CN107421537A - Object motion attitude cognitive method and system based on inertial sensor rigid body grid - Google Patents
Object motion attitude cognitive method and system based on inertial sensor rigid body grid Download PDFInfo
- Publication number
- CN107421537A CN107421537A CN201710827423.4A CN201710827423A CN107421537A CN 107421537 A CN107421537 A CN 107421537A CN 201710827423 A CN201710827423 A CN 201710827423A CN 107421537 A CN107421537 A CN 107421537A
- Authority
- CN
- China
- Prior art keywords
- inertial sensor
- rigid body
- grid
- body grid
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
本发明公开一种基于惯性传感器刚体网格的物体运动姿态感知方法和系统,将传感器刚体网格定位技术、自适应权重分配技术和多惯性传感器信息融合技术相结合,使用多个惯性传感器节点构成的对等式传感器网格网络,将多个传感器节点姿态感应数据进行分析融合,通过刚体网格位置误差校正和网格节点数据动态误差校正,从而计算出网格系统所附着的物体的完整运动姿态。本发明可提高惯性传感器的运动参数感知精度,实现运动物体的实时运动轨迹、运动姿态的精确感知追踪。其中关键的步骤包括刚体网格位置误差校正和网格节点数据动态误差校正。
The invention discloses a method and system for sensing the motion posture of an object based on an inertial sensor rigid body grid, which combines sensor rigid body grid positioning technology, adaptive weight distribution technology and multi-inertial sensor information fusion technology, and uses multiple inertial sensor nodes to form The peer-to-peer sensor grid network analyzes and fuses the attitude sensing data of multiple sensor nodes, and calculates the complete motion of the object attached to the grid system through the correction of the rigid body grid position error and the dynamic error correction of the grid node data. attitude. The invention can improve the perception accuracy of the motion parameters of the inertial sensor, and realize the real-time motion trajectory and accurate perception tracking of the motion posture of the moving object. The key steps include rigid body grid position error correction and grid node data dynamic error correction.
Description
技术领域technical field
本发明涉及惯性传感器技术领域,具体涉及一种基于惯性传感器刚体网格的物体运动姿态感知方法和系统。The present invention relates to the technical field of inertial sensors, in particular to a method and system for sensing motion and attitude of an object based on rigid body grids of inertial sensors.
背景技术Background technique
目前惯性传感器的已经广泛应用于移动电子设备,通过融合惯性传感器的加速度计、陀螺仪、磁力计的感应数据,计算物体的运动姿态与运动轨迹,已经成为了惯性传感器的主要应用领域,在室内定位、航空器空中位置姿态感、物体运动姿态检测等领域有着广泛的应用需求。而由于惯性传感器的工艺、成本、精度、干扰、累积误差等因素的限制,目前惯性传感器的运动姿态感知精度仍然无法满足现实的姿态监测、轨迹追踪的精度需求,从而制约了惯性传感器姿态监测方案的实用性及可用场景。At present, inertial sensors have been widely used in mobile electronic devices. By fusing the sensing data of accelerometers, gyroscopes, and magnetometers of inertial sensors, calculating the motion posture and trajectory of objects has become the main application field of inertial sensors. There are a wide range of application requirements in the fields of positioning, aircraft position and attitude in the air, and object movement and attitude detection. However, due to the limitations of inertial sensor technology, cost, accuracy, interference, cumulative error and other factors, the motion attitude perception accuracy of inertial sensors still cannot meet the accuracy requirements of realistic attitude monitoring and trajectory tracking, thus restricting the inertial sensor attitude monitoring scheme. practicability and available scenarios.
发明内容Contents of the invention
本发明所要解决的是现有惯性传感器的运动姿态感知精度无法满足现实要求的问题,提供一种基于惯性传感器刚体网格的物体运动姿态感知方法和系统。The object of the present invention is to solve the problem that the perception accuracy of the motion posture of the existing inertial sensor cannot meet the actual requirements, and provides a method and system for sensing the motion posture of an object based on the rigid body grid of the inertial sensor.
为解决上述问题,本发明是通过以下技术方案实现的:In order to solve the above problems, the present invention is achieved through the following technical solutions:
基于惯性传感器刚体网格的物体运动姿态感知方法,包括如下步骤:An object motion attitude perception method based on an inertial sensor rigid body grid includes the following steps:
步骤1、在被测物体上,使用2个以上具有刚性空间位置关系的惯性传感器作为网格节点,构造具有2个以上节点且节点间形成刚性空间结构的惯性传感器刚体网格网络;Step 1. On the object to be measured, use more than two inertial sensors with rigid spatial positional relationships as grid nodes to construct an inertial sensor rigid body grid network with more than two nodes and a rigid spatial structure formed between the nodes;
步骤2、刚体网格位置误差校正:Step 2. Rigid body grid position error correction:
步骤2.1、让被测物体进行预定的标定运动;Step 2.1, allowing the measured object to perform a predetermined calibration movement;
步骤2.2、通过获取被测物体进行标定运动时的惯性传感器输出的运动姿态数据,并结合已知的惯性传感器在惯性传感器刚体网格网络中的网格位置关系,对惯性传感器刚体网格网络进行网格位置的标定和网格位置关系校正,获得惯性传感器刚体网格网络的精确位置关系模型;Step 2.2, by obtaining the motion attitude data output by the inertial sensor when the object under test performs calibration movement, and combining the known grid position relationship of the inertial sensor in the inertial sensor rigid body grid network, the inertial sensor rigid body grid network is The calibration of the grid position and the correction of the grid position relationship obtain the precise position relationship model of the rigid body grid network of the inertial sensor;
步骤3、当被测物体进行实际运动时,其上的惯性传感器刚体网格网络的各个惯性传感器实时采集输出相应的运动姿态数据,并通过对这些运动姿态数据进行实时解算,得到各个惯性传感器初步估计的惯性传感器刚体网格网络的运动姿态;Step 3. When the measured object is actually moving, each inertial sensor of the rigid body grid network of the inertial sensor on it collects and outputs corresponding motion attitude data in real time, and calculates these motion attitude data in real time to obtain each inertial sensor Preliminary estimated motion pose of the inertial sensor rigid body mesh network;
步骤4、网格节点数据动态误差校正;Step 4, grid node data dynamic error correction;
步骤4.1、基于步骤2所得到的惯性传感器刚体网格网络的精确位置关系模型和步骤3所得到的个惯性传感器初步估计的惯性传感器刚体网格网络的运动姿态,计算各个惯性传感器节点的信息置信度权重,并获得该运动姿态下,惯性传感器刚体网格网络的信息置信度模型;Step 4.1, based on the precise position relationship model of the inertial sensor rigid body grid network obtained in step 2 and the motion attitude of the inertial sensor rigid body grid network initially estimated by the inertial sensors obtained in step 3, calculate the information confidence of each inertial sensor node degree weight, and obtain the information confidence model of the inertial sensor rigid body grid network under the motion attitude;
步骤4.2、根据惯性传感器刚体网格网络的各个惯性传感器所感知的运动姿态数据,分别计算其他惯性传感器的运动姿态估计;Step 4.2, according to the movement attitude data perceived by each inertial sensor of the inertial sensor rigid body grid network, calculate the movement attitude estimation of other inertial sensors respectively;
步骤4.3、根据步骤4.1所得到的惯性传感器刚体网格网络的信息置信度模型,进行惯性传感器刚体网格网络的各个网格节点之间的迭代计算,并得到惯性传感器刚体网格网络的各个网格节点精确姿态数据;Step 4.3, according to the information confidence model of the inertial sensor rigid body grid network obtained in step 4.1, perform iterative calculation between each grid node of the inertial sensor rigid body grid network, and obtain each network of the inertial sensor rigid body grid network Accurate attitude data of grid nodes;
步骤4.4、将惯性传感器刚体网格网络的权重中心质点的精确姿态数据作为最终感知的被测物体的运动姿态。Step 4.4, taking the precise attitude data of the weight center mass point of the rigid body grid network of the inertial sensor as the final perceived movement attitude of the measured object.
上述步骤1中,所有惯性传感器节点构成的是对等式的惯性传感器网格网络。In the above step 1, all inertial sensor nodes constitute a peer-to-peer inertial sensor grid network.
实现上述方法的基于惯性传感器刚体网格的物体运动姿态感知系统,其特征是,该系统由数据处理单元和2个以上具有刚性空间位置关系的惯性传感器节点组成;The object movement posture perception system based on the inertial sensor rigid body grid for realizing the above method is characterized in that the system is composed of a data processing unit and more than two inertial sensor nodes with a rigid spatial position relationship;
惯性传感器节点,负责感知运动姿态数据,并通过通信网络将运动姿态数据传递给数据处理单元;The inertial sensor node is responsible for sensing the motion posture data, and transmits the motion posture data to the data processing unit through the communication network;
数据处理单元,负责对各个惯性传感器节点的运动姿态数据进行动态分析,并通过刚体网格位置误差校正和网格节点数据动态误差校正,融合解算出各个惯性传感器节点的精确运动姿态数据。The data processing unit is responsible for dynamic analysis of the motion attitude data of each inertial sensor node, and through rigid body grid position error correction and grid node data dynamic error correction, the fusion solution is used to calculate the precise motion attitude data of each inertial sensor node.
上述方案中,所有惯性传感器节点构成对等式惯性传感器刚体网格网络。In the above scheme, all inertial sensor nodes constitute a peer-to-peer inertial sensor rigid body grid network.
上述方案中,惯性传感器节点通过有线和/或无线方式与数据处理单元连接。In the above solutions, the inertial sensor nodes are connected to the data processing unit through wired and/or wireless means.
与现有技术相比,本发明将传感器刚体网格定位技术、自适应权重分配技术和多惯性传感器信息融合技术相结合,具有如下特点:Compared with the prior art, the present invention combines sensor rigid body grid positioning technology, adaptive weight distribution technology and multi-inertial sensor information fusion technology, and has the following characteristics:
1、使用多个惯性传感器节点构成的对等式传感器网格网络,将多个传感器节点姿态感应数据进行分析融合,从而计算出网格系统所附着的物体的完整运动姿态;1. Use a peer-to-peer sensor grid network composed of multiple inertial sensor nodes to analyze and fuse the attitude sensing data of multiple sensor nodes, so as to calculate the complete motion attitude of the object attached to the grid system;
2、各个惯性传感器节点之间具有刚性空间位置关系,其空间位置关系也成为其信息置信度权重的影响因素,从而可以通过单个传感器的运动姿态数据,估算出其他节点的运动姿态,为其他节点的误差校正提供参考依据;2. Each inertial sensor node has a rigid spatial position relationship, and its spatial position relationship also becomes an influencing factor of its information confidence weight, so that the motion posture data of a single sensor can be used to estimate the motion posture of other nodes, which is the basis for other nodes. Provide a reference basis for error correction;
3、采用动态误差参考权重模型,传感器网格网络权重模型并无固定中心,各个惯性传感器节点之间为平等关系,其各个节点的误差参考权重,由刚体网格系统的运动姿态估计、节点之间的空间位置关系来共同决定其误差参考权重,并不断进行迭代校正,最终获取到高精度的运动姿态数据;3. The dynamic error reference weight model is adopted. The weight model of the sensor grid network has no fixed center, and the relationship between each inertial sensor node is equal. The error reference weight of each node is determined by the motion attitude estimation of the rigid body grid system, and The spatial position relationship among them is used to jointly determine the error reference weight, and iteratively corrects continuously, and finally obtains high-precision motion attitude data;
4、通过使用特定的物体标定运动对惯性传感器的刚体网格进行位置标定,对其网格位置关系进行误差校正,从而为后续的误差模型迭代计算提供精确的精确网格位置关系。4. Calibrate the position of the rigid body grid of the inertial sensor by using a specific object calibration movement, and correct the error correction of the grid position relationship, thereby providing an accurate and precise grid position relationship for the subsequent iterative calculation of the error model.
附图说明Description of drawings
图1为基于惯性传感器刚体网格的物体运动姿态感知方法的流程图。FIG. 1 is a flow chart of an object motion attitude perception method based on an inertial sensor rigid body grid.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific examples and with reference to the accompanying drawings.
基于惯性传感器刚体网格的物体运动姿态感知系统,由数据处理单元和2个以上的惯性传感器节点组成。惯性传感器节点构成对等式传感器刚体网格网络,各个惯性传感器节点之间具有刚性空间位置关系,且各网格节点之间为无中心的对等关系,从而可以通过单个惯性传感器的运动姿态数据,估算出其他节点的运动姿态,为其他节点的误差校正提供参考依据。惯性传感器节点负责感知运动姿态数据(加速度、角速度、磁场矢量等),并通过通信网络将运动姿态数据传递给数据处理单元。数据处理单元负责对各个惯性传感器节点的运动姿态数据进行动态分析,并通过刚体网格位置误差校正和网格节点数据动态误差校正,融合解算出各个惯性传感器节点的精确运动姿态数据。The object motion attitude perception system based on the inertial sensor rigid body grid is composed of a data processing unit and more than two inertial sensor nodes. Inertial sensor nodes constitute a peer-to-peer sensor rigid body grid network. Each inertial sensor node has a rigid spatial position relationship, and each grid node has a non-central peer relationship, so that the motion attitude data of a single inertial sensor can be , to estimate the motion attitude of other nodes, and provide a reference for error correction of other nodes. The inertial sensor node is responsible for sensing the motion posture data (acceleration, angular velocity, magnetic field vector, etc.), and transmits the motion posture data to the data processing unit through the communication network. The data processing unit is responsible for dynamic analysis of the motion attitude data of each inertial sensor node, and through rigid body grid position error correction and grid node data dynamic error correction, the fusion solution calculates the precise motion attitude data of each inertial sensor node.
上述系统所实现的基于惯性传感器刚体网格的物体运动姿态感知方法,如图1所示,其具体包括步骤如下:The object motion attitude perception method based on the inertial sensor rigid body grid implemented by the above system is shown in Figure 1, and its specific steps are as follows:
步骤1、在被测物体上,使用2个以上具有刚性空间位置关系的惯性传感器作为网格节点,构造具有2个以上节点且节点间形成刚性空间结构的惯性传感器刚体网格网络;Step 1. On the object to be measured, use more than two inertial sensors with rigid spatial positional relationships as grid nodes to construct an inertial sensor rigid body grid network with more than two nodes and a rigid spatial structure formed between the nodes;
步骤2、刚体网格位置误差校正:Step 2. Rigid body grid position error correction:
步骤2.1、让被测物体进行预定的标定运动;Step 2.1, allowing the measured object to perform a predetermined calibration movement;
步骤2.2、通过获取被测物体进行标定运动时的惯性传感器输出的运动姿态数据,并结合已知的惯性传感器在惯性传感器刚体网格网络中的网格位置关系,对惯性传感器刚体网格网络进行网格位置的标定和网格位置关系校正,获得惯性传感器刚体网格网络的精确位置关系模型;Step 2.2, by obtaining the motion attitude data output by the inertial sensor when the object under test performs calibration movement, and combining the known grid position relationship of the inertial sensor in the inertial sensor rigid body grid network, the inertial sensor rigid body grid network is The calibration of the grid position and the correction of the grid position relationship obtain the precise position relationship model of the rigid body grid network of the inertial sensor;
步骤3、当被测物体进行实际运动时,其上的惯性传感器刚体网格网络的各个惯性传感器实时采集输出相应的运动姿态数据,并通过对这些运动姿态数据进行实时解算,得到各个惯性传感器初步估计的惯性传感器刚体网格网络的运动姿态;Step 3. When the measured object is actually moving, each inertial sensor of the rigid body grid network of the inertial sensor on it collects and outputs corresponding motion attitude data in real time, and calculates these motion attitude data in real time to obtain each inertial sensor Preliminary estimated motion pose of the inertial sensor rigid body mesh network;
步骤4、网格节点数据动态误差校正;Step 4, grid node data dynamic error correction;
步骤4.1、基于步骤2所得到的惯性传感器刚体网格网络的精确位置关系模型和步骤3所得到的个惯性传感器初步估计的惯性传感器刚体网格网络的运动姿态,计算各个惯性传感器节点的信息置信度权重,并获得该运动姿态下,惯性传感器刚体网格网络的信息置信度模型;Step 4.1, based on the precise position relationship model of the inertial sensor rigid body grid network obtained in step 2 and the motion attitude of the inertial sensor rigid body grid network initially estimated by the inertial sensors obtained in step 3, calculate the information confidence of each inertial sensor node degree weight, and obtain the information confidence model of the inertial sensor rigid body grid network under the motion attitude;
步骤4.2、根据惯性传感器刚体网格网络的各个惯性传感器所感知的运动姿态数据,分别计算其他惯性传感器的运动姿态估计;Step 4.2, according to the movement attitude data perceived by each inertial sensor of the inertial sensor rigid body grid network, calculate the movement attitude estimation of other inertial sensors respectively;
步骤4.3、根据步骤4.1所得到的惯性传感器刚体网格网络的信息置信度模型,进行惯性传感器刚体网格网络的各个网格节点之间的迭代计算,并得到惯性传感器刚体网格网络的各个网格节点精确姿态数据;Step 4.3, according to the information confidence model of the inertial sensor rigid body grid network obtained in step 4.1, perform iterative calculation between each grid node of the inertial sensor rigid body grid network, and obtain each network of the inertial sensor rigid body grid network Accurate attitude data of grid nodes;
步骤4.4、将惯性传感器刚体网格网络的权重中心质点的精确姿态数据作为最终感知的被测物体的运动姿态。Step 4.4, taking the precise attitude data of the weight center mass point of the rigid body grid network of the inertial sensor as the final perceived movement attitude of the measured object.
本发明通过在刚体物体上,使用多个具有刚性空间位置关系的惯性传感器作为网格节点,构造具有多个多节点、节点间形成刚性空间结构的传感器网格系统,从而进行刚体物体的精确姿态数据计算。通过对多惯性传感器数据的实时解算,形成刚体网格系统的初步运动姿态估计;根据当前的初步运动姿态估计参数,动态分配各节点的信息置信度权重,计算出姿态误差的参考权重模型。通过各个惯性传感器误差参考权重模型,结合已知的刚体网格空间位置,进行多传感器之间的误差迭代校正。从而实现对传感器网格的各个节点的运动姿态感知数据的动态精确校正,解算出各个网格节点、网格系统中心的精确姿态数据。本发明可提高惯性传感器的运动参数感知精度,实现运动物体的实时运动轨迹、运动姿态的精确感知追踪。其中关键的的步骤包括刚体网格位置误差校正和网格节点数据动态误差校正。The present invention uses a plurality of inertial sensors with rigid spatial position relationship as grid nodes on the rigid object to construct a sensor grid system with multiple multi-nodes and a rigid spatial structure formed between the nodes, so as to perform the precise attitude of the rigid object data calculation. Through the real-time calculation of multi-inertial sensor data, the preliminary motion attitude estimation of the rigid body grid system is formed; according to the current preliminary motion attitude estimation parameters, the information confidence weight of each node is dynamically allocated, and the reference weight model of the attitude error is calculated. Through the reference weight model of each inertial sensor error, combined with the known spatial position of the rigid body grid, the iterative correction of the error between multiple sensors is performed. In this way, the dynamic and accurate correction of the motion attitude perception data of each node of the sensor grid is realized, and the precise attitude data of each grid node and the center of the grid system is calculated. The invention can improve the perception accuracy of the motion parameters of the inertial sensor, and realize the real-time motion trajectory and accurate perception tracking of the motion posture of the moving object. The key steps include rigid body grid position error correction and grid node data dynamic error correction.
刚体网格位置误差校正:在被测物体上安置具有刚体位置关系的惯性传感器网格系统,使物体进行特定的标定运动,如水平静止、自由落体运动等,通过获取物体进行标定运动时的惯性传感器网格节点的运动姿态输出数据,结合已知的惯性传感器网格位置关系,对其进行网格位置的标定,对网格位置关系进行校正,从而获取到误差校正后的惯性传感器刚体网格的精确位置关系,为后续的姿态数据校正提供精确的刚体位置关系模型。Rigid body grid position error correction: An inertial sensor grid system with a rigid body position relationship is placed on the measured object to make the object perform a specific calibration movement, such as horizontal stillness, free fall movement, etc., by obtaining the inertia of the object during calibration movement The motion attitude output data of the sensor grid node, combined with the known grid position relationship of the inertial sensor, is used to calibrate the grid position and correct the grid position relationship, so as to obtain the rigid body grid of the inertial sensor after error correction The precise positional relationship of the rigid body provides an accurate rigid body positional relationship model for subsequent attitude data correction.
网格节点数据动态误差校正:当被测物体进行运动时,惯性传感器刚体网格的各个传感器节点将会实时采集输出相应的运动姿态数据(加速度、角速度、磁场矢量等),这些运动姿态数据通过有线或无线的方式传递给数据处理单元,进行刚体网格运动姿态的整体初步估计,从而得到刚体网格的中心点的运动方向、速度、转角等整体运动数据。并结合网格的精确位置关系模型,计算各个网格节点的信息置信度权重,从而得到在该运动姿态下,网格节点的信息置信度模型。在此基础之上,根据惯性传感器网格节点的运动姿态感知数据,分别计算其他节点的运动姿态估计,并根据网格节点的信息置信度模型,进行各个节点之间的误差迭代计算,并得到所有网格节点的误差校正模型。根据该误差校正模型,对各个网格节点的运动姿态数据进行误差补偿校正,从而得到各个网格节点的精确运动姿态数据,并计算出网格系统权重中心质点精确姿态数据。Grid node data dynamic error correction: When the measured object is moving, each sensor node of the inertial sensor rigid body grid will collect and output the corresponding motion attitude data (acceleration, angular velocity, magnetic field vector, etc.) in real time. It is transmitted to the data processing unit in a wired or wireless manner, and the overall preliminary estimation of the motion attitude of the rigid body grid is performed, so as to obtain the overall motion data such as the motion direction, speed, and rotation angle of the center point of the rigid body grid. Combined with the precise position relationship model of the grid, the information confidence weight of each grid node is calculated, so as to obtain the information confidence model of the grid node under the motion posture. On this basis, according to the motion attitude perception data of the inertial sensor grid node, the motion attitude estimation of other nodes is calculated respectively, and the error iterative calculation between each node is carried out according to the information confidence model of the grid node, and the obtained Error correction model for all mesh nodes. According to the error correction model, the motion attitude data of each grid node is corrected by error compensation, so as to obtain the precise motion attitude data of each grid node, and calculate the precise attitude data of the weight center particle of the grid system.
需要说明的是,尽管以上本发明所述的实施例是说明性的,但这并非是对本发明的限制,因此本发明并不局限于上述具体实施方式中。在不脱离本发明原理的情况下,凡是本领域技术人员在本发明的启示下获得的其它实施方式,均视为在本发明的保护之内。It should be noted that although the above embodiments of the present invention are illustrative, they are not intended to limit the present invention, so the present invention is not limited to the above specific implementation manners. Without departing from the principles of the present invention, all other implementations obtained by those skilled in the art under the inspiration of the present invention are deemed to be within the protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710827423.4A CN107421537B (en) | 2017-09-14 | 2017-09-14 | Object motion attitude sensing method and system based on rigid body grid of inertial sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710827423.4A CN107421537B (en) | 2017-09-14 | 2017-09-14 | Object motion attitude sensing method and system based on rigid body grid of inertial sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107421537A true CN107421537A (en) | 2017-12-01 |
CN107421537B CN107421537B (en) | 2020-07-17 |
Family
ID=60433359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710827423.4A Active CN107421537B (en) | 2017-09-14 | 2017-09-14 | Object motion attitude sensing method and system based on rigid body grid of inertial sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107421537B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108627153A (en) * | 2018-05-11 | 2018-10-09 | 南京大学 | A kind of rigid motion tracing system and its working method based on inertial sensor |
CN109001787A (en) * | 2018-05-25 | 2018-12-14 | 北京大学深圳研究生院 | A kind of method and its merge sensor of solving of attitude and positioning |
CN112050829A (en) * | 2019-06-06 | 2020-12-08 | 华为技术有限公司 | A kind of motion state determination method and device |
CN112147898A (en) * | 2020-09-29 | 2020-12-29 | 陕西师范大学 | Rigid system anti-interference control method and system only depending on control direction information |
CN112729317A (en) * | 2020-12-17 | 2021-04-30 | 大陆投资(中国)有限公司 | Method for locating a vehicle and on-board system |
CN114556050A (en) * | 2019-06-17 | 2022-05-27 | 罗希特·塞思 | Relative position tracking using motion sensor with drift correction |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1818555A (en) * | 2006-03-29 | 2006-08-16 | 北京航空航天大学 | Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling |
CN102706347A (en) * | 2012-05-17 | 2012-10-03 | 南京航空航天大学 | Inertial sensor network node device and information fusion method thereof |
CN103616710A (en) * | 2013-12-17 | 2014-03-05 | 靳文瑞 | Multi-sensor combined navigation time synchronizing system based on field programmable gate array (FPGA) |
US8795078B1 (en) * | 2006-07-14 | 2014-08-05 | Ailive Inc. | Method and system providing compatibility between two different controllers |
US20150094952A1 (en) * | 2013-09-27 | 2015-04-02 | Qualcomm Incorporated | Exterior hybrid photo mapping |
CN106052719A (en) * | 2016-08-01 | 2016-10-26 | 中科创达软件股份有限公司 | Method and device for calibrating gyroscope |
CN106979781A (en) * | 2017-04-12 | 2017-07-25 | 南京航空航天大学 | High-precision Transfer Alignment based on distributed inertance network |
-
2017
- 2017-09-14 CN CN201710827423.4A patent/CN107421537B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1818555A (en) * | 2006-03-29 | 2006-08-16 | 北京航空航天大学 | Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling |
US8795078B1 (en) * | 2006-07-14 | 2014-08-05 | Ailive Inc. | Method and system providing compatibility between two different controllers |
CN102706347A (en) * | 2012-05-17 | 2012-10-03 | 南京航空航天大学 | Inertial sensor network node device and information fusion method thereof |
US20150094952A1 (en) * | 2013-09-27 | 2015-04-02 | Qualcomm Incorporated | Exterior hybrid photo mapping |
CN103616710A (en) * | 2013-12-17 | 2014-03-05 | 靳文瑞 | Multi-sensor combined navigation time synchronizing system based on field programmable gate array (FPGA) |
CN106052719A (en) * | 2016-08-01 | 2016-10-26 | 中科创达软件股份有限公司 | Method and device for calibrating gyroscope |
CN106979781A (en) * | 2017-04-12 | 2017-07-25 | 南京航空航天大学 | High-precision Transfer Alignment based on distributed inertance network |
Non-Patent Citations (2)
Title |
---|
姚志锋: "基于WiFi和惯性传感器的多信息融合室内定位系统的设计与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
孙田川,刘洁瑜: "一种新的MEMS陀螺温度误差建模与补偿方法", 《压电与声光》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108627153A (en) * | 2018-05-11 | 2018-10-09 | 南京大学 | A kind of rigid motion tracing system and its working method based on inertial sensor |
CN109001787A (en) * | 2018-05-25 | 2018-12-14 | 北京大学深圳研究生院 | A kind of method and its merge sensor of solving of attitude and positioning |
CN109001787B (en) * | 2018-05-25 | 2022-10-21 | 北京大学深圳研究生院 | A method for calculating and positioning attitude angle and its fusion sensor |
CN112050829A (en) * | 2019-06-06 | 2020-12-08 | 华为技术有限公司 | A kind of motion state determination method and device |
WO2020244521A1 (en) * | 2019-06-06 | 2020-12-10 | 华为技术有限公司 | Motion state determination method and apparatus |
CN114556050A (en) * | 2019-06-17 | 2022-05-27 | 罗希特·塞思 | Relative position tracking using motion sensor with drift correction |
CN112147898A (en) * | 2020-09-29 | 2020-12-29 | 陕西师范大学 | Rigid system anti-interference control method and system only depending on control direction information |
CN112147898B (en) * | 2020-09-29 | 2022-05-31 | 陕西师范大学 | Rigid system anti-interference control method and system only depending on control direction information |
CN112729317A (en) * | 2020-12-17 | 2021-04-30 | 大陆投资(中国)有限公司 | Method for locating a vehicle and on-board system |
CN112729317B (en) * | 2020-12-17 | 2023-09-19 | 大陆投资(中国)有限公司 | Method for locating a vehicle and in-vehicle system |
Also Published As
Publication number | Publication date |
---|---|
CN107421537B (en) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107421537B (en) | Object motion attitude sensing method and system based on rigid body grid of inertial sensor | |
CN104884902B (en) | For three axle magnetometer and the method and apparatus of the data fusion of three axis accelerometer | |
JP7055484B2 (en) | Uwb positioning outlier processing method based on IMU | |
CN103148848B (en) | Mobile terminal device for positioning system based on magnetic field map and method thereof | |
CN105698765B (en) | Object pose method under double IMU monocular visions measurement in a closed series noninertial systems | |
JP2022510418A (en) | Time synchronization processing method, electronic devices and storage media | |
CN106595640A (en) | Moving-base-object relative attitude measuring method based on dual-IMU-and-visual fusion and system | |
CN108627153A (en) | A kind of rigid motion tracing system and its working method based on inertial sensor | |
CN113324544B (en) | Indoor mobile robot co-location method based on UWB/IMU (ultra wide band/inertial measurement unit) of graph optimization | |
US20170205490A1 (en) | Coverage optimization for sensor networks | |
Yousuf et al. | Sensor fusion of INS, odometer and GPS for robot localization | |
Gong et al. | Robust inertial motion tracking through deep sensor fusion across smart earbuds and smartphone | |
CN106370178B (en) | Attitude measurement method and device of mobile terminal equipment | |
CN107621266B (en) | Space non-cooperative target relative navigation method based on feature point tracking | |
CN108020813A (en) | Localization method, positioner and electronic equipment | |
CN116182873B (en) | Indoor positioning method, system and computer readable medium | |
CN107270898A (en) | Double particle filter guiders and method based on MEMS sensor and VLC positioning fusions | |
CN114111776A (en) | Positioning method and related device | |
CN111932637B (en) | Vehicle body camera external parameter self-adaptive calibration method and device | |
TW202316888A (en) | Ranging-type positioning system and method based on crowdsourced calibration | |
KR101301462B1 (en) | Pedestiran dead-reckoning apparatus using low cost inertial measurement unit and method thereof | |
CN110779553A (en) | Calibration method for magnetometer data | |
Ahmad et al. | Intermittent measurement in robotic localization and mapping with FIM statistical bounds | |
CN116380054B (en) | Aircraft attitude calculation method | |
CN114666732B (en) | Moving target positioning calculation and error evaluation method under noisy network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |