[go: up one dir, main page]

CN109037206A - A kind of power device protection chip and preparation method thereof - Google Patents

A kind of power device protection chip and preparation method thereof Download PDF

Info

Publication number
CN109037206A
CN109037206A CN201810817024.4A CN201810817024A CN109037206A CN 109037206 A CN109037206 A CN 109037206A CN 201810817024 A CN201810817024 A CN 201810817024A CN 109037206 A CN109037206 A CN 109037206A
Authority
CN
China
Prior art keywords
layer
buried layer
injection region
epitaxial layer
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810817024.4A
Other languages
Chinese (zh)
Other versions
CN109037206B (en
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Huaan Semiconductor Co ltd
Original Assignee
Shenzhen Fulai Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Fulai Technology Co Ltd filed Critical Shenzhen Fulai Technology Co Ltd
Priority to CN201810817024.4A priority Critical patent/CN109037206B/en
Publication of CN109037206A publication Critical patent/CN109037206A/en
Application granted granted Critical
Publication of CN109037206B publication Critical patent/CN109037206B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • H10D89/611Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using diodes as protective elements

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种功率器件保护芯片及其制作方法,包括:第一导电类型的衬底;第二导电类型的第一外延层;第一导电类型的第一埋层和第二导电类型的第二埋层,形成于所述第一外延层内;第一导电类型的第二外延层;第一导电类型的第一注入区和第二导电类型的第二注入区,形成于所述第二外延层上表面,且所述第一注入区与所述第二注入区相连接;多晶硅层,贯穿所述第二外延层并分别与所述第一注入区和所述第一埋层连接;介质层,形成于所述第二外延层的上表面;第一电极,包括贯穿所述介质层并延伸至所述第二注入区的第一部分和形成于所述介质层表面的第二部分;第二电极,形成于所述衬底的下表面。本发明可提高器件性能降低器件成本。

The invention provides a power device protection chip and a manufacturing method thereof, comprising: a substrate of the first conductivity type; a first epitaxial layer of the second conductivity type; a first buried layer of the first conductivity type and a substrate of the second conductivity type The second buried layer is formed in the first epitaxial layer; the second epitaxial layer of the first conductivity type; the first injection region of the first conductivity type and the second injection region of the second conductivity type are formed in the first conductivity type The upper surface of two epitaxial layers, and the first implantation region is connected to the second implantation region; the polysilicon layer penetrates the second epitaxial layer and is respectively connected to the first implantation region and the first buried layer a dielectric layer formed on the upper surface of the second epitaxial layer; a first electrode comprising a first part penetrating through the dielectric layer and extending to the second injection region and a second part formed on the surface of the dielectric layer ; The second electrode is formed on the lower surface of the substrate. The invention can improve device performance and reduce device cost.

Description

一种功率器件保护芯片及其制作方法A power device protection chip and its manufacturing method

技术领域technical field

本发明涉及半导体技术领域,具体涉及一种功率器件保护芯片及其制作方法。The invention relates to the technical field of semiconductors, in particular to a power device protection chip and a manufacturing method thereof.

背景技术Background technique

功率器件保护芯片是一种用来保护敏感半导体器件,使其免遭瞬态电压浪涌破坏而特别设计的固态半导体器件,它具有箝位系数小、体积小、响应快、漏电流小和可靠性高等优点,因而在电压瞬变和浪涌防护上得到了广泛的应用。低电容功率器件保护芯片适用于高频电路的保护器件,因为它可以减少寄生电容对电路的干扰,降低高频电路信号的衰减。The power device protection chip is a solid-state semiconductor device specially designed to protect sensitive semiconductor devices from transient voltage surge damage. It has small clamping coefficient, small size, fast response, small leakage current and reliable High performance, so it has been widely used in voltage transient and surge protection. The low-capacitance power device protection chip is suitable for high-frequency circuit protection devices, because it can reduce the interference of parasitic capacitance on the circuit and reduce the attenuation of high-frequency circuit signals.

静电放电以及其他一些电压浪涌形式随机出现的瞬态电压,通常存在于各种电子器件中。随着半导体器件日益趋向小型化、高密度和多功能,电子器件越来越容易受到电压浪涌的影响,甚至导致致命的伤害。从静电放电到闪电等各种电压浪涌都能诱导瞬态电流尖峰功率器件保护芯片通常用来保护敏感电路受到浪涌的冲击。基于不同的应用,功率器件保护芯片可以通过改变浪涌放电通路和自身的箝位电压来起到电路保护作用。Electrostatic discharge, as well as other random voltage transients in the form of voltage surges, are commonly found in a variety of electronic devices. As semiconductor devices are increasingly miniaturized, high-density, and multi-functional, electronic devices are increasingly vulnerable to voltage surges, which can even cause fatal injuries. Voltage surges ranging from electrostatic discharge to lightning can induce transient current spikes. Power device protection chips are often used to protect sensitive circuits from surges. Based on different applications, the power device protection chip can protect the circuit by changing the surge discharge path and its own clamping voltage.

目前常用的功率器件保护芯片,如果要进行双向保护则需将多个功率器件保护芯片串联或并联在一起,增大了器件面积和制造成本。Currently commonly used power device protection chips, if bidirectional protection is required, multiple power device protection chips need to be connected in series or in parallel, which increases the device area and manufacturing cost.

发明内容Contents of the invention

本发明正是基于上述问题,提出了一种功率器件保护芯片及其制作方法,在提高功率器件保护芯片性能的同时降低功率器件保护芯片的制造成本。Based on the above problems, the present invention proposes a power device protection chip and a manufacturing method thereof, which reduces the manufacturing cost of the power device protection chip while improving the performance of the power device protection chip.

有鉴于此,本发明实施例一方面提出了一种功率器件保护芯片,该功率器件保护芯片包括:In view of this, an embodiment of the present invention provides a power device protection chip on the one hand, and the power device protection chip includes:

第一导电类型的衬底;a substrate of the first conductivity type;

第二导电类型的第一外延层,生长于所述衬底上表面;a first epitaxial layer of a second conductivity type grown on the upper surface of the substrate;

第一导电类型的第一埋层和第二导电类型的第二埋层,形成于所述第一外延层内,且所述第一埋层和第二埋层的至少部分表面裸露于所述第一外延层上表面,所述第二埋层的掺杂浓度高于所述第一外延层的掺杂浓度;The first buried layer of the first conductivity type and the second buried layer of the second conductivity type are formed in the first epitaxial layer, and at least part of the surfaces of the first buried layer and the second buried layer are exposed on the On the upper surface of the first epitaxial layer, the doping concentration of the second buried layer is higher than that of the first epitaxial layer;

第一导电类型的第二外延层,形成于所述第一外延层上表面,并且所述第一埋层的掺杂浓度高于所述第二外延层的掺杂浓度;A second epitaxial layer of the first conductivity type is formed on the upper surface of the first epitaxial layer, and the doping concentration of the first buried layer is higher than that of the second epitaxial layer;

第一导电类型的第一注入区和第二导电类型的第二注入区,形成于所述第二外延层上表面,且所述第一注入区与所述第二注入区相连接,所述第一注入区的掺杂浓度高于所述第二外延层的掺杂浓度;A first injection region of the first conductivity type and a second injection region of the second conductivity type are formed on the upper surface of the second epitaxial layer, and the first injection region is connected to the second injection region, the The doping concentration of the first implanted region is higher than the doping concentration of the second epitaxial layer;

多晶硅层,贯穿所述第二外延层并分别与所述第一注入区和所述第一埋层连接;a polysilicon layer penetrating through the second epitaxial layer and connected to the first implanted region and the first buried layer respectively;

介质层,形成于所述第二外延层的上表面;a dielectric layer formed on the upper surface of the second epitaxial layer;

第一电极,包括贯穿所述介质层并延伸至所述第二注入区的第一部分和形成于所述介质层表面的第二部分;a first electrode, comprising a first portion penetrating through the dielectric layer and extending to the second injection region and a second portion formed on the surface of the dielectric layer;

第二电极,形成于所述衬底的下表面并与所述衬底连接。The second electrode is formed on the lower surface of the substrate and connected to the substrate.

进一步地,所述第一注入区的掺杂浓度高于所述第一埋层的掺杂浓度。Further, the doping concentration of the first implanted region is higher than that of the first buried layer.

进一步地,所述第二埋层的掺杂浓度高于所述第二注入区的掺杂浓度。Further, the doping concentration of the second buried layer is higher than the doping concentration of the second implanted region.

进一步地,所述第二埋层与所述第二注入区相对设置。Further, the second buried layer is disposed opposite to the second implantation region.

进一步地,所述第一埋层包括分别设置于所述第二埋层两侧的第一子埋层和第二子埋层,所述第一注入区包括分别设置于所述第二注入区两侧的第一子注入区和第二子注入区,所述多晶硅层包括与所述第一子埋层和所述第一子注入区连接的第一多晶硅层,以及与所述第二子埋层和所述第二子注入区连接的第二多晶硅层。Further, the first buried layer includes a first sub-buried layer and a second sub-buried layer respectively arranged on both sides of the second buried layer, and the first implanted region includes The first sub-implantation region and the second sub-implantation region on both sides, the polysilicon layer includes a first polysilicon layer connected to the first sub-buried layer and the first sub-implantation region, and a first polysilicon layer connected to the first sub-implantation region. The second polysilicon layer connected to the second sub-buried layer and the second sub-implantation region.

本发明实施例另一方面提供一种功率器件保护芯片的制作方法,该方法包括:Another aspect of the embodiment of the present invention provides a method for manufacturing a power device protection chip, the method comprising:

在第一导电类型的衬底上表面生长第二导电类型的第一外延层;growing a first epitaxial layer of a second conductivity type on the surface of a substrate of the first conductivity type;

在所述第一外延层内形成第一导电类型的第一埋层和第二导电类型的第二埋层,且所述第一埋层和第二埋层的至少部分表面裸露于所述第一外延层上表面,所述第二埋层的掺杂浓度高于所述第一外延层的掺杂浓度;A first buried layer of the first conductivity type and a second buried layer of the second conductivity type are formed in the first epitaxial layer, and at least part of the surfaces of the first buried layer and the second buried layer are exposed on the first buried layer. On the upper surface of an epitaxial layer, the doping concentration of the second buried layer is higher than that of the first epitaxial layer;

在所述第一外延层上表面形成第一导电类型的第二外延层,并且所述第一埋层的掺杂浓度高于所述第二外延层的掺杂浓度;A second epitaxial layer of the first conductivity type is formed on the upper surface of the first epitaxial layer, and the doping concentration of the first buried layer is higher than that of the second epitaxial layer;

形成贯穿所述第二外延层并延伸至所述第一埋层的第一沟槽,以及形成位于所述第一沟槽上侧并与所述第一沟槽联通的第二沟槽;forming a first trench penetrating through the second epitaxial layer and extending to the first buried layer, and forming a second trench located on the upper side of the first trench and communicating with the first trench;

在所述第二外延层上表面形成第一导电类型的第一注入区和第二导电类型的第二注入区,且将所述第一注入区连接所述第一注入区,所述第一注入区的掺杂浓度高于所述第二外延层的掺杂浓度;A first injection region of the first conductivity type and a second injection region of the second conductivity type are formed on the upper surface of the second epitaxial layer, and the first injection region is connected to the first injection region, and the first injection region is connected to the first injection region. The doping concentration of the implanted region is higher than the doping concentration of the second epitaxial layer;

在所述第一沟槽和所述第二沟槽内形成所述第一埋层连接的多晶硅层,并将所述多晶硅层与所述第一注入区相连接;forming a polysilicon layer connected to the first buried layer in the first trench and the second trench, and connecting the polysilicon layer to the first implantation region;

在所述第二外延层的上表面形成介质层;forming a dielectric layer on the upper surface of the second epitaxial layer;

形成第一电极,所述第一电极包括贯穿所述介质层并延伸至所述第二注入区的第一部分和形成于所述介质层表面的第二部分;forming a first electrode, the first electrode comprising a first portion penetrating through the dielectric layer and extending to the second injection region and a second portion formed on the surface of the dielectric layer;

在所述衬底的下表面形成与所述衬底连接的第二电极。A second electrode connected to the substrate is formed on the lower surface of the substrate.

进一步地,所述第一注入区的掺杂浓度高于所述第一埋层的掺杂浓度。Further, the doping concentration of the first implanted region is higher than that of the first buried layer.

进一步地,所述第二埋层的掺杂浓度高于所述第二注入区的掺杂浓度。Further, the doping concentration of the second buried layer is higher than the doping concentration of the second implanted region.

进一步地,将所述第二埋层与所述第二注入区相对设置。Further, the second buried layer is arranged opposite to the second injection region.

进一步地,所述第一埋层包括分别设置于所述第二埋层两侧的第一子埋层和第二子埋层,所述第一注入区包括分别设置于所述第二注入区两侧的第一子注入区和第二子注入区,所述多晶硅层包括与所述第一子埋层和所述第一子注入区连接的第一多晶硅层,以及与所述第二子埋层和所述第二子注入区连接的第二多晶硅层。Further, the first buried layer includes a first sub-buried layer and a second sub-buried layer respectively arranged on both sides of the second buried layer, and the first implanted region includes The first sub-implantation region and the second sub-implantation region on both sides, the polysilicon layer includes a first polysilicon layer connected to the first sub-buried layer and the first sub-implantation region, and a first polysilicon layer connected to the first sub-implantation region. The second polysilicon layer connected to the second sub-buried layer and the second sub-implantation region.

本发明实施例的技术方案通过在第一导电类型的衬底上表面生长第二导电类型的第一外延层;在所述第一外延层内形成第一导电类型的第一埋层和第二导电类型的第二埋层,且所述第一埋层和第二埋层的至少部分表面裸露于所述第一外延层上表面,所述第二埋层的掺杂浓度高于所述第一外延层的掺杂浓度;在所述第一外延层上表面形成第一导电类型的第二外延层,并且所述第一埋层的掺杂浓度高于所述第二外延层的掺杂浓度;形成贯穿所述第二外延层并延伸至所述第一埋层的第一沟槽,以及形成位于所述第一沟槽上侧并与所述第一沟槽联通的第二沟槽;在所述第二外延层上表面形成第一导电类型的第一注入区和第二导电类型的第二注入区,且将所述第一注入区连接所述第一注入区,所述第一注入区的掺杂浓度高于所述第二外延层的掺杂浓度;在所述第一沟槽和所述第二沟槽内形成所述第一埋层连接的多晶硅层,并将所述多晶硅层与所述第一注入区相连接;在所述第二外延层的上表面形成介质层;形成第一电极,所述第一电极包括贯穿所述介质层并延伸至所述第二注入区的第一部分和形成于所述介质层表面的第二部分;在所述衬底的下表面形成与所述衬底连接的第二电极。本发明的技术方案降低了器件制作工艺难度,大大减小了寄生电容,使得器件的保护特性和可靠性都得到了提升。The technical solution of the embodiment of the present invention grows the first epitaxial layer of the second conductivity type on the surface of the substrate of the first conductivity type; forms the first buried layer of the first conductivity type and the second epitaxial layer in the first epitaxial layer a second buried layer of conductivity type, and at least part of the surfaces of the first buried layer and the second buried layer are exposed on the upper surface of the first epitaxial layer, and the doping concentration of the second buried layer is higher than that of the first buried layer The doping concentration of an epitaxial layer; a second epitaxial layer of the first conductivity type is formed on the upper surface of the first epitaxial layer, and the doping concentration of the first buried layer is higher than that of the second epitaxial layer Concentration; forming a first trench penetrating through the second epitaxial layer and extending to the first buried layer, and forming a second trench located on the upper side of the first trench and communicating with the first trench ; forming a first injection region of the first conductivity type and a second injection region of the second conductivity type on the upper surface of the second epitaxial layer, and connecting the first injection region to the first injection region, the first injection region The doping concentration of an implanted region is higher than the doping concentration of the second epitaxial layer; a polysilicon layer connected to the first buried layer is formed in the first trench and the second trench, and the The polysilicon layer is connected to the first injection region; a dielectric layer is formed on the upper surface of the second epitaxial layer; a first electrode is formed, and the first electrode includes penetrating through the dielectric layer and extending to the second epitaxial layer. The first part of the injection region and the second part formed on the surface of the dielectric layer; the second electrode connected to the substrate is formed on the lower surface of the substrate. The technical scheme of the invention reduces the difficulty of the device manufacturing process, greatly reduces the parasitic capacitance, and improves the protection characteristics and reliability of the device.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following briefly introduces the drawings that need to be used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present invention. Those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative efforts.

图1是本发明的一个实施例提供的功率器件保护芯片的制作方法的流程示意图;1 is a schematic flow diagram of a method for manufacturing a power device protection chip provided by an embodiment of the present invention;

图2是本发明的一个实施例提供的功率器件保护芯片的结构示意图;Fig. 2 is a schematic structural diagram of a power device protection chip provided by an embodiment of the present invention;

图3至图10是本发明的一个实施例提供的功率器件保护芯片的制作方法步骤的结构示意图;3 to 10 are structural schematic diagrams of steps in a method for manufacturing a power device protection chip provided by an embodiment of the present invention;

图11是本发明的一个实施例提供的功率器件保护芯片结构的等效电路图;Fig. 11 is an equivalent circuit diagram of a power device protection chip structure provided by an embodiment of the present invention;

图中:1、衬底;2、第一外延层;3、第一埋层;4、第二埋层;5、第二外延层;6、第一沟槽;7、第一注入区;8、第二注入区;9、第二沟槽;10、多晶硅层;11、介质层;12、第一电极;121、第一部分;122、第二部分;13、第二电极;a1、第一二极管;b1、第二二极管;c1、第三二极管;a2、第四二极管;b2、第五二极管;c2、第六二极管。In the figure: 1. substrate; 2. first epitaxial layer; 3. first buried layer; 4. second buried layer; 5. second epitaxial layer; 6. first trench; 7. first implantation region; 8. The second injection region; 9. The second trench; 10. The polysilicon layer; 11. The dielectric layer; 12. The first electrode; 121. The first part; 122. The second part; 13. The second electrode; a1, the first electrode A diode; b1, the second diode; c1, the third diode; a2, the fourth diode; b2, the fifth diode; c2, the sixth diode.

具体实施方式Detailed ways

以下将参阅附图更详细地描述本发明。在各个附图中,相同的元件使用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。The invention will be described in more detail below with reference to the accompanying drawings. In the various figures, the same elements are indicated with similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. Also, some well-known parts may not be shown. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure.

应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。It should be understood that when describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may mean being directly on another layer or another region, or Other layers or regions are also included between it and another layer or another region. And, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, another region.

如果为了描述直接位于另一层、另一个区域上面的情形,本文将使用“A直接在B上面”或“A在B上面并与之邻接”的表述方法。在本申请中,“A直接位于B中”表示A位于B中,并且A与B直接邻接,而非A位于B中形成的掺杂区中。If the purpose is to describe the situation directly on another layer or another area, the expression "A is directly above B" or "A is above and adjacent to B" will be used herein. In the present application, "A is located directly in B" means that A is located in B, and A is directly adjacent to B, rather than A being located in a doped region formed in B.

在本申请中,术语“半导体结构”指在制造半导体器件的各个步骤中形成的整个半导体结构的统称,包括已经形成的所有层或区域。In the present application, the term "semiconductor structure" refers to a general designation of the entire semiconductor structure formed in various steps of manufacturing a semiconductor device, including all layers or regions that have been formed.

在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理方法和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。In the following, many specific details of the present invention, such as device structures, materials, dimensions, processing methods and techniques, are described for a clearer understanding of the present invention. However, the invention may be practiced without these specific details, as will be understood by those skilled in the art.

下面参阅附图,对一种功率器件保护芯片的制作方法加以详细阐述。Referring to the accompanying drawings, a method for manufacturing a power device protection chip will be described in detail below.

以下结合图1至图10对本发明实施例提供的一种功率器件保护芯片及其制作方法进行详细说明。A power device protection chip provided by an embodiment of the present invention and a manufacturing method thereof will be described in detail below with reference to FIGS. 1 to 10 .

本发明实施例提供一种功率器件保护芯片的制作方法,如图1和图2所示,该功率器件保护芯片的制作方法包括:An embodiment of the present invention provides a method for manufacturing a power device protection chip. As shown in FIG. 1 and FIG. 2 , the method for manufacturing the power device protection chip includes:

步骤S1:在第一导电类型的衬底1上表面生长第二导电类型的第一外延层2;Step S1: growing the first epitaxial layer 2 of the second conductivity type on the surface of the substrate 1 of the first conductivity type;

步骤S2:在所述第一外延层2内形成第一导电类型的第一埋层3和第二导电类型的第二埋层4,且所述第一埋层3和第二埋层4的至少部分表面裸露于所述第一外延层2上表面,所述第二埋层4的掺杂浓度高于所述第一外延层2的掺杂浓度;Step S2: forming a first buried layer 3 of the first conductivity type and a second buried layer 4 of the second conductivity type in the first epitaxial layer 2, and the first buried layer 3 and the second buried layer 4 At least part of the surface is exposed on the upper surface of the first epitaxial layer 2, and the doping concentration of the second buried layer 4 is higher than that of the first epitaxial layer 2;

步骤S3:在所述第一外延层2上表面形成第一导电类型的第二外延层5,并且所述第一埋层3的掺杂浓度高于所述第二外延层5的掺杂浓度;Step S3: forming a second epitaxial layer 5 of the first conductivity type on the upper surface of the first epitaxial layer 2, and the doping concentration of the first buried layer 3 is higher than that of the second epitaxial layer 5 ;

步骤S4:形成贯穿所述第二外延层5并延伸至所述第一埋层3的第一沟槽6,以及形成位于所述第一沟槽6上侧并与所述第一沟槽6联通的第二沟槽9;Step S4: forming a first trench 6 penetrating through the second epitaxial layer 5 and extending to the first buried layer 3 , and forming a trench located on the upper side of the first trench 6 and connected to the first trench 6 . Unicom's second groove 9;

步骤S5:在所述第二外延层5上表面形成第一导电类型的第一注入区7和第二导电类型的第二注入区8,且将所述第一注入区7连接所述第一注入区7,所述第一注入区7的掺杂浓度高于所述第二外延层5的掺杂浓度;Step S5: forming a first implantation region 7 of the first conductivity type and a second implantation region 8 of the second conductivity type on the upper surface of the second epitaxial layer 5, and connecting the first implantation region 7 to the first Implantation region 7, the doping concentration of the first implantation region 7 is higher than the doping concentration of the second epitaxial layer 5;

步骤S6:在所述第一沟槽6和所述第二沟槽9内形成所述第一埋层3连接的多晶硅层10,并将所述多晶硅层10与所述第一注入区7相连接;Step S6: forming a polysilicon layer 10 connected to the first buried layer 3 in the first trench 6 and the second trench 9, and combining the polysilicon layer 10 with the first implanted region 7 connect;

步骤S7:在所述第二外延层5的上表面形成介质层11;Step S7: forming a dielectric layer 11 on the upper surface of the second epitaxial layer 5;

步骤S8:形成第一电极12,所述第一电极12包括贯穿所述介质层11并延伸至所述第二注入区8的第一部分121和形成于所述介质层11表面的第二部分122;在所述衬底1的下表面形成与所述衬底1连接的第二电极13。Step S8: forming the first electrode 12, the first electrode 12 includes a first portion 121 penetrating through the dielectric layer 11 and extending to the second injection region 8 and a second portion 122 formed on the surface of the dielectric layer 11 ; Forming a second electrode 13 connected to the substrate 1 on the lower surface of the substrate 1 .

具体地,所述第一导电类型为P型掺杂和N型掺杂中的一种,所述第二导电类型为P型掺杂与N型掺杂中的另一种。Specifically, the first conductivity type is one of P-type doping and N-type doping, and the second conductivity type is the other of P-type doping and N-type doping.

为方便描述,特在此说明:所述第一导电类型可以为N型掺杂,从而所述第二导电类型为P型掺杂;所述第一导电类型还可以为P型掺杂,从而所述第二导电类型为N型掺杂。可以理解的是,当所述第一导电类型为P型掺杂,所述第二导电类型为N型掺杂时,所述衬底1、所述第一埋层3、所述第二外延层5和所述第一注入区7均为P型掺杂,所述第一外延层2、所述第二埋层4和所述第二注入区8均为N型外延层。当所述第一导电类型为N型掺杂,所述第二导电类型为P型掺杂时,所述衬底1、所述第一埋层3、所述第二外延层5和所述第一注入区7均为N型掺杂,所述第一外延层2、所述第二埋层4和所述第二注入区8均为P型外延层。在接下来的实施例中,均以所述第一导电类型为P型掺杂,所述第二导电类型为N型掺杂为例进行描述,但并不对此进行限定。For the convenience of description, it is hereby explained that the first conductivity type can be N-type doped, so that the second conductivity type can be P-type doped; the first conductivity type can also be P-type doped, so that The second conductivity type is N-type doping. It can be understood that when the first conductivity type is P-type doped and the second conductivity type is N-type doped, the substrate 1, the first buried layer 3, the second epitaxial Both the layer 5 and the first implantation region 7 are P-type doped, and the first epitaxial layer 2 , the second buried layer 4 and the second implantation region 8 are all N-type epitaxial layers. When the first conductivity type is N-type doped and the second conductivity type is P-type doped, the substrate 1, the first buried layer 3, the second epitaxial layer 5 and the The first implanted region 7 is all N-type doped, and the first epitaxial layer 2 , the second buried layer 4 and the second implanted region 8 are all P-type epitaxial layers. In the following embodiments, the first conductivity type is P-type doping and the second conductivity type is N-type doping as an example for description, but this is not limited thereto.

具体地,P型衬底和P型外延都属于P型半导体,N型衬底和N型外延都属于N型半导体。所述P型半导体为掺杂三价元素的硅片,例如硼元素或铟元素或铝元素或三者的任意组合。所述N型半导体为掺杂五价元素的硅片,例如磷元素或砷元素或两者的任意组合。Specifically, both the P-type substrate and the P-type epitaxy belong to the P-type semiconductor, and the N-type substrate and the N-type epitaxy both belong to the N-type semiconductor. The P-type semiconductor is a silicon wafer doped with a trivalent element, such as boron element, indium element, aluminum element or any combination of the three. The N-type semiconductor is a silicon wafer doped with pentavalent elements, such as phosphorus or arsenic or any combination thereof.

请参阅附图3,执行步骤S1,具体为:在第一导电类型的衬底1上表面生长第二导电类型的第一外延层2。其中,在第一导电类型的衬底1上表面生长第二导电类型的第一外延层2的方式不限于固定的一种方式,可以在所述衬底1上表面使用外延生长形成,还可以通过离子注入和/或扩散的方法在所述衬底1上表面形成所述第一外延层2。进一步地,可以在所述衬底1上表面使用外延生长形成,还可以通过离子注入和/或扩散磷元素或砷元素或两者的任意组合的方法在所述衬底1上表面形成所述第一外延层2。具体地,所述外延或扩散的方法包括沉积工艺。在本发明的一些实施例中,可以使用沉积工艺在所述衬底1上表面形成所述第一外延层2,例如,沉积工艺可以是选自电子束蒸发、化学气相沉积、原子层沉积、溅射中的一种。优选的,在所述衬底1上使用化学气相沉积形成第一外延层2,化学气相沉积包括气相外延工艺。在生产中,化学气相沉积大多使用气相外延工艺,在所述衬底1上表面使用气相外延工艺形成第一外延层2,气相外延工艺可以提高硅材料的完美性,提高器件的集成度,达到提高少子寿命,减少储存单元的漏电流。优选的,所述第一外延层2和所述衬底1同为硅材料制成,使得所述衬底1和所述第一外延层2有相同晶体结构的硅表面,从而保持对杂质类型和浓度的控制。另外,所述第一外延层2在优化PN结的击穿电压的同时降低了串联电阻,在适中的电流强度下提高了器件速度。Referring to FIG. 3 , step S1 is executed, specifically: growing a first epitaxial layer 2 of a second conductivity type on the surface of a substrate 1 of a first conductivity type. Wherein, the method of growing the first epitaxial layer 2 of the second conductivity type on the upper surface of the substrate 1 of the first conductivity type is not limited to a fixed method, it can be formed by epitaxial growth on the upper surface of the substrate 1, or The first epitaxial layer 2 is formed on the upper surface of the substrate 1 by means of ion implantation and/or diffusion. Further, the upper surface of the substrate 1 can be formed by epitaxial growth, and the upper surface of the substrate 1 can also be formed by ion implantation and/or diffusion of phosphorus or arsenic or any combination of the two. The first epitaxial layer 2 . Specifically, the method of epitaxy or diffusion includes a deposition process. In some embodiments of the present invention, the first epitaxial layer 2 can be formed on the upper surface of the substrate 1 using a deposition process, for example, the deposition process can be selected from electron beam evaporation, chemical vapor deposition, atomic layer deposition, One of a kind in sputtering. Preferably, the first epitaxial layer 2 is formed on the substrate 1 by chemical vapor deposition, and the chemical vapor deposition includes a vapor phase epitaxy process. In production, chemical vapor deposition mostly uses a vapor phase epitaxy process, and a vapor phase epitaxy process is used to form the first epitaxial layer 2 on the upper surface of the substrate 1. The vapor phase epitaxy process can improve the perfection of silicon materials, improve the integration of devices, and achieve Improve the minority carrier lifetime and reduce the leakage current of the storage unit. Preferably, the first epitaxial layer 2 and the substrate 1 are both made of silicon material, so that the substrate 1 and the first epitaxial layer 2 have silicon surfaces with the same crystal structure, thereby maintaining the resistance to impurity types and concentration control. In addition, the first epitaxial layer 2 reduces the series resistance while optimizing the breakdown voltage of the PN junction, and improves the device speed under moderate current intensity.

请参阅附图4,执行步骤S2,具体为:在所述第一外延层2内形成第一导电类型的第一埋层3和第二导电类型的第二埋层4,且所述第一埋层3和第二埋层4的至少部分表面裸露于所述第一外延层2上表面,所述第二埋层4的掺杂浓度高于所述第一外延层2的掺杂浓度。所述第一埋层3和所述第二埋层4可以通过外延生长形成,还可以通过离子注入和/或扩散的方法形成。进一步地,所述第一埋层3可以通过外延生长形成,还可以通过离子注入和/或扩散磷元素或砷元素或两者的任意组合的方法形成。同理,所述第二埋层4可以通过外延生长形成,还可以通过离子注入和/或扩散硼元素或铟元素或铝元素或三者的任意组合的方法形成。优选的,可以使用离子注入的方法形成所述第一埋层3和所述第二埋层4,通过离子注入形成所述第一埋层3和所述第二埋层4能精确控制杂质的总剂量、深度分布和面均匀性,可防止原来杂质的再扩散等,同时可实现自对准技术,以减小电容效应。在本发明的一些实施例中,所述第一埋层3和所述第二埋层4的至少部分表面裸露于所述第一外延层2的上表面,即所述第一埋层3和所述第二埋层4的上表面裸露于所述第一外延层2。Please refer to FIG. 4, step S2 is performed, specifically: forming a first buried layer 3 of the first conductivity type and a second buried layer 4 of the second conductivity type in the first epitaxial layer 2, and the first At least part of the surfaces of the buried layer 3 and the second buried layer 4 are exposed on the upper surface of the first epitaxial layer 2 , and the doping concentration of the second buried layer 4 is higher than that of the first epitaxial layer 2 . The first buried layer 3 and the second buried layer 4 can be formed by epitaxial growth, and can also be formed by ion implantation and/or diffusion. Further, the first buried layer 3 may be formed by epitaxial growth, or by ion implantation and/or diffusion of phosphorus element or arsenic element or any combination thereof. Similarly, the second buried layer 4 can be formed by epitaxial growth, and can also be formed by ion implantation and/or diffusion of boron element or indium element or aluminum element or any combination of the three. Preferably, the first buried layer 3 and the second buried layer 4 can be formed by ion implantation, and the formation of the first buried layer 3 and the second buried layer 4 by ion implantation can precisely control the concentration of impurities The total dose, depth distribution and surface uniformity can prevent the re-diffusion of original impurities, etc. At the same time, self-alignment technology can be realized to reduce the capacitance effect. In some embodiments of the present invention, at least part of the surfaces of the first buried layer 3 and the second buried layer 4 are exposed on the upper surface of the first epitaxial layer 2, that is, the first buried layer 3 and the The upper surface of the second buried layer 4 is exposed to the first epitaxial layer 2 .

请参阅附图5,执行步骤S3,具体为:在所述第一外延层2上表面形成第一导电类型的第二外延层5,并且所述第一埋层3的掺杂浓度高于所述第二外延层5的掺杂浓度。其中,在所述第一外延层2上表面形成第一导电类型的第二外延层5的方式不限于固定的一种方式,可以使用外延、扩散和/或注入的方法形成所述第二外延层5,具体地,所述外延或扩散的方法包括沉积工艺。进一步地,可以使用外延、扩散和/或注入磷元素或砷元素或两者的任意组合的方法形成所述第二外延层5。在本发明的一些实施例中,使用沉积工艺在所述第一外延层2上表面形成第二外延层5,例如,沉积工艺可以是选自电子束蒸发、化学气相沉积、原子层沉积、溅射中的一种。其中,化学气相沉积包括气相外延工艺,优选的,在所述第一外延层2上表面使用气相外延工艺形成第二外延层5,气相外延工艺可以提高硅材料的完美性,提高器件的集成度,达到提高少子寿命,减少储存单元的漏电流。所述第二外延层5将所述第一外延层2的上表面覆盖,并设有一定的厚度。Please refer to FIG. 5, step S3 is performed, specifically: forming a second epitaxial layer 5 of the first conductivity type on the upper surface of the first epitaxial layer 2, and the doping concentration of the first buried layer 3 is higher than the specified The doping concentration of the second epitaxial layer 5 is described above. Wherein, the method of forming the second epitaxial layer 5 of the first conductivity type on the upper surface of the first epitaxial layer 2 is not limited to a fixed method, and the second epitaxial layer 5 can be formed by means of epitaxy, diffusion and/or implantation. Layer 5, specifically, the method of epitaxy or diffusion includes a deposition process. Further, the second epitaxial layer 5 may be formed by means of epitaxy, diffusion and/or implantation of phosphorus or arsenic or any combination thereof. In some embodiments of the present invention, a deposition process is used to form the second epitaxial layer 5 on the upper surface of the first epitaxial layer 2, for example, the deposition process may be selected from electron beam evaporation, chemical vapor deposition, atomic layer deposition, sputtering One of a kind. Wherein, the chemical vapor deposition includes a vapor phase epitaxy process. Preferably, a vapor phase epitaxy process is used to form the second epitaxial layer 5 on the upper surface of the first epitaxial layer 2. The vapor phase epitaxy process can improve the perfection of the silicon material and improve the integration of the device. , to improve the minority carrier lifetime and reduce the leakage current of the storage unit. The second epitaxial layer 5 covers the upper surface of the first epitaxial layer 2 and has a certain thickness.

进一步地,所述第一埋层3的掺杂浓度与所述第二外延层5的掺杂浓度不同。优选的,所述第一埋层3的掺杂浓度高于所述第二外延层5的掺杂浓度,且所述第一埋层3为重掺杂,使得所述第一埋层3的电阻率低于所述第二外延层5的电阻率,电流会沿着电阻率低的埋层到所述第一外延层2下侧,而不会外溢到所述第二外延层5中,形成并联的支路。Further, the doping concentration of the first buried layer 3 is different from that of the second epitaxial layer 5 . Preferably, the doping concentration of the first buried layer 3 is higher than the doping concentration of the second epitaxial layer 5, and the first buried layer 3 is heavily doped, so that the first buried layer 3 The resistivity is lower than the resistivity of the second epitaxial layer 5, and the current will go to the lower side of the first epitaxial layer 2 along the buried layer with low resistivity, without overflowing into the second epitaxial layer 5, form parallel branches.

请参阅附图6和图8,执行步骤S4,具体为:形成贯穿所述第二外延层5并延伸至所述第一埋层3的第一沟槽6,以及形成位于所述第一沟槽6上侧并与所述第一沟槽6联通的第二沟槽9。在本发明的一些实施例中,在所述第二外延层5的上表面制备掩膜材料,所述掩膜材料具体为第一光刻胶,在所述第一光刻胶层上通过刻蚀形成贯穿所述第二外延层5延伸至所述第一埋层3的第一沟槽6,再去除所述第一光刻胶。其中,刻蚀的方法包括干法刻蚀和湿法刻蚀,优选的,使用的刻蚀的方法为干法刻蚀,干法刻蚀包括光挥发、气相腐蚀、等离子体腐蚀等,且干法刻蚀易实现自动化、处理过程未引入污染、清洁度高。在本发明的一些实施例中,所述第一沟槽6的底面与所述第一埋层3相连接,例如,所述第一沟槽6的底面可以延伸到所述第一埋层3中,所述第一沟槽6的底面还可以与所述第一埋层3的上表面连接,保证所述第一沟槽6的底面与所述第一埋层3接触。进一步地,在所述第一沟槽6上侧形成与所述第一沟槽6同轴的第二沟槽9,并且所述第二沟槽9的内径大于所述第一沟槽6的内径。所述第二沟槽9位于所述第二外延层5内,并且所述第二沟槽9的一侧与所述第一注入区7相连接。需要说明的是,所述第一沟槽6与所述第二沟槽9相互连通,用于更迅速有效地在所述第一沟槽6和所述第二沟槽9内填充材料。关于所述第一沟槽6和所述第二沟槽9的形状,本领域技术人员可以根据器件的电学性能选择不同形状的沟槽,所述第一沟槽6和所述第二沟槽9的形状可以为矩形沟槽,也可以方形沟槽,还可以为U型沟槽,甚至可以为球底沟槽,等等。Referring to accompanying drawings 6 and 8, step S4 is performed, specifically: forming a first trench 6 penetrating through the second epitaxial layer 5 and extending to the first buried layer 3, and forming a trench 6 located in the first trench. The second groove 9 on the upper side of the groove 6 and communicating with the first groove 6 . In some embodiments of the present invention, a mask material is prepared on the upper surface of the second epitaxial layer 5, and the mask material is specifically a first photoresist, on the first photoresist layer by etching Etching forms a first trench 6 extending through the second epitaxial layer 5 to the first buried layer 3, and then removing the first photoresist. Wherein, the etching method includes dry etching and wet etching, preferably, the etching method used is dry etching, and dry etching includes light volatilization, vapor phase etching, plasma etching, etc., and dry etching Etching is easy to realize automation, no pollution is introduced in the processing process, and the cleanliness is high. In some embodiments of the present invention, the bottom surface of the first trench 6 is connected to the first buried layer 3 , for example, the bottom surface of the first trench 6 may extend to the first buried layer 3 Among them, the bottom surface of the first trench 6 may also be connected to the upper surface of the first buried layer 3 , so as to ensure that the bottom surface of the first trench 6 is in contact with the first buried layer 3 . Further, a second groove 9 coaxial with the first groove 6 is formed on the upper side of the first groove 6, and the inner diameter of the second groove 9 is larger than that of the first groove 6. the inside diameter of. The second trench 9 is located in the second epitaxial layer 5 , and one side of the second trench 9 is connected to the first injection region 7 . It should be noted that, the first groove 6 and the second groove 9 communicate with each other, so as to fill the first groove 6 and the second groove 9 with material more quickly and effectively. Regarding the shapes of the first trench 6 and the second trench 9, those skilled in the art can select trenches of different shapes according to the electrical performance of the device, the first trench 6 and the second trench The shape of 9 can be a rectangular groove, a square groove, a U-shaped groove, or even a spherical bottom groove, etc.

请参阅附图7,执行步骤S5,具体地,在所述第二外延层5上表面形成第一导电类型的第一注入区7和第二导电类型的第二注入区8,且将所述第一注入区7连接所述第一注入区7,所述第一注入区7的掺杂浓度高于所述第二外延层5的掺杂浓度。在本发明的一些实施例中,在所述第二外延层5的上表面制备掩膜材料,所述掩膜材料具体为第二光刻胶,在所述第二光刻胶层上通过光刻的方法分别在所述第二外延层5内形成第一导电类型的第一注入区7和第二导电类型的第二注入区8,其中,所述第一注入区7与所述第二注入区8相邻且部分连接。在所述第二光刻胶层的上表面使用离子注入和/或扩散的方法形成第一导电类型的第一注入区7和第二导电类型的第二注入区8,再去除掉所述第二光刻胶层。进一步地,在所述第二光刻胶层的上表面使用离子注入和/或扩散硼元素或铟元素或铝元素或三者的任意组合的方法形成第一导电类型的第一注入区7;同时还在所述第二光刻胶层的上表面使用离子注入和/或扩散磷元素或砷元素或两者的任意组合的方法形成第二导电类型的第二注入区8,最后再去除掉所述第二光刻胶层。Referring to FIG. 7, step S5 is performed, specifically, a first implantation region 7 of the first conductivity type and a second implantation region 8 of the second conductivity type are formed on the upper surface of the second epitaxial layer 5, and the The first injection region 7 is connected to the first injection region 7 , and the doping concentration of the first injection region 7 is higher than the doping concentration of the second epitaxial layer 5 . In some embodiments of the present invention, a mask material is prepared on the upper surface of the second epitaxial layer 5, and the mask material is specifically a second photoresist, and light passes through the second photoresist layer. The etching method respectively forms a first implantation region 7 of the first conductivity type and a second implantation region 8 of the second conductivity type in the second epitaxial layer 5, wherein the first implantation region 7 and the second The injection regions 8 are adjacent and partially connected. The first implantation region 7 of the first conductivity type and the second implantation region 8 of the second conductivity type are formed on the upper surface of the second photoresist layer by ion implantation and/or diffusion, and then the first implantation region 8 is removed. Two photoresist layers. Further, the first implantation region 7 of the first conductivity type is formed on the upper surface of the second photoresist layer by means of ion implantation and/or diffusion of boron element or indium element or aluminum element or any combination of the three; At the same time, the second implantation region 8 of the second conductivity type is formed on the upper surface of the second photoresist layer by ion implantation and/or diffusion of phosphorus element or arsenic element or any combination of the two, and finally removed the second photoresist layer.

进一步地,所述第二埋层4与所述第二注入区8相对设置。优选的,将所述第二埋层4设置于所述第一注入区7的正下方,并将所述第二注入区8设置于所述第一注入区7的中间,以形成电流依次从所述第二注入区8、所述第一注入区7、所述第二外延层5以及所述第二埋层4的导电通路。所述第一注入区7的掺杂浓度与所述第二外延层5的掺杂浓度不同。优选的,所述第一注入区7的掺杂浓度高于所述第二外延层5的掺杂浓度,电流通过时,掺杂浓度高的所述第一注入区7先于所述第二外延层5导通,从而形成所述电流通过所述第二注入区8和所述第一注入区7,形成PN结。Further, the second buried layer 4 is disposed opposite to the second implantation region 8 . Preferably, the second buried layer 4 is disposed directly below the first implanted region 7, and the second implanted region 8 is disposed in the middle of the first implanted region 7, so as to form current from Conductive paths of the second injection region 8 , the first injection region 7 , the second epitaxial layer 5 and the second buried layer 4 . The doping concentration of the first injection region 7 is different from that of the second epitaxial layer 5 . Preferably, the doping concentration of the first implanted region 7 is higher than that of the second epitaxial layer 5, and when the current passes, the first implanted region 7 with high doping concentration precedes the second epitaxial layer 5. The epitaxial layer 5 is turned on so that the current passes through the second injection region 8 and the first injection region 7 to form a PN junction.

进一步地,所述第一注入区7的掺杂浓度与所述第一埋层3的掺杂浓度不同。优选的,所述第一注入区7的掺杂浓度高于所述第一埋层3的掺杂浓度,以便于调整所述功率器件保护芯片的击穿电压。Further, the doping concentration of the first implanted region 7 is different from that of the first buried layer 3 . Preferably, the doping concentration of the first injection region 7 is higher than that of the first buried layer 3, so as to adjust the breakdown voltage of the power device protection chip.

进一步地,所述第二注入区8的掺杂浓度与所述第二埋层4的掺杂浓度不同。优选的,所述第二埋层4的掺杂浓度高于所述第二注入区8的掺杂浓度,以便于调整所述功率器件保护芯片的击穿电压。Further, the doping concentration of the second implantation region 8 is different from that of the second buried layer 4 . Preferably, the doping concentration of the second buried layer 4 is higher than the doping concentration of the second injection region 8, so as to adjust the breakdown voltage of the power device protection chip.

请参阅附图9,执行步骤S6,具体地:在所述第一沟槽6和所述第二沟槽9内形成所述第一埋层3连接的多晶硅层10,并将所述多晶硅层10与所述第一注入区7相连接。由于所述第一沟槽6与所述第二沟槽9联通,在所述第一沟槽6和所述第二沟槽9内通过外延、扩散和/或注入的方法形成所述多晶硅层10,优选的,所述多晶硅层10中的多晶硅具体为掺杂多晶硅,掺杂多晶硅降低了大电流下开启电压,还可以通过调节多晶硅掺杂浓度,能达到提高击穿电压的效果。在所述第一沟槽6和所述第二沟槽9内填充多晶硅,使得所述多晶硅层10形成分别与所述第一埋层3和所述第一注入区7电连接的导电通道。进一步地,所述多晶硅层10是通过本征多晶硅掺杂磷离子或硼离子形成的,本领域技术人员可以根据器件的结构选择不同的掺杂多晶硅类型,所述多晶硅层10中的多晶硅可以是P型多晶硅,也可以是N型多晶硅。具体地,所述外延、扩散和/或注入的方法包括沉积工艺。在本发明的一些实施例中,可以使用沉积工艺在所述衬底1上表面形成所述第一外延层2,例如,沉积工艺可以是选自电子束蒸发、化学气相沉积、原子层沉积、溅射中的一种。优选的,在所述衬底1上使用低压力化学气相沉积(简称LPCVD,即Low Pressure Chemical Vapor Deposition)形成所述多晶硅层10,形成的所述多晶硅层10的纯度高,均匀性好。Please refer to accompanying drawing 9, perform step S6, specifically: form the polysilicon layer 10 connected with the first buried layer 3 in the first trench 6 and the second trench 9, and place the polysilicon layer 10 is connected with the first injection region 7 . Since the first trench 6 communicates with the second trench 9, the polysilicon layer is formed in the first trench 6 and the second trench 9 by means of epitaxy, diffusion and/or implantation 10. Preferably, the polysilicon in the polysilicon layer 10 is specifically doped polysilicon. Doping polysilicon reduces the turn-on voltage under high current, and the effect of increasing the breakdown voltage can also be achieved by adjusting the doping concentration of polysilicon. Polysilicon is filled in the first trench 6 and the second trench 9 , so that the polysilicon layer 10 forms conductive channels electrically connected to the first buried layer 3 and the first implanted region 7 respectively. Further, the polysilicon layer 10 is formed by doping the intrinsic polysilicon with phosphorus ions or boron ions. Those skilled in the art can select different types of doped polysilicon according to the structure of the device. The polysilicon in the polysilicon layer 10 can be P-type polysilicon can also be N-type polysilicon. Specifically, the method of epitaxy, diffusion and/or implantation includes a deposition process. In some embodiments of the present invention, the first epitaxial layer 2 can be formed on the upper surface of the substrate 1 using a deposition process, for example, the deposition process can be selected from electron beam evaporation, chemical vapor deposition, atomic layer deposition, One of a kind in sputtering. Preferably, the polysilicon layer 10 is formed on the substrate 1 by Low Pressure Chemical Vapor Deposition (LPCVD for short), and the formed polysilicon layer 10 has high purity and good uniformity.

请参阅附图9,执行步骤S7,具体地:在所述第二外延层5的上表面形成介质层11。在所述第二外延层5的上表面形成介质层11。所述介质层11的材料为氧化硅或氮化硅或氮氧化硅,具体可以通过采用溅射或热氧化法或化学气相沉积工艺形成所述介质层11。优选的,所述介质层11为热氧化形成的氧化硅层,在后续的掺杂步骤中,所述氧化硅层作为保护层,并且将作为最终器件的层间绝缘层。另外,所述介质层11设有一定的厚度,使得所述介质层11起到隔离电流和绝缘的作用。Referring to FIG. 9 , step S7 is executed, specifically: forming a dielectric layer 11 on the upper surface of the second epitaxial layer 5 . A dielectric layer 11 is formed on the upper surface of the second epitaxial layer 5 . The material of the dielectric layer 11 is silicon oxide, silicon nitride or silicon oxynitride, specifically, the dielectric layer 11 can be formed by sputtering, thermal oxidation or chemical vapor deposition. Preferably, the dielectric layer 11 is a silicon oxide layer formed by thermal oxidation, and in the subsequent doping step, the silicon oxide layer serves as a protective layer and will serve as an interlayer insulating layer of the final device. In addition, the dielectric layer 11 is provided with a certain thickness, so that the dielectric layer 11 plays the role of isolating current and insulating.

进一步地,所述多晶硅层10的一端贯穿所述第二外延层5并延伸至所述第一埋层3,另一端分别与所述第一注入区7和所述介质层11连接。需要说明的是,所述多晶硅层10先在所述第一沟槽6内形成,再在所述第二沟槽9内形成,并且所述多晶硅层10的上表面高于所述第二外延层5的上表面,使得所述多晶硅层10不仅与所述第一注入区7连接,还与所述介质层11连接。Further, one end of the polysilicon layer 10 penetrates the second epitaxial layer 5 and extends to the first buried layer 3 , and the other end is respectively connected to the first implantation region 7 and the dielectric layer 11 . It should be noted that the polysilicon layer 10 is first formed in the first trench 6, and then formed in the second trench 9, and the upper surface of the polysilicon layer 10 is higher than the second epitaxial The upper surface of the layer 5, so that the polysilicon layer 10 is not only connected to the first implantation region 7, but also connected to the dielectric layer 11.

请参阅附图10,执行步骤S8,具体为:形成第一电极12,所述第一电极12包括贯穿所述介质层11并延伸至所述第二注入区8的第一部分121和形成于所述介质层11表面的第二部分122;在所述衬底1的下表面形成与所述衬底1连接的第二电极13。首先,通过刻蚀形成贯穿所述介质层11并延伸至所述第二注入区8的第一接触孔(图未示)。优选的,通过干法刻蚀形成所述第一接触孔,干法刻蚀包括光挥发、气相腐蚀、等离子体腐蚀等,且干法刻蚀易实现自动化、处理过程未引入污染、清洁度高。向所述第一接触孔内填充金属材料,形成第一部分121,并在所述介质层11上表面覆盖金属材料,以形成所述第二部分122。所述第一部分121和所述第二部分122形成相互连通的第一金属层,即第一电极12。所述第一电极12通过所述第一部分121与所述第二注入区8电连接,使得电路流向所述第二注入区8与所述第一注入区7形成的通路,以形成PN结。另外,将所述衬底1下表面进行金属化,形成第二金属层,从而形成与所述衬底1电连接的第二电极13。所述电流通过所述衬底1沿着所述第二电极13流向外部电路。Please refer to FIG. 10 , step S8 is performed, specifically: forming a first electrode 12, the first electrode 12 includes a first portion 121 penetrating through the dielectric layer 11 and extending to the second injection region 8 and formed in the The second part 122 on the surface of the dielectric layer 11; the second electrode 13 connected to the substrate 1 is formed on the lower surface of the substrate 1 . Firstly, a first contact hole (not shown) penetrating through the dielectric layer 11 and extending to the second implantation region 8 is formed by etching. Preferably, the first contact hole is formed by dry etching, and dry etching includes light volatilization, vapor phase etching, plasma etching, etc., and dry etching is easy to realize automation, no pollution is introduced in the process, and the cleanliness is high . Filling the first contact hole with a metal material to form a first portion 121 , and covering the upper surface of the dielectric layer 11 with a metal material to form the second portion 122 . The first portion 121 and the second portion 122 form a first metal layer connected to each other, that is, the first electrode 12 . The first electrode 12 is electrically connected to the second injection region 8 through the first portion 121 , so that a circuit flows to the path formed by the second injection region 8 and the first injection region 7 to form a PN junction. In addition, the lower surface of the substrate 1 is metallized to form a second metal layer, thereby forming a second electrode 13 electrically connected to the substrate 1 . The current flows through the substrate 1 along the second electrode 13 to an external circuit.

进一步地,所述第一埋层3包括分别设置于所述第二埋层4两侧的第一子埋层和第二子埋层,所述第一注入区7包括分别设置于所述第二注入区8两侧的第一子注入区和第二子注入区,所述多晶硅层10包括与所述第一子埋层和所述第一子注入区连接的第一多晶硅层10,以及与所述第二子埋层和所述第二子注入区连接的第二多晶硅层10,使得整个所述功率器件保护芯片形成对称的器件结构,在电流依次通过所述第一电极12、第二注入区8、第二外延层5、第二埋层4、第一外延层2、衬底1以及第二电极13所形成的导电通路之外,分别形成左右两侧相对称的支路。Further, the first buried layer 3 includes a first sub-buried layer and a second sub-buried layer respectively arranged on both sides of the second buried layer 4, and the first implanted region 7 includes sub-buried layers respectively arranged on the second buried layer 4. The first sub-implantation region and the second sub-implantation region on both sides of the second implantation region 8, the polysilicon layer 10 includes a first polysilicon layer 10 connected to the first sub-buried layer and the first sub-implantation region , and the second polysilicon layer 10 connected to the second sub-buried layer and the second sub-implantation region, so that the entire power device protection chip forms a symmetrical device structure, and when the current passes through the first In addition to the conductive paths formed by the electrode 12, the second injection region 8, the second epitaxial layer 5, the second buried layer 4, the first epitaxial layer 2, the substrate 1, and the second electrode 13, symmetrical branch.

可以理解的是,所述第一沟槽6为深沟槽,通过在所述第一沟槽6和所述第二沟槽9内形成分别与所述第一埋层3和所述第一注入区7电连接的所述多晶硅层10,将所述多晶硅层10形成导电通道,用于导电,并将所述第一注入区7与所述第一埋层3电连接,形成一条并联的导电通路。另外,所述第一埋层3和所述多晶硅层10对称地分布设置,形成了3路双向的并联等效电路,由于二极管的单向导电性并且具有较小节电容,有效地减小了接入电容,从而能够在高频电路中减小器件的寄生电容。It can be understood that, the first trench 6 is a deep trench, and the first buried layer 3 and the first The polysilicon layer 10 electrically connected to the injection region 7 forms a conductive channel for the polysilicon layer 10 for conducting electricity, and electrically connects the first injection region 7 to the first buried layer 3 to form a parallel Conductive pathway. In addition, the first buried layer 3 and the polysilicon layer 10 are symmetrically distributed to form a 3-way bidirectional parallel equivalent circuit. Due to the unidirectional conductivity of the diode and the small junction capacitance, it effectively reduces the The capacitor is connected to reduce the parasitic capacitance of the device in the high-frequency circuit.

下面参阅附图,对一种功率器件保护芯片加以详细阐述。Referring to the accompanying drawings, a power device protection chip will be described in detail below.

如图2所示,本发明实施提供一种功率器件保护芯片,所示功率器件保护芯片包括:As shown in Figure 2, the implementation of the present invention provides a power device protection chip, the power device protection chip shown includes:

第一导电类型的衬底1;a substrate 1 of the first conductivity type;

第二导电类型的第一外延层2,生长于所述衬底1上表面;The first epitaxial layer 2 of the second conductivity type is grown on the upper surface of the substrate 1;

第一导电类型的第一埋层3和第二导电类型的第二埋层4,形成于所述第一外延层2内,且所述第一埋层3和第二埋层4的至少部分表面裸露于所述第一外延层2上表面,所述第二埋层4的掺杂浓度高于所述第一外延层2的掺杂浓度;The first buried layer 3 of the first conductivity type and the second buried layer 4 of the second conductivity type are formed in the first epitaxial layer 2, and at least part of the first buried layer 3 and the second buried layer 4 The surface is exposed on the upper surface of the first epitaxial layer 2, and the doping concentration of the second buried layer 4 is higher than that of the first epitaxial layer 2;

第一导电类型的第二外延层5,形成于所述第一外延层2上表面,并且所述第一埋层3的掺杂浓度高于所述第二外延层5的掺杂浓度;The second epitaxial layer 5 of the first conductivity type is formed on the upper surface of the first epitaxial layer 2, and the doping concentration of the first buried layer 3 is higher than the doping concentration of the second epitaxial layer 5;

第一导电类型的第一注入区7和第二导电类型的第二注入区8,形成于所述第二外延层5上表面,且所述第一注入区7与所述第二注入区8相连接,所述第一注入区7的掺杂浓度高于所述第二外延层5的掺杂浓度;The first injection region 7 of the first conductivity type and the second injection region 8 of the second conductivity type are formed on the upper surface of the second epitaxial layer 5, and the first injection region 7 and the second injection region 8 connected, the doping concentration of the first injection region 7 is higher than the doping concentration of the second epitaxial layer 5;

多晶硅层10,贯穿所述第二外延层5并分别与所述第一注入区7和所述第一埋层3连接;a polysilicon layer 10 penetrating through the second epitaxial layer 5 and connected to the first implantation region 7 and the first buried layer 3 respectively;

介质层11,形成于所述第二外延层5的上表面;a dielectric layer 11 formed on the upper surface of the second epitaxial layer 5;

第一电极12,包括贯穿所述介质层11并延伸至所述第二注入区8的第一部分121和形成于所述介质层11表面的第二部分122;The first electrode 12 includes a first portion 121 penetrating through the dielectric layer 11 and extending to the second injection region 8 and a second portion 122 formed on the surface of the dielectric layer 11;

第二电极13,形成于所述衬底1的下表面并与所述衬底1连接。The second electrode 13 is formed on the lower surface of the substrate 1 and connected to the substrate 1 .

具体地,所述第一导电类型为P型掺杂和N型掺杂中的一种,所述第二导电类型为P型掺杂与N型掺杂中的另一种。Specifically, the first conductivity type is one of P-type doping and N-type doping, and the second conductivity type is the other of P-type doping and N-type doping.

为方便描述,特在此说明:所述第一导电类型可以为N型掺杂,从而所述第二导电类型为P型掺杂;所述第一导电类型还可以为P型掺杂,从而所述第二导电类型为N型掺杂。可以理解的是,当所述第一导电类型为P型掺杂,所述第二导电类型为N型掺杂时,所述衬底1、所述第一埋层3、所述第二外延层5和所述第一注入区7均为P型掺杂,所述第一外延层2、所述第二埋层4和所述第二注入区8均为N型外延层。当所述第一导电类型为N型掺杂,所述第二导电类型为P型掺杂时,所述衬底1、所述第一埋层3、所述第二外延层5和所述第一注入区7均为N型掺杂,所述第一外延层2、所述第二埋层4和所述第二注入区8均为P型外延层。在接下来的实施例中,均以所述第一导电类型为P型掺杂,所述第二导电类型为N型掺杂为例进行描述,但并不对此进行限定。For the convenience of description, it is hereby explained that the first conductivity type can be N-type doped, so that the second conductivity type can be P-type doped; the first conductivity type can also be P-type doped, so that The second conductivity type is N-type doping. It can be understood that when the first conductivity type is P-type doped and the second conductivity type is N-type doped, the substrate 1, the first buried layer 3, the second epitaxial Both the layer 5 and the first implantation region 7 are P-type doped, and the first epitaxial layer 2 , the second buried layer 4 and the second implantation region 8 are all N-type epitaxial layers. When the first conductivity type is N-type doped and the second conductivity type is P-type doped, the substrate 1, the first buried layer 3, the second epitaxial layer 5 and the The first implanted region 7 is all N-type doped, and the first epitaxial layer 2 , the second buried layer 4 and the second implanted region 8 are all P-type epitaxial layers. In the following embodiments, the first conductivity type is P-type doping and the second conductivity type is N-type doping as an example for description, but this is not limited thereto.

具体地,P型衬底和P型外延都属于P型半导体,N型衬底和N型外延都属于N型半导体。所述P型半导体为掺杂三价元素的硅片,例如硼元素或铟元素或铝元素或三者的任意组合。所述N型半导体为掺杂五价元素的硅片,例如磷元素或砷元素或两者的任意组合。Specifically, both the P-type substrate and the P-type epitaxy belong to the P-type semiconductor, and the N-type substrate and the N-type epitaxy both belong to the N-type semiconductor. The P-type semiconductor is a silicon wafer doped with a trivalent element, such as boron element, indium element, aluminum element or any combination of the three. The N-type semiconductor is a silicon wafer doped with pentavalent elements, such as phosphorus or arsenic or any combination thereof.

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片包括第一导电类型的衬底1以及第二导电类型的第一外延层2,所述第一外延层2生长于所述衬底1上表面。具体地,所述衬底1为集成电路中的载体,所述衬底1起到支撑的作用,所述衬底1也参与所述集成电路的工作。所述衬底1可以为硅衬底,也可以为蓝宝石衬底,还可以为碳化硅衬底,甚至可以为硅褚衬底,优选的,所述衬底1为硅衬底,这是因为硅衬底材料具有低成本、大尺寸、可导电的特点,避免了边缘效应,能够大幅度提高良率。所述第二导电类型的第一外延层2生长于所述第一导电类型的衬底1上表面,同时发生反应,当电流依次通过所述第一外延层2和所述衬底1时,形成PN结。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip includes a substrate 1 of the first conductivity type and a first epitaxial layer 2 of the second conductivity type, and the first epitaxial layer 2 is grown on the upper surface of the substrate 1. Specifically, the substrate 1 is a carrier in an integrated circuit, the substrate 1 plays a supporting role, and the substrate 1 also participates in the work of the integrated circuit. The substrate 1 can be a silicon substrate, a sapphire substrate, a silicon carbide substrate, or even a silicon carbide substrate. Preferably, the substrate 1 is a silicon substrate, because The silicon substrate material has the characteristics of low cost, large size, and conductivity, which avoids edge effects and can greatly improve yield. The first epitaxial layer 2 of the second conductivity type grows on the upper surface of the substrate 1 of the first conductivity type, and a reaction occurs at the same time. When the current passes through the first epitaxial layer 2 and the substrate 1 in sequence, A PN junction is formed.

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括第一导电类型的第一埋层3和第二导电类型的第二埋层4,所述第一埋层3和所述第二埋层4均形成于所述第一外延层2内,且所述第一埋层3和第二埋层4的至少部分表面裸露于所述第一外延层2上表面,所述第二埋层4的掺杂浓度高于所述第一外延层2的掺杂浓度。进一步地,所述第一埋层3和所述第二埋层4相邻,并且所述第一埋层3和所述第二埋层4可以相互间隔,也可以相互连接。另外,所述第一埋层3和所述第二埋层4均为重掺杂,从而降低了所述第一埋层3和所述第二埋层4的电阻率。优选的,所述第二埋层4的掺杂浓度高于所述第一外延层2的掺杂浓度,电流会沿着电阻率低的所述第二埋层4到所述第一外延层2下侧,从而改变了电流路径,相当于减小了串联电阻。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a first buried layer 3 of the first conductivity type and a second buried layer 4 of the second conductivity type, and the first buried layer Both the layer 3 and the second buried layer 4 are formed in the first epitaxial layer 2, and at least part of the surfaces of the first buried layer 3 and the second buried layer 4 are exposed on the first epitaxial layer 2 On the surface, the doping concentration of the second buried layer 4 is higher than that of the first epitaxial layer 2 . Further, the first buried layer 3 and the second buried layer 4 are adjacent, and the first buried layer 3 and the second buried layer 4 may be spaced apart from each other, or may be connected to each other. In addition, both the first buried layer 3 and the second buried layer 4 are heavily doped, thereby reducing the resistivity of the first buried layer 3 and the second buried layer 4 . Preferably, the doping concentration of the second buried layer 4 is higher than the doping concentration of the first epitaxial layer 2, and the current will flow along the second buried layer 4 with low resistivity to the first epitaxial layer 2 lower side, thereby changing the current path, which is equivalent to reducing the series resistance.

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括第一导电类型的第二外延层5,所述第二外延层5形成于所述第一外延层2上表面。所述第一外延层2和所述第二外延层5的厚度取决于所要实现的半导体器件的物理尺寸以及所述器件制造工艺过程中的硅损耗。所述第二外延层5生长于所述第一外延层2上表面,起到了降低半导体器件中PN结的漏电流的作用。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a second epitaxial layer 5 of the first conductivity type, and the second epitaxial layer 5 is formed on the first epitaxial layer 2 upper surface. The thicknesses of the first epitaxial layer 2 and the second epitaxial layer 5 depend on the physical size of the semiconductor device to be realized and the silicon loss during the manufacturing process of the device. The second epitaxial layer 5 is grown on the upper surface of the first epitaxial layer 2 to reduce the leakage current of the PN junction in the semiconductor device.

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括第一导电类型的第一注入区7和第二导电类型的第二注入区8,所述第一注入区7和所述第二注入区8形成于所述第二外延层5上表面,且所述第一注入区7与所述第二注入区8相连接,所述第一注入区7的掺杂浓度高于所述第二外延层5的掺杂浓度。在本发明的一些实施例中,所述第一注入区7和所述第二注入区8均为重掺杂,由于所述第一注入区7和所述第二注入区8的导电类型不同,因此所述第一注入区7和所述第二注入区8进行反应,从而形成高掺杂浓度的PN结。需要说明的是,所述第一注入区7和所述第二注入区8相邻且部分连接,使得电流沿着所述第一注入区7和所述第二注入区8形成的PN结形成并联的支路。进一步地,所述第一注入区7的掺杂浓度高于所述第一埋层3的掺杂浓度。进一步地,所述第二埋层4的掺杂浓度高于所述第二注入区8的掺杂浓度。进一步地,所述第二埋层4与所述第二注入区8相对设置。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a first implantation region 7 of the first conductivity type and a second implantation region 8 of the second conductivity type. The first implantation Region 7 and the second implanted region 8 are formed on the upper surface of the second epitaxial layer 5, and the first implanted region 7 is connected to the second implanted region 8, and the doped region of the first implanted region 7 The dopant concentration is higher than that of the second epitaxial layer 5 . In some embodiments of the present invention, both the first implantation region 7 and the second implantation region 8 are heavily doped, since the conductivity types of the first implantation region 7 and the second implantation region 8 are different , so the first implantation region 7 and the second implantation region 8 react to form a PN junction with a high doping concentration. It should be noted that the first injection region 7 and the second injection region 8 are adjacent to and partially connected, so that the current is formed along the PN junction formed by the first injection region 7 and the second injection region 8 Parallel branches. Further, the doping concentration of the first implanted region 7 is higher than that of the first buried layer 3 . Further, the doping concentration of the second buried layer 4 is higher than the doping concentration of the second implanted region 8 . Further, the second buried layer 4 is disposed opposite to the second implantation region 8 .

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括多晶硅层10,所述多晶硅层10贯穿所述第二外延层5并分别与所述第一注入区7和所述第一埋层3连接。所述功率器件保护芯片甚至是半导体器件大多用单晶硅制成,所述多晶硅层10分别电连接所述第一注入区7和所述第一埋层3,电流在通过所述第一注入区7之后直接流入所述第一埋层3,使得放电效率更高。具体地,所述多晶硅层10在单晶硅中具有很高的兼容性。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a polysilicon layer 10 , the polysilicon layer 10 penetrates the second epitaxial layer 5 and connects with the first injection region 7 respectively. connected to the first buried layer 3. The power device protection chip and even the semiconductor device are mostly made of single crystal silicon, and the polysilicon layer 10 is electrically connected to the first injection region 7 and the first buried layer 3 respectively, and the current flows through the first injection The region 7 then directly flows into the first buried layer 3, so that the discharge efficiency is higher. Specifically, the polysilicon layer 10 has high compatibility in single crystal silicon.

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括介质层11,所述介质层11形成于所述第二外延层5的上表面。所述介质层11用于隔离所述第二外延层5。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a dielectric layer 11 formed on the upper surface of the second epitaxial layer 5 . The dielectric layer 11 is used to isolate the second epitaxial layer 5 .

进一步地,所述多晶硅层10的一端贯穿所述第二外延层5并延伸至所述第一埋层3,另一端分别与所述第一注入区7和所述介质层11连接。所述多晶硅层10的一端贯穿所述第二外延层5并延伸至所述第一埋层3,可以是所述多晶硅层10的一端贯穿所述第二外延层5并延伸至所述第一埋层3中,也可以是所述多晶硅层10的一端贯穿所述第二外延层5并延伸至所述第一埋层3的上表面,保证所述多晶硅的一端与所述第一埋层3接触。更具体地,所述多晶硅层10的另一端从所述第二外延层5上表面延伸至所述介质层11中,形成高于于所述第二外延层5表面的一凸起,在本发明的一个实施例中,所述凸起为方形或矩形。所述凸起与所述介质层11接触,并且所述多晶硅层10的凸起的一侧与所述第一注入区7连接,由于所述介质层11绝缘,因此所述多晶硅层10的另一端与所述第一注入区7电连接。Further, one end of the polysilicon layer 10 penetrates the second epitaxial layer 5 and extends to the first buried layer 3 , and the other end is respectively connected to the first implantation region 7 and the dielectric layer 11 . One end of the polysilicon layer 10 penetrates the second epitaxial layer 5 and extends to the first buried layer 3, or one end of the polysilicon layer 10 penetrates the second epitaxial layer 5 and extends to the first buried layer 3. In the buried layer 3, one end of the polysilicon layer 10 may also penetrate through the second epitaxial layer 5 and extend to the upper surface of the first buried layer 3, so as to ensure that one end of the polysilicon layer and the first buried layer 3 contacts. More specifically, the other end of the polysilicon layer 10 extends from the upper surface of the second epitaxial layer 5 into the dielectric layer 11 to form a protrusion higher than the surface of the second epitaxial layer 5 . In one embodiment of the invention, the protrusion is square or rectangular. The protrusion is in contact with the dielectric layer 11, and one side of the protrusion of the polysilicon layer 10 is connected to the first injection region 7. Since the dielectric layer 11 is insulated, the other side of the polysilicon layer 10 is insulated. One end is electrically connected to the first injection region 7 .

在本发明的一些实施例中,如图2所示,所述功率器件保护芯片还包括第一电极12,所述第一电极12包括贯穿所述介质层11并延伸至所述第二注入区8的第一部分121和形成于所述介质层11表面的第二部分122;所述功率器件保护芯片还包括第二电极13,所述第二电极13形成于所述衬底1的下表面并与所述衬底1连接。在本发明的一些实施例中,所述第一部分121贯穿所述介质层11并延伸至所述第二注入区8,可以是所述第一部分121贯穿所述介质层11并延伸至所述第二注入区8中,也可以是所述第一部分121贯穿所述介质层11并延伸至所述第二注入区8的上表面,保证所述第一部分121与所述第二注入区8接触。所述第一电极12具体为第一金属层,所述第二电极13具体为第二金属层,所述第一部分121和所述第二部分122内填充有金属材料,所述第一部分121和所述第二部分122联通并共同形成所述第一金属层。所述第一金属层和所述第二金属层设有一定厚度。所述第二金属层与所述衬底1形成电连接的关系。In some embodiments of the present invention, as shown in FIG. 2 , the power device protection chip further includes a first electrode 12, and the first electrode 12 includes a The first part 121 of 8 and the second part 122 formed on the surface of the dielectric layer 11; the power device protection chip also includes a second electrode 13, which is formed on the lower surface of the substrate 1 and connected to the substrate 1. In some embodiments of the present invention, the first portion 121 penetrates the dielectric layer 11 and extends to the second injection region 8 , it may be that the first portion 121 penetrates the dielectric layer 11 and extends to the second injection region 8 . In the second implantation region 8 , the first portion 121 may also penetrate through the dielectric layer 11 and extend to the upper surface of the second implantation region 8 , ensuring that the first portion 121 is in contact with the second implantation region 8 . The first electrode 12 is specifically a first metal layer, the second electrode 13 is specifically a second metal layer, the first part 121 and the second part 122 are filled with a metal material, and the first part 121 and the second part 122 are filled with a metal material. The second portion 122 communicates and jointly forms the first metal layer. The first metal layer and the second metal layer have a certain thickness. The second metal layer is electrically connected to the substrate 1 .

进一步地,所述第一埋层3包括分别设置于所述第二埋层4两侧的第一子埋层和第二子埋层,所述第一注入区7包括分别设置于所述第二注入区8两侧的第一子注入区和第二子注入区,所述多晶硅层10包括与所述第一子埋层和所述第一子注入区连接的第一多晶硅层10,以及与所述第二子埋层和所述第二子注入区连接的第二多晶硅层10,所述功率器件保护芯片整体结构对称且为第一原胞。Further, the first buried layer 3 includes a first sub-buried layer and a second sub-buried layer respectively arranged on both sides of the second buried layer 4, and the first implanted region 7 includes sub-buried layers respectively arranged on the second buried layer 4. The first sub-implantation region and the second sub-implantation region on both sides of the second implantation region 8, the polysilicon layer 10 includes a first polysilicon layer 10 connected to the first sub-buried layer and the first sub-implantation region , and the second polysilicon layer 10 connected to the second sub-buried layer and the second sub-implantation region, the overall structure of the power device protection chip is symmetrical and is a first primitive cell.

请参阅图11所示的功率器件保护芯片结构的等效电路图。当向所述第一电极12和所述第二电极13通电时,所述电流从所述第一电极12流向所述第二电极13。需要说明的是,以下形成的PN结的正向和反向均以第一导电类型设为P型,所述第二导电类型设为N型为本发明的一个实施例来进行判断,但并不对此限定。电流依次通过所述第一电极12、所述第二注入区8、所述第二外延层5、所述第二埋层4、所述第一外延层2、所述衬底1和所述第二电极13,形成一条主电路。所述第二注入区8和所述第二外延层5形成反向的PN结,因此形成反向的第一二极管a1。所述第二外延层5和所述第二埋层4形成一正向的PN结,因此形成正向的第二二极管b1。所述第一外延层2和所述衬底1形成一反向的PN结,因此形成反向的第三二极管c1。所述主电路中形成了由三个二极管组成的等效电路。电流在依次通过所述第一电极12和所述第二注入区8时,由于所述第一注入区7和所述多晶硅层10的作用使得电流在依次通过所述第二注入区8之后分流到所述多晶硅层10中,再依次通过所述第一注入区7、所述多晶硅层10、所述第一埋层3、所述第一外延层2、所述衬底1和所述第二电极13,形成一条并联的第一分电路。所述第二注入区8和所述第一注入区7形成反向的PN结,因此形成了反向的第四二极管a2。所述第一埋层3与所述第一外延层2形成正向的PN结,因此形成了正向的第五二极管b2。所述第一外延层2与所述衬底1形成反向的PN结,因此形成了反向的第六二极管c2。所述第一分电路形成了由三个二极管组成的等效电路。另外,由于所述第一埋层3包括所述第一子埋层和第二子埋层,所述第一注入区7包括所述第一子注入区和第二子注入区,所述多晶硅层10包括所述第一多晶硅层10和第二多晶硅层10,因此所述功率器件保护芯片的结构中除了具有一条主电路之外,还具有对称分布的第一分电路和第二分电路。综上所述,本发明所要保护的功率器件保护芯片形成了3组二极管并联的等效电路,由于二极管的单向导电性并且具有较小节电容,有效地减小了接入电容,从而能够在高频电路中减小器件的寄生电容。Please refer to the equivalent circuit diagram of the power device protection chip structure shown in Figure 11. When electricity is applied to the first electrode 12 and the second electrode 13 , the current flows from the first electrode 12 to the second electrode 13 . It should be noted that the forward direction and reverse direction of the PN junction formed below are judged by setting the first conductivity type as P-type, and setting the second conductivity type as N-type as an embodiment of the present invention, but not Not limited to this. The current passes through the first electrode 12, the second injection region 8, the second epitaxial layer 5, the second buried layer 4, the first epitaxial layer 2, the substrate 1 and the The second electrode 13 forms a main circuit. The second injection region 8 and the second epitaxial layer 5 form a reverse PN junction, thus forming a reverse first diode a1. The second epitaxial layer 5 and the second buried layer 4 form a forward PN junction, thus forming a forward second diode b1. The first epitaxial layer 2 and the substrate 1 form a reverse PN junction, thus forming a reverse third diode c1. An equivalent circuit consisting of three diodes is formed in the main circuit. When the current passes through the first electrode 12 and the second injection region 8 in sequence, due to the effect of the first injection region 7 and the polysilicon layer 10, the current is shunted after passing through the second injection region 8 in sequence into the polysilicon layer 10, and then sequentially pass through the first implantation region 7, the polysilicon layer 10, the first buried layer 3, the first epitaxial layer 2, the substrate 1 and the first The two electrodes 13 form a parallel first branch circuit. The second injection region 8 and the first injection region 7 form a reverse PN junction, thus forming a reverse fourth diode a2. The first buried layer 3 and the first epitaxial layer 2 form a forward PN junction, thus forming a forward fifth diode b2. The first epitaxial layer 2 and the substrate 1 form a reverse PN junction, thus forming a reverse sixth diode c2. The first subcircuit forms an equivalent circuit consisting of three diodes. In addition, since the first buried layer 3 includes the first sub-buried layer and the second sub-buried layer, the first implant region 7 includes the first sub-implant region and the second sub-implant region, the polysilicon The layer 10 includes the first polysilicon layer 10 and the second polysilicon layer 10, so the structure of the power device protection chip not only has a main circuit, but also has symmetrically distributed first sub-circuits and second sub-circuits. Divide the circuit. In summary, the power device protection chip to be protected by the present invention forms an equivalent circuit in which three groups of diodes are connected in parallel. Due to the unidirectional conductivity of the diodes and the small node capacitance, the access capacitance is effectively reduced, thereby enabling Reduce the parasitic capacitance of the device in high frequency circuits.

以上结合附图详细说明了本发明的技术方案,通过本发明的技术方案改进使3组功率器件保护芯片集成到一起,通过引入埋层工艺减小了器件面积,降低了工艺难度,减小了器件制造成本。三组二极管并联,降低了寄生电容,使得改进后的功率器件保护芯片的保护特性和可靠性都得到了提升。The technical solution of the present invention has been described in detail above in conjunction with the accompanying drawings. Through the improvement of the technical solution of the present invention, three groups of power device protection chips are integrated together, and the device area is reduced by introducing the buried layer process, which reduces the difficulty of the process and reduces the Device manufacturing costs. Three groups of diodes are connected in parallel to reduce parasitic capacitance, so that the protection characteristics and reliability of the improved power device protection chip are improved.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. a kind of power device protects chip characterized by comprising
The substrate of first conduction type;
First epitaxial layer of the second conduction type, is grown on the upper surface of substrate;
First buried layer of the first conduction type and the second buried layer of the second conduction type, are formed in first epitaxial layer, and At least partly surface exposure of first buried layer and the second buried layer in first epitaxial layer upper surface, second buried layer Doping concentration is higher than the doping concentration of first epitaxial layer;
Second epitaxial layer of the first conduction type, be formed in first epitaxial layer upper surface, and first buried layer is mixed Miscellaneous concentration is higher than the doping concentration of second epitaxial layer;
First injection region of the first conduction type and the second injection region of the second conduction type, are formed on second epitaxial layer Surface, and first injection region is connected with second injection region, the doping concentration of first injection region is higher than described The doping concentration of second epitaxial layer;
Polysilicon layer is connect through second epitaxial layer and with first injection region and first buried layer respectively;
Dielectric layer is formed in the upper surface of second epitaxial layer;
First electrode is given an account of including running through the dielectric layer and extending to the first part of second injection region and be formed in The second part of matter layer surface;
Second electrode is formed in the lower surface of the substrate and connect with the substrate.
2. power device according to claim 1 protects chip, which is characterized in that the doping concentration of first injection region Higher than the doping concentration of first buried layer.
3. power device according to claim 1 protects chip, which is characterized in that the doping concentration of second buried layer is high Doping concentration in second injection region.
4. power device according to claim 1 protects chip, which is characterized in that second buried layer and second note Enter area to be oppositely arranged.
5. power device according to claim 1 protects chip, which is characterized in that first buried layer includes being respectively set The first sub- buried layer and the second sub- buried layer in second buried layer two sides, first injection region include being respectively arranged at described the The the first sub- injection region and the second sub- injection region of two injection regions two sides, the polysilicon layer include and the described first sub- buried layer and institute The first polysilicon layer of the first sub- injection region connection is stated, and connect with the described second sub- buried layer and the second sub- injection region Second polysilicon layer.
6. a kind of production method of power device protection chip comprising:
In the first epitaxial layer of two conduction type of upper surface of substrate growth regulation of the first conduction type;
The first buried layer of the first conduction type and the second buried layer of the second conduction type, and institute are formed in first epitaxial layer At least partly surface exposure of the first buried layer and the second buried layer is stated in first epitaxial layer upper surface, second buried layer is mixed Miscellaneous concentration is higher than the doping concentration of first epitaxial layer;
The second epitaxial layer of the first conduction type, and the doping of first buried layer are formed in first epitaxial layer upper surface Concentration is higher than the doping concentration of second epitaxial layer;
The first groove of first buried layer is formed through second epitaxial layer and extended to, and is formed and is located at described first Groove upside and the second groove with the first groove connection;
The first injection region of the first conduction type and the second note of the second conduction type are formed in second epitaxial layer upper surface Enter area, and first injection region is connected into first injection region, the doping concentration of first injection region is higher than described the The doping concentration of two epitaxial layers;
Form the polysilicon layer that first buried layer connects in the first groove and the second groove, and by the polycrystalline Silicon layer is connected with first injection region;
Dielectric layer is formed in the upper surface of second epitaxial layer;
First electrode is formed, the first electrode includes running through the dielectric layer and extending to first of second injection region Divide and be formed in the second part of the dielectric layer surface;
The second electrode connecting with the substrate is formed in the lower surface of the substrate.
7. a kind of production method of power device protection chip according to claim 6, which is characterized in that first note The doping concentration for entering area is higher than the doping concentration of first buried layer.
8. a kind of production method of power device protection chip according to claim 6, which is characterized in that described second buries The doping concentration of layer is higher than the doping concentration of second injection region.
9. a kind of production method of power device protection chip according to claim 6, which is characterized in that by described second Buried layer is oppositely arranged with second injection region.
10. a kind of production method of power device protection chip according to claim 6, which is characterized in that described first Buried layer includes the first sub- buried layer and the second sub- buried layer for being respectively arranged at second buried layer two sides, and first injection region includes It is respectively arranged at the first sub- injection region and the second sub- injection region of second injection region two sides, the polysilicon layer includes and institute State the first polysilicon layer that the first sub- buried layer is connected with the described first sub- injection region, and with the described second sub- buried layer and described Second polysilicon layer of two sub- injection region connections.
CN201810817024.4A 2018-07-24 2018-07-24 Power device protection chip and manufacturing method thereof Expired - Fee Related CN109037206B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810817024.4A CN109037206B (en) 2018-07-24 2018-07-24 Power device protection chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810817024.4A CN109037206B (en) 2018-07-24 2018-07-24 Power device protection chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN109037206A true CN109037206A (en) 2018-12-18
CN109037206B CN109037206B (en) 2021-03-05

Family

ID=64644627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810817024.4A Expired - Fee Related CN109037206B (en) 2018-07-24 2018-07-24 Power device protection chip and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN109037206B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584480A (en) * 2020-04-17 2020-08-25 深圳方正微电子有限公司 Semiconductor device and method of manufacturing the same
CN113097305A (en) * 2021-03-26 2021-07-09 深圳市金誉半导体股份有限公司 Field-effect tube and preparation method thereof
CN113690231A (en) * 2021-08-20 2021-11-23 安芯半导体技术(深圳)有限公司 Surge protection chip and preparation method thereof
CN114023737A (en) * 2021-11-05 2022-02-08 深圳市鑫飞宏电子有限公司 A kind of electrostatic protection chip based on power management and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527304A (en) * 2008-12-08 2009-09-09 上海长园维安微电子有限公司 Integrated low-voltage and low-capacitance TVS device and manufacturing method thereof
US20160099297A1 (en) * 2013-09-06 2016-04-07 Globalfoundries Inc. Flexible active matrix display
CN108054164A (en) * 2017-12-12 2018-05-18 深圳迈辽技术转移中心有限公司 Transient Voltage Suppressor and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527304A (en) * 2008-12-08 2009-09-09 上海长园维安微电子有限公司 Integrated low-voltage and low-capacitance TVS device and manufacturing method thereof
US20160099297A1 (en) * 2013-09-06 2016-04-07 Globalfoundries Inc. Flexible active matrix display
CN108054164A (en) * 2017-12-12 2018-05-18 深圳迈辽技术转移中心有限公司 Transient Voltage Suppressor and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584480A (en) * 2020-04-17 2020-08-25 深圳方正微电子有限公司 Semiconductor device and method of manufacturing the same
CN111584480B (en) * 2020-04-17 2023-10-31 深圳方正微电子有限公司 Semiconductor device and method for manufacturing the same
CN113097305A (en) * 2021-03-26 2021-07-09 深圳市金誉半导体股份有限公司 Field-effect tube and preparation method thereof
CN113690231A (en) * 2021-08-20 2021-11-23 安芯半导体技术(深圳)有限公司 Surge protection chip and preparation method thereof
CN114023737A (en) * 2021-11-05 2022-02-08 深圳市鑫飞宏电子有限公司 A kind of electrostatic protection chip based on power management and preparation method thereof
CN114023737B (en) * 2021-11-05 2023-07-21 深圳市鑫飞宏电子有限公司 A kind of electrostatic protection chip based on power management and its preparation method

Also Published As

Publication number Publication date
CN109037206B (en) 2021-03-05

Similar Documents

Publication Publication Date Title
TWI470761B (en) Low capacitance transient voltage suppressor with low clamp voltage
US9911728B2 (en) Transient voltage suppressor (TVS) with reduced breakdown voltage
CN101847663B (en) Transient voltage suppressor (TVS) and method for forming same
TWI626753B (en) Bidirectional through semiconductor device and method of fabricating the same
US9330961B2 (en) Stacked protection devices and related fabrication methods
TW201622096A (en) Structure of transient voltage suppressor for high surge and low capacitance and preparation method thereof
CN106129058A (en) Groove draws the two-way transient voltage suppresser of integrated-type low pressure and manufacture method thereof
CN109037206B (en) Power device protection chip and manufacturing method thereof
CN109037204B (en) Power device and manufacturing method thereof
CN109786471A (en) A kind of Transient Voltage Suppressor and preparation method thereof
CN109309008A (en) A power device and method of making the same
CN109065634B (en) A kind of current protection chip and its manufacturing method
EP2827373B1 (en) Protection device and related fabrication methods
CN109273521A (en) Power device protection chip and manufacturing method thereof
CN109119479A (en) A kind of power device and preparation method thereof
CN109103179B (en) A kind of power device protection chip and its manufacturing method
CN119069529A (en) A SGT device with ESD and preparation method thereof
CN109037205B (en) Transient voltage suppressor and method of making the same
CN108987389B (en) A kind of current protection chip and its manufacturing method
CN113937098B (en) Electrostatic protection chip for fast charging management system and preparation method thereof
KR101006768B1 (en) TV diode array and manufacturing method
CN109148442B (en) A kind of voltage suppressor and preparation method thereof
CN108922925B (en) A kind of power device protection chip and its manufacturing method
CN113690231A (en) Surge protection chip and preparation method thereof
CN108987461B (en) A kind of transient voltage suppressor and its manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210202

Address after: 518000 Room 201, building a, Xixiang oyster industry park, 162 Fengtang Avenue, Heping community, Fuhai street, Bao'an District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Huaan Semiconductor Co.,Ltd.

Address before: 518000 1-b02 east side of Shenzhen Department Store building, 123 Shennan Road, Dongmen street, Luohu District, Shenzhen City, Guangdong Province

Applicant before: SHENZHEN FULAIGUO TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210305

Termination date: 20210724

CF01 Termination of patent right due to non-payment of annual fee