[go: up one dir, main page]

CN109638114B - Light emitting diode epitaxial wafer and preparation method thereof - Google Patents

Light emitting diode epitaxial wafer and preparation method thereof Download PDF

Info

Publication number
CN109638114B
CN109638114B CN201811205142.6A CN201811205142A CN109638114B CN 109638114 B CN109638114 B CN 109638114B CN 201811205142 A CN201811205142 A CN 201811205142A CN 109638114 B CN109638114 B CN 109638114B
Authority
CN
China
Prior art keywords
layer
type gan
superlattice structure
sublayer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811205142.6A
Other languages
Chinese (zh)
Other versions
CN109638114A (en
Inventor
洪威威
王倩
韦春余
周飚
胡加辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boe Huacan Optoelectronics Suzhou Co ltd
Original Assignee
HC Semitek Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Semitek Suzhou Co Ltd filed Critical HC Semitek Suzhou Co Ltd
Priority to CN201811205142.6A priority Critical patent/CN109638114B/en
Publication of CN109638114A publication Critical patent/CN109638114A/en
Application granted granted Critical
Publication of CN109638114B publication Critical patent/CN109638114B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN

Landscapes

  • Led Devices (AREA)

Abstract

本发明公开了一种发光二极管外延片及其制备方法,属于发光二极管制造领域。N型GaN层与有源层之间依次设置低温N型GaN层与超晶格结构,低温N型GaN层的设置可使得超晶格结构与N型GaN层之间能够良好过渡,保证在N型GaN层上生长的超晶格结构的质量,避免超晶格结构中出现过多缺陷进而影响后续生长的有源层,而超晶格结构中交替层叠的铝镓氮子层、铟镓氮子层及GaN子层可起到释放外延层中的应力的作用,提高外延层整体的晶体质量,并且由于铝镓氮子层、铟镓氮子层及GaN子层三者之间的晶格常数差异较大,因此三者之间的界面可对位错进行阻挡,避免位错移动至超晶格结构之后的有源层中,保证了有源层的晶体质量。

Figure 201811205142

The invention discloses a light-emitting diode epitaxial wafer and a preparation method thereof, belonging to the field of light-emitting diode manufacturing. A low-temperature N-type GaN layer and a superlattice structure are arranged between the N-type GaN layer and the active layer in sequence. The quality of the superlattice structure grown on the GaN layer can avoid excessive defects in the superlattice structure and affect the subsequent growth of the active layer. The sublayer and the GaN sublayer can play the role of releasing the stress in the epitaxial layer, improve the overall crystal quality of the epitaxial layer, and due to the lattice between the aluminum gallium nitride sublayer, the indium gallium nitride sublayer and the GaN sublayer. The difference between the constants is large, so the interface between the three can block the dislocations, prevent the dislocations from moving to the active layer behind the superlattice structure, and ensure the crystal quality of the active layer.

Figure 201811205142

Description

一种发光二极管外延片及其制备方法A kind of light-emitting diode epitaxial wafer and preparation method thereof

技术领域technical field

本发明涉及发光二极管制造领域,特别涉及一种发光二极管外延片及其制备方法。The invention relates to the field of light-emitting diode manufacturing, in particular to a light-emitting diode epitaxial wafer and a preparation method thereof.

背景技术Background technique

发光二极管是一种可以把电能转化成光能的半导体二极管,具有体积小、寿命长、功耗低等优点,目前被广泛应用于汽车信号灯、交通信号灯、显示屏以及照明设备。外延片是制作发光二极管的基础结构,外延片的结构包括衬底以及衬底上的外延层,外延层包括依次生长在衬底上的N型GaN层、有源层及P型GaN层。Light-emitting diodes are semiconductor diodes that can convert electrical energy into light energy. They have the advantages of small size, long life and low power consumption. They are currently widely used in car signal lights, traffic lights, display screens and lighting equipment. An epitaxial wafer is the basic structure for making light-emitting diodes. The structure of the epitaxial wafer includes a substrate and an epitaxial layer on the substrate. The epitaxial layer includes an N-type GaN layer, an active layer and a P-type GaN layer grown on the substrate in sequence.

但在这种结构中,由于衬底与外延层之间存在较大的晶格失配,外延层在衬底上生长时会产生较多缺陷,影响外延层中有源层的质量,有源层的质量较差会影响在有源层中电子与空穴的复合效率,进而导致发光二极管的发光效率较低。However, in this structure, due to the large lattice mismatch between the substrate and the epitaxial layer, more defects will be generated when the epitaxial layer grows on the substrate, which affects the quality of the active layer in the epitaxial layer. The poor quality of the layer affects the recombination efficiency of electrons and holes in the active layer, which in turn leads to a low luminous efficiency of the light-emitting diode.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种发光二极管外延片及其制备方法,能够提高发光二极管的发光效率。所述技术方案如下:The embodiments of the present invention provide a light-emitting diode epitaxial wafer and a preparation method thereof, which can improve the light-emitting efficiency of the light-emitting diode. The technical solution is as follows:

本发明实施例提供了一种发光二极管外延片,所述外延片包括衬底及依次层叠在所述衬底上的N型GaN层、低温N型GaN层、超晶格结构、有源层及P型GaN层,An embodiment of the present invention provides a light-emitting diode epitaxial wafer, the epitaxial wafer includes a substrate and an N-type GaN layer, a low-temperature N-type GaN layer, a superlattice structure, an active layer, and an N-type GaN layer sequentially stacked on the substrate. P-type GaN layer,

所述超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素。The superlattice structure includes AlGaN sublayers, InGaN sublayers and GaN sublayers stacked alternately, wherein the GaN sublayers are doped with Si elements.

可选地,所述铝镓氮子层为AlXGa1-XN层,所述铟镓氮子层为InZGa1-ZN层,其中0<X<1,0.1<Z<0.5。Optionally, the aluminum gallium nitride sublayer is an AlXGa1 - XN layer, and the indium gallium nitride sublayer is an InZGa1 - ZN layer, wherein 0<X<1, 0.1<Z<0.5 .

可选地,0.1<X<0.4,0.1<Z<0.3。Optionally, 0.1<X<0.4, 0.1<Z<0.3.

可选地,所述铝镓氮子层的厚度、所述铟镓氮子层的厚度及所述GaN子层的厚度均为5~15nm。Optionally, the thickness of the aluminum gallium nitride sub-layer, the thickness of the indium gallium nitride sub-layer, and the thickness of the GaN sub-layer are all 5-15 nm.

可选地,所述铝镓氮子层的层数、所述铟镓氮子层的层数及所述GaN子层的层数均为5~20。Optionally, the number of layers of the aluminum gallium nitride sub-layer, the number of layers of the indium gallium nitride sub-layer, and the number of layers of the GaN sub-layer are all 5-20.

可选地,所述GaN子层中Si元素的掺杂浓度为1×1017~1×1018cm-3Optionally, the doping concentration of Si element in the GaN sublayer is 1×10 17 to 1×10 18 cm −3 .

可选地,所述低温N型GaN层的厚度为30~80nm。Optionally, the thickness of the low temperature N-type GaN layer is 30-80 nm.

本发明实施例提供了一种发光二极管外延片的制备方法,所述制备方法包括:The embodiment of the present invention provides a preparation method of a light-emitting diode epitaxial wafer, and the preparation method includes:

提供一衬底;providing a substrate;

在所述衬底上生长N型GaN层;growing an N-type GaN layer on the substrate;

在所述N型GaN层上生长低温N型GaN层;growing a low temperature N-type GaN layer on the N-type GaN layer;

在所述低温N型GaN层上生长超晶格结构;growing a superlattice structure on the low temperature N-type GaN layer;

在所述超晶格结构上生长有源层;growing an active layer on the superlattice structure;

在所述有源层上生长P型GaN层,growing a P-type GaN layer on the active layer,

其中,所述超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素。Wherein, the superlattice structure includes AlGaN sub-layers, InGaN sub-layers and GaN sub-layers stacked alternately, wherein the GaN sub-layers are doped with Si element.

可选地,所述超晶格结构的生长温度为800~900℃。Optionally, the growth temperature of the superlattice structure is 800-900°C.

可选地,所述超晶格结构的生长压力为50~300Torr。Optionally, the growth pressure of the superlattice structure is 50-300 Torr.

本发明实施例提供的技术方案带来的有益效果是:在N型GaN层与有源层之间依次增加设置低温N型GaN层与包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层的超晶格结构,低温N型GaN层的设置可实现超晶格结构与N型GaN层之间的良好过渡,保证在N型GaN层上生长的超晶格结构的质量,避免超晶格结构中出现过多缺陷进而影响后续生长的有源层,而超晶格结构中交替层叠的铝镓氮子层、铟镓氮子层及GaN子层可起到释放外延层中的应力的作用,提高外延层整体的晶体质量,并且由于铝镓氮子层、铟镓氮子层及GaN子层三者之间的晶格常数差异较大,因此三者之间的界面可对位错进行阻挡,避免位错移动至超晶格结构之后的有源层中,保证了有源层的晶体质量,进而可提高发光二极管的发光效率。The beneficial effect brought by the technical solutions provided by the embodiments of the present invention is that a low-temperature N-type GaN layer and an alternately stacked AlGaN sub-layer and an InGaN sub-layer are sequentially added between the N-type GaN layer and the active layer. And the superlattice structure of the GaN sub-layer, the setting of the low-temperature N-type GaN layer can realize a good transition between the superlattice structure and the N-type GaN layer, and ensure the quality of the superlattice structure grown on the N-type GaN layer. Avoid excessive defects in the superlattice structure and affect the active layer of subsequent growth, and the alternately stacked AlGaN sublayers, InGaN sublayers and GaN sublayers in the superlattice structure can play a role in the release of the epitaxial layer. The effect of stress on the epitaxial layer improves the overall crystal quality of the epitaxial layer, and because the lattice constants between the AlGaN sublayer, the InGaN sublayer and the GaN sublayer are quite different, the interface between the three can be Blocking the dislocations prevents the dislocations from moving to the active layer behind the superlattice structure, thereby ensuring the crystal quality of the active layer, thereby improving the luminous efficiency of the light emitting diode.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的一种发光二极管外延片的结构示意图;1 is a schematic structural diagram of a light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图2是本发明实施例提供的另一种发光二极管外延片的结构示意图;2 is a schematic structural diagram of another light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图3是本发明实施例提供的一种发光二极管外延片的制备方法流程图;3 is a flowchart of a method for preparing a light-emitting diode epitaxial wafer provided by an embodiment of the present invention;

图4是本发明实施例提供的另一种发光二极管外延片的制备方法流程图。FIG. 4 is a flowchart of another method for fabricating a light-emitting diode epitaxial wafer provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

图1是本发明实施例提供的一种发光二极管外延片的结构示意图。如图1所示,该外延片包括衬底1及依次层叠在衬底1上的N型GaN层2、低温N型GaN层3、超晶格结构4、有源层5及P型GaN层6。FIG. 1 is a schematic structural diagram of a light emitting diode epitaxial wafer provided by an embodiment of the present invention. As shown in FIG. 1 , the epitaxial wafer includes a substrate 1 and an N-type GaN layer 2 , a low-temperature N-type GaN layer 3 , a superlattice structure 4 , an active layer 5 and a P-type GaN layer sequentially stacked on the substrate 1 . 6.

超晶格结构4包括交替层叠的铝镓氮子层41、铟镓氮子层42及GaN子层43,其中GaN子层43中掺杂有Si元素。The superlattice structure 4 includes alternately stacked AlGaN sublayers 41 , InGaN sublayers 42 and GaN sublayers 43 , wherein the GaN sublayer 43 is doped with Si element.

在N型GaN层2与有源层5之间依次增加设置低温N型GaN层3与包括交替层叠的铝镓氮子层41、铟镓氮子层42及GaN子层43的超晶格结构4,低温N型GaN层3的设置可使得超晶格结构4与N型GaN层2之间能够良好过渡,保证在N型GaN层3上生长的超晶格结构4的质量,避免超晶格结构4中出现过多缺陷进而影响后续生长的有源层5,而超晶格结构4中交替层叠的铝镓氮子层41、铟镓氮子层42及GaN子层43可起到释放外延层中的应力的作用,提高外延层整体的晶体质量,并且由于铝镓氮子层41、铟镓氮子层42及GaN子层43三者之间的晶格常数差异较大,因此三者之间的界面可对位错进行阻挡,避免位错移动至超晶格结构4之后的有源层5中,保证了有源层5的晶体质量。Between the N-type GaN layer 2 and the active layer 5 , a low-temperature N-type GaN layer 3 and a superlattice structure including alternately stacked AlGaN sublayers 41 , InGaN sublayers 42 and GaN sublayers 43 are sequentially added. 4. The setting of the low-temperature N-type GaN layer 3 can make a good transition between the superlattice structure 4 and the N-type GaN layer 2, ensure the quality of the superlattice structure 4 grown on the N-type GaN layer 3, and avoid supercrystalline Excessive defects in the lattice structure 4 affect the active layer 5 grown subsequently, and the AlGaN sublayers 41 , the InGaN sublayers 42 and the GaN sublayers 43 alternately stacked in the superlattice structure 4 can release The effect of stress in the epitaxial layer improves the overall crystal quality of the epitaxial layer, and because the lattice constants of the AlGaN sublayer 41, the InGaN sublayer 42 and the GaN sublayer 43 are quite different, the three The interface between them can block the dislocations, prevent the dislocations from moving to the active layer 5 behind the superlattice structure 4 , and ensure the crystal quality of the active layer 5 .

并且由于铟镓氮子层42的势垒低于GaN子层43,GaN子层43的势垒低于铝镓氮子层41的势垒,电子可积累在铟镓氮子层42处,配合势垒较高的铝镓氮子层41对电子进行阻挡,可使得电子在进入有源层5之前得到良好的扩展,同时掺杂有Si元素的GaN子层43可作为电子提供源,保证电流扩展的同时增加进入有源层5中的电子的数量,可提高发光二极管的发光效率并提高发光二极管的发光均匀度。And since the potential barrier of the indium gallium nitride sub-layer 42 is lower than that of the GaN sub-layer 43, and the potential barrier of the GaN sub-layer 43 is lower than that of the aluminum gallium nitride sub-layer 41, electrons can be accumulated at the indium gallium nitride sub-layer 42, and cooperate with each other. The aluminum gallium nitride sub-layer 41 with a higher potential barrier blocks electrons, so that the electrons can be well expanded before entering the active layer 5. At the same time, the GaN sub-layer 43 doped with Si element can be used as a source of electrons to ensure the current At the same time of expansion, increasing the number of electrons entering the active layer 5 can improve the luminous efficiency of the light emitting diode and the luminous uniformity of the light emitting diode.

图2是本发明实施例提供的另一种发光二极管外延片的结构示意图,如图2所示,该外延片可包括衬底1及依次层叠在衬底1上的缓冲层7、N型GaN层2、低温N型GaN层3、超晶格结构4、有源层5、低温P型GaN层8、电子阻挡层9、P型GaN层6及P型接触层10。FIG. 2 is a schematic structural diagram of another light-emitting diode epitaxial wafer provided by an embodiment of the present invention. As shown in FIG. 2 , the epitaxial wafer may include a substrate 1 and a buffer layer 7 and N-type GaN sequentially stacked on the substrate 1 . Layer 2 , low temperature N-type GaN layer 3 , superlattice structure 4 , active layer 5 , low temperature P-type GaN layer 8 , electron blocking layer 9 , P-type GaN layer 6 and P-type contact layer 10 .

示例性地,缓冲层7可包括依次层叠的AlN层71与未掺杂GaN层72,AlN层71与未掺杂GaN层72的设置可减小衬底1与外延层整体之间的晶格失配的影响,有利于提高发光二极管的外延片的质量,进而提高发光二极管的发光效率。Exemplarily, the buffer layer 7 may include an AlN layer 71 and an undoped GaN layer 72 stacked in sequence, and the arrangement of the AlN layer 71 and the undoped GaN layer 72 can reduce the lattice between the substrate 1 and the entire epitaxial layer. The influence of mismatch is beneficial to improve the quality of the epitaxial wafer of the light emitting diode, thereby improving the luminous efficiency of the light emitting diode.

其中,AlN缓冲层71的厚度可在15~40nm。未掺杂GaN层72的厚度可为1~5μm。Wherein, the thickness of the AlN buffer layer 71 may be 15-40 nm. The thickness of the undoped GaN layer 72 may be 1˜5 μm.

可选地,N型GaN层2中的掺杂元素可为Si。N型GaN层5的厚度可为1~5μm。其中,Si元素的掺杂浓度可为1×1018~1×1019cm-3,在此条件下得到的N型GaN层2的质量较好,能够保证发光二极管的外延片的质量。Optionally, the doping element in the N-type GaN layer 2 may be Si. The thickness of the N-type GaN layer 5 may be 1˜5 μm. Wherein, the doping concentration of Si element can be 1×10 18 to 1×10 19 cm -3 , and the quality of the N-type GaN layer 2 obtained under this condition is good, and the quality of the epitaxial wafer of the light-emitting diode can be guaranteed.

示例性地,低温N型GaN层3的厚度可为30~80nm。低温N型GaN层的厚度在此范围内时,能够保证在低温N型GaN层上生长的外延薄膜的质量较好,且在低温N型GaN层上生长的超晶格结构释放应力的效果较好。Exemplarily, the thickness of the low temperature N-type GaN layer 3 may be 30˜80 nm. When the thickness of the low-temperature N-type GaN layer is within this range, the quality of the epitaxial thin film grown on the low-temperature N-type GaN layer can be guaranteed, and the superlattice structure grown on the low-temperature N-type GaN layer has a better stress release effect. it is good.

可选地,超晶格结构4中的铝镓氮子层41为AlXGa1-XN层,铟镓氮子层42为InZGa1-ZN层,其中0<X<1,0.1<Z<0.5。AlXGa1-XN层与InZGa1-ZN层中的X与Z分别在以上范围可保证超晶格结构的质量的同时保证超晶格结构有效起到电流扩展的作用,提高发光二极管的发光效率。Optionally, the aluminum gallium nitride sublayer 41 in the superlattice structure 4 is an AlXGa1 - XN layer, and the indium gallium nitride sublayer 42 is an InZGa1 -ZN layer, where 0<X<1, 0.1<Z<0.5. X and Z in the Al X Ga 1-X N layer and the In Z Ga 1-Z N layer are respectively in the above ranges, which can ensure the quality of the superlattice structure and at the same time ensure that the superlattice structure effectively plays the role of current expansion, improving the Luminous efficiency of light-emitting diodes.

进一步地,0.1<X<0.4,0.1<Z<0.3。在此条件下,发光二极管的发光效率能够得到更大的提升。Further, 0.1<X<0.4, and 0.1<Z<0.3. Under this condition, the luminous efficiency of the light-emitting diode can be greatly improved.

优选地,x为0.3,z为0.25时发光二极管的发光效率能够得到有效提升。Preferably, when x is 0.3 and z is 0.25, the luminous efficiency of the light-emitting diode can be effectively improved.

可选地,铝镓氮子层41的厚度、铟镓氮子层42的厚度及GaN子层43的厚度均为5~15nm。铝镓氮子层41的厚度、铟镓氮子层42的厚度及GaN子层43的厚度均在以上范围时,超晶格结构对发光二极管的发光效率的提升较大。Optionally, the thickness of the aluminum gallium nitride sub-layer 41, the thickness of the indium gallium nitride sub-layer 42, and the thickness of the GaN sub-layer 43 are all 5-15 nm. When the thickness of the AlGaN sub-layer 41 , the thickness of the InGaN sub-layer 42 and the thickness of the GaN sub-layer 43 are all within the above ranges, the superlattice structure greatly improves the luminous efficiency of the light emitting diode.

示例性地,铝镓氮子层41的层数、铟镓氮子层42的层数及GaN子层43的层数均为5~20。此时超晶格结构对发光二极管的发光效率的提升较大。Exemplarily, the number of layers of the aluminum gallium nitride sub-layer 41 , the number of layers of the indium gallium nitride sub-layer 42 , and the number of layers of the GaN sub-layer 43 are all 5-20. At this time, the superlattice structure greatly improves the luminous efficiency of the light emitting diode.

可选地,GaN子层43中Si元素的掺杂浓度为1×1017~1×1018cm-3。GaN子层43中Si元素的掺杂浓度为以上范围时,对发光二极管的发光效率的提升较好。Optionally, the doping concentration of Si element in the GaN sublayer 43 is 1×10 17 to 1×10 18 cm −3 . When the doping concentration of Si element in the GaN sub-layer 43 is in the above range, the luminous efficiency of the light emitting diode is better improved.

可选地,有源层5可为多量子阱层,有源层5可包括依次层叠的InGaN阱层51与GaN垒层52。Optionally, the active layer 5 may be a multiple quantum well layer, and the active layer 5 may include an InGaN well layer 51 and a GaN barrier layer 52 stacked in sequence.

其中,InGaN阱层51与GaN垒层52的层数均可为5~11。在此条件下得到的发光二极管的发光效率较好。The number of layers of the InGaN well layer 51 and the GaN barrier layer 52 can both be 5-11. The light-emitting diode obtained under this condition has better luminous efficiency.

示例性地,InGaN阱层51的厚度可为2~3nm,GaN垒层52的厚度可为9~20nm,得到的发光二极管的发光效率较好。Exemplarily, the thickness of the InGaN well layer 51 may be 2-3 nm, and the thickness of the GaN barrier layer 52 may be 9-20 nm, so that the obtained light-emitting diode has better luminous efficiency.

可选地,低温P型GaN层8的厚度可为50~100nm。低温P型GaN层设置在有源层5与电子阻挡层9之间,可起到提供空穴的作用,有利于增大进入有源层5中的空穴数量,提高发光二极管的发光效率。且P型GaN层的厚度为以上范围时,对发光二极管的发光效率的提升较大。Optionally, the thickness of the low temperature P-type GaN layer 8 may be 50˜100 nm. The low temperature P-type GaN layer is disposed between the active layer 5 and the electron blocking layer 9, which can provide holes, which is beneficial to increase the number of holes entering the active layer 5 and improve the luminous efficiency of the light emitting diode. And when the thickness of the P-type GaN layer is in the above range, the luminous efficiency of the light-emitting diode is greatly improved.

可选地,电子阻挡层9可为p型AlyGa1-yN层,其中0.1<y<0.5。电子阻挡层为p型AlyGa1-yN层可有效起到阻挡电子进入P型GaN层的作用,并且可提供部分空穴,提高发光二极管的发光效率。Alternatively, the electron blocking layer 9 may be a p-type AlyGa1 -yN layer, where 0.1<y<0.5. The electron blocking layer is a p-type AlyGa1 -yN layer, which can effectively block electrons from entering the p-type GaN layer, and can provide some holes to improve the luminous efficiency of the light-emitting diode.

p型AlyGa1-yN层的厚度可为20-100nm。The thickness of the p-type AlyGa1 -yN layer may be 20-100 nm.

示例性地,P型GaN层6的厚度可为50-100nm。Exemplarily, the thickness of the P-type GaN layer 6 may be 50-100 nm.

P型接触层10的厚度可为10~50nm。The thickness of the P-type contact layer 10 may be 10˜50 nm.

图3是本发明实施例提供的一种发光二极管外延片的制备方法流程图,如图3所示,该制备方法包括:FIG. 3 is a flowchart of a method for preparing a light-emitting diode epitaxial wafer provided by an embodiment of the present invention. As shown in FIG. 3 , the preparation method includes:

S101:提供一衬底。S101: Provide a substrate.

S102:在衬底上生长N型GaN层。S102: growing an N-type GaN layer on the substrate.

S103:在N型GaN层上生长低温N型GaN层。S103 : growing a low-temperature N-type GaN layer on the N-type GaN layer.

S104:在低温N型GaN层上生长超晶格结构。S104: growing a superlattice structure on the low temperature N-type GaN layer.

其中,超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素,低温N型GaN层的生长温度为800~900℃。The superlattice structure includes alternately stacked AlGaN sublayers, InGaN sublayers and GaN sublayers, wherein the GaN sublayers are doped with Si elements, and the growth temperature of the low-temperature N-type GaN layer is 800-900° C. .

S105:在超晶格结构上生长有源层。S105: growing an active layer on the superlattice structure.

S106:在有源层上生长P型GaN层。S106: A P-type GaN layer is grown on the active layer.

执行完步骤S106之后的外延片结构可见图1。The structure of the epitaxial wafer after step S106 is performed can be seen in FIG. 1 .

在N型GaN层与有源层之间依次增加设置低温N型GaN层与包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层的超晶格结构,低温N型GaN层的设置可实现超晶格结构与N型GaN层之间的良好过渡,保证在N型GaN层上生长的超晶格结构的质量,避免超晶格结构中出现过多缺陷进而影响后续生长的有源层,而超晶格结构中交替层叠的铝镓氮子层、铟镓氮子层及GaN子层可起到释放外延层中的应力的作用,提高外延层整体的晶体质量,并且由于铝镓氮子层、铟镓氮子层及GaN子层三者之间的晶格常数差异较大,因此三者之间的界面可对位错进行阻挡,避免位错移动至超晶格结构之后的有源层中,保证了有源层的晶体质量。Between the N-type GaN layer and the active layer, a low-temperature N-type GaN layer and a superlattice structure including alternately stacked AlGaN sub-layers, InGaN sub-layers and GaN sub-layers are sequentially added, and the low-temperature N-type GaN layer The setting can achieve a good transition between the superlattice structure and the N-type GaN layer, ensure the quality of the superlattice structure grown on the N-type GaN layer, and avoid excessive defects in the superlattice structure and affect the subsequent growth. The active layer, and the alternately stacked AlGaN sublayers, InGaN sublayers and GaN sublayers in the superlattice structure can release the stress in the epitaxial layer and improve the overall crystal quality of the epitaxial layer. The lattice constants of the AlGaN sublayer, the InGaN sublayer and the GaN sublayer are quite different, so the interface between the three can block dislocations and prevent them from moving to the superlattice structure In the subsequent active layer, the crystal quality of the active layer is guaranteed.

并且由于铟镓氮子层的势垒低于GaN子层,GaN子层的势垒低于铝镓氮子层的势垒,电子可积累在铟镓氮子层处,配合势垒较高的铝镓氮子层对电子进行阻挡,可使得电子在进入有源层之前得到良好的扩展,同时掺杂有Si元素的GaN子层可作为电子提供源,保证电流扩展的同时增加进入有源层中的电子的数量,可提高发光二极管的发光效率并提高发光二极管的发光均匀度。And because the potential barrier of the indium gallium nitride sublayer is lower than that of the GaN sublayer, and the potential barrier of the GaN sublayer is lower than that of the aluminum gallium nitride sublayer, electrons can be accumulated at the indium gallium nitride sublayer, which can be combined with the higher potential barrier. The aluminum gallium nitride sublayer blocks electrons, which can make the electrons expand well before entering the active layer. At the same time, the GaN sublayer doped with Si element can be used as a source of electrons to ensure the current expansion and increase the entry into the active layer. The number of electrons in the light-emitting diode can improve the luminous efficiency of the light-emitting diode and improve the light-emitting uniformity of the light-emitting diode.

图4是本发明实施例提供的另一种发光二极管外延片的制备方法流程图,如图4所示,该制备方法包括:FIG. 4 is a flowchart of another method for preparing a light-emitting diode epitaxial wafer provided by an embodiment of the present invention. As shown in FIG. 4 , the preparation method includes:

S201:提供一衬底。S201: Provide a substrate.

其中,衬底可为蓝宝石衬底。Wherein, the substrate can be a sapphire substrate.

S202:在衬底上生长缓冲层。S202: growing a buffer layer on the substrate.

可选地,缓冲层可包括在衬底上依次生长的AlN层与未掺杂GaN层。Alternatively, the buffer layer may include an AlN layer and an undoped GaN layer sequentially grown on the substrate.

AlN层可采用磁控溅射的方法在衬底的表面沉积,得到的AlN层的质量较好。The AlN layer can be deposited on the surface of the substrate by the method of magnetron sputtering, and the quality of the obtained AlN layer is good.

示例性地,AlN层的沉积温度可为400~800℃,AlN层沉积时的溅射功率可为3000~5000W,AlN层沉积时的压力可为4~6torr。在以上条件下得到的AlN层的质量较好,有利于保证外延片的整体质量。Exemplarily, the deposition temperature of the AlN layer may be 400-800° C., the sputtering power during the deposition of the AlN layer may be 3000-5000 W, and the pressure during the deposition of the AlN layer may be 4-6 torr. The quality of the AlN layer obtained under the above conditions is good, which is beneficial to ensure the overall quality of the epitaxial wafer.

可选地,未掺杂GaN层的生长温度可为1000~1100℃,未掺杂GaN层的生长压力可为100~500Torr,在此条件下生长得到的未掺杂GaN层的质量较好。Optionally, the growth temperature of the undoped GaN layer may be 1000˜1100° C., and the growth pressure of the undoped GaN layer may be 100˜500 Torr, and the quality of the undoped GaN layer grown under these conditions is good.

未掺杂GaN层的生长厚度可为1~5μm。The growth thickness of the undoped GaN layer may be 1˜5 μm.

S203:在缓冲层上生长N型GaN层。S203 : growing an N-type GaN layer on the buffer layer.

其中,N型GaN层的生长厚度可为1~5μm。Wherein, the growth thickness of the N-type GaN layer may be 1-5 μm.

N型GaN层的生长温度可为1000~1200℃,N型GaN层的生长压力可为100~500Torr。The growth temperature of the N-type GaN layer may be 1000˜1200° C., and the growth pressure of the N-type GaN layer may be 100˜500 Torr.

S204:在N型GaN层上生长低温N型GaN层。S204 : growing a low-temperature N-type GaN layer on the N-type GaN layer.

其中,低温N型GaN层的生长厚度可为30~80nm。低温N型GaN层的生长温度可为800~900℃,在此条件下生长得到的低温N型GaN层能够较为有效地提高发光二极管的整体质量,有利于保证发光二极管的发光效率。Wherein, the growth thickness of the low-temperature N-type GaN layer may be 30-80 nm. The growth temperature of the low-temperature N-type GaN layer can be 800-900° C., and the low-temperature N-type GaN layer grown under this condition can effectively improve the overall quality of the light-emitting diode, and is conducive to ensuring the luminous efficiency of the light-emitting diode.

其中,低温N型GaN层的生长厚度为50nm时,可较好地提升发光二极管的发光效率。Wherein, when the growth thickness of the low-temperature N-type GaN layer is 50 nm, the luminous efficiency of the light-emitting diode can be better improved.

可选地,低温N型GaN层的生长压力为100~300Torr,在此条件下生长得到的低温N型GaN层能够较为有效地提高发光二极管的整体质量,有利于保证发光二极管的发光效率。Optionally, the growth pressure of the low-temperature N-type GaN layer is 100-300 Torr, and the low-temperature N-type GaN layer grown under this condition can effectively improve the overall quality of the light-emitting diode, which is beneficial to ensure the light-emitting efficiency of the light-emitting diode.

S205:在低温N型GaN层上生长超晶格结构。S205 : growing a superlattice structure on the low-temperature N-type GaN layer.

其中,超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素。The superlattice structure includes alternately stacked AlGaN sublayers, InGaN sublayers and GaN sublayers, wherein the GaN sublayers are doped with Si elements.

其中,超晶格结构的生长温度为800~900℃。在此条件下生长得到的超晶格结构的质量较好,能够有效提高发光二极管的发光效率。Among them, the growth temperature of the superlattice structure is 800-900°C. The quality of the superlattice structure grown under this condition is good, and the luminous efficiency of the light-emitting diode can be effectively improved.

示例性地,超晶格结构的生长压力为50~300Torr。在此条件下生长得到的超晶格结构的质量较好,能够有效提高发光二极管的发光效率。Exemplarily, the growth pressure of the superlattice structure is 50-300 Torr. The quality of the superlattice structure grown under this condition is good, and the luminous efficiency of the light-emitting diode can be effectively improved.

可选地,铝镓氮子层的生长厚度、铟镓氮子层的生长厚度及GaN子层的生长厚度均可为5~15nm。Optionally, the growth thickness of the aluminum gallium nitride sublayer, the growth thickness of the indium gallium nitride sublayer, and the growth thickness of the GaN sublayer can all be 5-15 nm.

S206:在超晶格结构上生长有源层。S206: growing an active layer on the superlattice structure.

有源层可包括依次层叠的InGaN阱层与GaN垒层。The active layer may include an InGaN well layer and a GaN barrier layer stacked in sequence.

示例性地,InGaN阱层的生长厚度可为2~3nm,GaN垒层的生长厚度可为9~20nm,得到的发光二极管的发光效率较好。Exemplarily, the growth thickness of the InGaN well layer may be 2-3 nm, and the growth thickness of the GaN barrier layer may be 9-20 nm, and the obtained light-emitting diode has better luminous efficiency.

可选地,InGaN阱层的生长温度可为720~830℃,GaN垒层的生长温度可为850~960℃,在此条件下生长得到的有源层的质量较好,能够保证发光二极管的发光效率。Optionally, the growth temperature of the InGaN well layer may be 720-830°C, and the growth temperature of the GaN barrier layer may be 850-960°C. Luminous efficiency.

进一步地,InGaN阱层的生长压力与GaN垒层的生长压力均可为100~500Torr,在此条件下生长得到的有源层的质量较好,能够保证发光二极管的发光效率。Further, the growth pressure of the InGaN well layer and the growth pressure of the GaN barrier layer can both be 100-500 Torr, and the quality of the active layer grown under this condition is good, and the luminous efficiency of the light-emitting diode can be guaranteed.

S207:在有源层上生长低温P型GaN层。S207 : growing a low temperature P-type GaN layer on the active layer.

可选地,低温P型GaN层的生长厚度可为50~100nm。Optionally, the growth thickness of the low temperature P-type GaN layer may be 50-100 nm.

低温P型GaN层的生长温度可为600~800℃,低温P型GaN层的生长压力可为200~500Torr。在此条件下生长得到的低温P型GaN层的质量较好,有利于提高发光二极管的发光效率。The growth temperature of the low-temperature P-type GaN layer may be 600˜800° C., and the growth pressure of the low-temperature P-type GaN layer may be 200˜500 Torr. The quality of the low-temperature P-type GaN layer grown under this condition is good, which is beneficial to improve the luminous efficiency of the light-emitting diode.

S208:在低温P型GaN层上生长电子阻挡层。S208: growing an electron blocking layer on the low temperature P-type GaN layer.

p型AlyGa1-yN层的生长厚度可为20~100nm。The growth thickness of the p-type AlyGa1 -yN layer may be 20-100 nm.

p型AlyGa1-yN层的生长温度可为700~1000℃,p型AlyGa1-yN层的生长压力可为100~500Torr。在此条件下生长得到的p型AlyGa1-yN层的质量较好,有利于提高发光二极管的发光效率。The growth temperature of the p-type AlyGa1 - yN layer may be 700˜1000° C., and the growth pressure of the p-type AlyGa1 -yN layer may be 100˜500 Torr. The quality of the p-type AlyGa1 -yN layer grown under this condition is good, which is beneficial to improve the luminous efficiency of the light-emitting diode.

S209:在电子阻挡层生长P型GaN层。S209: Grow a P-type GaN layer on the electron blocking layer.

示例性地,P型GaN层的生长厚度可为50~100nm。Exemplarily, the growth thickness of the P-type GaN layer may be 50˜100 nm.

可选地,P型GaN层的生长压力可为200~600Torr,P型GaN层的生长温度可为900~1000℃。Optionally, the growth pressure of the P-type GaN layer may be 200-600 Torr, and the growth temperature of the P-type GaN layer may be 900-1000°C.

S210:在P型GaN层上生长P型接触层。S210: growing a P-type contact layer on the P-type GaN layer.

其中,P型接触层的生长厚度可为10~50nm。Wherein, the growth thickness of the P-type contact layer may be 10-50 nm.

示例性地,P型接触层的生长温度可为850~1000℃,P型接触层的生长压力可为100~300torr。Exemplarily, the growth temperature of the P-type contact layer may be 850˜1000° C., and the growth pressure of the P-type contact layer may be 100˜300 torr.

执行完步骤S210之后的外延片结构可见图2。The structure of the epitaxial wafer after step S210 is performed can be seen in FIG. 2 .

需要说明的是,在本发明实施例中,除AlN层之外的其他结构均采用MOCVD(化学气相沉积)方法生长得到。在上述结构的生长过程中,以三甲基(或三乙基)镓作为镓源,高纯NH3作为氮源,三甲基铟作为铟源,三甲基铝作为铝源,n型掺杂选用硅烷,p型掺杂选用二茂镁。It should be noted that, in the embodiments of the present invention, other structures except the AlN layer are grown by MOCVD (chemical vapor deposition) method. In the growth process of the above structure, trimethyl (or triethyl) gallium is used as gallium source, high-purity NH3 is used as nitrogen source, trimethylindium is used as indium source, trimethylaluminum is used as aluminum source, and n-type doping Silane is used for hybrid, and magnesium locene is used for p-type doping.

上述方法还可包括,在上述外延结构生长结束后,将MOCVD(化学气相沉积)工艺腔内温度降低,在氮气气氛中对外延片进行退火处理,退火温度区间为650~850℃,退火处理5~15分钟,将至室温,结束外延生长。退火可进一步去除外延片中的缺陷,有利于提高发光二极管的发光效率。The above method may further include, after the growth of the above-mentioned epitaxial structure is completed, lowering the temperature in the MOCVD (chemical vapor deposition) process chamber, and performing annealing treatment on the epitaxial wafer in a nitrogen atmosphere, the annealing temperature range is 650-850 ° C, and the annealing treatment is 5 ~15 minutes, approaching room temperature, ending epitaxial growth. Annealing can further remove defects in the epitaxial wafer, which is beneficial to improve the luminous efficiency of the light emitting diode.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (8)

1.一种发光二极管外延片,其特征在于,所述外延片包括衬底及依次层叠在所述衬底上的N型GaN层、低温N型GaN层、超晶格结构、有源层及P型GaN层,所述低温N型GaN层在800~900℃的温度下生长得到,1. A light-emitting diode epitaxial wafer, wherein the epitaxial wafer comprises a substrate and an N-type GaN layer, a low-temperature N-type GaN layer, a superlattice structure, an active layer and P-type GaN layer, the low-temperature N-type GaN layer is grown at a temperature of 800-900°C, 所述超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素,所述铝镓氮子层为AlXGa1-XN层,所述铟镓氮子层为InZGa1-ZN层,其中0.1<X<0.4,0.1<Z<0.3。The superlattice structure includes alternately stacked AlGaN sub-layers, InGaN sub-layers and GaN sub-layers, wherein the GaN sub-layer is doped with Si element, and the Al-GaN sub-layer is Al X Ga 1- X N layer, the indium gallium nitride sublayer is an In Z Ga 1-Z N layer, wherein 0.1< X <0.4, 0.1< Z <0.3. 2.根据权利要求1所述的外延片,其特征在于,所述铝镓氮子层的厚度、所述铟镓氮子层的厚度及所述GaN子层的厚度均为5~15nm。2 . The epitaxial wafer according to claim 1 , wherein the thickness of the aluminum gallium nitride sublayer, the thickness of the indium gallium nitride sublayer, and the thickness of the GaN sublayer are all 5-15 nm. 3 . 3.根据权利要求1所述的外延片,其特征在于,所述铝镓氮子层的层数、所述铟镓氮子层的层数及所述GaN子层的层数均为5~20。3 . The epitaxial wafer according to claim 1 , wherein the number of the aluminum gallium nitride sublayers, the number of the indium gallium nitride sublayers, and the number of the GaN sublayers are all 5˜5. 4 . 20. 4.根据权利要求1所述的外延片,其特征在于,所述GaN子层中Si元素的掺杂浓度为1×1017~1×1018cm-34 . The epitaxial wafer according to claim 1 , wherein the doping concentration of Si element in the GaN sublayer is 1×10 17 to 1×10 18 cm −3 . 5 . 5.根据权利要求1所述的外延片,其特征在于,所述低温N型GaN层的厚度为30~80nm。5 . The epitaxial wafer according to claim 1 , wherein the thickness of the low-temperature N-type GaN layer is 30-80 nm. 6 . 6.一种发光二极管外延片的制备方法,其特征在于,所述制备方法包括:6. A preparation method of a light-emitting diode epitaxial wafer, wherein the preparation method comprises: 提供一衬底;providing a substrate; 在所述衬底上生长N型GaN层;growing an N-type GaN layer on the substrate; 在所述N型GaN层上生长低温N型GaN层,所述低温N型GaN层的生长温度为800~900℃;growing a low-temperature N-type GaN layer on the N-type GaN layer, and the growth temperature of the low-temperature N-type GaN layer is 800-900° C.; 在所述低温N型GaN层上生长超晶格结构;growing a superlattice structure on the low temperature N-type GaN layer; 在所述超晶格结构上生长有源层;growing an active layer on the superlattice structure; 在所述有源层上生长P型GaN层,growing a p-type GaN layer on the active layer, 其中,所述超晶格结构包括交替层叠的铝镓氮子层、铟镓氮子层及GaN子层,其中GaN子层中掺杂有Si元素,所述铝镓氮子层为AlXGa1-XN层,所述铟镓氮子层为InZGa1-ZN层,其中0.1<X<0.4,0.1<Z<0.3。The superlattice structure includes AlGaN sublayers, InGaN sublayers and GaN sublayers stacked alternately, wherein the GaN sublayer is doped with Si element, and the AlGaN sublayer is AlXGa A 1-X N layer, the indium gallium nitride sublayer is an In Z Ga 1-Z N layer, wherein 0.1< X <0.4 and 0.1< Z <0.3. 7.根据权利要求6所述的制备方法,其特征在于,所述超晶格结构的生长温度为800~900℃。7 . The preparation method according to claim 6 , wherein the growth temperature of the superlattice structure is 800-900° C. 8 . 8.根据权利要求6所述的制备方法,其特征在于,所述超晶格结构的生长压力为50~300Torr。8 . The preparation method according to claim 6 , wherein the growth pressure of the superlattice structure is 50-300 Torr. 9 .
CN201811205142.6A 2018-10-16 2018-10-16 Light emitting diode epitaxial wafer and preparation method thereof Active CN109638114B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811205142.6A CN109638114B (en) 2018-10-16 2018-10-16 Light emitting diode epitaxial wafer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811205142.6A CN109638114B (en) 2018-10-16 2018-10-16 Light emitting diode epitaxial wafer and preparation method thereof

Publications (2)

Publication Number Publication Date
CN109638114A CN109638114A (en) 2019-04-16
CN109638114B true CN109638114B (en) 2020-10-09

Family

ID=66066404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811205142.6A Active CN109638114B (en) 2018-10-16 2018-10-16 Light emitting diode epitaxial wafer and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109638114B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265514B (en) * 2019-04-28 2020-09-29 华灿光电(苏州)有限公司 Growth method of light-emitting diode epitaxial wafer and light-emitting diode epitaxial wafer
CN112951955B (en) * 2021-01-26 2023-03-14 华灿光电(浙江)有限公司 Ultraviolet light-emitting diode epitaxial wafer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309071A (en) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd GaN SEMICONDUCTOR CRYSTAL BASE MATERIAL
CN108598233A (en) * 2018-04-18 2018-09-28 湘能华磊光电股份有限公司 A kind of LED outer layer growths method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013170016A1 (en) * 2012-05-09 2013-11-14 The Regents Of The University Of California Light-emitting diodes with low temperature dependence
CN103178173A (en) * 2013-03-13 2013-06-26 扬州中科半导体照明有限公司 MQW (multi-quantum well) structure of high-brightness GaN-base green-light LED (light-emitting diode)
CN105428482B (en) * 2015-12-30 2018-09-11 厦门市三安光电科技有限公司 A kind of LED epitaxial structure and production method
CN106601882B (en) * 2016-11-21 2019-02-12 华灿光电(浙江)有限公司 Epitaxial wafer of light emitting diode and manufacturing method thereof
CN106611808B (en) * 2016-12-07 2019-03-01 华灿光电(浙江)有限公司 Growth method of light-emitting diode epitaxial wafer
CN106887494B (en) * 2017-02-21 2019-03-08 华灿光电(浙江)有限公司 Epitaxial wafer of light emitting diode and manufacturing method thereof
CN107331745B (en) * 2017-05-31 2019-05-14 华灿光电(浙江)有限公司 Epitaxial wafer of light emitting diode and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309071A (en) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd GaN SEMICONDUCTOR CRYSTAL BASE MATERIAL
CN108598233A (en) * 2018-04-18 2018-09-28 湘能华磊光电股份有限公司 A kind of LED outer layer growths method

Also Published As

Publication number Publication date
CN109638114A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN106098882B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN108336203B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and its manufacturing method
CN108346725B (en) GaN-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN108336198B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN110718612A (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN109671813B (en) GaN-based light emitting diode epitaxial wafer and preparation method thereof
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN108649109A (en) A kind of LED epitaxial slice and its manufacturing method
CN109256444B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN108447952B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN118522833B (en) LED epitaxial wafer, preparation method thereof and LED
CN108831974B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN103824912A (en) Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED)
CN109786521B (en) Epitaxial wafer of light emitting diode and preparation method
CN114883460A (en) Light emitting diode epitaxial wafer and preparation method thereof
CN109244199B (en) Preparation method of epitaxial wafer of light emitting diode and epitaxial wafer
CN109560171B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN108807620B (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN117810324A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN109671816B (en) Epitaxial wafer of light-emitting diode and preparation method thereof
CN109346568A (en) A kind of light-emitting diode epitaxial wafer and preparation method thereof
CN109638114B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN111883623A (en) Near-ultraviolet light-emitting diode epitaxial wafer and preparation method thereof
CN109103312B (en) Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof
CN108281519B (en) A light-emitting diode epitaxial wafer and its manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee after: BOE Huacan Optoelectronics (Suzhou) Co.,Ltd.

Country or region after: China

Address before: 215600 CHENFENG highway, Zhangjiagang Economic Development Zone, Suzhou City, Jiangsu Province

Patentee before: HC SEMITEK (SUZHOU) Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address