流程图;3 is a flowchart of a method for preparing an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention;

图4是本发明实施例提供的另一种发光二极管的外延片的制备方法流程图。FIG. 4 is a flowchart of another method for fabricating an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

图1是本发明实施例提供的一种发光二极管的外延片的结构示意图。如图1所示,该外延片包括衬底1及依次层叠设置在衬底1上的AlN层2、InxAl1-xN层3、低温GaN层4、未掺杂GaN层5、N型GaN层6、有源层7及P型GaN层8。其中,0.16≤x≤0.18。FIG. 1 is a schematic structural diagram of an epitaxial wafer of a light emitting diode according to an embodiment of the present invention. As shown in FIG. 1 , the epitaxial wafer includes a substrate 1 and an AlN layer 2 , an In x Al 1-x N layer 3 , a low-temperature GaN layer 4 , an undoped GaN layer 5 , and N layers stacked on the substrate 1 in sequence. type GaN layer 6 , active layer 7 and P-type GaN layer 8 . Among them, 0.16≤x≤0.18.

设置在AlN层与低温GaN层之间的InxAl1-xN层,在x的范围为0.16~0.18时,一方面由于InxAl1-xN层结构中与AlN层结构中有共用的Al原子与N原子,由此可保证InxAl1-xN层在AlN层上的良好连接与生长,InxAl1-xN层本身的质量与表面平整性较好;另一方面,此时InxAl1-xN层中晶胞的晶格常数与低温GaN层中晶胞的晶格常数较为接近,二者之间的晶格失配较小,可得到在InxAl1-xN层上生长的晶体质量良好的低温GaN层,InxAl1-xN层缓解了AlN层与低温GaN层之间原有的晶格失配,起到连接AlN层与低温GaN层的同时也可保证最终生长得到的低温GaN层的质量、减小外延层中晶体缺陷的作用,进而可提高发光二极管的整体质量,进一步提高发光二极管的发光效率。The In x Al 1-x N layer disposed between the AlN layer and the low-temperature GaN layer, when x is in the range of 0.16 to 0.18, on the one hand, because the In x Al 1-x N layer structure is shared with the AlN layer structure. The Al atoms and N atoms of the In x Al 1-x N layer can ensure the good connection and growth of the In x Al 1-x N layer on the AlN layer, and the quality and surface flatness of the In x Al 1-x N layer itself are better; , at this time, the lattice constant of the unit cell in the In x Al 1-x N layer is relatively close to the lattice constant of the unit cell in the low temperature GaN layer, and the lattice mismatch between the two is small, which can be obtained in In x Al The low-temperature GaN layer with good crystal quality grown on the 1-x N layer, the In x Al 1-x N layer alleviates the original lattice mismatch between the AlN layer and the low-temperature GaN layer, and acts to connect the AlN layer and the low-temperature GaN layer. At the same time, it can also ensure the quality of the final grown low-temperature GaN layer and reduce the effect of crystal defects in the epitaxial layer, thereby improving the overall quality of the light-emitting diode and further improving the luminous efficiency of the light-emitting diode.

图2是本发明实施例提供的另一种发光二极管的外延片的结构示意图。如图2所示,该外延片包括衬底1及依次层叠设置在衬底1上的AlN层2、InxAl1-xN层3、低温GaN层4、未掺杂GaN层5、N型GaN层6、应力释放层9、有源层7、电子阻挡层10、P型GaN层8及P型接触层11。其中,0.16≤x≤0.18。FIG. 2 is a schematic structural diagram of another epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention. As shown in FIG. 2 , the epitaxial wafer includes a substrate 1 and an AlN layer 2 , an In x Al 1-x N layer 3 , a low temperature GaN layer 4 , an undoped GaN layer 5 , and an N layer 2 stacked on the substrate 1 in sequence. GaN layer 6 , stress release layer 9 , active layer 7 , electron blocking layer 10 , P-type GaN layer 8 and P-type contact layer 11 . Among them, 0.16≤x≤0.18.

示例性地,衬底1可为蓝宝石衬底。Illustratively, the substrate 1 may be a sapphire substrate.

可选地,AlN层2的厚度为5~10nm。AlN层的厚度设置为以上范围时,得到的外延片的整体质量较好,能够提高发光二极管的发光效率。Optionally, the thickness of the AlN layer 2 is 5-10 nm. When the thickness of the AlN layer is set in the above range, the overall quality of the obtained epitaxial wafer is good, and the luminous efficiency of the light emitting diode can be improved.

示例性地,InxAl1-xN层3的厚度可为20~30nm。将InxAl1-xN层的厚度设置为以上范围时,得到的外延片的整体质量较好,能够提高发光二极管的发光效率。Exemplarily, the thickness of the InxAl1 - xN layer 3 may be 20˜30 nm. When the thickness of the In x Al 1-x N layer is set in the above range, the overall quality of the obtained epitaxial wafer is good, and the luminous efficiency of the light emitting diode can be improved.

其中,InxAl1-xN层3中的x可为0.18。InxAl1-xN层中的x为0.18时InxAl1-xN层与低温GaN层之间的晶格常数的匹配更好,进而使得发光二极管的发光效率更好。Wherein, x in the In x Al 1-x N layer 3 may be 0.18. When x in the InxAl1 - xN layer is 0.18, the matching of lattice constants between the InxAl1 - xN layer and the low temperature GaN layer is better, thereby making the luminous efficiency of the light-emitting diode better.

可选地,低温GaN层4的厚度可为20~30nm。在本发明实施例中,低温GaN层的厚度也可为20nm,本发明对此不做限制。Optionally, the thickness of the low temperature GaN layer 4 may be 20˜30 nm. In the embodiment of the present invention, the thickness of the low-temperature GaN layer may also be 20 nm, which is not limited in the present invention.

示例性地,未掺杂GaN层5的厚度可为0.1~2μm。在本发明实施例中,未掺杂GaN层的厚度也可为1μm,本发明对此不做限制。Exemplarily, the thickness of the undoped GaN layer 5 may be 0.1˜2 μm. In the embodiment of the present invention, the thickness of the undoped GaN layer may also be 1 μm, which is not limited in the present invention.

可选地,其中,N型GaN层6中的掺杂元素可为Si,Si的掺杂浓度可为1018~1019cm-3Optionally, the doping element in the N-type GaN layer 6 may be Si, and the doping concentration of Si may be 10 18 -10 19 cm -3 .

进一步地,N型GaN层6的厚度可为1~5μm。在本发明实施例中,N型GaN层的厚度也可为2μm,本发明对此不做限制。Further, the thickness of the N-type GaN layer 6 may be 1˜5 μm. In the embodiment of the present invention, the thickness of the N-type GaN layer may also be 2 μm, which is not limited in the present invention.

可选地,应力释放层9可包括交替层叠的应力释放InGaN层91与应力释放GaN层92,在本发明提供的实施例中,应力释放InGaN层91的厚度可为2nm,应力释放GaN层92的厚度可为30nm,可起到释放对外延片中应力的作用,可提高发光二极管的发光效率。Optionally, the stress release layer 9 may include alternately stacked stress release InGaN layers 91 and stress release GaN layers 92. In the embodiment provided by the present invention, the stress release InGaN layer 91 may have a thickness of 2 nm, and the stress release GaN layer 92 may have a thickness of 2 nm. The thickness can be 30nm, which can release the stress in the epitaxial wafer and improve the luminous efficiency of the light-emitting diode.

在本发明的实施例中,有源层7可包括交替层叠的InGaN阱层71与GaN垒层72,InGaN阱层71的厚度可为1~3nm,GaN垒层72的厚度可为9~20nm。在本发明实施例中,InGaN阱层的厚度也可为2.5nm,GaN垒层72的厚度也可为15nm,本发明对此不做限制。In the embodiment of the present invention, the active layer 7 may include alternately stacked InGaN well layers 71 and GaN barrier layers 72 , the thickness of the InGaN well layer 71 may be 1-3 nm, and the thickness of the GaN barrier layer 72 may be 9-20 nm . In the embodiment of the present invention, the thickness of the InGaN well layer may also be 2.5 nm, and the thickness of the GaN barrier layer 72 may also be 15 nm, which is not limited in the present invention.

其中InGaN阱层71的层数可为8~10,GaN垒层72与InGaN阱层71的层数相同。在本发明实施例中,InGaN阱层71的层数可为6,本发明对此不做限制。The number of InGaN well layers 71 may be 8-10, and the number of GaN barrier layers 72 and InGaN well layers 71 are the same. In the embodiment of the present invention, the number of InGaN well layers 71 may be 6, which is not limited in the present invention.

可选地,电子阻挡层10可为AlGaN层,其厚度可为80nm。Alternatively, the electron blocking layer 10 may be an AlGaN layer, and its thickness may be 80 nm.

示例性地,P型GaN层8的厚度可为0.2μm。Illustratively, the thickness of the P-type GaN layer 8 may be 0.2 μm.

示例性地,P型接触层11的厚度可为15nm。Exemplarily, the thickness of the P-type contact layer 11 may be 15 nm.

图3是本发明实施例提供的一种发光二极管的外延片的制备方法流程图,如图3所示,制备方法包括:FIG. 3 is a flowchart of a method for preparing an epitaxial wafer of a light-emitting diode provided by an embodiment of the present invention. As shown in FIG. 3 , the preparation method includes:

步骤S101:提供一衬底。Step S101: providing a substrate.

步骤S102:在衬底上生长AlN层。Step S102: growing an AlN layer on the substrate.

步骤S103:在AlN层上生长InxAl1-xN层,其中,0.16≤x≤0.18。Step S103: growing an InxAl1 -xN layer on the AlN layer, wherein 0.16≤x≤0.18.

步骤S104:在InxAl1-xN层上生长低温GaN层。Step S104: growing a low temperature GaN layer on the InxAl1 -xN layer .

步骤S105:在低温GaN层上生长未掺杂GaN层。Step S105 : growing an undoped GaN layer on the low temperature GaN layer.

步骤S106:在未掺杂GaN层上生长N型GaN层。Step S106: growing an N-type GaN layer on the undoped GaN layer.

步骤S107:在N型GaN层上生长有源层。Step S107: growing an active layer on the N-type GaN layer.

步骤S108:在有源层上生长P型GaN层。Step S108: growing a P-type GaN layer on the active layer.

设置在AlN层与低温GaN层之间的InxAl1-xN层,在x的范围为0.16~0.18时,一方面由于InxAl1-xN层结构中与AlN层结构中有共用的Al原子与N原子,由此可保证InxAl1-xN层在AlN层上的良好连接与生长,InxAl1-xN层本身的质量与表面平整性较好;另一方面,此时InxAl1-xN层中晶胞的晶格常数与低温GaN层中晶胞的晶格常数较为接近,二者之间的晶格失配较小,可得到在InxAl1-xN层上生长的晶体质量良好的低温GaN层,InxAl1-xN层缓解了AlN层与低温GaN层之间原有的晶格失配,起到连接AlN层与低温GaN层的同时也可保证最终生长得到的低温GaN层的质量、减小外延层中晶体缺陷的作用,进而可提高发光二极管的整体质量,进一步提高发光二极管的发光效率。The In x Al 1-x N layer disposed between the AlN layer and the low-temperature GaN layer, when x is in the range of 0.16 to 0.18, on the one hand, because the In x Al 1-x N layer structure is shared with the AlN layer structure. The Al atoms and N atoms of the In x Al 1-x N layer can ensure the good connection and growth of the In x Al 1-x N layer on the AlN layer, and the quality and surface flatness of the In x Al 1-x N layer itself are better; , at this time, the lattice constant of the unit cell in the In x Al 1-x N layer is relatively close to the lattice constant of the unit cell in the low temperature GaN layer, and the lattice mismatch between the two is small, which can be obtained in In x Al The low-temperature GaN layer with good crystal quality grown on the 1-x N layer, the In x Al 1-x N layer alleviates the original lattice mismatch between the AlN layer and the low-temperature GaN layer, and acts to connect the AlN layer and the low-temperature GaN layer. At the same time, it can also ensure the quality of the final grown low-temperature GaN layer and reduce the effect of crystal defects in the epitaxial layer, thereby improving the overall quality of the light-emitting diode and further improving the luminous efficiency of the light-emitting diode.

图4是本发明实施例提供的另一种发光二极管的外延片的制备方法流程图,如图4所示,制备方法包括:FIG. 4 is a flowchart of another method for preparing an epitaxial wafer of a light-emitting diode according to an embodiment of the present invention. As shown in FIG. 4 , the preparation method includes:

步骤S201:提供一衬底。Step S201: Provide a substrate.

可选地,在衬底上生长AlN层之前,可在氢气氛围中对衬底进行退火处理。可去除衬底上的部分杂质,保证在衬底上生长的外延层的质量。Optionally, the substrate may be annealed in a hydrogen atmosphere prior to growing the AlN layer on the substrate. Part of impurities on the substrate can be removed to ensure the quality of the epitaxial layer grown on the substrate.

在氢气气氛中对衬底进行退火处理时的温度可为1050℃。在此温度条件下可去除衬底上的大部分杂质。The temperature when the substrate is annealed in a hydrogen atmosphere may be 1050°C. Most impurities on the substrate can be removed at this temperature.

其中,衬底可为蓝宝石衬底。Wherein, the substrate can be a sapphire substrate.

步骤S202:在衬底上生长AlN层。Step S202: growing an AlN layer on the substrate.

可选地,AlN层的生长温度为450~700℃。在此温度条件下生长得到的AlN层的质量较好,可保证在AlN层上生长的外延层的质量。Optionally, the growth temperature of the AlN layer is 450-700°C. The quality of the AlN layer grown under this temperature condition is good, and the quality of the epitaxial layer grown on the AlN layer can be guaranteed.

可选地,AlN层的厚度可为5~10nm。此时可保证AlN层本身的生长质量,也可保证在AlN层上生长得到的InxAl1-xN层的质量。Optionally, the thickness of the AlN layer may be 5-10 nm. At this time, the growth quality of the AlN layer itself can be guaranteed, and the quality of the In x Al 1-x N layer grown on the AlN layer can also be guaranteed.

可选地,AlN层的生长压力可为30~100Torr。在此条件下生长得到的AlN层的质量较好,可保证在AlN层上生长的外延层的质量。Optionally, the growth pressure of the AlN layer may be 30-100 Torr. The quality of the AlN layer grown under this condition is good, and the quality of the epitaxial layer grown on the AlN layer can be guaranteed.

步骤S203:在AlN层上生长InxAl1-xN层,其中,0.16≤x≤0.18。Step S203: growing an InxAl1 -xN layer on the AlN layer, wherein 0.16≤x≤0.18.

可选地,其中,在生长InxAl1-xN层时,向反应腔内通入气态Al与气态In,向反应腔内通入的气态Al与向反应腔内通入的气态In的比例为1:0.25~1:0.28。在此条件下能够生长得到质量较好的且与未掺杂GaN层之间的晶格失配较小的InxAl1-xN层,进而保证外延层整体的质量,保证发光二极管的发光效率。Optionally, wherein, when the In x Al 1-x N layer is grown, gaseous Al and gaseous In are introduced into the reaction chamber, and the gaseous Al introduced into the reaction chamber and the gaseous In introduced into the reaction chamber are mixed. The ratio is 1:0.25~1:0.28. Under this condition, an In x Al 1-x N layer with better quality and less lattice mismatch with the undoped GaN layer can be grown, thereby ensuring the overall quality of the epitaxial layer and ensuring the light emitting of the light-emitting diode. efficiency.

可选地,在生长InxAl1-xN层时,可向反应腔内通入50~100sccm的气态Al。这种情况下生长得到的InxAl1-xN层的质量较好,能够保证发光二极管的发光效率。Optionally, when growing the In x Al 1-x N layer, gaseous Al of 50-100 sccm may be introduced into the reaction chamber. In this case, the quality of the grown InxAl1 - xN layer is good, and the luminous efficiency of the light-emitting diode can be guaranteed.

可选地,在生长InxAl1-xN层时,可向反应腔内通入100~120sccm的气态In。这种情况下生长得到的InxAl1-xN层的质量较好,能够保证发光二极管的发光效率。Optionally, when the In x Al 1-x N layer is grown, gaseous In of 100-120 sccm may be introduced into the reaction chamber. In this case, the quality of the grown InxAl1 - xN layer is good, and the luminous efficiency of the light-emitting diode can be guaranteed.

其中,InxAl1-xN层的生长温度可为500~600℃。在此温度条件下生长得到的InxAl1-xN层的质量较好,可保证在InxAl1-xN层能够有效缓解AlN层与未掺杂GaN层之间的晶格失配。Wherein, the growth temperature of the InxAl1 - xN layer may be 500-600°C. The quality of the In x Al 1-x N layer grown at this temperature is good, which can ensure that the In x Al 1-x N layer can effectively alleviate the lattice mismatch between the AlN layer and the undoped GaN layer. .

可选地,InxAl1-xN层的生长压力与AlN层的生长压力相同,均可为30~100Torr。在此条件下生长得到的InxAl1-xN层的质量较好,可保证在InxAl1-xN层上生长的外延层的质量,且在生长AlN层与生长InxAl1-xN层时采用相同的压力也可减小二者所需要的生长时间。Optionally, the growth pressure of the In x Al 1-x N layer is the same as the growth pressure of the AlN layer, and both can be 30-100 Torr. The quality of the In x Al 1-x N layer grown under this condition is good, which can ensure the quality of the epitaxial layer grown on the In x Al 1-x N layer, and the quality of the epitaxial layer grown on the In x Al 1 -x N layer can be guaranteed. Using the same pressure for -x N layers also reduces the growth time required for both.

步骤S204:在InxAl1-xN层上生长低温GaN层。Step S204: growing a low temperature GaN layer on the InxAl1 -xN layer .

可选地,在低温GaN层生长完成之后,可对低温GaN层进行8分钟的原位退火处理。提高低温GaN层整体的晶体质量,进而保证在低温GaN层上生长的外延层的质量。Optionally, after the growth of the low temperature GaN layer is completed, the low temperature GaN layer may be subjected to an in-situ annealing treatment for 8 minutes. The overall crystal quality of the low-temperature GaN layer is improved, thereby ensuring the quality of the epitaxial layer grown on the low-temperature GaN layer.

其中,原位退火处理的温度可为1000~2000℃。The temperature of the in-situ annealing treatment may be 1000-2000°C.

步骤S205:在低温GaN层上生长未掺杂GaN层。Step S205: growing an undoped GaN layer on the low temperature GaN layer.

示例性地,未掺杂GaN层的生长温度可为1000~1100℃,生长压力可为30~100Torr。在此条件下生长得到的未掺杂GaN层的质量较好。Exemplarily, the growth temperature of the undoped GaN layer may be 1000˜1100° C., and the growth pressure may be 30˜100 Torr. The quality of the undoped GaN layer grown under this condition is better.

示例性地,未掺杂GaN层的厚度可为0.1~2μm。Exemplarily, the thickness of the undoped GaN layer may be 0.1˜2 μm.

步骤S206:在未掺杂GaN层上生长N型GaN层。Step S206: growing an N-type GaN layer on the undoped GaN layer.

可选地,N型GaN层的掺杂元素为Si元素,Si元素的掺杂浓度为2×1017cm-3Optionally, the doping element of the N-type GaN layer is Si element, and the doping concentration of Si element is 2×10 17 cm −3 .

其中,N型GaN层的生长温度可为1000~1200℃,生长压力可为100~300Torr。Wherein, the growth temperature of the N-type GaN layer may be 1000˜1200° C., and the growth pressure may be 100˜300 Torr.

步骤S207:在N型GaN层上生长应力释放层。Step S207 : growing a stress release layer on the N-type GaN layer.

其中,应力释放层可包括交替层叠的应力释放InGaN层与应力释放GaN层,应力释放InGaN层的厚度可为2nm,应力释放GaN层的厚度可为30nm。The stress release layer may include alternately stacked stress release InGaN layers and stress release GaN layers, the stress release InGaN layer may have a thickness of 2 nm, and the stress release GaN layer may have a thickness of 30 nm.

可选地,应力释放InGaN层的生长温度可为720~929℃,应力释放GaN层的生长温度可为850~959℃Optionally, the growth temperature of the stress-releasing InGaN layer may be 720-929° C., and the growth temperature of the stress-releasing GaN layer may be 850-959° C.

步骤S208:在应力释放层上生长有源层。Step S208: growing an active layer on the stress release layer.

有源层可包括交替层叠的InGaN阱层与GaN垒层。InGaN阱层的生长温度可为720~929℃,InGaN阱层的生长压力可为100~500Torr,InGaN阱层的生长厚度可为2~3nm;GaN垒层的生长温度可为850~959℃,GaN垒层的生长压力可为100~500Torr,GaN垒层的生长厚度可为9~20nm。The active layer may include alternately stacked InGaN well layers and GaN barrier layers. The growth temperature of the InGaN well layer can be 720-929°C, the growth pressure of the InGaN well layer can be 100-500 Torr, the growth thickness of the InGaN well layer can be 2-3nm; the growth temperature of the GaN barrier layer can be 850-959°C, The growth pressure of the GaN barrier layer may be 100-500 Torr, and the growth thickness of the GaN barrier layer may be 9-20 nm.

步骤S209:在有源层上生长电子阻挡层。Step S209: growing an electron blocking layer on the active layer.

可选地,电子阻挡层可为AlGaN层,其厚度可为80nm。Alternatively, the electron blocking layer may be an AlGaN layer, and its thickness may be 80 nm.

步骤S210:在电子阻挡层上生长P型GaN层。Step S210: growing a P-type GaN layer on the electron blocking layer.

在本实施例中,P型GaN层的生长温度可为750~1050℃,生长压力可为100~500Torr。In this embodiment, the growth temperature of the P-type GaN layer may be 750˜1050° C., and the growth pressure may be 100˜500 Torr.

步骤S211:在P型GaN层上生长P型接触层。Step S211 : growing a P-type contact layer on the P-type GaN layer.

其中,P型接触层的厚度可为5nm至300nm之间,生长温度区间为850~1050℃,生长压力区间为100~600Torr。Wherein, the thickness of the P-type contact layer may be between 5 nm and 300 nm, the growth temperature range is 850-1050° C., and the growth pressure range is 100-600 Torr.

执行完步骤S210之后的外延片的结构示意图可如图2所示,外延片包括衬底1及依次层叠设置在衬底1上的AlN层2、InxAl1-xN层3、未掺杂GaN层5、N型GaN层6、应力释放层9、有源层7、电子阻挡层10、P型GaN层8及P型接触层11。The schematic structural diagram of the epitaxial wafer after step S210 is performed can be shown in FIG. 2 . The epitaxial wafer includes a substrate 1 and an AlN layer 2 , an In x Al 1-x N layer 3 , an undoped layer 2 stacked on the substrate 1 in sequence, and a The hetero GaN layer 5 , the N-type GaN layer 6 , the stress release layer 9 , the active layer 7 , the electron blocking layer 10 , the P-type GaN layer 8 and the P-type contact layer 11 .

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (8)

1.一种发光二极管的外延片,其特征在于,所述外延片包括衬底及依次层叠设置在所述衬底上的AlN层、InxAl1-xN层、低温GaN层、未掺杂GaN层、N型GaN层、有源层及P型GaN层,其中,0.16≤x≤0.18,所述AlN层的厚度为5~10nm,所述InxAl1-xN层的厚度为20~30nm,所述低温GaN层的厚度为20~30nm。1. an epitaxial wafer of a light-emitting diode, characterized in that the epitaxial wafer comprises a substrate and an AlN layer, an In x Al 1-x N layer, a low-temperature GaN layer, an undoped layer of AlN that are sequentially stacked on the substrate. The hetero GaN layer, the N-type GaN layer, the active layer and the P-type GaN layer, wherein 0.16≤x≤0.18, the thickness of the AlN layer is 5-10 nm, and the thickness of the In x Al 1-x N layer is 20-30 nm, and the thickness of the low-temperature GaN layer is 20-30 nm. 2.一种发光二极管的外延片的制备方法,其特征在于,所述制备方法包括:2. A preparation method of an epitaxial wafer of a light-emitting diode, wherein the preparation method comprises: 提供一衬底;providing a substrate; 在所述衬底上生长AlN层,所述AlN层的厚度为5~10nm;growing an AlN layer on the substrate, the thickness of the AlN layer being 5-10 nm; 在所述AlN层上生长InxAl1-xN层,其中,0.16≤x≤0.18,所述InxAl1-xN层的厚度为20~30nm;growing an InxAl1 -xN layer on the AlN layer, wherein 0.16≤x≤0.18, and the thickness of the InxAl1 - xN layer is 20-30 nm; 在所述InxAl1-xN层上生长低温GaN层,所述低温GaN层的厚度为20~30nm;growing a low temperature GaN layer on the In x Al 1-x N layer, the thickness of the low temperature GaN layer being 20-30 nm; 在所述低温GaN层上生长未掺杂GaN层;growing an undoped GaN layer on the low temperature GaN layer; 在所述未掺杂GaN层上生长N型GaN层;growing an N-type GaN layer on the undoped GaN layer; 在所述N型GaN层上生长有源层;growing an active layer on the N-type GaN layer; 在所述有源层上生长P型GaN层。A P-type GaN layer is grown on the active layer. 3.根据权利要求2所述的制备方法,其特征在于,在生长所述InxAl1-xN层时,向反应腔内通入气态Al与气态In,向所述反应腔内通入的气态Al与向所述反应腔内通入的气态In的比例为1:0.25~1:0.28。3. The preparation method according to claim 2, wherein when growing the In x Al 1-x N layer, gaseous Al and gaseous In are fed into the reaction chamber, and gaseous In is fed into the reaction chamber The ratio of the gaseous Al to the gaseous In introduced into the reaction chamber is 1:0.25-1:0.28. 4.根据权利要求3所述的制备方法,其特征在于,在生长所述InxAl1-xN层时:4. preparation method according to claim 3, is characterized in that, when growing described In x Al 1-x N layer: 向反应腔内通入50~100sccm的气态Al。Gaseous Al of 50-100 sccm was introduced into the reaction chamber. 5.根据权利要求4所述的制备方法,其特征在于,在生长所述InxAl1-xN层时:5. preparation method according to claim 4 is characterized in that, when growing described In x Al 1-x N layer: 向所述反应腔内通入100~120sccm的气态In。Gaseous In of 100-120 sccm was introduced into the reaction chamber. 6.根据权利要求2所述的制备方法,其特征在于,所述AlN层的生长温度为450~700℃。6 . The preparation method according to claim 2 , wherein the growth temperature of the AlN layer is 450-700° C. 7 . 7.根据权利要求2所述的制备方法,其特征在于,所述InxAl1-xN层的生长温度为500~600℃。7 . The preparation method according to claim 2 , wherein the growth temperature of the InxAl1-xN layer is 500˜600° C. 8 . 8.根据权利要求2~5任一项所述的制备方法,其特征在于,所述AlN层的生长压力与所述InxAl1-xN层的生长压力均为30~100Torr。8 . The preparation method according to claim 2 , wherein the growth pressure of the AlN layer and the growth pressure of the In x Al 1-x N layer are both 30 to 100 Torr. 9 .
CN201811063187.4A 2018-09-12 2018-09-12 Epitaxial wafer of light emitting diode and preparation method thereof Active CN109244203B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811063187.4A CN109244203B (en) 2018-09-12 2018-09-12 Epitaxial wafer of light emitting diode and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811063187.4A CN109244203B (en) 2018-09-12 2018-09-12 Epitaxial wafer of light emitting diode and preparation method thereof

Publications (2)

Publication Number Publication Date
CN109244203A CN109244203A (en) 2019-01-18
CN109244203B true CN109244203B (en) 2020-07-07

Family

ID=65058205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811063187.4A Active CN109244203B (en) 2018-09-12 2018-09-12 Epitaxial wafer of light emitting diode and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109244203B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388337A (en) * 2008-10-28 2009-03-18 厦门乾照光电有限公司 Process for growing high-quality monocrystal indium nitride thin-film having double buffering layers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203834A (en) * 1995-01-24 1996-08-09 Matsushita Electric Ind Co Ltd Semiconductor thin film and manufacture thereof
WO2005112078A1 (en) * 2004-05-19 2005-11-24 Epivalley Co., Ltd. METHOD FOR MATERIAL GROWTH OF GaN-BASED NITRIDE LAYER
CN101604716A (en) * 2008-06-10 2009-12-16 北京大学 A deep ultraviolet light-emitting diode and its preparation method
CN101901758B (en) * 2010-06-24 2012-05-23 西安电子科技大学 MOCVD growth method of non-polar m-plane GaN thin film based on m-plane SiC substrate
CN101901757B (en) * 2010-06-24 2012-02-08 西安电子科技大学 MOCVD growth method of nonpolar a-plane GaN on a-plane 6H-SiC substrate
CN102157657B (en) * 2011-01-26 2012-10-17 中山大学 A GaN-based light-emitting diode and its manufacturing method
CN103400910A (en) * 2013-07-22 2013-11-20 曹永革 White light LED (Light-emitting Diode) extension structure and manufacturing method thereof
CN103367594B (en) * 2013-07-26 2015-12-02 东南大学 A kind of light-emitting diode and preparation method thereof
CN204632794U (en) * 2015-03-31 2015-09-09 山西南烨立碁光电有限公司 A kind of epitaxial structure improving LED luminosity
CN104952986B (en) * 2015-06-03 2017-12-08 西安交通大学 A kind of preparation method of GaN base white light LEDs epitaxial structure
CN204668348U (en) * 2015-06-24 2015-09-23 聚灿光电科技股份有限公司 Led chip
CN105336819A (en) * 2015-09-24 2016-02-17 映瑞光电科技(上海)有限公司 GaN-base LED epitaxial structure and preparation method thereof
CN205264741U (en) * 2015-12-26 2016-05-25 中国电子科技集团公司第十三研究所 GaN -based LED epitaxial wafer
CN107331738B (en) * 2017-05-12 2019-12-06 华灿光电股份有限公司 A method of manufacturing a light-emitting diode epitaxial wafer
CN107464862B (en) * 2017-08-13 2018-12-28 广东省半导体产业技术研究院 A kind of growing method of N-type AlGaN
CN107681025B (en) * 2017-09-12 2020-07-28 西安交通大学 GaN-based white light L ED epitaxial structure and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388337A (en) * 2008-10-28 2009-03-18 厦门乾照光电有限公司 Process for growing high-quality monocrystal indium nitride thin-film having double buffering layers

Also Published As

Publication number Publication date
CN109244203A (en) 2019-01-18

Similar Documents

Publication Publication Date Title
CN108346725B (en) GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN115188863A (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109256445B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN109216514A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
CN106972085A (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN109244199B (en) Preparation method of epitaxial wafer of light emitting diode and epitaxial wafer
CN108807620B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN109786518B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN106601883A (en) Epitaxial wafer of light emitting diode and preparation method
CN114649454A (en) Epitaxial wafer structure of a light-emitting diode and preparation method thereof
CN108831974A (en) A light-emitting diode epitaxial wafer and its manufacturing method
TW202143510A (en) Ultraviolet LED and its manufacturing method
CN109346568A (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN109671816B (en) Epitaxial wafer of light-emitting diode and preparation method thereof
CN109103312B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN109671817A (en) A kind of LED epitaxial slice and preparation method thereof
CN116960248B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN109638114B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109473521B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109087977B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof
CN111477727A (en) A kind of LED chip with improved current spreading layer and manufacturing method
CN109244203B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN109686823A (en) A kind of gallium nitride based LED epitaxial slice and preparation method thereof
CN109545923A (en) A kind of green light LED epitaxial wafer and preparation method thereof
CN116936701B (en) A kind of light-emitting diode epitaxial wafer and preparation method, LED chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd.

Country or region after: China

Address before: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd.

Country or region before: China