[go: up one dir, main page]

CN109001787A - A kind of method and its merge sensor of solving of attitude and positioning - Google Patents

A kind of method and its merge sensor of solving of attitude and positioning Download PDF

Info

Publication number
CN109001787A
CN109001787A CN201810517173.9A CN201810517173A CN109001787A CN 109001787 A CN109001787 A CN 109001787A CN 201810517173 A CN201810517173 A CN 201810517173A CN 109001787 A CN109001787 A CN 109001787A
Authority
CN
China
Prior art keywords
information
fusion
gyroscope
attitude angle
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810517173.9A
Other languages
Chinese (zh)
Other versions
CN109001787B (en
Inventor
时广轶
黄亚华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Graduate School
Original Assignee
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Graduate School filed Critical Peking University Shenzhen Graduate School
Priority to CN201810517173.9A priority Critical patent/CN109001787B/en
Publication of CN109001787A publication Critical patent/CN109001787A/en
Application granted granted Critical
Publication of CN109001787B publication Critical patent/CN109001787B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)

Abstract

一种姿态角解算与定位的方法及其融合传感器,该融合传感器包括多个IMU传感器、一个磁力计和GPS;该方法包括:校正磁力计、加速度计和陀螺仪;分别利用冗余信息融合算法对各加速度计和各陀螺仪的测量数据进行数据融合,得到加速度信息和角速度信息;利用扩展卡尔曼滤波算法融合加速度信息、角速度信息和磁力计的磁场信息得到融合姿态角;以融合姿态角辅助定位信息得到位置信息。由于使用多冗余IMU传感器进行数据测量和数据融合计算,且利用扩展卡尔曼滤波算法融合各数据得到融合姿态角,在静态和动态条件下都能获得较高精度的姿态角;同时利用该融合姿态角辅助GPS得到补正的位置信息,使位置信息更精确,提高了姿态角解算与定位的稳定性和可靠性。

A method for attitude angle calculation and positioning and its fusion sensor, the fusion sensor includes a plurality of IMU sensors, a magnetometer and GPS; the method includes: correcting the magnetometer, accelerometer and gyroscope; using redundant information fusion The algorithm performs data fusion on the measurement data of each accelerometer and each gyroscope to obtain acceleration information and angular velocity information; uses the extended Kalman filter algorithm to fuse acceleration information, angular velocity information and magnetic field information of the magnetometer to obtain the fusion attitude angle; The auxiliary positioning information obtains the location information. Since multiple redundant IMU sensors are used for data measurement and data fusion calculation, and the extended Kalman filter algorithm is used to fuse each data to obtain a fusion attitude angle, a higher-precision attitude angle can be obtained under static and dynamic conditions; at the same time, the fusion The attitude angle assists the GPS to obtain corrected position information, which makes the position information more accurate and improves the stability and reliability of the attitude angle calculation and positioning.

Description

一种姿态角解算与定位的方法及其融合传感器A Method of Attitude Angle Calculation and Positioning and Its Fusion Sensor

技术领域technical field

本发明涉及组合导航技术领域,具体涉及一种姿态角解算与定位的方法及其融合传感器。The invention relates to the technical field of integrated navigation, in particular to a method for calculating and positioning an attitude angle and a fusion sensor thereof.

背景技术Background technique

上世纪70年代起,导航技术获得了迅猛的发展,随着信息技术和经济建设的发展,交通运输、工业、农业、测绘等领域对导航技术提出了更加多样性和更高的要求。Since the 1970s, navigation technology has developed rapidly. With the development of information technology and economic construction, transportation, industry, agriculture, surveying and mapping and other fields have put forward more diverse and higher requirements for navigation technology.

目前,在导航技术的定姿与定位方面,应用最为广泛的是组合导航技术。组合导航是指利用GPS(Global Positioning System,全球定位系统)、无线电导航、天文导航、卫星导航等系统中的一个或几个与INS(Inertial Navigation System,惯性导航系统)组合在一起,形成的综合导航系统。INS是以陀螺仪和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺仪的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。At present, in terms of attitude determination and positioning of navigation technology, integrated navigation technology is the most widely used. Integrated navigation refers to the use of one or several of GPS (Global Positioning System, Global Positioning System), radio navigation, celestial navigation, satellite navigation and other systems combined with INS (Inertial Navigation System, inertial navigation system) to form a comprehensive Navigation System. INS is a navigation parameter calculation system based on gyroscopes and accelerometers as sensitive devices. The system establishes a navigation coordinate system based on the output of the gyroscope, and calculates the velocity and position of the carrier in the navigation coordinate system based on the output of the accelerometer.

在现有的组合导航技术中,GPS和INS的组合是最常见的方式之一。但现有的GPS和INS的组合导航技术极大地依赖于GPS信号,而GPS信号的隐蔽性极差,信号易被干扰和遮蔽,从而导致导航精度的极大下降;并且,GPS接收机的工作受飞行器的机动的影响,当飞行器的机动超过GPS接收机的动态范围时,接收机会失锁而不能捕获和跟踪卫星信号,从而无法进行工作,这样,在对可靠性要求较高的场合,GPS导航会受到限制。同时,在现有的GPS和INS的组合导航技术中,INS是以陀螺仪和加速度计为敏感器件,利用互补滤波融合算法进行姿态角解算的,计算复杂度较高,且在动态条件下获得的姿态角的误差较大。Among the existing integrated navigation technologies, the combination of GPS and INS is one of the most common ways. However, the existing integrated navigation technology of GPS and INS relies heavily on GPS signals, and the concealment of GPS signals is extremely poor, and the signals are easily interfered and obscured, resulting in a great decline in navigation accuracy; and, the work of GPS receivers Affected by the maneuvering of the aircraft, when the maneuvering of the aircraft exceeds the dynamic range of the GPS receiver, the receiver will lose lock and cannot capture and track satellite signals, so it cannot work. Navigation will be limited. At the same time, in the existing integrated navigation technology of GPS and INS, INS uses gyroscope and accelerometer as sensitive devices, and uses complementary filter fusion algorithm to solve the attitude angle, which has high computational complexity, and under dynamic conditions The error of the obtained attitude angle is relatively large.

因此,利用现有的组合导航技术进行姿态角的解算和定位时,获得的姿态角信息和位置信息的精度不高,定姿与定位的稳定性和可靠性较低。Therefore, when using the existing integrated navigation technology for attitude angle calculation and positioning, the accuracy of the attitude angle information and position information obtained is not high, and the stability and reliability of attitude determination and positioning are low.

发明内容Contents of the invention

本申请提供一种姿态角解算与定位的方法及其融合传感器,以获得高精度与高稳定性的姿态角信息和位置信息,提高姿态角解算与定位的稳定性和可靠性。The application provides a method of attitude angle calculation and positioning and its fusion sensor to obtain high-precision and high-stability attitude angle information and position information, and improve the stability and reliability of attitude angle calculation and positioning.

根据第一方面,一种实施例中提供一种姿态角解算与定位的方法,应用于姿态角解算与定位的融合传感器中,所述融合传感器包含至少两个IMU传感器、一个磁力计和GPS,一个所述IMU传感器包含一个加速度计和一个陀螺仪,所述方法包括:According to the first aspect, an embodiment provides a method for attitude angle calculation and positioning, which is applied to a fusion sensor for attitude angle calculation and positioning, and the fusion sensor includes at least two IMU sensors, a magnetometer and GPS, one of the IMU sensors includes an accelerometer and a gyroscope, and the method includes:

获取各加速度计和各陀螺仪的测量数据以及磁力计的磁场信息和GPS的定位信息;Obtain the measurement data of each accelerometer and each gyroscope, as well as the magnetic field information of the magnetometer and the positioning information of GPS;

分别根据各加速度计的测量数据之间的置信度和各陀螺仪的测量数据之间的置信度,利用冗余信息融合算法分别对各加速度计的测量数据和各陀螺仪的测量数据进行数据融合,得到加速度信息和角速度信息;According to the confidence degree between the measurement data of each accelerometer and the confidence degree between the measurement data of each gyroscope, the measurement data of each accelerometer and the measurement data of each gyroscope are respectively fused by using the redundant information fusion algorithm , get acceleration information and angular velocity information;

以所述角速度信息为状态变量且所述加速度信息和所述磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角;Using the angular velocity information as a state variable and the acceleration information and the magnetic field information as observations, using an extended Kalman filter algorithm to calculate a fused attitude angle;

根据所述加速度信息、所述角速度信息、所述融合姿态角和所述定位信息,利用扩展卡尔曼滤波算法计算出位置信息。According to the acceleration information, the angular velocity information, the fused attitude angle and the positioning information, the position information is calculated by using an extended Kalman filter algorithm.

根据第二方面,一种实施例中提供一种姿态角解算与定位的融合传感器,包括:至少两个IMU传感器、一个磁力计、GPS和数据处理器,一个IMU传感器包含一个加速度计和一个陀螺仪,所述至少两个IMU传感器采用双面反轴型方式或单轴多传感器方式连接;According to the second aspect, an embodiment provides a fusion sensor for attitude angle calculation and positioning, including: at least two IMU sensors, a magnetometer, GPS and a data processor, and an IMU sensor includes an accelerometer and an For the gyroscope, the at least two IMU sensors are connected in a double-sided anti-axis mode or a single-axis multi-sensor mode;

所述双面反轴型方式为2f个IMU传感器被分为两组,分别安装于平板两侧,且两侧的IMU传感器一轴反向、另外两轴同向,所述f为大于等于1的整数;The double-sided anti-axis type method is that 2f IMU sensors are divided into two groups, which are respectively installed on both sides of the plate, and one axis of the IMU sensors on both sides is reversed, and the other two axes are in the same direction, and the f is greater than or equal to 1 an integer of

所述单轴多传感器方式为各正交轴上分别安装多个IMU传感器,且各IMU传感器的各轴向相同;The single-axis multi-sensor method is to install a plurality of IMU sensors on each orthogonal axis, and each axis of each IMU sensor is the same;

所述加速度计用于测量载体的加速度;The accelerometer is used to measure the acceleration of the carrier;

所述陀螺仪用于测量载体的角速度;The gyroscope is used to measure the angular velocity of the carrier;

所述磁力计用于测量磁场信息;The magnetometer is used to measure magnetic field information;

所述GPS用于测量定位信息;The GPS is used to measure positioning information;

所述数据处理器用于获取各加速度计和各陀螺仪的测量数据以及磁力计的磁场信息和GPS的定位信息,分别根据各加速度计的测量数据之间的置信度和各陀螺仪的测量数据之间的置信度,利用冗余信息融合算法分别对各加速度计的测量数据和各陀螺仪的测量数据进行数据融合,得到加速度信息和角速度信息,以所述角速度信息为状态量且所述加速度信息和所述磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角,根据所述加速度信息、所述角速度信息、所述融合姿态角和所述定位信息,利用扩展卡尔曼滤波算法计算出位置信息。The data processor is used to obtain the measurement data of each accelerometer and each gyroscope, as well as the magnetic field information of the magnetometer and the positioning information of the GPS, respectively according to the degree of confidence between the measurement data of each accelerometer and the relationship between the measurement data of each gyroscope. Confidence between each accelerometer and gyroscope by using a redundant information fusion algorithm for data fusion to obtain acceleration information and angular velocity information, using the angular velocity information as a state quantity and the acceleration information and the magnetic field information is an observation quantity, and the fusion attitude angle is calculated by using the extended Kalman filter algorithm, and is calculated by using the extended Kalman filter algorithm according to the acceleration information, the angular velocity information, the fusion attitude angle and the positioning information output location information.

依据上述实施例的姿态角解算与定位的方法及其融合传感器,通过多个IMU传感器的冗余信息融合算法进行加速度信息和角速度信息的计算,使得计算出的加速度信息和角速度信息更加准确,在此基础,以磁力计作为辅助,利用扩展卡尔曼滤波算法融合该加速度信息、角速度信息以及磁力计的磁场信息得到融合姿态角,从而极大地提高了系统的精度与稳定性,在静态和动态条件下都能获得较高精度的融合姿态角;同时,最终的位置信息是由较高精度的融合姿态角辅助GPS的定位信息得到的,对GPS的定位信息进行了补正,使得得到的位置信息更加精确;由此便可获得高精度与高稳定性的姿态角信息和位置信息,提高了姿态角解算与定位的稳定性和可靠性。According to the attitude angle calculation and positioning method of the above-mentioned embodiment and its fusion sensor, the calculation of acceleration information and angular velocity information is performed through redundant information fusion algorithms of multiple IMU sensors, so that the calculated acceleration information and angular velocity information are more accurate. On this basis, with the aid of the magnetometer, the extended Kalman filter algorithm is used to fuse the acceleration information, angular velocity information and magnetic field information of the magnetometer to obtain the fusion attitude angle, which greatly improves the accuracy and stability of the system. At the same time, the final position information is obtained from the positioning information of GPS assisted by the high-precision fusion attitude angle, and the GPS positioning information is corrected, so that the obtained position information More accurate; thus, high-precision and high-stability attitude angle information and position information can be obtained, which improves the stability and reliability of attitude angle calculation and positioning.

附图说明Description of drawings

图1为本发明实施例中姿态角解算与定位的融合传感器的结构示意图;Fig. 1 is a schematic structural diagram of a fusion sensor for attitude angle resolution and positioning in an embodiment of the present invention;

图2为本发明实施例中IMU传感器通过双面反轴型方式连接的结构示意图;Fig. 2 is a schematic diagram of the structure of the IMU sensor connected by a double-sided anti-axis type in an embodiment of the present invention;

图3为本发明实施例中IMU传感器通过单轴多传感器方式连接的结构示意图;Fig. 3 is a structural schematic diagram of IMU sensors connected by a single-axis multi-sensor mode in an embodiment of the present invention;

图4为本发明实施例中姿态角解算与定位的方法的流程图;Fig. 4 is a flow chart of the method for attitude angle calculation and positioning in an embodiment of the present invention;

图5为本发明实施例中采用Allan方差法修正陀螺仪零偏误差的方法的流程图;Fig. 5 is the flowchart of the method that adopts Allan variance method to correct gyroscope zero bias error in the embodiment of the present invention;

图6为本发明实施例中利用冗余信息融合算法对加速度计的测量数据进行数据融合的方法的流程图;6 is a flow chart of a method for data fusion of accelerometer measurement data using a redundant information fusion algorithm in an embodiment of the present invention;

图7为本发明实施例中计算融合姿态角的方法的流程图;7 is a flowchart of a method for calculating a fusion attitude angle in an embodiment of the present invention;

图8为本发明实施例中利用扩展卡尔曼滤波递推方程计算融合姿态角的流程图;Fig. 8 is the flow chart that utilizes extended Kalman filter recursive equation to calculate fusion attitude angle in the embodiment of the present invention;

图9为本发明实施例中利用扩展卡尔曼滤波算法计算位置信息的流程图。FIG. 9 is a flow chart of calculating location information by using an extended Kalman filter algorithm in an embodiment of the present invention.

具体实施方式Detailed ways

下面通过具体实施方式结合附图对本发明作进一步详细说明。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings.

在本发明实施例中,采用多冗余(至少两个)IMU传感器测量载体的加速度和角速度,并利用冗余信息融合算法分别对各加速度计和各陀螺仪的测量数据进行数据融合,得到融合的加速度信息和角速度信息;接着以磁力计作为辅助,利用扩展卡尔曼滤波算法对该加速度信息、角速度信息以及磁力计测得的磁场信息进行信息融合,得到融合姿态角;然后使用该融合姿态角辅助GPS测得的定位信息,利用扩展卡尔曼滤波算法计算得到位置信息。In the embodiment of the present invention, multi-redundant (at least two) IMU sensors are used to measure the acceleration and angular velocity of the carrier, and the redundant information fusion algorithm is used to perform data fusion on the measurement data of each accelerometer and each gyroscope respectively to obtain a fusion The acceleration information and angular velocity information of the magnetometer; then use the magnetometer as an auxiliary, use the extended Kalman filter algorithm to fuse the acceleration information, angular velocity information and the magnetic field information measured by the magnetometer to obtain the fusion attitude angle; then use the fusion attitude angle The positioning information measured by the assisted GPS is calculated by using the extended Kalman filter algorithm to obtain the position information.

本发明实施例提供一种姿态角解算与定位的融合传感器,请参考图1,图1示出了该姿态角解算与定位的融合传感器的结构示意图,如图1所示,该姿态角解算与定位的融合传感器包括N个IMU传感器1、一个磁力计2、GPS 3和数据处理器4,其中,N为大于或等于2的整数;其中的IMU传感器1包含一个加速度计11和一个陀螺仪12,加速度计11用于测量载体的加速度,陀螺仪12用于测量载体的角速度,N个IMU传感器1采用双面反轴型方式连接,或者采用单轴多传感器方式连接;磁力计2用于测量磁场信息,GPS 3用于测量定位信息,数据处理器4用于对IMU传感器1、磁力计2和GPS 3检测到的信号进行滤波、放大、计算、分析等处理;在本实施例中,数据处理器4包括获取模块41、数据融合模块42和计算模块43,其中,获取模块41用于获取各加速度计11和各陀螺仪12的测量数据以及磁力计2的磁场信息和GPS3的定位信息;数据融合模块42用于根据各加速度计11的测量数据之间的置信度,利用冗余信息融合算法对各加速度计11的测量数据进行数据融合,得到加速度信息,根据各陀螺仪12的测量数据之间的置信度,利用冗余信息融合算法对各陀螺仪12的测量数据进行数据融合,得到角速度信息;计算模块43用于以角速度信息为状态量且加速度信息和磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角,根据该融合姿态角、加速度信息、角速度信息和定位信息,利用扩展卡尔曼滤波算法计算出位置信息。较优的,数据处理器4还包括修正模块,该修正模块用于对磁力计2和加速度计11进行误差补偿,并对陀螺仪12进行零偏修正,使得磁力计2、加速度计11和陀螺仪12在进行数据测量时不受自身误差的影响,测量的数据更加准确。An embodiment of the present invention provides a fusion sensor for attitude angle calculation and positioning, please refer to Figure 1, which shows a schematic structural diagram of the fusion sensor for attitude angle calculation and positioning, as shown in Figure 1, the attitude angle The fusion sensor for solving and positioning includes N IMU sensors 1, a magnetometer 2, GPS 3 and a data processor 4, wherein, N is an integer greater than or equal to 2; wherein the IMU sensor 1 includes an accelerometer 11 and a Gyroscope 12, accelerometer 11 is used to measure the acceleration of the carrier, gyroscope 12 is used to measure the angular velocity of the carrier, N IMU sensors 1 are connected in a double-sided anti-axis mode, or in a single-axis multi-sensor mode; magnetometer 2 For measuring magnetic field information, GPS 3 is used for measuring positioning information, and data processor 4 is used for filtering, amplifying, calculating, analyzing and other processing of signals detected by IMU sensor 1, magnetometer 2 and GPS 3; in this embodiment Among them, the data processor 4 includes an acquisition module 41, a data fusion module 42 and a calculation module 43, wherein the acquisition module 41 is used to acquire the measurement data of each accelerometer 11 and each gyroscope 12 and the magnetic field information of the magnetometer 2 and GPS3. Positioning information; the data fusion module 42 is used for according to the degree of confidence between the measurement data of each accelerometer 11, utilizes redundant information fusion algorithm to carry out data fusion to the measurement data of each accelerometer 11, obtains acceleration information, according to each gyroscope 12 Confidence between the measured data, use redundant information fusion algorithm to carry out data fusion on the measured data of each gyroscope 12, obtain angular velocity information; calculation module 43 is used to use angular velocity information as state quantity and acceleration information and magnetic field information as observation The fused attitude angle is calculated by using the extended Kalman filter algorithm, and the position information is calculated by using the extended Kalman filter algorithm according to the fused attitude angle, acceleration information, angular velocity information and positioning information. Preferably, the data processor 4 also includes a correction module, which is used to perform error compensation to the magnetometer 2 and the accelerometer 11, and to carry out zero bias correction to the gyroscope 12, so that the magnetometer 2, the accelerometer 11 and the gyroscope The instrument 12 is not affected by its own error when performing data measurement, and the measured data is more accurate.

具体的,图2示出了IMU传感器通过双面反轴型方式连接的结构示意图,如图2所示,N=2f个相同的IMU传感器构成冗余传感器系统,其中的f为大于等于1的整数,该系统为平板型结构,N个IMU传感器被分为两组,每组f个,分别安装在平板的两侧,这两侧的IMU传感器的一轴方向相反,另外两轴的方向相同,比如,在图2中,A侧的所有IMU传感器的坐标方向相同,B侧的所有IMU传感器的坐标方向也相同,而分别安装在A侧和B侧的IMU传感器,其z轴方向相反,而x轴和y轴的方向分别相同。Specifically, Fig. 2 shows a schematic diagram of the structure of the IMU sensor connected by a double-sided anti-axis type. As shown in Fig. 2, N=2f identical IMU sensors form a redundant sensor system, where f is greater than or equal to 1 Integer, the system is a flat-panel structure, N IMU sensors are divided into two groups, f in each group, installed on both sides of the flat panel, one axis direction of the IMU sensors on these two sides is opposite, and the direction of the other two axes is the same For example, in Figure 2, the coordinate directions of all IMU sensors on side A are the same, and the coordinate directions of all IMU sensors on side B are also the same, while the IMU sensors installed on side A and side B respectively have opposite z-axis directions, The directions of the x-axis and the y-axis are respectively the same.

图3示出了IMU传感器通过单轴多传感器方式连接的结构示意图,如图3所示,N=a+b+c个相同的IMU传感器构成冗余传感器系统,这里的N为大于或等于2的整数;这N个相同的IMU传感器被分为a个、b个和c个共三组,每组IMU传感器的数量可根据需要进行设置,三组IMU传感器被分别安装在冗余传感器系统的三个正交轴上,即在冗余传感器系统的三个正交轴X、Y和Z上分别安装a个、b个和c个IMU传感器,并且,这N个IMU传感器的各轴向均相同,比如各轴向均与xyz坐标系的对应轴向相同。Figure 3 shows a schematic diagram of the structure of an IMU sensor connected by a single-axis multi-sensor method. As shown in Figure 3, N=a+b+c identical IMU sensors form a redundant sensor system, where N is greater than or equal to 2 is an integer; the N identical IMU sensors are divided into three groups of a, b and c, the number of IMU sensors in each group can be set according to needs, and the three groups of IMU sensors are respectively installed in the redundant sensor system Install a, b, and c IMU sensors on the three orthogonal axes, that is, on the three orthogonal axes X, Y, and Z of the redundant sensor system, and each axis of the N IMU sensors is The same, for example, each axis is the same as the corresponding axis of the xyz coordinate system.

基于上述姿态角解算与定位的融合传感器,图4示出了本发明实施例中姿态角解算与定位的方法的流程图,如图4所示,该方法可以包括如下步骤:Based on the above-mentioned fusion sensor for attitude angle calculation and positioning, Figure 4 shows a flow chart of the method for attitude angle calculation and positioning in an embodiment of the present invention, as shown in Figure 4, the method may include the following steps:

步骤S11:误差补偿。Step S11: Error compensation.

数据处理器4中的修正模块对磁力计2和各加速度计11进行误差补偿。具体的,对磁力计2进行误差补偿可以采用十二面校准的方法,也可以采用椭球拟合的方法;对加速度计11进行误差补偿可以采用卡尔曼滤波的方法,即建立以加速度误差为状态变量的量测方程,经过卡尔曼滤波器的最优估计输出校正信息以补偿加速度计11的误差。The correction module in the data processor 4 performs error compensation on the magnetometer 2 and each accelerometer 11 . Specifically, the error compensation of the magnetometer 2 can adopt the method of twelve-plane calibration, and the method of ellipsoid fitting can also be used; the error compensation of the accelerometer 11 can adopt the method of Kalman filter, that is, the acceleration error is established as The measurement equation of the state variable is optimally estimated by the Kalman filter to output correction information to compensate the error of the accelerometer 11 .

步骤S12:零偏修正。Step S12: zero offset correction.

数据处理器4中的修正模块同时对各陀螺仪12进行零偏修正,具体的,可以通过Allan方差法来修正陀螺仪12的零偏误差。在本实施例中,陀螺仪12可以选择微机械(MicroElectro Mechanical systems,MEMS)陀螺仪,MEMS陀螺仪的噪声可以分为5个独立部分,分别为量化噪声、角度随机游走、偏差不稳定性、速率随机游走和速率斜坡,这5个独立噪声的大小分别由量化噪声系数Q、角度随机游走系数N、偏差不稳定性系数B、速率随机游走系数K及速率斜坡系数R表征。由于这5个噪声相互独立,所以存在如下的关系式(1):The correction module in the data processor 4 performs zero bias correction on each gyroscope 12 at the same time, specifically, the zero bias error of the gyroscope 12 can be corrected by the Allan variance method. In this embodiment, the gyroscope 12 can be a micromachine (MicroElectro Mechanical systems, MEMS) gyroscope, and the noise of the MEMS gyroscope can be divided into 5 independent parts, respectively quantization noise, angle random walk, deviation instability , rate random walk and rate ramp, the size of these five independent noises is represented by quantization noise coefficient Q, angle random walk coefficient N, bias instability coefficient B, rate random walk coefficient K and rate ramp coefficient R. Since the five noises are independent of each other, the following relationship (1) exists:

其中,σ2(τ)为陀螺仪总噪声,即零偏误差,为量化噪声,角度随机游走,为偏差不稳定性,为速率随机游走,为速率斜坡。Among them, σ 2 (τ) is the total noise of the gyroscope, that is, the zero bias error, is the quantization noise, Angular random walk, is bias instability, is a rate random walk, is the rate ramp.

由此,可以定义Allan的均方差为这样,σ(τ)的双对数曲线便可以清楚地描述出陀螺仪的各种误差成分和不同误差项。具体的,图5示出了采用Allan方差法修正陀螺仪零偏误差的方法,如图5所示,该方法可以包括如下的步骤S121~步骤S127,具体为:Thus, Allan's mean square error can be defined as In this way, the log-log curve of σ(τ) can clearly describe the various error components and different error terms of the gyroscope. Specifically, FIG. 5 shows a method for correcting the zero bias error of the gyroscope using the Allan variance method. As shown in FIG. 5, the method may include the following steps S121 to S127, specifically:

步骤S121:采集静态漂移数据。Step S121: collecting static drift data.

在采用Allan方差法进行陀螺仪零偏误差的修正时,采样率取陀螺仪带宽的3~6倍,这样能够保证处理数据的准确性,由于陀螺仪的带宽大约为100Hz,所以将采样率设为500Hz。采集数据时,将陀螺仪安装在具有良好隔振效果的高精度转台上,然后连续采集陀螺仪的静态漂移数据,采集时间可以根据需要确定,比如连续采集1小时。When the Allan variance method is used to correct the zero bias error of the gyroscope, the sampling rate is 3 to 6 times the bandwidth of the gyroscope, which can ensure the accuracy of the processed data. Since the bandwidth of the gyroscope is about 100Hz, the sampling rate is set to 500Hz. When collecting data, install the gyroscope on a high-precision turntable with good vibration isolation effect, and then continuously collect the static drift data of the gyroscope. The collection time can be determined according to the needs, such as continuous collection for 1 hour.

步骤S122:平均化处理静态漂移数据。Step S122: averaging the static drift data.

采集完陀螺仪的静态漂移数据后,为了提高后期运算速度可将采集的数据进行1s平均化处理,剔除预热时间段的数据,比如剔除0.1h的预热数据,从而得到待处理静态漂移数据。After collecting the static drift data of the gyroscope, in order to improve the post-operation speed, the collected data can be averaged for 1 second, and the data in the warm-up period can be eliminated, for example, the warm-up data of 0.1h can be eliminated, so as to obtain the static drift data to be processed .

步骤S123:求均值。Step S123: Calculate the mean value.

得到待处理静态漂移数据后,根据预处理参数对该待处理静态漂移数据进行分组,然后求取各组待处理静态漂移数据的均值,其中的预处理参数可以包括采样周期、标度因子等。After obtaining the static drift data to be processed, group the static drift data to be processed according to the preprocessing parameters, and then calculate the mean value of each group of static drift data to be processed, wherein the preprocessing parameters may include sampling period, scaling factor, etc.

步骤S124:计算Allan均方差。Step S124: Calculate the Allan mean square error.

获得待处理静态漂移数据的均值之后,根据该均值计算Allan方差,然后对Allan方差进行开方运算,得到Allan均方差。After the mean value of the static drift data to be processed is obtained, the Allan variance is calculated according to the mean value, and then the square root operation is performed on the Allan variance to obtain the Allan mean square error.

步骤S125:绘制Allan均方差的双对数曲线。Step S125: Draw the log-log curve of the Allan mean square error.

步骤S126:绘制拟合曲线。Step S126: Draw a fitting curve.

得到Allan均方差的双对数曲线之后,对该双对数曲线进行拟合,绘制出该双对数曲线的拟合曲线。After obtaining the double logarithmic curve of the Allan mean square error, the double logarithmic curve is fitted, and the fitting curve of the double logarithmic curve is drawn.

步骤S127:求陀螺仪的零偏误差。Step S127: Calculate the zero bias error of the gyroscope.

由绘制出的双对数曲线的拟合曲线求取陀螺仪的误差系数,即上述的量化噪声系数Q、角度随机游走系数N、偏差不稳定性系数B、速率随机游走系数K和速率斜坡系数R,根据这些误差系数得到从而根据关系式(1)计算得到陀螺仪的总噪声σ2(τ),即得到陀螺仪的零偏误差。Calculate the error coefficient of the gyroscope from the fitted curve of the double-logarithmic curve drawn, that is, the above-mentioned quantization noise coefficient Q, angle random walk coefficient N, deviation instability coefficient B, rate random walk coefficient K and rate The slope factor R, obtained from these error factors and Therefore, the total noise σ 2 (τ) of the gyroscope is calculated according to the relation (1), that is, the zero bias error of the gyroscope is obtained.

步骤S128:修正陀螺仪的零偏误差。Step S128: Correcting the zero bias error of the gyroscope.

从陀螺仪的测量数据中减去得到的陀螺仪的零偏误差,从而对陀螺仪的零偏误差进行修正,得到修正后的陀螺仪的测量数据。The obtained zero bias error of the gyroscope is subtracted from the measured data of the gyroscope, thereby correcting the zero bias error of the gyroscope, and obtaining the corrected measured data of the gyroscope.

实际应用中,上述对陀螺仪的静态漂移数据的处理也可以在MATLAB平台中进行,通过编写的Allan方差数据处理算法计算得到陀螺仪的零偏误差。In practical applications, the above-mentioned processing of the static drift data of the gyroscope can also be carried out on the MATLAB platform, and the zero bias error of the gyroscope can be obtained by calculating the Allan variance data processing algorithm written.

步骤S13:获取测量数据。Step S13: Obtain measurement data.

获取模块41获取各加速度计的测量数据、各陀螺仪的测量数据、磁力计测量的磁场信息和GPS测量的定位信息。The acquisition module 41 acquires the measurement data of each accelerometer, the measurement data of each gyroscope, the magnetic field information measured by the magnetometer, and the positioning information measured by the GPS.

步骤S14:计算加速度信息和角速度信息。Step S14: Calculate acceleration information and angular velocity information.

获取模块41获取到各加速度计的测量数据、各陀螺仪的测量数据、磁力计的磁场信息以及GPS的定位信息之后,由数据融合模块42根据各加速度计的测量数据之间的置信度,利用冗余信息融合算法对各加速度计的测量数据进行数据融合,得到加速度信息,同时根据各陀螺仪的测量数据之间的置信度,利用冗余信息融合算法对各陀螺仪的测量数据进行数据融合,得到角速度信息。After the acquisition module 41 acquires the measurement data of each accelerometer, the measurement data of each gyroscope, the magnetic field information of the magnetometer and the positioning information of the GPS, the data fusion module 42 uses the confidence degree between the measurement data of each accelerometer to use The redundant information fusion algorithm performs data fusion on the measurement data of each accelerometer to obtain acceleration information, and at the same time, according to the confidence between the measurement data of each gyroscope, the redundant information fusion algorithm is used to perform data fusion on the measurement data of each gyroscope , to get the angular velocity information.

在利用冗余信息融合算法分别对各加速度计的测量数据和各陀螺仪的测量数据进行数据融合时,充分利用模糊集合理论中的隶属度函数范围确定的优点,由此定义了一种模糊型指数置信函数,以量化处理同类型传感器中各个传感器的相互置信度,并通过置信矩阵来度量各传感器输出数据的综合置信度,合理地分配同类型传感器中各个传感器的测量数据在数据融合过程中所占的权重,得到数据融合的最终表达式,实现对多冗余传感器的测量数据的数据融合,从而得到加速度信息和角速度信息。When the redundant information fusion algorithm is used to fuse the measurement data of each accelerometer and the measurement data of each gyroscope, the advantage of determining the range of the membership function in the fuzzy set theory is fully utilized, thus defining a fuzzy type Exponential confidence function to quantify the mutual confidence of each sensor in the same type of sensors, and measure the comprehensive confidence of each sensor output data through the confidence matrix, and reasonably allocate the measurement data of each sensor in the same type of sensors in the data fusion process The final expression of the data fusion is obtained, and the data fusion of the measurement data of the multi-redundant sensors is realized, so as to obtain the acceleration information and the angular velocity information.

具体的,设多个相同的传感器测量同一参数,第i个传感器和第j个传感器测得的数据分别为ci和cj,当ci的真实性越高时,ci被其余数据所信任的程度就越高。所谓ci被cj信任的程度,是指从cj来看ci为真实数据的可能程度,多冗余传感器的测量数据间的这种信任程度被称为置信度。为了对多冗余传感器的测量数据间的信任程度进行进一步地统一量化处理,可以定义一个置信度函数kij,用来表示ci被cj信任的程度。同时,设定一个上限值S,且S>0,当|ci﹣cj|的值超过该上限值S时,可认为这两个数据已经不再相互信任,则可以得到置信度函数kij的表达式为:Specifically, assuming multiple identical sensors measure the same parameter, the data measured by the i-th sensor and the j-th sensor are respectively c i and c j , when the authenticity of c i is higher, c i is replaced by the rest of the data The higher the level of trust. The so-called degree of trust of c i by c j refers to the possibility of c i being real data from c j . The degree of trust between the measurement data of multiple redundant sensors is called confidence. In order to further uniformly quantify the degree of trust between the measurement data of multiple redundant sensors, a confidence function k ij can be defined, which is used to represent the degree of trust of c i by c j . At the same time, set an upper limit S, and S>0, when the value of |c i -c j | exceeds the upper limit S, it can be considered that the two data no longer trust each other, and the confidence can be obtained The expression of the function k ij is:

根据表达式(2),若kij=0,则认为第i个传感器与第j个传感器相互不信任;若kij=1,则认为第i个传感器信任第j个传感器。当一个传感器不被其他传感器信任,或只被少数传感器信任时,该传感器的测量数据在进行数据融合时即被剔除,这样,在对各传感器的测量数据进行数据融合时便可以自动剔除掉异常数据,参与数据融合的测量数据将是可靠的数据。According to the expression (2), if k ij =0, it is considered that the i-th sensor and the j-th sensor do not trust each other; if k ij =1, it is considered that the i-th sensor trusts the j-th sensor. When a sensor is not trusted by other sensors, or is only trusted by a few sensors, the measurement data of the sensor will be eliminated during data fusion, so that abnormalities can be automatically eliminated during data fusion of the measurement data of each sensor Data, measurement data involved in data fusion will be reliable data.

由此,通过冗余信息融合算法对多个传感器进行数据处理,增加了目标特征矢量的维数,使得整个测量系统获得了任何单个传感器所不能获得的独立特征信息,克服了单个传感器的不确定性和局限性,显著提高了系统的性能。Therefore, the redundant information fusion algorithm is used to process the data of multiple sensors, which increases the dimension of the target feature vector, so that the entire measurement system can obtain independent feature information that cannot be obtained by any single sensor, and overcome the uncertainty of a single sensor. and limitations, significantly improving the performance of the system.

在该理论的基础上,图6示出了利用冗余信息融合算法对N个加速度计的测量数据进行数据融合的方法的流程图,如图6所示,可以包括步骤S141~步骤S143,具体为:On the basis of this theory, Fig. 6 shows the flow chart of the method for data fusing the measurement data of N accelerometers using redundant information fusion algorithm, as shown in Fig. 6, may include step S141 ~ step S143, specifically for:

步骤S141:建立置信度矩阵K。Step S141: Establish a confidence matrix K.

N个加速度计同时测量载体的加速度,根据各加速度计的测量数据之间的置信度函数建立置信度矩阵K,K的表达式为:N accelerometers measure the acceleration of the carrier at the same time, and establish a confidence matrix K according to the confidence function between the measurement data of each accelerometer, and the expression of K is:

其中,n=N,kij为各加速度计的测量数据之间的置信度函数,代表第i个加速度计被第j个加速度计信任的程度,i和j为整数。Wherein, n=N, k ij is the confidence function between the measurement data of each accelerometer, which represents the trust degree of the i-th accelerometer by the j-th accelerometer, and i and j are integers.

步骤142:计算权重矩阵E。Step 142: Calculate the weight matrix E.

用Ei表示第i个加速度计的测量数据ai在数据融合过程中所占的权重,Ei的大小反映了其它加速度计的测量数据对第i个加速度计的测量数据ai的综合信任程度。在信任度矩阵K中,置信度函数kij仅仅表示测量数据aj对ai的信任程度,并不能反映所有的N个加速度计的测量数据对ai的信任程度,而ai的真实程度实际上应该由ki1,ki2,…,kin综合来体现,这时,其他加速度计的测量数据对第i个加速度计的测量数据ai的信任程度可表示为:Use E i to represent the weight of the i-th accelerometer's measurement data a i in the data fusion process, and the size of E i reflects the comprehensive trust of other accelerometers' measurement data on the i-th accelerometer's measurement data a i degree. In the trust degree matrix K, the confidence function k ij only indicates the degree of trust of the measurement data a j to a i , and does not reflect the degree of trust of all N accelerometer measurement data to a i , while the true degree of a i In fact, it should be reflected by k i1 , k i2 ,..., kin comprehensively. At this time, the degree of trust of the measurement data of other accelerometers on the measurement data a i of the i-th accelerometer can be expressed as:

Ei=m1ki1+m2ki2+…+mnkin (3)E i =m 1 k i1 +m 2 k i2 +…+m n k in (3)

其中,m1,m2,…,mn为一组非负数,用矩阵的形式可以表示为M=[m1,m2,…,mn]T,同样的,将Ei表示成矩阵的形式为E=[e1,e2,…,en]T,这样,(3)式可以用矩阵的形式表示为:Among them, m 1 , m 2 ,..., m n are a group of non-negative numbers, which can be expressed as M=[m 1 ,m 2 ,...,m n ] T in the form of a matrix. Similarly, E i is expressed as a matrix The form of is E=[e 1 ,e 2 ,…,e n ] T , thus, formula (3) can be expressed in matrix form as:

E=KME=KM

又因为kij≥0,所以置信度矩阵K是一个非负矩阵,并且该对称矩阵K存在最大模特征值λ(λ>0),该特征值对应的特征向量即为M的解,由此便可以通过置信度矩阵K和非负向量M得到权重矩阵E。And because k ij ≥ 0, the confidence matrix K is a non-negative matrix, and the symmetric matrix K has the largest modulus eigenvalue λ(λ>0), and the eigenvector corresponding to the eigenvalue is the solution of M, thus Then the weight matrix E can be obtained through the confidence matrix K and the non-negative vector M.

步骤S143:计算加速度信息。Step S143: Calculate acceleration information.

在得到权重矩阵E=[e1,e2,…,en]T后,根据数据融合公式(4),利用权重矩阵E对加速度计的测量数据进行加权求和,从而得到加速度信息a,其中的数据融合公式(4)为:After obtaining the weight matrix E=[e 1 ,e 2 ,…,e n ] T , according to the data fusion formula (4), use the weight matrix E to weight and sum the measurement data of the accelerometer, so as to obtain the acceleration information a, The data fusion formula (4) is:

同理,利用冗余信息融合算法对N个陀螺仪的测量数据进行数据融合的过程与利用冗余信息融合算法对N个加速度计的测量数据进行数据融合的过程相同,即先根据各陀螺仪的测量数据之间的置信度函数建立置信度矩阵其中,n=N,k′ij为各陀螺仪的测量数据之间的置信度函数,代表第i个陀螺仪被第j个陀螺仪信任的程度,i和j为整数;再根据矩阵乘法公式E′=K′M′计算权重矩阵E′=[e′1,e′2…e′i…,e′n]T,其中的M′=[m′1,m′2…m′j…,m′n]T为置信度矩阵K′的最大模特征值对应的特征向量,且M′为非负向量;然后根据数据融合公式利用权重矩阵E′对陀螺仪的测量数据进行加权求和得到角速度信息ω,其中的ωi为第i个陀螺仪的测量数据,e′i代表ωi在数据融合中所占的权重。Similarly, the process of using redundant information fusion algorithm to fuse the measurement data of N gyroscopes is the same as the process of using redundant information fusion algorithm to fuse the measurement data of N accelerometers. Confidence function between the measured data to build a confidence matrix Among them, n=N, k' ij is the confidence function between the measurement data of each gyroscope, which represents the degree of confidence that the i-th gyroscope is trusted by the j-th gyroscope, and i and j are integers; then according to the matrix multiplication formula E'=K'M' calculates the weight matrix E'=[e' 1 , e' 2 ...e' i ..., e' n ] T , where M'=[m' 1 , m' 2 ...m' j ..., m′ n ] T is the eigenvector corresponding to the maximum modulus eigenvalue of the confidence matrix K′, and M′ is a non-negative vector; then according to the data fusion formula The angular velocity information ω is obtained by weighting and summing the measured data of the gyroscopes using the weight matrix E′, where ω i is the measured data of the i-th gyroscope, and e′ i represents the weight of ω i in data fusion.

步骤S15:计算融合姿态角。Step S15: Calculate the fusion attitude angle.

在得到加速度信息和角速度信息之后,计算模块43以该角速度信息为状态量且以加速度信息和磁力计测得的磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角,具体的,图7示出了计算融合姿态角的过程,如图7所示,该过程可以包括步骤S151~步骤S155,具体为:After obtaining the acceleration information and the angular velocity information, the calculation module 43 uses the angular velocity information as the state quantity and the acceleration information and the magnetic field information measured by the magnetometer as the observation quantity, and uses the extended Kalman filter algorithm to calculate the fused attitude angle. Specifically, Figure 7 shows the process of calculating the fusion attitude angle, as shown in Figure 7, the process may include steps S151 to S155, specifically:

步骤S151:计算初始姿态角。Step S151: Calculate the initial attitude angle.

在利用扩展卡尔曼滤波算法计算融合姿态角之前,必须先在没有滤波方法的情况下得到姿态角,即直接基于加速度计测量的加速度信息和磁力计测量的磁场信息计算出初始姿态角。Before using the extended Kalman filter algorithm to calculate the fusion attitude angle, the attitude angle must be obtained without filtering method, that is, the initial attitude angle can be calculated directly based on the acceleration information measured by the accelerometer and the magnetic field information measured by the magnetometer.

具体的,由三轴加速度计和磁力计直接进行的姿态角解算是在载体坐标系中进行的,因此需要将由加速度计和磁力计计算出的姿态量转换至导航坐标系中;将载体坐标系定义为b,导航坐标系定义为d,则该转换由从b到d的转换矩阵实现,其以X-Y-Z轴的顺序为标准进行旋转,得到的转换矩阵可以表示为:Specifically, the attitude angle solution directly performed by the three-axis accelerometer and magnetometer is carried out in the carrier coordinate system, so it is necessary to convert the attitude calculated by the accelerometer and magnetometer into the navigation coordinate system; the carrier coordinate system Defined as b, the navigation coordinate system is defined as d, then the transformation is realized by the transformation matrix from b to d, which is rotated in the order of the X-Y-Z axis, and the obtained transformation matrix can be expressed as:

其中,θ和ψ分别代表俯仰角、横滚角和偏航角,为得到的转换矩阵。in, θ and ψ represent pitch angle, roll angle and yaw angle respectively, is the obtained transformation matrix.

当载体处于静止或均匀的线性运动状态时,除了重力加速之外,它具有微小的加速度,通过加速度计的加速度信息和磁力计的磁场信息可以计算出该转换矩阵其计算公式为:When the carrier is at rest or in a uniform linear motion state, it has a slight acceleration in addition to the acceleration of gravity, and the conversion matrix can be calculated by the acceleration information of the accelerometer and the magnetic field information of the magnetometer Its calculation formula is:

其中,g为重力加速度,ax、ay和az为加速度计测得的加速度信息,其分别代表加速度计的三轴加速度。Among them, g is the gravitational acceleration, a x , a y and a z are the acceleration information measured by the accelerometer, which respectively represent the three-axis acceleration of the accelerometer.

由公式(6)计算出的结合公式(5)可得到初始俯仰角和初始横滚角θ0的计算公式分别为:Calculated by formula (6) Combined with formula (5), the initial pitch angle can be obtained and the calculation formulas of the initial roll angle θ 0 are:

θ0=arctan(ax/g)θ 0 =arctan(a x /g)

进一步的,根据计算出的θ0和磁力计测得的磁场信息,利用公式一和公式二计算出初始偏航角Ψ0,其中的公式一为:Further, according to the calculated θ 0 and the magnetic field information measured by the magnetometer, use Formula 1 and Formula 2 to calculate the initial yaw angle Ψ 0 , where Formula 1 is:

其中,mx、my和mz为磁力计测得的磁场信息,分别代表磁力计的三轴的磁场值。Among them, m x , my y and m z are the magnetic field information measured by the magnetometer, respectively representing the magnetic field values of the three axes of the magnetometer.

公式二为:Ψ0=arctan(Hy/Hx)。Formula 2 is: Ψ 0 =arctan(H y /H x ).

由此便可以计算出初始姿态角θ0和Ψ0From this, the initial attitude angle can be calculated θ 0 and Ψ 0 .

步骤S152:计算初始姿态四元素。Step S152: Calculate the four elements of the initial pose.

根据计算出的初始姿态角θ0和Ψ0,利用姿态角与四元素的对应关系计算得到初始时刻的姿态四元素q,其中,定义q=q0+q1i+q2j+q3k,q0、q1、q2和q3代表四元素。According to the calculated initial attitude angle θ 0 and Ψ 0 , use the correspondence between the attitude angle and the four elements to calculate the four elements of attitude q at the initial moment, where, define q=q 0 +q 1 i+q 2 j+q 3 k, q 0 , q 1 , q 2 and q 3 represent four elements.

在姿态角的解算中,为了避免欧拉角奇异的问题,通常使用四元数来完成姿态角的解算,根据单位旋转四元素q=q0+q1i+q2j+q3k,从b到d的转换矩阵可以表示为:In the calculation of the attitude angle, in order to avoid the problem of the singularity of the Euler angle, the quaternion is usually used to complete the calculation of the attitude angle, and the four elements are rotated according to the unit q=q 0 +q 1 i+q 2 j+q 3 k, the transformation matrix from b to d can be expressed as:

将该式与公式(5)进行对应便可得到姿态角与四元素的对应关系,从而利用该对应关系计算得到四元素q0、q1、q2和q3,进而得到初始时刻的姿态四元素q。Corresponding the formula with formula (5) can get the corresponding relationship between the attitude angle and the four elements, and then use the corresponding relationship to calculate the four elements q 0 , q 1 , q 2 and q 3 , and then get the attitude angle at the initial moment. element q.

步骤S153:更新姿态四元素。Step S153: Update the four elements of posture.

在利用姿态四元素进行姿态角的解算时,需要对姿态四元素进行不断更新,其可通过基于陀螺仪数据的四元数微分方程进行更新。具体的,可先根据陀螺仪测得的角速度信息建立角速度矩阵W,W的表达式为:When using the four elements of attitude to calculate the attitude angle, the four elements of attitude need to be updated continuously, which can be updated through the quaternion differential equation based on the gyroscope data. Specifically, the angular velocity matrix W can be established based on the angular velocity information measured by the gyroscope, and the expression of W is:

其中,ωx、ωy和ωz为陀螺仪的角速度信息,分别代表陀螺仪的三轴的角速度。Among them, ω x , ω y and ω z are the angular velocity information of the gyroscope, respectively representing the angular velocity of the three axes of the gyroscope.

然后,利用更新方程对姿态四元素进行更新,得到更新后的姿态四元素q′。Then, using the update equation The four elements of attitude are updated to obtain the updated four elements of attitude q′.

步骤S154:建立观测方程。Step S154: Establish an observation equation.

以不断更新的姿态四元素q′作为状态变量X,且以冗余加速度计测得的加速度信息和磁力计测得的磁场信息为观测量Z,建立观测方程,建立的观测方程为:Taking the continuously updated attitude four-element q′ as the state variable X, and taking the acceleration information measured by the redundant accelerometer and the magnetic field information measured by the magnetometer as the observation value Z, the observation equation is established, and the established observation equation is:

Z=H(X)+VZ=H(X)+V

其中,观测量Z=[ax ay az Ψ]Tg为重力加速度,ax、ay和az为加速度信息,其分别代表加速度计的三轴加速度,Ψ为根据磁场信息计算出的航向角,V为测量噪声。Among them, the observed quantity Z=[a x a y a z Ψ] T , g is the acceleration of gravity, a x , a y and a z are acceleration information, which respectively represent the three-axis acceleration of the accelerometer, Ψ is the heading angle calculated according to the magnetic field information, and V is the measurement noise.

对该观测方程进行离散化处理,得到离散化的观测方程为:The observation equation is discretized, and the discretized observation equation is obtained as:

Z(k)=H(k)X(k)+V(k)Z(k)=H(k)X(k)+V(k)

其中,X(k)为k时刻的状态值,V(k)为k时刻的测量噪声,为H(X)的雅可比矩阵,表示k时刻的H(X(k))对X(k)求偏导。Among them, X(k) is the state value at time k, V(k) is the measurement noise at time k, is the Jacobian matrix of H(X), which represents the partial derivative of H(X(k)) at time k with respect to X(k).

步骤S155:计算融合姿态角。Step S155: Calculate the fusion attitude angle.

根据状态变量X和离散化的观测方程Z(k),利用扩展卡尔曼滤波递推方程计算得到融合姿态角,具体的,图8示出了利用扩展卡尔曼滤波递推方程计算融合姿态角的流程图,如图8所示,可以包括如下步骤:According to the state variable X and the discretized observation equation Z(k), the fused attitude angle is calculated by using the extended Kalman filter recursive equation. Specifically, Fig. 8 shows the calculation of the fused attitude angle by using the extended Kalman filter recursive equation The flow chart, as shown in Figure 8, may include the following steps:

步骤SA1:状态一步预测。Step SA1: State one-step prediction.

根据公式进行状态预测,得到k时刻的状态预测值其中,F(k-1)为k-1时刻的状态转移矩阵,X(k-1)为k-1时刻的状态值,U(k-1)为k-1时刻的状态噪声。其中,k时刻的状态转移矩阵可以表示为:According to the formula Perform state prediction to obtain the state prediction value at time k Among them, F(k-1) is the state transition matrix at time k-1, X(k-1) is the state value at time k-1, and U(k-1) is the state noise at time k-1. Among them, the state transition matrix at time k can be expressed as:

其中,ωx(k)、ωy(k)和ωz(k)为k时刻陀螺仪的角速度信息。Among them, ω x (k), ω y (k) and ω z (k) are the angular velocity information of the gyroscope at time k.

步骤SA2:误差协方差预测。Step SA2: Error covariance prediction.

根据公式进行误差协方差的估计,得到误差协方差矩阵的预测值其中,P(k-1)为k-1时刻的误差协方差矩阵,FT(k-1)为F(k-1)的转置,Q(k-1)为k-1时刻的系统噪声协方差矩阵。According to the formula Estimate the error covariance and get the predicted value of the error covariance matrix Among them, P(k-1) is the error covariance matrix at time k-1, F T (k-1) is the transpose of F(k-1), Q(k-1) is the system at time k-1 Noise covariance matrix.

步骤SA3:计算滤波增益矩阵。Step SA3: Calculate the filter gain matrix.

根据公式计算滤波增益矩阵K(k),其中,HT(k)为H(k)的转置,R(k)为k时刻的测量噪声协方差。According to the formula Calculate the filter gain matrix K(k), where H T (k) is the transpose of H(k), and R(k) is the measurement noise covariance at time k.

步骤SA4:计算融合姿态角。Step SA4: Calculate the fused attitude angle.

先根据公式计算k时刻的状态值X(k),得到k时刻的姿态四元素,然后根据姿态四元素与姿态角的对应关系计算得到k时刻的融合姿态角。first according to the formula Calculate the state value X(k) at time k to obtain the four elements of attitude at time k, and then calculate the fusion attitude angle at time k according to the correspondence between the four elements of attitude and the attitude angle.

步骤SA5:更新误差协方差。Step SA5: Update the error covariance.

根据公式对误差协方差进行更新,得到k时刻的误差协方差矩阵,以用于下一时刻的更新计算,其中A=I-K(k)H(k),I为单位矩阵。According to the formula The error covariance is updated to obtain the error covariance matrix at time k, which is used for update calculation at the next time, where A=IK(k)H(k), and I is the identity matrix.

如此便可在动态条件下不断对融合姿态角进行更新,得到动态条件下的融合姿态角。In this way, the fused attitude angle can be continuously updated under dynamic conditions to obtain the fused attitude angle under dynamic conditions.

步骤S16:融合姿态角辅助计算位置信息。Step S16: Fuse the attitude angle to assist in calculating the position information.

计算模块43根据计算出的融合姿态角、加速度信息、角速度信息和GPS测得的定位信息,利用扩展卡尔曼滤波算法计算出位置信息。具体的,图9示出了计算位置信息的过程,如图9所示,该过程可以包括如下的步骤S161~步骤S165:The calculation module 43 calculates the position information by using the extended Kalman filter algorithm according to the calculated fusion attitude angle, acceleration information, angular velocity information and positioning information measured by GPS. Specifically, FIG. 9 shows the process of calculating location information. As shown in FIG. 9, the process may include the following steps S161 to S165:

步骤S161:确定状态变量。Step S161: Determine state variables.

计算模块43首先从加速度信息中获取到三个轴向的速度分量υx、υy和υz,然后以该速度分量、GPS的定位信息以及融合传感器在三个轴向的参数误差建立状态变量X′,其中的分别代表经度、纬度和高度,建立的状态变量为 The calculation module 43 first obtains the velocity components ν x , ν y and ν z of the three axes from the acceleration information, and then uses the velocity components, GPS positioning information and And the parameter error of the fusion sensor in the three axes and Create a state variable X′, where and Represent longitude, latitude and altitude respectively, and the established state variables are

步骤S162:建立状态转移矩阵。Step S162: Establish a state transition matrix.

计算模块43在获取到三个轴向的速度分量后,还建立状态转移矩阵其中的FN为包含速度分量、融合姿态角和定位信息的系统矩阵,FS为单位矩阵,FM为由陀螺仪和加速度计的输出频率组成的矩阵。After the calculation module 43 obtains the velocity components of the three axes, it also establishes the state transition matrix Among them, F N is a system matrix containing velocity components, fused attitude angles and positioning information, F S is an identity matrix, and F M is a matrix composed of the output frequencies of gyroscopes and accelerometers.

步骤S163:计算载体定位信息。Step S163: Calculate carrier location information.

计算模块43根据数据融合后得到的加速度信息和角速度信息计算出载体定位信息。具体的,计算模块43对加速度信息进行积分,可得到载体运动距离,同时对角速度信息进行二重积分,可以得到载体运动方向,这样,计算模块43便可根据载体运动距离和载体运动方向获得载体定位信息Lt、λt和ht,即得到载体的经度、纬度和高度。The calculation module 43 calculates carrier positioning information according to the acceleration information and angular velocity information obtained after data fusion. Specifically, the computing module 43 integrates the acceleration information to obtain the moving distance of the carrier, and at the same time performs double integration on the angular velocity information to obtain the moving direction of the carrier. In this way, the computing module 43 can obtain the carrier moving distance and the moving direction of the carrier The positioning information L t , λ t and h t are the longitude, latitude and height of the carrier.

步骤S164:建立观测方程。Step S164: Establish an observation equation.

在计算出载体定位信息Lt、λt和ht后,计算模块43首先根据计算出的载体定位信息和GPS测得的定位信息利用公式建立位置观测方程Z′p(t),其中,RM为椭球子午圈曲率半径,RN为卯酉子午圈曲率半径;接着,通过GPS获取载体的速度信息υGx、υGy和υGz,再根据速度分量υx、υy和υz与载体的速度信息υGx、υGy和υGz之间的差值建立速度观测方程Z′v(t),建立的速度观测方程Z′v(t)为 After calculating the carrier positioning information L t , λ t and h t , the calculation module 43 first calculates the carrier positioning information and the positioning information measured by GPS and use the formula Establish the position observation equation Z′ p (t), where RM is the radius of curvature of the meridian of the ellipsoid, and R N is the radius of curvature of the meridian of the ellipsoid; then, the velocity information υ Gx , υ Gy and υ Gz of the carrier are acquired through GPS , and then establish the velocity observation equation Z′ v (t) according to the difference between the velocity components υ x , υ y and υ z and the carrier’s velocity information υ Gx , υ Gy and υ Gz , the established velocity observation equation Z′ v (t) for

在建立好位置观测方程Z′p(t)和速度观测方程Z′v(t)之后,将Z′p(t)和Z′v(t)结合在一起可得到总的观测方程Z′(t),具体为:After establishing the position observation equation Z′ p (t) and velocity observation equation Z′ v (t), combining Z′ p (t) and Z′ v (t) together can obtain the total observation equation Z′( t), specifically:

其中,X′(t)为状态量X′对应的状态方程,V′(t)为测量噪声。Among them, X'(t) is the state equation corresponding to the state quantity X', and V'(t) is the measurement noise.

对观测方程Z′(t)进行离散化处理,得到离散化的观测方程Z′(k),Z′(k)可表示为:The observation equation Z'(t) is discretized to obtain the discretized observation equation Z'(k), and Z'(k) can be expressed as:

Z′(k)=H′(k)X′(k)+V′(k)Z'(k)=H'(k)X'(k)+V'(k)

其中,H′(k)为雅可比矩阵,X′(k)和V′(k)分别为k时刻的状态值和测量噪声。Among them, H'(k) is the Jacobian matrix, X'(k) and V'(k) are the state value and measurement noise at time k, respectively.

步骤S165:计算位置信息。Step S165: Calculate location information.

根据状态变量X′、状态转移矩阵F′和离散化的观测方程Z′(k),利用扩展卡尔曼滤波递推方程计算得到位置信息。具体的,以X′为状态变量、F′为状态转移矩阵且Z′(k)为离散化的观测方程,在利用扩展卡尔曼滤波递推方程计算融合姿态角时,其过程与利用扩展卡尔曼滤波递推方程计算得到融合姿态角的过程相同,可参见步骤SA1~步骤SA5,这里不再赘述。According to the state variable X', the state transition matrix F' and the discretized observation equation Z'(k), the position information is calculated by using the extended Kalman filter recurrence equation. Specifically, with X' as the state variable, F' as the state transition matrix, and Z'(k) as the discretized observation equation, when using the extended Kalman filter recurrence equation to calculate the fusion attitude angle, the process is the same as using the extended Kalman filter The process of calculating the fused attitude angle by the Mann filtering recursive equation is the same, please refer to step SA1 to step SA5, which will not be repeated here.

如此便可在动态条件下不断对位置信息进行更新,得到动态条件下的位置信息。而且,在计算位置信息的过程中,以计算出的高精度与高稳定性的融合姿态角对GPS测得的定位信息进行了补正,因此,最终得到的位置信息也具有较高的精度和较高的稳定性。In this way, the location information can be continuously updated under dynamic conditions, and the location information under dynamic conditions can be obtained. Moreover, in the process of calculating position information, the position information measured by GPS is corrected with the calculated high-precision and high-stability fused attitude angle. Therefore, the final position information also has high precision and relatively high high stability.

本发明实施例提供的姿态角解算与定位的方法及其融合传感器,采用了多个IMU传感器进行加速度和角速度的测量,增加了目标特征矢量的维数,使得整个测量系统获得了任何单个传感器所不能获得的独立特征信息。进一步的,在姿态角的解算过程中,首先对磁力计和各加速度计进行误差补偿,并对各陀螺仪进行零偏修正,以避免磁力计、加速度计和陀螺仪自身误差对测量数据的影响;再通过冗余信息融合算法对多个IMU传感器的测量数据进行协调、互补和组合,融合得到最终的加速度信息和角速度信息,自动剔除了测量中的异常数据,克服了单个传感器的不确定性和局限性,极大提高了姿态角解算的精度和稳定性;然后利用扩展卡尔曼滤波算法融合该加速度信息、角速度信息以及磁力计获得的磁场信息,摒弃了传统互补滤波融合算法与梯度下降法,计算的复杂度相对较低,在静态和动态条件下都能获得较高精度的姿态角,大幅降低了姿态角的误差;最后由获得的融合姿态角辅助GPS的定位信息计算得到最终的位置信息,对GPS的定位信息进行了补偿,使得得到的位置信息更加精确,稳定性更好。因此,本发明实施例提供的姿态角解算与定位的方法及其融合传感器在姿态角的解算过程中能够获得高精度与高稳定性的姿态角信息和位置信息,提高了姿态角解算与定位的稳定性和可靠性。The attitude angle calculation and positioning method and its fusion sensor provided by the embodiment of the present invention use multiple IMU sensors to measure acceleration and angular velocity, which increases the dimension of the target feature vector, so that the entire measurement system can obtain any single sensor Independent characteristic information that cannot be obtained. Furthermore, in the process of calculating the attitude angle, firstly, error compensation is performed on the magnetometer and each accelerometer, and the zero bias correction is performed on each gyroscope, so as to avoid the influence of the errors of the magnetometer, accelerometer, and gyroscope on the measurement data. Influence; and then coordinate, complement and combine the measurement data of multiple IMU sensors through the redundant information fusion algorithm to obtain the final acceleration information and angular velocity information, automatically eliminate the abnormal data in the measurement, and overcome the uncertainty of a single sensor and limitations, greatly improving the accuracy and stability of the attitude angle calculation; then use the extended Kalman filter algorithm to fuse the acceleration information, angular velocity information and magnetic field information obtained by the magnetometer, abandoning the traditional complementary filter fusion algorithm and gradient Descent method, the calculation complexity is relatively low, and the attitude angle with high precision can be obtained under static and dynamic conditions, which greatly reduces the error of the attitude angle. The position information of the GPS is compensated for the positioning information of the GPS, so that the obtained position information is more accurate and more stable. Therefore, the method of attitude angle calculation and positioning provided by the embodiment of the present invention and its fusion sensor can obtain high-precision and high-stability attitude angle information and position information during the attitude angle calculation process, which improves the attitude angle calculation process. and positioning stability and reliability.

本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。Those skilled in the art can understand that all or part of the functions of the various methods in the foregoing implementation manners can be realized by means of hardware, or by means of computer programs. When all or part of the functions in the above embodiments are implemented by means of a computer program, the program can be stored in a computer-readable storage medium, and the storage medium can include: read-only memory, random access memory, magnetic disk, optical disk, hard disk, etc., through The computer executes the program to realize the above-mentioned functions. For example, the program is stored in the memory of the device, and when the processor executes the program in the memory, all or part of the above-mentioned functions can be realized. In addition, when all or part of the functions in the above embodiments are realized by means of a computer program, the program can also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk, or a mobile hard disk, and saved by downloading or copying. To the memory of the local device, or to update the version of the system of the local device, when the processor executes the program in the memory, all or part of the functions in the above embodiments can be realized.

以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。The above uses specific examples to illustrate the present invention, which is only used to help understand the present invention, and is not intended to limit the present invention. For those skilled in the technical field to which the present invention belongs, some simple deduction, deformation or replacement can also be made according to the idea of the present invention.

Claims (10)

1.一种姿态角解算与定位的方法,其特征在于,应用于姿态角解算与定位的融合传感器中,所述融合传感器包含至少两个IMU传感器、一个磁力计和GPS,一个所述IMU传感器包含一个加速度计和一个陀螺仪,所述方法包括:1. A method for attitude angle calculation and positioning, characterized in that, it is applied in the fusion sensor of attitude angle calculation and positioning, and the fusion sensor includes at least two IMU sensors, a magnetometer and GPS, and a described The IMU sensor contains an accelerometer and a gyroscope, and the method includes: 获取各加速度计和各陀螺仪的测量数据以及磁力计的磁场信息和GPS的定位信息;Obtain the measurement data of each accelerometer and each gyroscope, as well as the magnetic field information of the magnetometer and the positioning information of GPS; 分别根据各加速度计的测量数据之间的置信度和各陀螺仪的测量数据之间的置信度,利用冗余信息融合算法分别对各加速度计的测量数据和各陀螺仪的测量数据进行数据融合,得到加速度信息和角速度信息;According to the confidence degree between the measurement data of each accelerometer and the confidence degree between the measurement data of each gyroscope, the measurement data of each accelerometer and the measurement data of each gyroscope are respectively fused by using the redundant information fusion algorithm , get acceleration information and angular velocity information; 以所述角速度信息为状态量且所述加速度信息和所述磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角;Using the angular velocity information as a state quantity and the acceleration information and the magnetic field information as observation quantities, calculate a fusion attitude angle by using an extended Kalman filter algorithm; 根据所述加速度信息、所述角速度信息、所述融合姿态角和所述定位信息,利用扩展卡尔曼滤波算法计算出位置信息。According to the acceleration information, the angular velocity information, the fused attitude angle and the positioning information, the position information is calculated by using an extended Kalman filter algorithm. 2.如权利要求1所述的方法,其特征在于,所述在获取各加速度计和各陀螺仪的测量数据以及磁力计的磁场信息和GPS的定位信息之前,所述方法还包括:2. The method according to claim 1, wherein, before obtaining the measurement data of each accelerometer and each gyroscope and the magnetic field information of the magnetometer and the positioning information of the GPS, the method also includes: 对磁力计和加速度计进行误差补偿,并对陀螺仪进行零偏修正。Error compensation is performed on the magnetometer and accelerometer, and zero bias correction is performed on the gyroscope. 3.如权利要求2所述的方法,其特征在于,所述对陀螺仪进行零偏修正,包括:3. The method according to claim 2, wherein said correcting the zero bias of the gyroscope comprises: 采集陀螺仪的静态漂移数据;Collect the static drift data of the gyroscope; 对所述静态漂移数据进行1s平均化处理,剔除预热时间段的数据,得到待处理静态漂移数据;Performing 1s averaging processing on the static drift data, removing the data in the warm-up time period, to obtain the static drift data to be processed; 根据预处理参数对所述待处理静态漂移数据进行分组,求取各组待处理静态漂移数据的均值,所述预处理参数包括采样周期和标度因子;The static drift data to be processed is grouped according to preprocessing parameters, and the mean value of each group of static drift data to be processed is calculated, and the preprocessing parameters include a sampling period and a scaling factor; 根据所述均值计算Allan方差;Calculation of the Allan variance from the mean; 根据所述Allan方差计算Allan均方差;Calculate the Allan mean square error according to the Allan variance; 绘制所述Allan均方差的双对数曲线;Draw the log-log curve of the Allan mean square error; 对所述双对数曲线进行拟合,得到拟合曲线;Fitting the logarithmic curve to obtain a fitted curve; 根据所述拟合曲线求取陀螺仪的误差系数,所述误差系数包括量化噪声系数、角度随机游走系数、偏差不稳定性系数、速率随机游走系数和速率斜坡系数;Calculate the error coefficient of the gyroscope according to the fitting curve, the error coefficient includes quantization noise coefficient, angle random walk coefficient, deviation instability coefficient, rate random walk coefficient and rate slope coefficient; 根据所述陀螺仪的误差系数计算陀螺仪的总噪声,得到陀螺仪的零偏误差;Calculate the total noise of the gyroscope according to the error coefficient of the gyroscope, and obtain the zero bias error of the gyroscope; 从陀螺仪的测量数据中减去所述零偏误差以修正陀螺仪的零偏误差。The zero bias error is subtracted from the measurement data of the gyroscope to correct the zero bias error of the gyroscope. 4.如权利要求1所述的方法,其特征在于,所述冗余信息融合算法包括:4. The method according to claim 1, wherein the redundant information fusion algorithm comprises: 根据矩阵乘法公式E=KM计算权重矩阵E=[e1,e2…ei…,en]T,其中,所述为根据各测量数据之间的置信度函数建立的置信度矩阵,kij为各测量数据之间的置信度函数,代表第i个测量数据被第j个测量数据信任的程度,n代表测量数据的个数,i和j为整数,所述M=[m1,m2…mj…,mn]T为置信度矩阵K的最大模特征值对应的特征向量,且M为非负向量;Calculate the weight matrix E=[e 1 , e 2 ...e i ..., e n ] T according to the matrix multiplication formula E=KM, wherein, the is the confidence matrix established according to the confidence function between the measurement data, kij is the confidence function between the measurement data, which represents the degree of trust of the i-th measurement data by the j-th measurement data, and n represents the measurement data The number of , i and j are integers, the M=[m 1 , m 2 ... m j ..., m n ] T is the eigenvector corresponding to the largest modulus eigenvalue of the confidence matrix K, and M is a non-negative vector ; 根据数据融合公式,利用权重矩阵E对测量数据进行加权求和,得到融合数据a;According to the data fusion formula, the measurement data is weighted and summed using the weight matrix E to obtain the fusion data a; 所述数据融合公式为:The data fusion formula is: 其中,ai为第i个测量数据,ei代表ai在数据融合中所占的权重。Among them, a i is the i-th measurement data, and e i represents the weight of a i in data fusion. 5.如权利要求1所述的方法,其特征在于,所述以所述角速度信息为状态量且所述加速度信息和所述磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角,包括:5. The method according to claim 1, wherein the angular velocity information is used as a state quantity and the acceleration information and the magnetic field information are observed quantities, and the extended Kalman filter algorithm is used to calculate the fusion attitude angle ,include: 根据所述加速度信息和所述磁场信息计算出初始姿态角;calculating an initial attitude angle according to the acceleration information and the magnetic field information; 根据所述初始姿态角,利用姿态角与四元素的对应关系计算得到初始时刻的姿态四元素q,其中,q=q0+q1i+q2j+q3k,q0、q1、q2和q3代表四元素;According to the initial attitude angle, the four element q of the attitude at the initial moment is calculated by using the correspondence between the attitude angle and the four elements, wherein, q=q 0 +q 1 i+q 2 j+q 3 k, q 0 , q 1 , q 2 and q 3 represent four elements; 根据所述角速度信息建立角速度矩阵W;Establishing an angular velocity matrix W according to the angular velocity information; 根据所述角速度矩阵W,利用更新方程对姿态四元素进行更新,得到更新后的姿态四元素q′;According to the angular velocity matrix W, using the update equation Update the four elements of attitude to obtain the updated four elements of attitude q′; 以q′作为状态变量X,且加速度信息和磁场信息为观测量Z,建立观测方程;Taking q' as the state variable X, and the acceleration information and magnetic field information as the observation quantity Z, establish the observation equation; 对所述观测方程进行离散化处理,得到离散化的观测方程Z(k);Discretize the observation equation to obtain a discretized observation equation Z(k); 根据所述X和Z(k),利用扩展卡尔曼滤波递推方程计算得到融合姿态角;According to described X and Z (k), utilize extended Kalman filtering recursive equation to calculate and obtain fusion attitude angle; 所述角速度矩阵W为其中,ωx、ωy和ωz为所述角速度信息,分别代表陀螺仪的三轴的角速度;The angular velocity matrix W is Wherein, ω x , ω y and ω z are the angular velocity information, representing the angular velocity of the three axes of the gyroscope respectively; 所述观测方程为Z=H(X)+V,其中,观测量Z=[ax ay az Ψ]Tg为重力加速度,ax、ay和az为所述加速度信息,其分别代表加速度计的三轴加速度,Ψ为根据所述磁场信息计算出的航向角,V为测量噪声;The observation equation is Z=H(X)+V, wherein the observation quantity Z=[a x a y a z Ψ] T , g is the acceleration of gravity, a x , a y and a z are the acceleration information, which represent the three-axis acceleration of the accelerometer respectively, Ψ is the heading angle calculated according to the magnetic field information, and V is the measurement noise; 所述离散化的观测方程为Z(k)=H(k)X(k)+V(k),其中,X(k)为k时刻的状态值,V(k)为k时刻的测量噪声,为H(X)的雅可比矩阵,表示k时刻的H(X(k))对X(k)求偏导。The discretized observation equation is Z(k)=H(k)X(k)+V(k), where X(k) is the state value at time k, and V(k) is the measurement noise at time k , is the Jacobian matrix of H(X), which represents the partial derivative of H(X(k)) at time k with respect to X(k). 6.如权利要求5所述的方法,其特征在于,所述根据所述加速度信息和所述磁场信息计算出初始姿态角,包括:6. The method according to claim 5, wherein said calculating an initial attitude angle according to said acceleration information and said magnetic field information comprises: 根据和θ0=arctan(ax/g)分别计算出初始俯仰角和初始横滚角θ0according to and θ 0 =arctan(a x /g) respectively calculate the initial pitch angle and initial roll angle θ 0 ; 根据所述θ0和磁场信息,利用公式一和公式二计算出初始偏航角Ψ0according to the θ 0 and magnetic field information, using formula 1 and formula 2 to calculate the initial yaw angle Ψ 0 ; 所述公式一为:其中,mx、my和mz为所述磁场信息,分别代表磁力计的三轴的磁场值;The first formula is: Wherein, m x , m y and m z are the magnetic field information, representing the magnetic field values of the three axes of the magnetometer respectively; 所述公式二为:Ψ0=arctan(Hy/Hx)。The second formula is: Ψ 0 =arctan(H y /H x ). 7.如权利要求5所述的方法,其特征在于,所述根据所述X和所述Z(k),利用扩展卡尔曼滤波递推方程计算得到融合姿态角,包括:7. method as claimed in claim 5, is characterized in that, described according to described X and described Z (k), utilizes Extended Kalman filter recursive equation to calculate and obtain fusion attitude angle, comprising: 根据公式进行状态预测,得到k时刻的状态预测值其中,F(k-1)为k-1时刻的状态转移矩阵,X(k-1)为k-1时刻的状态值,U(k-1)为k-1时刻的状态噪声;According to the formula Perform state prediction to obtain the state prediction value at time k Among them, F(k-1) is the state transition matrix at k-1 time, X(k-1) is the state value at k-1 time, U(k-1) is the state noise at k-1 time; 根据公式进行误差协方差的估计,得到误差协方差矩阵的预测值其中,P(k-1)为k-1时刻的误差协方差矩阵,FT(k-1)为F(k-1)的转置,Q(k-1)为k-1时刻的系统噪声协方差矩阵;According to the formula Estimate the error covariance and get the predicted value of the error covariance matrix Among them, P(k-1) is the error covariance matrix at time k-1, F T (k-1) is the transpose of F(k-1), Q(k-1) is the system at time k-1 noise covariance matrix; 根据公式计算滤波增益矩阵K(k),其中,HT(k)为H(k)的转置,R(k)为k时刻的测量噪声协方差;According to the formula Calculate the filter gain matrix K(k), where HT (k) is the transpose of H(k), and R(k) is the measurement noise covariance at time k; 根据公式计算k时刻的状态值X(k),得到k时刻的姿态四元素;According to the formula Calculate the state value X(k) at time k to obtain the four elements of attitude at time k; 根据姿态四元素与姿态角的对应关系计算得到k时刻的融合姿态角;Calculate the fusion attitude angle at time k according to the corresponding relationship between the attitude four elements and the attitude angle; 根据公式对误差协方差进行更新,得到k时刻的误差协方差矩阵,其中A=I-K(k)H(k),I为单位矩阵。According to the formula The error covariance is updated to obtain the error covariance matrix at time k, where A=IK(k)H(k), and I is the identity matrix. 8.如权利要求1所述的方法,其特征在于,所述根据所述加速度信息、所述角速度信息、所述融合姿态角和所述定位信息,利用扩展卡尔曼滤波算法计算得到位置信息,包括:8. The method according to claim 1, wherein, according to the acceleration information, the angular velocity information, the fusion attitude angle and the positioning information, the position information is calculated by using an extended Kalman filter algorithm, include: 获取所述加速度信息中的速度分量,以所述速度分量、所述定位信息和融合传感器的参数误差作为状态变量X′;Acquiring the velocity component in the acceleration information, using the velocity component, the positioning information, and the parameter error of the fusion sensor as a state variable X'; 根据公式一建立状态转移矩阵F′;Establish the state transition matrix F' according to formula 1; 根据所述加速度信息和所述角速度信息计算出载体定位信息;calculating carrier positioning information according to the acceleration information and the angular velocity information; 根据所述载体定位信息和GPS的定位信息,利用公式二建立位置观测方程Z′p(t);According to the location information of described carrier positioning information and GPS, utilize formula two to establish position observation equation Z' p (t); 通过GPS获取载体的速度信息,并根据所述速度分量和所述速度信息的差值建立速度观测方程Z′v(t);Acquire the speed information of the carrier by GPS, and establish a speed observation equation Z' v (t) according to the difference between the speed component and the speed information; 根据所述Z′p(t)和所述Z′v(t),利用公式三得到观测方程Z′(t);According to said Z'p (t) and said Z'v (t), utilize formula three to obtain observation equation Z'(t); 对所述Z′(t)进行离散化处理,得到离散化的观测方程Z′(k);Discretizing the Z'(t) to obtain a discretized observation equation Z'(k); 根据所述状态变量X′、所述状态转移矩阵F′和所述离散化的观测方程Z′(k),利用扩展卡尔曼滤波递推方程计算得到位置信息;According to the state variable X', the state transition matrix F' and the discretized observation equation Z'(k), the position information is calculated by using the extended Kalman filter recurrence equation; 所述其中,υx、υy和υz为所述速度分量,为所述定位信息,分别代表经度、纬度和高度,▽x、▽y和▽z为所述融合传感器的参数误差;said Wherein, υ x , υ y and υ z are the velocity components, and For the positioning information, respectively represent longitude, latitude and height, ▽ x , ▽ y and ▽ z are the parameter errors of the fusion sensor; 所述公式一为:其中,FN为包含所述速度分量、所述融合姿态角和所述定位信息的系统矩阵,所述FS为单位矩阵,所述FM为由陀螺仪和加速度计的输出频率组成的矩阵;The first formula is: Wherein, F N is a system matrix including the velocity component, the fusion attitude angle and the positioning information, the F S is an identity matrix, and the F M is a matrix composed of the output frequencies of the gyroscope and the accelerometer ; 所述公式二为:其中,Lt、λt和ht为所述载体定位信息,RM为椭球子午圈曲率半径,RN为卯酉子午圈曲率半径,L为载体初始纬度;The second formula is: Wherein, L t , λ t and h t are the positioning information of the carrier, RM is the radius of curvature of the meridian of the ellipsoid, R N is the radius of curvature of the meridian of the ellipse, and L is the initial latitude of the carrier; 所述公式三为:其中,V′(t)为测量噪声;The third formula is: Among them, V'(t) is the measurement noise; 所述Z′(k)=H′(k)X′(k)+V′(k),其中,H′(k)为雅可比矩阵,X′(k)和V′(k)分别为k时刻的状态值和测量噪声。Said Z'(k)=H'(k)X'(k)+V'(k), wherein, H'(k) is a Jacobian matrix, X'(k) and V'(k) are respectively State value and measurement noise at time k. 9.如权利要求8所述的方法,其特征在于,所述根据所述加速度信息和所述角速度信息计算出载体定位信息,包括:9. The method according to claim 8, wherein said calculating carrier positioning information according to said acceleration information and said angular velocity information comprises: 对所述加速度信息进行积分,得到载体运动距离;Integrating the acceleration information to obtain the moving distance of the carrier; 对所述角速度信息进行二重积分,得到载体运动方向;Carrying out double integration on the angular velocity information to obtain the moving direction of the carrier; 根据所述载体运动距离和所述载体运动方向获得载体定位信息。Carrier positioning information is obtained according to the moving distance of the carrier and the moving direction of the carrier. 10.一种姿态角解算与定位的融合传感器,其特征在于,包括:至少两个IMU传感器、一个磁力计、GPS和数据处理器,一个IMU传感器包含一个加速度计和一个陀螺仪,所述至少两个IMU传感器采用双面反轴型方式或单轴多传感器方式连接;10. A fusion sensor for attitude angle calculation and positioning, characterized in that it includes: at least two IMU sensors, a magnetometer, GPS and a data processor, an IMU sensor includes an accelerometer and a gyroscope, the At least two IMU sensors are connected by a double-sided anti-axis method or a single-axis multi-sensor method; 所述双面反轴型方式为2f个IMU传感器被分为两组,分别安装于平板两侧,且两侧的IMU传感器一轴反向、另外两轴同向,所述f为大于等于1的整数;The double-sided anti-axis type method is that 2f IMU sensors are divided into two groups, which are respectively installed on both sides of the plate, and one axis of the IMU sensors on both sides is reversed, and the other two axes are in the same direction, and the f is greater than or equal to 1 an integer of 所述单轴多传感器方式为各正交轴上分别安装多个IMU传感器,且各IMU传感器的各轴向相同;The single-axis multi-sensor method is to install a plurality of IMU sensors on each orthogonal axis, and each axis of each IMU sensor is the same; 所述加速度计用于测量载体的加速度;The accelerometer is used to measure the acceleration of the carrier; 所述陀螺仪用于测量载体的角速度;The gyroscope is used to measure the angular velocity of the carrier; 所述磁力计用于测量磁场信息;The magnetometer is used to measure magnetic field information; 所述GPS用于测量定位信息;The GPS is used to measure positioning information; 所述数据处理器用于获取各加速度计和各陀螺仪的测量数据以及磁力计的磁场信息和GPS的定位信息,分别根据各加速度计的测量数据之间的置信度和各陀螺仪的测量数据之间的置信度,利用冗余信息融合算法分别对各加速度计的测量数据和各陀螺仪的测量数据进行数据融合,得到加速度信息和角速度信息,以所述角速度信息为状态量且所述加速度信息和所述磁场信息为观测量,利用扩展卡尔曼滤波算法计算得到融合姿态角,根据所述加速度信息、所述角速度信息、所述融合姿态角和所述定位信息,利用扩展卡尔曼滤波算法计算出位置信息。The data processor is used to obtain the measurement data of each accelerometer and each gyroscope, as well as the magnetic field information of the magnetometer and the positioning information of the GPS, respectively according to the degree of confidence between the measurement data of each accelerometer and the relationship between the measurement data of each gyroscope. Confidence between each accelerometer and gyroscope by using a redundant information fusion algorithm for data fusion to obtain acceleration information and angular velocity information, using the angular velocity information as a state quantity and the acceleration information and the magnetic field information is an observation quantity, and the fusion attitude angle is calculated by using the extended Kalman filter algorithm, and is calculated by using the extended Kalman filter algorithm according to the acceleration information, the angular velocity information, the fusion attitude angle and the positioning information output location information.
CN201810517173.9A 2018-05-25 2018-05-25 A method for calculating and positioning attitude angle and its fusion sensor Active CN109001787B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810517173.9A CN109001787B (en) 2018-05-25 2018-05-25 A method for calculating and positioning attitude angle and its fusion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810517173.9A CN109001787B (en) 2018-05-25 2018-05-25 A method for calculating and positioning attitude angle and its fusion sensor

Publications (2)

Publication Number Publication Date
CN109001787A true CN109001787A (en) 2018-12-14
CN109001787B CN109001787B (en) 2022-10-21

Family

ID=64573366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810517173.9A Active CN109001787B (en) 2018-05-25 2018-05-25 A method for calculating and positioning attitude angle and its fusion sensor

Country Status (1)

Country Link
CN (1) CN109001787B (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596090A (en) * 2019-01-07 2019-04-09 武汉虹信通信技术有限责任公司 A kind of individual soldier surveys attitude positioning method and device
CN109827545A (en) * 2019-03-22 2019-05-31 北京壹氢科技有限公司 A kind of online inclination angle measurement method based on double mems accelerometers
CN110377058A (en) * 2019-08-30 2019-10-25 深圳市道通智能航空技术有限公司 A kind of yaw corner correcting method, device and the aircraft of aircraft
CN110440805A (en) * 2019-08-09 2019-11-12 深圳市道通智能航空技术有限公司 A kind of fusion method of yaw angle, device and aircraft
CN110471123A (en) * 2019-09-02 2019-11-19 临沂大学 A kind of rotating accelerometer gravity gradiometer data diagnosis and processing method
CN110674888A (en) * 2019-10-11 2020-01-10 中国人民解放军海军航空大学青岛校区 Head posture recognition method based on data fusion
CN110792430A (en) * 2019-11-20 2020-02-14 中国地质大学(北京) A method and device for measuring inclination while drilling based on multi-sensor data fusion
CN110879066A (en) * 2019-12-26 2020-03-13 河北美泰电子科技有限公司 Attitude calculation algorithm and device and vehicle-mounted inertial navigation system
CN110954102A (en) * 2019-12-18 2020-04-03 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN110987267A (en) * 2019-12-23 2020-04-10 佳讯飞鸿(北京)智能科技研究院有限公司 Point switch stress signal detection device and method and electronic equipment
CN111007863A (en) * 2019-12-06 2020-04-14 广州市申迪计算机系统有限公司 Method and device for measuring course angle of robot and storage medium
CN111024122A (en) * 2019-12-18 2020-04-17 上海聿毫信息科技有限公司 Ultrasonic pen inclination deviation compensation method based on Bluetooth and nine-axis gyroscope
CN111076722A (en) * 2019-11-18 2020-04-28 广州南方卫星导航仪器有限公司 Attitude estimation method and device based on self-adaptive quaternion
CN111177669A (en) * 2019-12-11 2020-05-19 宇龙计算机通信科技(深圳)有限公司 Terminal identification method and device, terminal and storage medium
CN111189473A (en) * 2020-01-08 2020-05-22 湖北三江航天红峰控制有限公司 Heading and attitude system gyro error compensation method based on magnetic sensor and additional meter
CN111338320A (en) * 2020-03-11 2020-06-26 西安应用光学研究所 Stabilized platform fault protection method
CN111337018A (en) * 2020-05-21 2020-06-26 上海高仙自动化科技发展有限公司 Positioning method and device, intelligent robot and computer readable storage medium
CN111399005A (en) * 2020-03-09 2020-07-10 展讯通信(上海)有限公司 Attitude determination positioning method, system, medium and electronic device for mobile terminal
CN111551174A (en) * 2019-12-18 2020-08-18 无锡北微传感科技有限公司 High dynamic vehicle attitude calculation method and system based on multi-sensor inertial navigation system
CN111709517A (en) * 2020-06-12 2020-09-25 武汉中海庭数据技术有限公司 Redundancy fusion positioning enhancement method and device based on confidence prediction system
CN111895988A (en) * 2019-12-20 2020-11-06 北京空天技术研究所 Unmanned aerial vehicle navigation information updating method and device
CN111897412A (en) * 2019-05-05 2020-11-06 清华大学 motion capture device
CN111947658A (en) * 2020-06-30 2020-11-17 北京航天控制仪器研究所 Low-cost autonomous navigation device and navigation method for communication-assisted positioning
CN111966130A (en) * 2020-06-28 2020-11-20 上海伊涵家居饰品有限公司 Automatic seat homing control method and system and storage medium thereof
CN112346479A (en) * 2020-11-18 2021-02-09 大连海事大学 Unmanned aircraft state estimation method based on centralized Kalman filtering
CN112630813A (en) * 2020-11-24 2021-04-09 中国人民解放军国防科技大学 Unmanned aerial vehicle attitude measurement method based on strapdown inertial navigation and Beidou satellite navigation system
CN112629538A (en) * 2020-12-11 2021-04-09 哈尔滨工程大学 Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering
CN112923924A (en) * 2021-02-01 2021-06-08 杭州电子科技大学 Method and system for monitoring attitude and position of anchored ship
CN112945225A (en) * 2021-01-19 2021-06-11 西安理工大学 Attitude calculation system and method based on extended Kalman filtering
CN113029127A (en) * 2021-03-10 2021-06-25 中国人民解放军海军航空大学 Aircraft autonomous attitude estimation method based on distributed cycle structure
CN113063416A (en) * 2021-02-05 2021-07-02 重庆大学 A Robot Attitude Fusion Method Based on Adaptive Parameter Complementary Filtering
CN113108790A (en) * 2021-05-14 2021-07-13 深圳中智永浩机器人有限公司 Robot IMU angle measurement method and device, computer equipment and storage medium
CN113229804A (en) * 2021-05-07 2021-08-10 陕西福音假肢有限责任公司 Magnetic field data fusion circuit and method for joint mobility
CN113405553A (en) * 2020-11-30 2021-09-17 辽宁工业大学 Unmanned special vehicle attitude measurement method
CN113514049A (en) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 Unmanned aerial vehicle attitude measurement method and device, unmanned aerial vehicle and storage medium
CN113739817A (en) * 2020-05-29 2021-12-03 上海华依科技集团股份有限公司 Online automatic debugging method for signal fusion algorithm parameters of automobile combined navigation equipment
CN113936044A (en) * 2021-12-17 2022-01-14 武汉锐科光纤激光技术股份有限公司 Method and device for detecting motion state of laser equipment, computer equipment and medium
CN114074693A (en) * 2020-08-13 2022-02-22 比亚迪股份有限公司 Train positioning method, device and system with multiple sensors integrated and train
CN114217628A (en) * 2021-12-24 2022-03-22 北京理工大学重庆创新中心 Double-path IMU unit unmanned aerial vehicle controller based on 5G communication and control method
CN114252073A (en) * 2021-11-25 2022-03-29 江苏集萃智能制造技术研究所有限公司 A robot attitude data fusion method
CN114279311A (en) * 2021-12-27 2022-04-05 深圳供电局有限公司 An inertial-based GNSS deformation monitoring method and system
CN114485641A (en) * 2022-01-24 2022-05-13 武汉梦芯科技有限公司 Attitude calculation method and device based on inertial navigation and satellite navigation azimuth fusion
CN114526729A (en) * 2022-01-14 2022-05-24 重庆邮电大学 Course optimization method of MEMS inertial positioning system based on redundancy technology
WO2022161271A1 (en) * 2021-01-26 2022-08-04 深圳市普渡科技有限公司 Slope location correction method and apparatus, robot and readable storage medium
CN115200569A (en) * 2022-07-22 2022-10-18 北京斯年智驾科技有限公司 Reliable high-precision positioning method, device, equipment and medium
CN116625407A (en) * 2023-06-05 2023-08-22 泉州职业技术大学 Intelligent micro-attitude measurement method and system
WO2023220972A1 (en) * 2022-05-18 2023-11-23 北京小米移动软件有限公司 Mobile device, pose estimation method and apparatus therefor, and storage medium
CN117572905A (en) * 2023-11-29 2024-02-20 哈尔滨工业大学 Design method of linear Gaussian optimal controller of ultralow-frequency single-degree-of-freedom vibration isolation system
WO2024104446A1 (en) * 2022-11-18 2024-05-23 优奈柯恩(北京)科技有限公司 Device attitude estimation method and apparatus
CN118219707A (en) * 2024-05-24 2024-06-21 南京信息工程大学 Intelligent vehicle control method, device, intelligent vehicle and storage medium
CN119223272A (en) * 2024-12-03 2024-12-31 武汉华源电力设计院有限公司 Object attitude measurement method based on dual inertial measurement units
CN119354187A (en) * 2024-12-26 2025-01-24 山东新沙单轨运输装备有限公司 A positioning method and system for a mining monorail crane locomotive

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835158A (en) * 2010-04-12 2010-09-15 北京航空航天大学 A Trust Evaluation Method for Sensor Networks Based on Node Behavior and D-S Evidence Theory
US20120194873A1 (en) * 2011-01-27 2012-08-02 Guoyi Fu Image registration parameters and confidence estimation from sensor data
CN104764452A (en) * 2015-04-23 2015-07-08 北京理工大学 Hybrid position-posture tracking method based on inertia and optical tracking systems
CN104880190A (en) * 2015-06-02 2015-09-02 无锡北微传感科技有限公司 Intelligent chip for accelerating inertial navigation attitude fusion
CN105190237A (en) * 2013-03-13 2015-12-23 应美盛股份有限公司 Heading confidence interval estimation
US20160033301A1 (en) * 2013-03-15 2016-02-04 Qingxuan Yang System and Method for Attitude Correction
CN105607106A (en) * 2015-12-18 2016-05-25 重庆邮电大学 Low-cost high-precision BD/MEMS integration attitude measurement method
CN106250667A (en) * 2016-06-29 2016-12-21 中国地质大学(武汉) The monitoring method of a kind of landslide transition between states of paddling and device
EP3126780A1 (en) * 2014-03-31 2017-02-08 Intel Corporation Inertial measurement unit for electronic devices
CN107421537A (en) * 2017-09-14 2017-12-01 桂林电子科技大学 Object motion attitude cognitive method and system based on inertial sensor rigid body grid
CN107532907A (en) * 2015-03-13 2018-01-02 桑男 Posture detection equipment
CN107655476A (en) * 2017-08-21 2018-02-02 南京航空航天大学 Pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation
US20180058857A1 (en) * 2016-08-31 2018-03-01 Yost Labs Inc. Local perturbation rejection using time shifting

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835158A (en) * 2010-04-12 2010-09-15 北京航空航天大学 A Trust Evaluation Method for Sensor Networks Based on Node Behavior and D-S Evidence Theory
US20120194873A1 (en) * 2011-01-27 2012-08-02 Guoyi Fu Image registration parameters and confidence estimation from sensor data
CN105190237A (en) * 2013-03-13 2015-12-23 应美盛股份有限公司 Heading confidence interval estimation
US20160033301A1 (en) * 2013-03-15 2016-02-04 Qingxuan Yang System and Method for Attitude Correction
EP3126780A1 (en) * 2014-03-31 2017-02-08 Intel Corporation Inertial measurement unit for electronic devices
CN107532907A (en) * 2015-03-13 2018-01-02 桑男 Posture detection equipment
CN104764452A (en) * 2015-04-23 2015-07-08 北京理工大学 Hybrid position-posture tracking method based on inertia and optical tracking systems
CN104880190A (en) * 2015-06-02 2015-09-02 无锡北微传感科技有限公司 Intelligent chip for accelerating inertial navigation attitude fusion
CN105607106A (en) * 2015-12-18 2016-05-25 重庆邮电大学 Low-cost high-precision BD/MEMS integration attitude measurement method
CN106250667A (en) * 2016-06-29 2016-12-21 中国地质大学(武汉) The monitoring method of a kind of landslide transition between states of paddling and device
US20180058857A1 (en) * 2016-08-31 2018-03-01 Yost Labs Inc. Local perturbation rejection using time shifting
CN107655476A (en) * 2017-08-21 2018-02-02 南京航空航天大学 Pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation
CN107421537A (en) * 2017-09-14 2017-12-01 桂林电子科技大学 Object motion attitude cognitive method and system based on inertial sensor rigid body grid

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
WEI YAN: "High Precision Tri-axial MEMS Gyroscope Module based on Redundant Implementation and Sensor Fusion", 《IEEE XPLORE》 *
YAHUA HUANG: "High Accuracy Extend Kalman Filter for Posture Measurement based on Attitude and Heading Reference System", 《IEEE XPLORE》 *
ZHANG TIEMIN: "Attitude measure system based on extended Kalman filter", 《ELSEVIER》 *
刘昕民等: "一种基于D-S证据理论的QoS可信度评估方法", 《哈尔滨工业大学学报》 *
徐亚东: "MHD角速度传感器角振动信号的检测与降噪技术研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *
朱忠祥等: "基于置信度加权的拖拉机组合导航融合定位方法", 《农业机械学报》 *
蒋伟平: "基于卡尔曼滤波的动态脉搏波处理和脉率提取", 《计算机与现代化》 *

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596090A (en) * 2019-01-07 2019-04-09 武汉虹信通信技术有限责任公司 A kind of individual soldier surveys attitude positioning method and device
CN109827545B (en) * 2019-03-22 2020-12-29 北京壹氢科技有限公司 Online inclination angle measuring method based on double MEMS accelerometers
CN109827545A (en) * 2019-03-22 2019-05-31 北京壹氢科技有限公司 A kind of online inclination angle measurement method based on double mems accelerometers
CN111897412A (en) * 2019-05-05 2020-11-06 清华大学 motion capture device
CN110440805A (en) * 2019-08-09 2019-11-12 深圳市道通智能航空技术有限公司 A kind of fusion method of yaw angle, device and aircraft
US20220155800A1 (en) * 2019-08-09 2022-05-19 Autel Robotics Co., Ltd. Method and apparatus for yaw fusion and aircraft
CN110377058B (en) * 2019-08-30 2021-11-09 深圳市道通智能航空技术股份有限公司 Aircraft yaw angle correction method and device and aircraft
CN110377058A (en) * 2019-08-30 2019-10-25 深圳市道通智能航空技术有限公司 A kind of yaw corner correcting method, device and the aircraft of aircraft
CN110471123A (en) * 2019-09-02 2019-11-19 临沂大学 A kind of rotating accelerometer gravity gradiometer data diagnosis and processing method
CN110674888A (en) * 2019-10-11 2020-01-10 中国人民解放军海军航空大学青岛校区 Head posture recognition method based on data fusion
CN110674888B (en) * 2019-10-11 2022-04-05 中国人民解放军海军航空大学青岛校区 Head posture recognition method based on data fusion
CN111076722B (en) * 2019-11-18 2022-07-19 广州南方卫星导航仪器有限公司 Attitude estimation method and device based on self-adaptive quaternion
CN111076722A (en) * 2019-11-18 2020-04-28 广州南方卫星导航仪器有限公司 Attitude estimation method and device based on self-adaptive quaternion
CN110792430A (en) * 2019-11-20 2020-02-14 中国地质大学(北京) A method and device for measuring inclination while drilling based on multi-sensor data fusion
CN111007863A (en) * 2019-12-06 2020-04-14 广州市申迪计算机系统有限公司 Method and device for measuring course angle of robot and storage medium
CN111007863B (en) * 2019-12-06 2023-05-02 广州市申迪计算机系统有限公司 Robot course angle measuring method, device and storage medium
CN111177669A (en) * 2019-12-11 2020-05-19 宇龙计算机通信科技(深圳)有限公司 Terminal identification method and device, terminal and storage medium
CN110954102B (en) * 2019-12-18 2022-01-07 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN111024122B (en) * 2019-12-18 2024-01-19 上海聿毫信息科技有限公司 Ultrasonic pen inclination deviation compensation method based on Bluetooth and nine-axis gyroscope
CN111024122A (en) * 2019-12-18 2020-04-17 上海聿毫信息科技有限公司 Ultrasonic pen inclination deviation compensation method based on Bluetooth and nine-axis gyroscope
CN111551174A (en) * 2019-12-18 2020-08-18 无锡北微传感科技有限公司 High dynamic vehicle attitude calculation method and system based on multi-sensor inertial navigation system
CN110954102A (en) * 2019-12-18 2020-04-03 无锡北微传感科技有限公司 Magnetometer-assisted inertial navigation system and method for robot positioning
CN111895988A (en) * 2019-12-20 2020-11-06 北京空天技术研究所 Unmanned aerial vehicle navigation information updating method and device
CN110987267A (en) * 2019-12-23 2020-04-10 佳讯飞鸿(北京)智能科技研究院有限公司 Point switch stress signal detection device and method and electronic equipment
CN110879066A (en) * 2019-12-26 2020-03-13 河北美泰电子科技有限公司 Attitude calculation algorithm and device and vehicle-mounted inertial navigation system
CN111189473A (en) * 2020-01-08 2020-05-22 湖北三江航天红峰控制有限公司 Heading and attitude system gyro error compensation method based on magnetic sensor and additional meter
CN111399005A (en) * 2020-03-09 2020-07-10 展讯通信(上海)有限公司 Attitude determination positioning method, system, medium and electronic device for mobile terminal
CN111338320B (en) * 2020-03-11 2023-03-28 西安应用光学研究所 Stabilized platform fault protection system and method
CN111338320A (en) * 2020-03-11 2020-06-26 西安应用光学研究所 Stabilized platform fault protection method
CN113514049A (en) * 2020-04-10 2021-10-19 北京三快在线科技有限公司 Unmanned aerial vehicle attitude measurement method and device, unmanned aerial vehicle and storage medium
CN111337018B (en) * 2020-05-21 2020-09-01 上海高仙自动化科技发展有限公司 Positioning method and device, intelligent robot and computer readable storage medium
CN111337018A (en) * 2020-05-21 2020-06-26 上海高仙自动化科技发展有限公司 Positioning method and device, intelligent robot and computer readable storage medium
CN113739817B (en) * 2020-05-29 2023-09-26 上海华依智造动力技术有限公司 Online automatic debugging method for signal fusion algorithm parameters of automobile integrated navigation equipment
CN113739817A (en) * 2020-05-29 2021-12-03 上海华依科技集团股份有限公司 Online automatic debugging method for signal fusion algorithm parameters of automobile combined navigation equipment
CN111709517A (en) * 2020-06-12 2020-09-25 武汉中海庭数据技术有限公司 Redundancy fusion positioning enhancement method and device based on confidence prediction system
CN111966130A (en) * 2020-06-28 2020-11-20 上海伊涵家居饰品有限公司 Automatic seat homing control method and system and storage medium thereof
CN111966130B (en) * 2020-06-28 2023-06-27 上海伊涵家居饰品有限公司 Automatic seat homing control method, system and storage medium thereof
CN111947658A (en) * 2020-06-30 2020-11-17 北京航天控制仪器研究所 Low-cost autonomous navigation device and navigation method for communication-assisted positioning
CN114074693A (en) * 2020-08-13 2022-02-22 比亚迪股份有限公司 Train positioning method, device and system with multiple sensors integrated and train
CN112346479B (en) * 2020-11-18 2023-08-22 大连海事大学 A State Estimation Method for Unmanned Vehicle Based on Centralized Kalman Filter
CN112346479A (en) * 2020-11-18 2021-02-09 大连海事大学 Unmanned aircraft state estimation method based on centralized Kalman filtering
CN112630813A (en) * 2020-11-24 2021-04-09 中国人民解放军国防科技大学 Unmanned aerial vehicle attitude measurement method based on strapdown inertial navigation and Beidou satellite navigation system
CN112630813B (en) * 2020-11-24 2024-05-03 中国人民解放军国防科技大学 Unmanned aerial vehicle attitude measurement method based on strapdown inertial navigation and Beidou satellite navigation system
CN113405553B (en) * 2020-11-30 2023-05-26 辽宁工业大学 Unmanned special vehicle attitude measurement method
CN113405553A (en) * 2020-11-30 2021-09-17 辽宁工业大学 Unmanned special vehicle attitude measurement method
CN112629538A (en) * 2020-12-11 2021-04-09 哈尔滨工程大学 Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering
CN112629538B (en) * 2020-12-11 2023-02-14 哈尔滨工程大学 Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering
CN112945225A (en) * 2021-01-19 2021-06-11 西安理工大学 Attitude calculation system and method based on extended Kalman filtering
WO2022161271A1 (en) * 2021-01-26 2022-08-04 深圳市普渡科技有限公司 Slope location correction method and apparatus, robot and readable storage medium
CN112923924A (en) * 2021-02-01 2021-06-08 杭州电子科技大学 Method and system for monitoring attitude and position of anchored ship
CN113063416B (en) * 2021-02-05 2023-08-08 重庆大学 Robot posture fusion method based on self-adaptive parameter complementary filtering
CN113063416A (en) * 2021-02-05 2021-07-02 重庆大学 A Robot Attitude Fusion Method Based on Adaptive Parameter Complementary Filtering
CN113029127A (en) * 2021-03-10 2021-06-25 中国人民解放军海军航空大学 Aircraft autonomous attitude estimation method based on distributed cycle structure
CN113229804A (en) * 2021-05-07 2021-08-10 陕西福音假肢有限责任公司 Magnetic field data fusion circuit and method for joint mobility
CN113108790A (en) * 2021-05-14 2021-07-13 深圳中智永浩机器人有限公司 Robot IMU angle measurement method and device, computer equipment and storage medium
CN114252073B (en) * 2021-11-25 2023-09-15 江苏集萃智能制造技术研究所有限公司 A robot attitude data fusion method
CN114252073A (en) * 2021-11-25 2022-03-29 江苏集萃智能制造技术研究所有限公司 A robot attitude data fusion method
CN113936044B (en) * 2021-12-17 2022-03-18 武汉锐科光纤激光技术股份有限公司 Method and device for detecting motion state of laser equipment, computer equipment and medium
CN113936044A (en) * 2021-12-17 2022-01-14 武汉锐科光纤激光技术股份有限公司 Method and device for detecting motion state of laser equipment, computer equipment and medium
CN114217628A (en) * 2021-12-24 2022-03-22 北京理工大学重庆创新中心 Double-path IMU unit unmanned aerial vehicle controller based on 5G communication and control method
CN114279311A (en) * 2021-12-27 2022-04-05 深圳供电局有限公司 An inertial-based GNSS deformation monitoring method and system
CN114526729A (en) * 2022-01-14 2022-05-24 重庆邮电大学 Course optimization method of MEMS inertial positioning system based on redundancy technology
CN114526729B (en) * 2022-01-14 2023-11-17 重庆邮电大学 A heading optimization method for MEMS inertial positioning system based on redundant technology
CN114485641B (en) * 2022-01-24 2024-03-26 武汉梦芯科技有限公司 Attitude calculation method and device based on inertial navigation device navigation azimuth fusion
CN114485641A (en) * 2022-01-24 2022-05-13 武汉梦芯科技有限公司 Attitude calculation method and device based on inertial navigation and satellite navigation azimuth fusion
WO2023220972A1 (en) * 2022-05-18 2023-11-23 北京小米移动软件有限公司 Mobile device, pose estimation method and apparatus therefor, and storage medium
CN115200569A (en) * 2022-07-22 2022-10-18 北京斯年智驾科技有限公司 Reliable high-precision positioning method, device, equipment and medium
WO2024104446A1 (en) * 2022-11-18 2024-05-23 优奈柯恩(北京)科技有限公司 Device attitude estimation method and apparatus
CN116625407B (en) * 2023-06-05 2024-02-20 泉州职业技术大学 Intelligent micro-attitude measurement method and system
CN116625407A (en) * 2023-06-05 2023-08-22 泉州职业技术大学 Intelligent micro-attitude measurement method and system
CN117572905A (en) * 2023-11-29 2024-02-20 哈尔滨工业大学 Design method of linear Gaussian optimal controller of ultralow-frequency single-degree-of-freedom vibration isolation system
CN118219707A (en) * 2024-05-24 2024-06-21 南京信息工程大学 Intelligent vehicle control method, device, intelligent vehicle and storage medium
CN118219707B (en) * 2024-05-24 2024-08-16 南京信息工程大学 Intelligent vehicle control method, device, intelligent vehicle and storage medium
CN119223272A (en) * 2024-12-03 2024-12-31 武汉华源电力设计院有限公司 Object attitude measurement method based on dual inertial measurement units
CN119223272B (en) * 2024-12-03 2025-03-11 武汉华源电力设计院有限公司 Object attitude measurement method based on dual inertial measurement units
CN119354187A (en) * 2024-12-26 2025-01-24 山东新沙单轨运输装备有限公司 A positioning method and system for a mining monorail crane locomotive
CN119354187B (en) * 2024-12-26 2025-04-04 山东新沙单轨运输装备有限公司 Positioning method and system for mining monorail crane locomotive

Also Published As

Publication number Publication date
CN109001787B (en) 2022-10-21

Similar Documents

Publication Publication Date Title
CN109001787B (en) A method for calculating and positioning attitude angle and its fusion sensor
Poddar et al. A comprehensive overview of inertial sensor calibration techniques
WO2018184467A1 (en) Method and device for detecting posture of ball head
CN109238262B (en) Anti-interference method for course attitude calculation and compass calibration
US7216055B1 (en) Dynamic attitude measurement method and apparatus
US7418364B1 (en) Dynamic attitude measurement method and apparatus
CN106289246B (en) A kind of flexible link arm measure method based on position and orientation measurement system
CN111189442B (en) State Prediction Method of UAV Multi-source Navigation Information Based on CEPF
WO2022063120A1 (en) Combined navigation system initialization method and apparatus, medium, and electronic device
CN113188505B (en) Attitude angle measuring method and device, vehicle and intelligent arm support
CN108375383B (en) Multi-camera-assisted airborne distributed POS flexible baseline measurement method and device
CN113566850B (en) Method and device for calibrating installation angle of inertial measurement unit and computer equipment
CN108534744A (en) A kind of attitude angle acquisition methods, device and handle
CN112197765B (en) A Method for Realizing Fine Navigation of Underwater Robot
CN115096303B (en) A GNSS multi-antenna and INS tightly combined positioning and attitude determination method and device
CN107576977A (en) The UAV Navigation System and method adaptively merged based on multi-source information
CN116007620A (en) Combined navigation filtering method, system, electronic equipment and storage medium
CN115356754A (en) Combined navigation positioning method based on GNSS and low-orbit satellite
CN118999589B (en) A quadruped robot positioning method, system, storage medium and robot
CN113483765B (en) Satellite autonomous attitude determination method
CN110779514A (en) Hierarchical Kalman fusion method and device for auxiliary attitude determination of bionic polarization navigation
Guo et al. Analysis and design of an attitude calculation algorithm based on elman neural network for SINS
CN112284388B (en) Unmanned aerial vehicle multisource information fusion navigation method
CN111141285B (en) Aviation gravity measuring device
RU2643201C2 (en) Strap down inertial attitude-and-heading reference

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant