CN107655476A - Pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation - Google Patents
Pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation Download PDFInfo
- Publication number
- CN107655476A CN107655476A CN201710716885.9A CN201710716885A CN107655476A CN 107655476 A CN107655476 A CN 107655476A CN 201710716885 A CN201710716885 A CN 201710716885A CN 107655476 A CN107655476 A CN 107655476A
- Authority
- CN
- China
- Prior art keywords
- mrow
- mtd
- msub
- mtr
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
本发明公开了一种基于多信息融合补偿的行人高精度足部导航算法,实时采集陀螺仪和加速度计的原始测量数据,初始陀螺仪的误差补偿为零,加速度计的误差补偿也为零,通过捷联惯性导航解算算法进行捷联解算;在上述基础上,构建卡尔曼滤波器修正模型进行滤波修正,状态方程一致,而量测方程随多维量测信息动态调整,在不同的多维信息检测下,构建对应的算法,量测方程实时变换,估计、修正导航定位结果误差和传感器误差,返回陀螺仪的误差补偿和加速度计的误差补偿;最后输出导航定位结果,即行人的位置、速度、姿态;采用低精度的消费级传感器芯片及磁传感器,解决了无全球卫星导航定位系统GNSS环境下高精度行人定位问题及高长时航向发散问题。
The invention discloses a pedestrian high-precision foot navigation algorithm based on multi-information fusion compensation, which collects the original measurement data of the gyroscope and the accelerometer in real time, the initial error compensation of the gyroscope is zero, and the error compensation of the accelerometer is also zero. The strapdown inertial navigation calculation algorithm is used for strapdown calculation; on the basis of the above, a Kalman filter correction model is constructed for filter correction, the state equation is consistent, and the measurement equation is dynamically adjusted with the multidimensional measurement information. Under information detection, the corresponding algorithm is constructed, the measurement equation is transformed in real time, the error of the navigation positioning result and the sensor error are estimated and corrected, and the error compensation of the gyroscope and the error compensation of the accelerometer are returned; finally, the navigation positioning result is output, that is, the position of the pedestrian, Speed and attitude: Low-precision consumer-grade sensor chips and magnetic sensors are used to solve the problem of high-precision pedestrian positioning and long-term heading divergence in a GNSS environment without a global satellite navigation and positioning system.
Description
技术领域technical field
本发明涉及一种高精度行人足部导航算法,尤其涉及一种基于多信息融合补偿的行人高精度足部导航算法,属于行人导航技术领域。The invention relates to a high-precision pedestrian foot navigation algorithm, in particular to a pedestrian high-precision foot navigation algorithm based on multi-information fusion compensation, which belongs to the technical field of pedestrian navigation.
背景技术Background technique
目前,针对行人导航技术的研究主要分为以下几类:无线感知、模式识别、惯性传感器。其中无线感知技术需要部署额外射频设备,包括WIFI、UWB等,适用范围较窄、信号容易受到遮挡、成本较高;而惯性传感器具有自主、不受外界干扰、成本较低的特点,适合广泛运用。但是低成本的惯性传感器误差较大,如果不进行补偿或其他手段辅助,几秒范围内将会造成米级以上的误差。本专利提出利用多信息融合补偿机制,设计一种基于惯导系统的零速卡尔曼滤波算法,研究行人初始静态下磁航向稳定性的航向误差自观测算法,研究行人运动状态下的零速航向误差自观测算法,研究基于地磁匹配与捷联惯性导航算法的融合算法,保证了行人高长时下的高精度和高可靠性。本方法适用于行人导航,解决无全球卫星导航定位系统GNSS环境下的高精度行人定位,利用低成本传感器可实现行人高长时自主定位,具有较高的工程应用和商业价值。At present, research on pedestrian navigation technology is mainly divided into the following categories: wireless perception, pattern recognition, and inertial sensors. Among them, wireless sensing technology needs to deploy additional radio frequency equipment, including WIFI, UWB, etc., which has a narrow application range, easy to block signals, and high cost; while inertial sensors are independent, free from external interference, and low in cost, and are suitable for wide application. . However, the low-cost inertial sensor has a large error. If no compensation or other means are used to assist, it will cause errors above the meter level within a few seconds. This patent proposes to use the multi-information fusion compensation mechanism to design a zero-speed Kalman filter algorithm based on the inertial navigation system, to study the heading error self-observation algorithm of the pedestrian's initial static magnetic heading stability, and to study the zero-speed heading under the pedestrian's motion state The error self-observation algorithm, the fusion algorithm based on geomagnetic matching and strapdown inertial navigation algorithm, ensures high precision and high reliability when pedestrians are tall and long. This method is suitable for pedestrian navigation and solves high-precision pedestrian positioning in an environment without global satellite navigation and positioning system GNSS. Using low-cost sensors can realize pedestrian high-duration autonomous positioning, and has high engineering application and commercial value.
发明内容Contents of the invention
发明目的:本发明所要解决的技术问题是采用低精度的惯性传感器与磁传感器设计一种适用于行人高精度足部导航的多信息融合补偿算法。Purpose of the invention: The technical problem to be solved by this invention is to use low-precision inertial sensors and magnetic sensors to design a multi-information fusion compensation algorithm suitable for pedestrians' high-precision foot navigation.
技术方案:Technical solutions:
一种基于多信息融合补偿的行人高精度足部导航算法,其特征在于:实时采集陀螺仪和加速度计的原始测量数据,初始陀螺仪的误差补偿为零,加速度计的误差补偿也为零,通过捷联惯性导航解算算法进行捷联解算;在上述基础上,构建卡尔曼滤波器修正模型进行滤波修正,状态方程一致,而量测方程随多维量测信息动态调整,在不同的多维信息检测下,构建对应的算法,量测方程实时变换,估计、修正导航定位结果误差和传感器误差,返回陀螺仪的误差补偿和加速度计的误差补偿;最后输出导航定位结果,即行人的位置、速度、姿态;A pedestrian high-precision foot navigation algorithm based on multi-information fusion compensation, which is characterized in that: the original measurement data of the gyroscope and the accelerometer are collected in real time, the initial error compensation of the gyroscope is zero, and the error compensation of the accelerometer is also zero, The strapdown inertial navigation calculation algorithm is used for strapdown calculation; on the basis of the above, a Kalman filter correction model is constructed for filter correction, the state equation is consistent, and the measurement equation is dynamically adjusted with the multidimensional measurement information. Under information detection, the corresponding algorithm is constructed, the measurement equation is transformed in real time, the error of the navigation positioning result and the sensor error are estimated and corrected, and the error compensation of the gyroscope and the error compensation of the accelerometer are returned; finally, the navigation positioning result is output, that is, the position of the pedestrian, speed, posture;
当只有零速检测成功时,采用伪量测信息构建基于零速卡尔曼滤波修正模型算法;当有零速检测成功和初始磁航向误差自观测时,构建行人初始静止状态下磁航向误差自观测算法;当有零速检测成功和动态状态下零速航向误差自观测时,构建行人运动状态下零速航向误差自观测算法;当有零速检测成功、运动状态下零速航向误差自观测和地磁匹配时,构建基于地磁匹配和捷联惯性导航解算算法的融合算法,其中每个算法的状态方程和量测方程共同作用构建了卡尔曼滤波器修正模型。When only the zero-speed detection is successful, the pseudo-measurement information is used to construct a correction model algorithm based on the zero-speed Kalman filter; when the zero-speed detection is successful and the initial magnetic heading error self-observation is established, the magnetic heading error self-observation under the initial stationary state of pedestrians is constructed Algorithm; when the zero-speed detection is successful and the zero-speed heading error is self-observed in the dynamic state, the zero-speed heading error self-observation algorithm is constructed in the pedestrian motion state; when the zero-speed detection is successful, the zero-speed heading error is self-observed and For geomagnetic matching, a fusion algorithm based on geomagnetic matching and strapdown inertial navigation solution algorithm is constructed, in which the state equation and measurement equation of each algorithm work together to construct a Kalman filter correction model.
进一步地:所述捷联惯性导航解算算法如下:Further: the strapdown inertial navigation solution algorithm is as follows:
惯性传感器由加速度计与陀螺仪组成,加速度计获取运动载体的比力信息,通过一次积分可以获得速度,通过二次积分可以获得位置;陀螺仪测量机体系相对于惯性系的角速度,通过一次积分可以获得角度;最基本的捷联惯性导航解算算法包括姿态解算、速度解算、位置解算;于是有下列公式计算姿态、速度、位置:The inertial sensor is composed of an accelerometer and a gyroscope. The accelerometer obtains the specific force information of the moving carrier, and the velocity can be obtained through one integration, and the position can be obtained through the second integration; the gyroscope measures the angular velocity of the machine system relative to the inertial system, and through one integration The angle can be obtained; the most basic strapdown inertial navigation calculation algorithm includes attitude calculation, velocity calculation, and position calculation; therefore, the following formulas are used to calculate attitude, velocity, and position:
其中,b为机体坐标系,n为导航坐标系,e为地球坐标系,i为惯性坐标系,f为比力,g为重力加速度,为机体坐标系到导航坐标系的姿态转移矩阵,为x、y、z三轴机体系相对于惯性系角速率在机体系上的投影,为三轴导航系相对于惯性系角速率在机体系上的投影,为地球自转角速率在导航系下的投影,为导航坐标系相对于地球坐标系的角速度在导航坐标系轴向的分量构成的列矢量,v为三轴速度矢量,p为三轴位置矢量;为关于时间t的导数,为vn关于时间t的导数,为pn关于时间t的导数,因此上式是常微分方程,在已知初始姿态、速度、位置的基础上,迭代求解。Among them, b is the body coordinate system, n is the navigation coordinate system, e is the earth coordinate system, i is the inertial coordinate system, f is the specific force, g is the gravitational acceleration, is the attitude transfer matrix from the body coordinate system to the navigation coordinate system, is the projection of the x, y, z three-axis machine system relative to the angular velocity of the inertial system on the machine system, is the projection of the angular velocity of the three-axis navigation system relative to the inertial system on the aircraft system, is the projection of the earth's rotation angular rate in the navigation system, is the column vector formed by the components of the angular velocity of the navigation coordinate system relative to the earth coordinate system in the axial direction of the navigation coordinate system, v is the three-axis velocity vector, and p is the three-axis position vector; for Derivative with respect to time t, is the derivative of v n with respect to time t, is the derivative of p n with respect to time t, so the above formula is an ordinary differential equation, which is solved iteratively on the basis of known initial attitude, velocity and position.
再进一步地:所述卡尔曼滤波修正模型的状态方程如下:Further: the state equation of the Kalman filter correction model is as follows:
卡尔曼滤波模型选用“东北天”地理坐标系,构建18阶状态模型如下:The Kalman filter model selects the "Northeast Sky" geographic coordinate system, and constructs an 18-order state model as follows:
其中,δφ=[δφe δφn δφu]为平台角误差;δν=[δve δvn δvu]为速度误差;δp=[δλ δL δh]为位置误差即经度、纬度、高度误差;εb=[εbx εby εbz]为三轴陀螺随机常数;εr=[εrx εry εrz]为三轴陀螺仪一阶马尔科夫过程,为三轴加速度计一阶马尔科夫过程;Among them, δφ=[δφ e δφ n δφ u ] is the platform angle error; δν=[δv e δv n δv u ] is the speed error; δp=[δλ δL δh] is the position error, that is, the longitude, latitude and height error; ε b = [ε bx ε by ε bz ] is the random constant of the three-axis gyroscope; ε r = [ε rx ε ry ε rz ] is the first-order Markov process of the three-axis gyroscope, is the first-order Markov process of the three-axis accelerometer;
不同地理坐标系下姿态转移矩阵不一样,状态方程里的A、G、W系数也不一样,在“东北天”地理坐标系下,A、G、W设置如下列四式所示:A为系统矩阵,G为系统噪声矩阵,W=[ωgx ωgy ωgz ωrx ωry ωrz ωax ωay ωaz]为系统噪声,根据传感器本身特性设置;其中ωg为三轴陀螺随机白噪声漂移,其均方差为σg,ωr是三轴陀螺均方差为σr的马尔科夫过程驱动白噪声,ωa是三轴加速度计均方差为σa的马尔科夫过程驱动白噪声;In different geographic coordinate systems The attitude transfer matrix is different, and the A, G, and W coefficients in the state equation are also different. In the "Northeast Sky" geographic coordinate system, the settings of A, G, and W are shown in the following four formulas: A is the system matrix, G is System noise matrix, W=[ω gx ω gy ω gz ω rx ω ry ω rz ω ax ω ay ω az ] is the system noise, which is set according to the characteristics of the sensor itself; where ω g is the random white noise drift of the three-axis gyroscope, its average The variance is σ g , ω r is the white noise driven by the Markov process with the mean square error of the three-axis gyroscope σ r , and ω a is the white noise driven by the Markov process with the mean square error of the three-axis accelerometer σ a ;
是对应9个基本导航参数的矩阵,T是马尔科夫过程的相关时间。 is a matrix corresponding to nine basic navigation parameters, and T is the correlation time of the Markov process.
更进一步地:所述基于零速卡尔曼滤波修正模型算法如下:Further: the described correction model algorithm based on zero-speed Kalman filter is as follows:
在只有零速检测成功时,利用伪量测信息构建零速状态下的六维量测模型;令veloP为3×1阶的零矩阵,posiP(t)=posiN(t-1),则基于零速卡尔曼滤波量测模型如下式所示:When only the zero-speed detection is successful, use pseudo-measurement information to construct a six-dimensional measurement model in the zero-speed state; let veloP be a zero matrix of order 3×1, posiP(t)=posiN(t-1), then based on The zero-speed Kalman filter measurement model is shown in the following formula:
其中,Z1(t)为速度和位置的观测量,veloN为捷联惯导系统实时解算的速度,posiN为捷联惯导系统实时解算的位置,Mv为行人零速状态下速度误差,Mp为行人零速状态下位置误差,V1为量测噪声,H1为量测矩阵,如下列两式所示:Among them, Z 1 (t) is the observed quantity of velocity and position, veloN is the velocity calculated by the strapdown inertial navigation system in real time, posiN is the position calculated by the strapdown inertial navigation system in real time, and M v is the velocity of the pedestrian at zero speed Error, M p is the position error of the pedestrian at zero speed, V 1 is the measurement noise, H 1 is the measurement matrix, as shown in the following two formulas:
Rm为子午圈地球曲率半径,Rn为卯酉圈地球曲率半径,L为纬度。R m is the radius of curvature of the earth in the meridian circle, R n is the radius of curvature of the earth in the meridian circle, and L is the latitude.
再进一步地:所述行人初始静止状态下磁航向误差自观测算法如下:Still further: the magnetic heading error self-observation algorithm in the initial static state of the pedestrian is as follows:
行人初始静止状态下,磁航向角具有较强的稳定性,因此当有零速检测成功和初始磁航向误差自观测时,构建一维量测方程,如下式所示:In the initial static state of pedestrians, the magnetic heading angle has strong stability. Therefore, when there is a successful zero-speed detection and self-observation of the initial magnetic heading error, a one-dimensional measurement equation is constructed, as shown in the following formula:
其中,Z2(t)为初始航向角的观测量,ψINS为捷联解算的航向角,可由捷联惯性导航解算算法中矩阵进行三角函数转换获得,令则ψmg为磁航向角,可由磁传感器测量得到的磁信息解算获得,为磁航向角解算误差,V2为量测噪声;Among them, Z 2 (t) is the observation of the initial heading angle, and ψ INS is the heading angle calculated by the strapdown, which can be calculated by the strapdown inertial navigation algorithm The matrix is obtained by trigonometric function conversion, so that but ψ mg is the magnetic heading angle, which can be calculated from the magnetic information measured by the magnetic sensor, is the magnetic heading angle solution error, V 2 is the measurement noise;
行人初始静止状态下,利用下式实现对传感器误差的进一步估计:In the initial static state of pedestrians, the following formula is used to further estimate the sensor error:
Z3(t)为速度、位置和初始航向角的观测量。Z 3 (t) is the observed quantity of velocity, position and initial heading angle.
又进一步地:所述行人运动状态下零速航向误差自观测算法如下:Still further: the zero-speed heading error self-observation algorithm under the pedestrian motion state is as follows:
行人运动状态下,每一步经历一段零速时刻,在零速阶段航向基本不变,基于零速航向不变理论,当有零速检测成功和动态状态下零速航向误差自观测时,记该步第一零速时刻点的航向角为ψk-initial,记该步其余零速时刻点的航向角为ψk-others;In the state of pedestrian movement, each step goes through a zero-speed moment, and the heading is basically unchanged in the zero-speed stage. Based on the theory of zero-speed heading invariance, when there is a successful zero-speed detection and zero-speed heading error self-observation in the dynamic state, record this The heading angle of the first zero-speed moment of the step is ψ k-initial , and the heading angles of the remaining zero-speed moments of the step are ψ k-others ;
构建一维零速航向自观测量测方程如下:The one-dimensional zero-speed heading self-observation measurement equation is constructed as follows:
其中:Z4(t)为运动状态下航向角的观测量,为航向角误差;为零速航向角误差,V4为量测噪声;因此:Among them: Z 4 (t) is the observed value of heading angle in motion state, is the heading angle error; is the zero-speed heading angle error, and V 4 is the measurement noise; therefore:
θ为俯仰角,可由捷联惯性导航解算算法中矩阵进行三角函数转换获得, θ is the pitch angle, which can be calculated by the strapdown inertial navigation algorithm The matrix is obtained by performing trigonometric function conversion,
于是可得运动状态下加入零速航向误差自观测算法的7维量测模型为:Therefore, the 7-dimensional measurement model with zero-speed heading error self-observation algorithm in motion state can be obtained as follows:
其中,Z5(t)为速度、位置和运动状态下航向角的观测量。Among them, Z 5 (t) is the observed quantity of velocity, position and heading angle in the state of motion.
再进一步地:所述基于地磁匹配和捷联导航解算算法的融合算法如下:Further: the fusion algorithm based on geomagnetic matching and strapdown navigation solution algorithm is as follows:
当同时检测到零速及地磁匹配成功时,使用集中滤波器构建10维量测方程,辅助修正位置误差、速度误差及传感器误差,如下列三式所示,其中posiM为地磁匹配位置,可由地磁匹配直接得到,M6为地磁匹配位置误差,V6为量测噪声,posiN为惯导实时解算的位置,δp为位置误差,HI如基于零速卡尔曼滤波修正模型算法中所示:When zero speed and geomagnetic matching are detected at the same time, a 10-dimensional measurement equation is constructed using a centralized filter to assist in correcting position error, speed error, and sensor error, as shown in the following three formulas, where posiM is the geomagnetic matching position, which can be determined by geomagnetic The matching is obtained directly, M 6 is the geomagnetic matching position error, V 6 is the measurement noise, posiN is the position calculated by the inertial navigation in real time, δp is the position error, and HI is shown in the correction model algorithm based on the zero-speed Kalman filter:
Z6(t)=[posiN-posiM]=[δp+M6]=H6(t)X(t)+V6(t)Z 6 (t)=[posiN-posiM]=[δp+M 6 ]=H 6 (t)X(t)+V 6 (t)
H6=[03×9 HI 03×9]H 6 =[0 3×9 HI 0 3×9 ]
Z6(t)为地磁匹配位置观测量,Z7(t)为速度、位置、运动状态下航向角以及地磁匹配位置观测量。Z 6 (t) is the geomagnetic matching position observation, and Z 7 (t) is the speed, position, heading angle in motion and geomagnetic matching position observation.
有益效果:Beneficial effect:
1.采用低精度的消费级传感器芯片,解决了无全球卫星导航定位系统GNSS环境下高精度行人定位问题。1. Using low-precision consumer-grade sensor chips, it solves the problem of high-precision pedestrian positioning in a GNSS environment without a global satellite navigation and positioning system.
2.通过采用磁传感器,利用磁航向角和地磁匹配解决了高长时航向发散问题。2. By using magnetic sensors, the problem of high long-term heading divergence is solved by using magnetic heading angle and geomagnetic matching.
3.惯性传感器与磁传感器成本低且普及较广,算法的实用性与推广性较强。3. Inertial sensors and magnetic sensors are low in cost and widely used, and the algorithm is more practical and popular.
附图说明Description of drawings
图1为基于多信息融合补偿的行人高精度足部导航算法流程框图。Figure 1 is a flowchart of pedestrian high-precision foot navigation algorithm based on multi-information fusion compensation.
具体实施方式Detailed ways
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
根据下述实施例,可以更好的理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。The present invention can be better understood from the following examples. However, those skilled in the art will readily understand that the specific material ratios, process conditions and results described in the examples are only used to illustrate the present invention, and should not and will not limit the present invention described in detail in the claims .
如图一所示,在已知行人初始位置、速度、姿态的基础上,实时采集加速度计及陀螺仪信息进行捷联惯性导航解算,获得惯性导航解算的速度、位置和姿态;利用加速度计、陀螺仪和磁力计信息在零速检测模块进行零速检测并构建伪量测信息,同时进行初始磁航向误差自观测、动态状态下零速航向误差自观测与地磁匹配,当不同条件成立时,构建不同的卡尔曼滤波量测方程,而状态方程一致;将滤波估计的位置、速度、姿态误差对捷联惯导系统得到的位置、速度、姿态进行补偿,进而得到最终的导航定位结果,即行人的位置、速度、姿态;将滤波估计的传感器误差返回加速度计、陀螺仪误差补偿回路,实时修正传感器误差,以此循环;As shown in Figure 1, on the basis of the known initial position, velocity, and attitude of pedestrians, the information of accelerometer and gyroscope is collected in real time for strapdown inertial navigation calculation, and the velocity, position, and attitude of inertial navigation solution are obtained; In the zero-speed detection module, zero-speed detection is carried out and pseudo-measurement information is constructed. At the same time, the initial magnetic heading error self-observation, the zero-speed heading error self-observation and geomagnetic matching in the dynamic state are performed. When different conditions are established When constructing different Kalman filter measurement equations, the state equations are consistent; the position, velocity, and attitude errors estimated by the filter are compensated for the position, velocity, and attitude obtained by the strapdown inertial navigation system, and then the final navigation and positioning results are obtained. , that is, the position, speed, and attitude of the pedestrian; the sensor error estimated by filtering is returned to the accelerometer and gyroscope error compensation loop, and the sensor error is corrected in real time, and the cycle is repeated;
当只有零速检测成功时,采用伪量测信息构建基于零速卡尔曼滤波修正模型算法;当有零速检测成功和初始磁航向误差自观测时,构建行人初始静止状态下磁航向误差自观测算法;当有零速检测成功和动态状态下零速航向误差自观测时,构建行人运动状态下零速航向误差自观测算法;当有零速检测成功、运动状态下零速航向误差自观测和地磁匹配时,构建基于地磁匹配和捷联导航解算算法的融合算法,其中每个算法的状态方程和量测方程共同作用构建了卡尔曼滤波器修正模型。When only the zero-speed detection is successful, the pseudo-measurement information is used to construct a correction model algorithm based on the zero-speed Kalman filter; when the zero-speed detection is successful and the initial magnetic heading error self-observation is established, the magnetic heading error self-observation under the initial stationary state of pedestrians is constructed Algorithm; when the zero-speed detection is successful and the zero-speed heading error is self-observed in the dynamic state, the zero-speed heading error self-observation algorithm is constructed in the pedestrian motion state; when the zero-speed detection is successful, the zero-speed heading error is self-observed and For geomagnetic matching, a fusion algorithm based on geomagnetic matching and strapdown navigation algorithm is constructed, in which the state equation and measurement equation of each algorithm work together to construct a Kalman filter correction model.
卡尔曼滤波修正模型的状态方程:The state equation of the Kalman filter correction model:
卡尔曼滤波模型选用“东北天”(ENU)地理坐标系,构建18阶状态模型如下:The Kalman filter model selects the "Northeast Sky" (ENU) geographic coordinate system, and constructs an 18-order state model as follows:
其中,δφ=[δφe δφn δφu]为平台角误差;δν=[δve δvn δvu]为速度误差;δp=[δλ δL δh]为位置误差即经度、纬度、高度误差;εb=[εbx εby εbz]为三轴陀螺随机常数;εr=[εrx εry εrz]为三轴陀螺仪一阶马尔科夫过程,为三轴加速度计一阶马尔科夫过程;Among them, δφ=[δφ e δφ n δφ u ] is the platform angle error; δν=[δv e δv n δv u ] is the speed error; δp=[δλ δL δh] is the position error, that is, the longitude, latitude and height error; ε b = [ε bx ε by ε bz ] is the random constant of the three-axis gyroscope; ε r = [ε rx ε ry ε rz ] is the first-order Markov process of the three-axis gyroscope, is the first-order Markov process of the three-axis accelerometer;
不同坐标系下姿态转移矩阵不一样,状态方程里的A、G、W系数也不一样,在“东北天”地理坐标系下,A、G、W设置如下列四式所示:A为系统矩阵,G为系统噪声矩阵,W=[ωgxωgy ωgz ωrx ωry ωrz ωax ωay ωaz]为系统噪声,根据传感器本身特性设置;其中ωg为三轴陀螺随机白噪声漂移,其均方差为σg,ωr是三轴陀螺均方差为σr的马尔科夫过程驱动白噪声,ωa是三轴加速度计均方差为σa的马尔科夫过程驱动白噪声;in different coordinate systems The attitude transfer matrix is different, and the A, G, and W coefficients in the state equation are also different. In the "Northeast Sky" geographic coordinate system, the settings of A, G, and W are shown in the following four formulas: A is the system matrix, G is System noise matrix, W=[ω gx ω gy ω gz ω rx ω ry ω rz ω ax ω ay ω az ] is the system noise, which is set according to the characteristics of the sensor itself; where ω g is the random white noise drift of the three-axis gyroscope, its average The variance is σ g , ω r is the white noise driven by the Markov process with the mean square error of the three-axis gyroscope σ r , and ω a is the white noise driven by the Markov process with the mean square error of the three-axis accelerometer σ a ;
是对应9个基本导航参数的矩阵,T是马尔科夫过程的相关时间; is a matrix corresponding to 9 basic navigation parameters, and T is the correlation time of the Markov process;
算法一:捷联惯性导航解算算法Algorithm 1: Strapdown inertial navigation solution algorithm
惯导系统是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点,主要分为平台式惯导系统和捷联式惯导系统两大类。捷联惯导系统是在平台式惯导系统基础上发展而来的,它是一种无框架系统。The inertial navigation system is an autonomous navigation system that does not rely on any external information and does not radiate energy to the outside. It has the characteristics of good concealment and can work in various complex environments such as air, ground, and underwater. The main points are There are two types of platform inertial navigation systems and strapdown inertial navigation systems. The strapdown inertial navigation system is developed on the basis of the platform inertial navigation system, and it is a frameless system.
惯性传感器由加速度计与陀螺仪组成,加速度计和陀螺仪直接固连在运载体上,陀螺仪和加速度计分别用来测量运载体的角运动信息和线运动信息,机载计算机根据这些测量信息解算出运载体的航向、姿态、速度和位置。加速度计获取运动载体的比力信息,通过一次积分可以获得速度,通过二次积分可以获得位置;陀螺仪测量机体系相对于惯性系的角速度,通过一次积分可以获得角度。最基本的捷联惯性导航解算算法包括姿态解算、速度解算、位置解算。于是有下列公式计算姿态、速度、位置:The inertial sensor is composed of an accelerometer and a gyroscope. The accelerometer and the gyroscope are directly connected to the carrier. The gyroscope and the accelerometer are used to measure the angular motion information and the linear motion information of the carrier respectively. Solve the heading, attitude, speed and position of the vehicle. The accelerometer obtains the specific force information of the moving carrier, the velocity can be obtained through one integration, and the position can be obtained through the second integration; the gyroscope measures the angular velocity of the machine system relative to the inertial system, and the angle can be obtained through one integration. The most basic strapdown inertial navigation calculation algorithm includes attitude calculation, velocity calculation, and position calculation. So the following formulas are used to calculate attitude, velocity and position:
其中,b为机体坐标系,n为导航坐标系,e为地球坐标系,i为惯性坐标系,f为比力,g为重力加速度,为机体坐标系到导航坐标系的姿态转移矩阵,为x、y、z三轴机体系相对于惯性系角速率在机体系上的投影,为三轴导航系相对于惯性系角速率在机体系上的投影,为地球自转角速率在导航系下的投影,为导航坐标系相对于地球坐标系的角速度在导航坐标系轴向的分量构成的列矢量,v为三轴速度矢量,p为三轴位置矢量,为关于时间t的导数,为vn关于时间t的导数,为pn关于时间t的导数,因此上式是常微分方程,在已知初始姿态、速度、位置的基础上,迭代求解。Among them, b is the body coordinate system, n is the navigation coordinate system, e is the earth coordinate system, i is the inertial coordinate system, f is the specific force, g is the gravitational acceleration, is the attitude transfer matrix from the body coordinate system to the navigation coordinate system, is the projection of the x, y, z three-axis machine system relative to the angular velocity of the inertial system on the machine system, is the projection of the angular velocity of the three-axis navigation system relative to the inertial system on the aircraft system, is the projection of the earth's rotation angular rate in the navigation system, is the column vector formed by the components of the angular velocity of the navigation coordinate system relative to the earth coordinate system in the axial direction of the navigation coordinate system, v is the three-axis velocity vector, p is the three-axis position vector, for Derivative with respect to time t, is the derivative of v n with respect to time t, is the derivative of p n with respect to time t, so the above formula is an ordinary differential equation, which is solved iteratively on the basis of known initial attitude, velocity and position.
但是低成本的惯性传感器噪声较大,几秒之内可以造成米级以上的定位误差,因此需寻求其他额外辅助手段修正导航定位误差,抑制误差发散。However, low-cost inertial sensors are noisy and can cause positioning errors above the meter level within a few seconds. Therefore, it is necessary to seek other additional auxiliary means to correct navigation positioning errors and suppress error divergence.
算法二:基于零速的卡尔曼滤波修正算法模型Algorithm 2: Kalman filter correction algorithm model based on zero speed
基于零速构建卡尔曼滤波修正模型,估计传感器误差和导航定位结果误差,保证行人高长时下的定位精度;在只有零速检测成功时,利用伪量测信息构建零速状态下的六维量测模型;令veloP为3×1阶的零矩阵,posiP(t)=posiN(t-1),则基于零速的卡尔曼滤波量测模型的连续方程如下式所示:Construct a Kalman filter correction model based on zero speed, estimate sensor error and navigation positioning result error, and ensure the positioning accuracy when pedestrians are tall and long; when only zero speed detection is successful, use pseudo-measurement information to construct a six-dimensional quantity under zero speed state measurement model; let veloP be a 3×1 order zero matrix, posiP(t)=posiN(t-1), then the continuity equation of the zero-speed Kalman filter measurement model is as follows:
其中,Z1(t)为速度和位置的观测量,veloN为捷联惯导系统实时解算的速度,posiN为捷联惯导系统实时解算的位置,Mv为行人零速状态下速度误差,Mp为行人零速状态下位置误差,V1为量测噪声,H1为量测矩阵,如下列两式所示:Among them, Z 1 (t) is the observed quantity of velocity and position, veloN is the velocity calculated by the strapdown inertial navigation system in real time, posiN is the position calculated by the strapdown inertial navigation system in real time, and M v is the velocity of the pedestrian at zero speed Error, M p is the position error of the pedestrian at zero speed, V 1 is the measurement noise, H 1 is the measurement matrix, as shown in the following two formulas:
Rm为子午圈地球曲率半径,Rn为卯酉圈地球曲率半径,L为纬度。R m is the radius of curvature of the earth in the meridian circle, R n is the radius of curvature of the earth in the meridian circle, and L is the latitude.
这里利用位置、速度虚拟量测信息辅助修正传感器误差和导航结果误差,以维持高长时下的行人导航定位精度,但是算法二中航向可观测性较低,航向的准确与否,会直接影响到姿态的准确性,需尝试构建航向相关量测信息修正航向误差。Here, the position and speed virtual measurement information is used to assist in correcting sensor errors and navigation result errors, so as to maintain the accuracy of pedestrian navigation and positioning under high conditions. For the accuracy of the attitude, it is necessary to try to construct the heading-related measurement information to correct the heading error.
算法三:行人初始静止状态下磁航向误差自观测算法Algorithm 3: Magnetic heading error self-observation algorithm in the initial static state of pedestrians
行人导航定位中航向精度是影响行人导航定位的主要因素,而磁航向角可作为绝对航向信息修正航向误差。行人初始静止状态下,磁航向角具有较强的稳定性,因此当有零速检测成功和初始磁航向误差自观测时,构建一维量测方程,如下式所示:The heading accuracy in pedestrian navigation and positioning is the main factor affecting pedestrian navigation and positioning, and the magnetic heading angle can be used as absolute heading information to correct the heading error. In the initial static state of pedestrians, the magnetic heading angle has strong stability. Therefore, when there is a successful zero-speed detection and self-observation of the initial magnetic heading error, a one-dimensional measurement equation is constructed, as shown in the following formula:
其中,Z2(t)为初始航向角的观测量,ψINS为捷联解算的航向角,可由算法一中矩阵进行三角函数转换获得,令则ψmg为磁航向角,可由磁传感器测量得到的磁信息解算获得,为磁航向角解算误差,V2为量测噪声。Among them, Z 2 (t) is the observation of the initial heading angle, and ψ INS is the heading angle calculated by the strapdown, which can be calculated by Algorithm 1 The matrix is obtained by trigonometric function conversion, so that but ψ mg is the magnetic heading angle, which can be calculated from the magnetic information measured by the magnetic sensor, is the magnetic heading angle calculation error, and V 2 is the measurement noise.
行人初始静止状态下,利用下式实现对传感器误差的进一步估计:In the initial static state of pedestrians, the following formula is used to further estimate the sensor error:
Z3(t)为速度、位置和初始航向角的观测量。Z 3 (t) is the observed quantity of velocity, position and initial heading angle.
算法四:行人运动状态下零速航向误差自观测算法Algorithm 4: Self-observation Algorithm for Zero-speed Heading Error in Pedestrian Movement
行人运动状态下,每一步经历一段零速时刻,在零速阶段航向基本不变,基于零速航向不变理论,当有零速检测成功和动态状态下零速航向误差自观测时,记该步第一零速时刻点的航向角为ψk-initial,记该步其余零速时刻点的航向角为ψk-others。In the state of pedestrian movement, each step goes through a zero-speed moment, and the heading is basically unchanged in the zero-speed stage. Based on the theory of zero-speed heading invariance, when there is a successful zero-speed detection and zero-speed heading error self-observation in the dynamic state, record this The heading angle at the first zero-speed moment of the step is ψ k-initial , and the heading angles at the remaining zero-speed moments of the step are ψ k-others .
构建一维零速航向自观测量测方程如下:The one-dimensional zero-speed heading self-observation measurement equation is constructed as follows:
其中:Z4(t)为运动状态下航向角的观测量,为航向角误差;为零速航向角误差,V4为量测噪声;因此:Among them: Z 4 (t) is the observed value of heading angle in motion state, is the heading angle error; is the zero-speed heading angle error, and V 4 is the measurement noise; therefore:
θ为俯仰角,可由算法一中矩阵进行三角函数转换获得, θ is the pitch angle, which can be calculated by Algorithm 1 The matrix is obtained by performing trigonometric function conversion,
于是可得运动状态下加入零速航向误差自观测算法的7维量测模型为:Therefore, the 7-dimensional measurement model with zero-speed heading error self-observation algorithm in motion state can be obtained as follows:
其中,Z5(t)为速度、位置和运动状态下航向角的观测量。Among them, Z 5 (t) is the observed quantity of velocity, position and heading angle in the state of motion.
算法五:基于地磁匹配和捷联导航解算算法的融合算法Algorithm 5: Fusion Algorithm Based on Geomagnetic Matching and Strapdown Navigation Algorithm
利用地磁匹配信息,增加定位可靠性,在有地磁匹配的情况下,能进一步保障行人导航定位精度。当同时检测到零速及地磁匹配成功时,使用集中滤波器构建10维量测方程,辅助修正位置误差、速度误差及传感器误差,如下列三式所示,其中posiM为地磁匹配位置,可由地磁匹配直接得到,M6为地磁匹配位置误差,V6为量测噪声,posiN为惯导实时解算的位置,δp为位置误差,HI如算法二中所示。Using geomagnetic matching information, the reliability of positioning is increased, and in the case of geomagnetic matching, the accuracy of pedestrian navigation and positioning can be further guaranteed. When zero speed and geomagnetic matching are detected at the same time, a 10-dimensional measurement equation is constructed using a centralized filter to assist in correcting position error, speed error, and sensor error, as shown in the following three formulas, where posiM is the geomagnetic matching position, which can be determined by geomagnetic The matching is obtained directly, M 6 is the geomagnetic matching position error, V 6 is the measurement noise, posiN is the position calculated by the inertial navigation in real time, δp is the position error, and HI is shown in Algorithm 2.
Z6(t)=[posiN-posiM]=[δp+M6]=H6(t)X(t)+V6(t)Z 6 (t)=[posiN-posiM]=[δp+M 6 ]=H 6 (t)X(t)+V 6 (t)
H6=[03×9 HI 03×9]H 6 =[0 3×9 HI 0 3×9 ]
Z6(t)为地磁匹配位置观测量,Z7(t)为速度、位置、运动状态下航向角以及地磁匹配位置观测量。Z 6 (t) is the geomagnetic matching position observation, and Z 7 (t) is the speed, position, heading angle in motion and geomagnetic matching position observation.
至此构建了多信息融合补偿的行人高精度足部导航算法,保证行人高精度、高长时导航。其中算法二三四五事实上是利用多源信息,来提升行人导航定位的精度和容错性。So far, a pedestrian high-precision foot navigation algorithm with multi-information fusion compensation has been constructed to ensure high-precision and high-duration pedestrian navigation. Among them, the algorithm 2345 actually uses multi-source information to improve the accuracy and fault tolerance of pedestrian navigation and positioning.
算法一是最基本的捷联惯性导航解算算法,对于低成本的惯性传感器,其噪声较大,如不加以修正,在短时间内将会造成米级以上的定位误差。于是采用算法二,利用位置、速度虚拟量测信息辅助修正传感器误差和导航结果误差,以维持高长时下的行人导航定位精度,但是算法二中卡尔曼滤波器,航向可观测性较低,航向与姿态息息相关,需尝试构建航向相关量测信息修正航向误差;而磁航向角可作为绝对航向信息修正航向误差,行人初始静止状态下,磁航向角具有较强的稳定性,因此添加算法三,但行人不一定有初始静止状态,因此添加算法四,提高航向可观测性,减小航向误差,进一步提高定位精度;算法五是利用地磁匹配信息,增加定位可靠性,在有地磁匹配的情况下,能进一步保障行人导航定位精度。Algorithm 1 is the most basic strapdown inertial navigation calculation algorithm. For low-cost inertial sensors, the noise is relatively large. If it is not corrected, it will cause positioning errors above the meter level in a short time. Therefore, Algorithm 2 is used to use the position and speed virtual measurement information to assist in correcting sensor errors and navigation result errors, so as to maintain the accuracy of pedestrian navigation and positioning under high conditions. However, the Kalman filter in Algorithm 2 has low heading observability and It is closely related to the attitude, and it is necessary to try to construct the heading-related measurement information to correct the heading error; the magnetic heading angle can be used as the absolute heading information to correct the heading error. When the pedestrian is in the initial static state, the magnetic heading angle has a strong stability, so add algorithm 3, However, pedestrians do not necessarily have an initial static state, so add Algorithm 4 to improve heading observability, reduce heading errors, and further improve positioning accuracy; Algorithm 5 uses geomagnetic matching information to increase positioning reliability. In the case of geomagnetic matching , which can further guarantee the accuracy of pedestrian navigation and positioning.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (7)
- A kind of 1. pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation, it is characterised in that:Collection gyro in real time The raw measurement data of instrument and accelerometer, the error compensation of initial gyroscope is zero, and the error compensation of accelerometer is also zero, Strapdown resolving is carried out by strap-down inertial computation;On the basis of the above, structure Kalman filter correction model enters Row filter correction, state equation is consistent, and measurement equation adjusts with multidimensional measurement information dynamic, is detected in different multidimensional information Under, algorithm corresponding to structure, measurement equation real-time transform, estimation, amendment navigator fix resultant error and sensor error, return The error compensation of gyroscope and the error compensation of accelerometer;Finally export navigator fix result, i.e., the position of pedestrian, speed, Posture;When only zero-speed detection success, zero-speed Kalman filtering correction model algorithm is based on using pseudo- measurement information structure;When There are zero-speed detection success and initial magnetic heading error to be observed certainly from magnetic heading error under pedestrian's initial rest state when observing, is built Algorithm;, from when observing, zero-speed under pedestrian movement's state is built when there is zero-speed course error under zero-speed detection success and dynamical state Course error is from observation algorithm;When have zero-speed detection success, under motion state zero-speed course error from observing and during geomagnetic matching, The blending algorithm based on geomagnetic matching and strap-down inertial computation is built, wherein the state equation of each algorithm and measurement Equation collective effect constructs Kalman filter correction model.
- 2. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 1, it is special Sign is:The strap-down inertial computation is as follows:Inertial sensor is made up of accelerometer and gyroscope, and accelerometer obtains the ratio force information of motion carrier, by once Integration can obtain speed, and position can be obtained by quadratic integral;Gyroscope measuring machine system is fast relative to the angle of inertial system Degree, angle can be obtained by once integrating;Most basic strap-down inertial computation includes attitude algorithm, velocity solution Calculate, position resolves;Then following equation calculates posture, speed, position:<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>C</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>n</mi> </msubsup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <msubsup> <mi>&Omega;</mi> <mrow> <mi>i</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msubsup> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mi>b</mi> </msubsup> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mover> <mi>v</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <msup> <mi>f</mi> <mi>b</mi> </msup> <mo>-</mo> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <msubsup> <mi>&omega;</mi> <mrow> <mi>i</mi> <mi>e</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>e</mi> <mi>n</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> <msup> <mi>v</mi> <mi>n</mi> </msup> <mo>-</mo> <mi>g</mi> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msup> <mo>=</mo> <msup> <mi>v</mi> <mi>n</mi> </msup> </mtd> </mtr> </mtable> </mfenced>Wherein, b is body axis system, and n is navigational coordinate system, and e is terrestrial coordinate system, and i is inertial coodinate system, and f is specific force, and g is Acceleration of gravity,For the posture transfer matrix of body axis system to navigational coordinate system,For x, y, z three, axle body system is relative In the projection that inertial system angular speed is fastened in body,Fastened for three spindle guides boat system relative to inertial system angular speed in body Projection,For earth rotation angular speed navigation be under projection,Angle for navigational coordinate system relative to terrestrial coordinate system The column vector that component of the speed in navigational coordinate system axial direction is formed, v is three axle speed vectors, and p is three shaft position vectors;ForOn time t derivative,For vnOn time t derivative,For pnOn time t derivative, therefore above formula is Chang Wei Divide equation, on the basis of known initial attitude, speed, position, iterative.
- 3. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 1, it is special Sign is that the state equation of the Kalman filtering correction model is as follows:Kalman filter model selects " northeast day " geographic coordinate system, and it is as follows to build 18 scalariform states models:<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>X</mi> <mo>+</mo> <mi>G</mi> <mi>W</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&delta;</mi> <mi>&phi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>&delta;</mi> <mi>v</mi> </mrow> </mtd> <mtd> <mrow> <mi>&delta;</mi> <mi>p</mi> </mrow> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>b</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>r</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>Wherein, δ φ=[δ φe δφn δφu] it is platform angle error;δ ν=[δ ve δvn δvu] it is velocity error;δ p=[δ λ δ L δ h] it is that site error is longitude, latitude, height error;εb=[εbx εby εbz] it is three axis accelerometer arbitrary constant;εr= [εrx εry εrz] it is three-axis gyroscope single order markoff process, ▽r=[▽rx ▽ry ▽rz] it is three axis accelerometer single order Markoff process;Under different geographic coordinate systemsPosture transfer matrix is different, and the A, G, W coefficient in state equation are also different, in " east Under northern day " geographic coordinate system, A, G, W are set as shown in following four formula:A is sytem matrix, and G is system noise matrix, W=[ωgx ωgy ωgz ωrx ωry ωrz ωax ωay ωaz] it is system noise, set according to sensor self character;Wherein ωgFor Three axis accelerometer random white noise drifts about, and its mean square deviation is σg, ωrIt is that three axis accelerometer mean square deviation is σrMarkoff process driving White noise, ωaIt is that three axis accelerometer mean square deviation is σaMarkoff process driving white noise;<mrow> <mi>G</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow><mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mrow> <mi>I</mi> <mi>N</mi> <mi>S</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>9</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mrow> <mi>s</mi> <mi>g</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>9</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow> <mn>9</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow><mrow> <msub> <mi>A</mi> <mrow> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>r</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>a</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow><mrow> <msub> <mi>A</mi> <mrow> <mi>s</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>It is the matrix of corresponding 9 basic navigation parameters, when T is the correlation of markoff process Between.
- 4. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 1, it is special Sign is, described as follows based on zero-speed Kalman filtering correction model algorithm:In the success of only zero-speed detection, the sextuple measurement model under zero-speed state is built using pseudo- measurement information;The veloP is made to be The null matrix of 3 × 1 ranks, posiP (t)=posiN (t-1), then the Kalman filtering measurement model based on zero-speed be shown below:<mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <mi>v</mi> <mi>e</mi> <mi>l</mi> <mi>o</mi> <mi>N</mi> <mo>-</mo> <mi>v</mi> <mi>e</mi> <mi>l</mi> <mi>o</mi> <mi>P</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>p</mi> <mi>o</mi> <mi>s</mi> <mi>i</mi> <mi>N</mi> <mo>-</mo> <mi>p</mi> <mi>o</mi> <mi>s</mi> <mi>i</mi> <mi>P</mi> </mrow> </mtd> </mtr> </mtable> <mo>&rsqb;</mo> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <mi>&delta;</mi> <mi>v</mi> <mo>+</mo> <msub> <mi>M</mi> <mi>v</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&delta;</mi> <mi>p</mi> <mo>+</mo> <msub> <mi>M</mi> <mi>p</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>&rsqb;</mo> <mo>=</mo> <msub> <mi>H</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>V</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>Wherein, Z1(t) it is the observed quantity of speed and position, veloN is the speed of SINS real-time resolving, and posiN is victory Join the position of inertial navigation system real-time resolving, MvFor velocity error under pedestrian's zero-speed state, MpMissed for position under pedestrian's zero-speed state Difference, V1To measure noise, H1For measurement matrix, as shown in following two formula:<mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>12</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>6</mn> </mrow> </msub> </mtd> <mtd> <mrow> <mi>H</mi> <mi>I</mi> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>9</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow><mrow> <mi>H</mi> <mi>I</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> <mi>cos</mi> <mi> </mi> <mi>L</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>RmFor meridian circle radius of curvature of the earth, RnFor prime vertical radius of curvature of the earth, L is latitude.
- 5. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 4, it is special Sign is:Magnetic heading error is as follows from observation algorithm under pedestrian's initial rest state:Under pedestrian's initial rest state, magnetic heading angle has stronger stability, therefore working as has zero-speed detection successful and initial magnetic Course error builds one-dimensional measurement equation, is shown below from when observing:Wherein, Z2(t) it is the observed quantity at initial heading angle, ψINSThe course angle resolved for strapdown, can be resolved by strap-down inertial In algorithmMatrix carries out trigonometric function conversion and obtained, orderThenψmgFor Magnetic heading angle, it can be resolved and obtained by the magnetic information that Magnetic Sensor measurement obtains,For magnetic heading angle resolution error, V2Made an uproar to measure Sound;Under pedestrian's initial rest state, the further estimation to sensor error is realized using following formula:<mrow> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>&rsqb;</mo> </mrow>Z3(t) it is the observed quantity of speed, position and initial heading angle.
- 6. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 4, it is special Sign is:Zero-speed course error is as follows from observation algorithm under pedestrian movement's state:Under pedestrian movement's state, each step undergoes one section of zero-speed moment, the zero-speed stage course be basically unchanged, based on zero-speed course Constant theory, from when observing, remember the step the first zero-speed moment when there is zero-speed course error under zero-speed detection success and dynamical state The course angle of point is ψk-initial, the course angle for remembering remaining zero-speed moment point of the step is ψk-others;It is as follows from measurement equation is observed to build one-dimensional zero-speed course:Wherein:Z4(t) it is the observed quantity of course angle under motion state,For course angle error;For zero-speed course angle error, V4 To measure noise;Therefore:θ is the angle of pitch, can be by strap-down inertial computationMatrix carries out trigonometric function conversion and obtained,Then addition zero-speed course error under motion state can be obtained is from 7 dimension measurement models of observation algorithm:<mrow> <msub> <mi>Z</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>&rsqb;</mo> </mrow>Wherein, Z5(t) be speed, under position and motion state course angle observed quantity.
- 7. a kind of pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation according to claim 4, it is special Sign is:The blending algorithm based on geomagnetic matching and strap-down navigation computation is as follows:When being detected simultaneously by zero-speed and geomagnetic matching success, the dimension measurement equation of concentrated filter structure 10, auxiliary amendment are used Site error, velocity error and sensor error, as shown in following three formula, wherein posiM is geomagnetic matching position, can be by earth magnetism Matching directly obtains, M6For geomagnetic matching site error, V6To measure noise, posiN is the position of inertial navigation real-time resolving, and δ p are Site error, HI is based on as shown in zero-speed Kalman filtering correction model algorithm:Z6(t)=[posiN-posiM]=[δ p+M6]=H6(t)X(t)+V6(t)H6=[03×9 HI 03×9]<mrow> <msub> <mi>Z</mi> <mn>7</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>6</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>&rsqb;</mo> </mrow>Z6(t) it is geomagnetic matching position detection amount, Z7(t) it is course angle and geomagnetic matching position under speed, position, motion state Put observed quantity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710716885.9A CN107655476B (en) | 2017-08-21 | 2017-08-21 | Pedestrian high-precision foot navigation method based on multi-information fusion compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710716885.9A CN107655476B (en) | 2017-08-21 | 2017-08-21 | Pedestrian high-precision foot navigation method based on multi-information fusion compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107655476A true CN107655476A (en) | 2018-02-02 |
CN107655476B CN107655476B (en) | 2021-04-20 |
Family
ID=61127689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710716885.9A Active CN107655476B (en) | 2017-08-21 | 2017-08-21 | Pedestrian high-precision foot navigation method based on multi-information fusion compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107655476B (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108627152A (en) * | 2018-04-25 | 2018-10-09 | 珠海全志科技股份有限公司 | A kind of air navigation aid of the miniature drone based on Fusion |
CN108931155A (en) * | 2018-07-09 | 2018-12-04 | 北京航天控制仪器研究所 | One kind not depending on satellite navigation and increases journey guided munition self-contained guidance system |
CN108957510A (en) * | 2018-07-25 | 2018-12-07 | 南京航空航天大学 | Based on inertia/zero-speed/GPS pedestrian is seamless combined navigation locating method |
CN109001787A (en) * | 2018-05-25 | 2018-12-14 | 北京大学深圳研究生院 | A kind of method and its merge sensor of solving of attitude and positioning |
CN109298436A (en) * | 2018-05-15 | 2019-02-01 | 重庆邮电大学 | A Multi-information Fusion Indoor Positioning and Navigation Method |
CN109579836A (en) * | 2018-11-21 | 2019-04-05 | 阳光凯讯(北京)科技有限公司 | A kind of indoor pedestrian's bearing calibration method based on MEMS inertial navigation |
CN109612464A (en) * | 2018-11-23 | 2019-04-12 | 南京航空航天大学 | Multi-algorithm enhanced indoor navigation system and method based on IEZ framework |
CN109855621A (en) * | 2018-12-27 | 2019-06-07 | 国网江苏省电力有限公司检修分公司 | A kind of composed chamber's one skilled in the art's navigation system and method based on UWB and SINS |
CN109855620A (en) * | 2018-12-26 | 2019-06-07 | 北京壹氢科技有限公司 | A kind of indoor pedestrian navigation method based on from backtracking algorithm |
CN109883429A (en) * | 2019-04-15 | 2019-06-14 | 山东建筑大学 | Zero-speed detection method based on hidden Markov model and indoor pedestrian inertial navigation system |
CN110715659A (en) * | 2019-10-25 | 2020-01-21 | 高新兴物联科技有限公司 | Zero-speed detection method, pedestrian inertial navigation method, device and storage medium |
CN110736457A (en) * | 2019-11-12 | 2020-01-31 | 苏州工业职业技术学院 | An integrated navigation method based on Beidou, GPS and SINS |
CN110764506A (en) * | 2019-11-05 | 2020-02-07 | 广东博智林机器人有限公司 | Course angle fusion method and device of mobile robot and mobile robot |
CN110763228A (en) * | 2019-10-08 | 2020-02-07 | 哈尔滨工程大学 | Error correction method of integrated navigation system based on seabed oil and gas pipe node position |
CN110763229A (en) * | 2019-11-12 | 2020-02-07 | 武汉大学 | A portable inertial navigation positioning rod and its positioning and attitude determination method |
CN110793519A (en) * | 2019-11-26 | 2020-02-14 | 河南工业大学 | A Cooperative Navigation and Positioning Method Based on Incomplete Measurement |
CN111024075A (en) * | 2019-12-26 | 2020-04-17 | 北京航天控制仪器研究所 | Pedestrian navigation error correction filtering method combining Bluetooth beacon and map |
CN111189443A (en) * | 2020-01-14 | 2020-05-22 | 电子科技大学 | Pedestrian navigation method for online step length calibration, motion deviation angle correction and adaptive energy management |
CN111197974A (en) * | 2020-01-15 | 2020-05-26 | 重庆邮电大学 | A barometer-free altitude measurement method based on Android inertial platform |
CN111521178A (en) * | 2020-04-28 | 2020-08-11 | 中国人民解放军国防科技大学 | In-hole positioning method of positioning and orientation instrument for drilling based on pipe length constraint |
CN111750863A (en) * | 2020-06-18 | 2020-10-09 | 哈尔滨工程大学 | A Navigation System Error Correction Method Based on Subsea Pipeline Node Position Aid |
CN111795694A (en) * | 2020-04-08 | 2020-10-20 | 应急管理部四川消防研究所 | An indoor positioning electromagnetic calibration method for fire rescue |
CN111795696A (en) * | 2020-06-28 | 2020-10-20 | 中铁第一勘察设计院集团有限公司 | An Initial Structure Optimization Method for Multiple Inertial Navigation Redundant Systems Based on Zero-speed Correction |
CN112033405A (en) * | 2020-08-10 | 2020-12-04 | 北京摩高科技有限公司 | Indoor environment magnetic anomaly real-time correction and navigation method and device |
CN112362057A (en) * | 2020-10-26 | 2021-02-12 | 中国人民解放军海军航空大学 | Inertial pedestrian navigation algorithm based on zero-speed correction and attitude self-observation |
CN112733409A (en) * | 2021-04-02 | 2021-04-30 | 中国电子科技集团公司信息科学研究院 | Multi-source sensing comprehensive integrated composite navigation micro-system collaborative design platform |
CN112964257A (en) * | 2021-02-05 | 2021-06-15 | 南京航空航天大学 | Pedestrian inertia SLAM method based on virtual landmarks |
CN113419265A (en) * | 2021-06-15 | 2021-09-21 | 湖南北斗微芯数据科技有限公司 | Positioning method and device based on multi-sensor fusion and electronic equipment |
CN113608249A (en) * | 2021-07-16 | 2021-11-05 | 香港理工大学深圳研究院 | Indoor and outdoor seamless positioning and navigation library self-construction method |
CN114001730A (en) * | 2021-09-24 | 2022-02-01 | 深圳元戎启行科技有限公司 | Fusion positioning method and device, computer equipment and storage medium |
CN114061574A (en) * | 2021-11-20 | 2022-02-18 | 北京唯实深蓝科技有限公司 | Coal mining machine attitude determination and orientation method based on position invariant constraint and zero speed correction |
CN114463502A (en) * | 2022-01-14 | 2022-05-10 | 北京信息科技大学 | Non-contact type safety distance active early warning method and device and storage medium |
CN114608570A (en) * | 2022-02-25 | 2022-06-10 | 电子科技大学 | A multi-mode self-switching self-adaptive precision positioning method of pipeline instrument |
CN114719858A (en) * | 2022-04-19 | 2022-07-08 | 东北大学秦皇岛分校 | 3-dimensional positioning method based on IMU and floor height target compensation |
CN114964262A (en) * | 2022-05-24 | 2022-08-30 | 深圳大学 | A robot localization method based on multi-source fusion |
CN115235459A (en) * | 2022-05-27 | 2022-10-25 | 上海健康医学院 | Spherical particle motion state detection device and method thereof |
CN115574812A (en) * | 2022-08-31 | 2023-01-06 | 凌宇科技(北京)有限公司 | Attitude data processing method, device, electronic device and storage medium |
CN117647251A (en) * | 2024-01-30 | 2024-03-05 | 山东科技大学 | Robust self-adaptive combined navigation method based on observed noise covariance matrix |
CN117782001A (en) * | 2024-02-28 | 2024-03-29 | 爱瑞克(大连)安全技术集团有限公司 | PAPI navigation aid lamp dynamic angle monitoring and early warning method and system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105628024A (en) * | 2015-12-29 | 2016-06-01 | 中国电子科技集团公司第二十六研究所 | Single person positioning navigator based on multi-sensor fusion and positioning and navigating method |
CN105783923A (en) * | 2016-01-05 | 2016-07-20 | 山东科技大学 | Personnel positioning method based on RFID and MEMS inertial technologies |
CN106705968A (en) * | 2016-12-09 | 2017-05-24 | 北京工业大学 | Indoor inertial navigation algorithm based on posture recognition and step length model |
-
2017
- 2017-08-21 CN CN201710716885.9A patent/CN107655476B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105628024A (en) * | 2015-12-29 | 2016-06-01 | 中国电子科技集团公司第二十六研究所 | Single person positioning navigator based on multi-sensor fusion and positioning and navigating method |
CN105783923A (en) * | 2016-01-05 | 2016-07-20 | 山东科技大学 | Personnel positioning method based on RFID and MEMS inertial technologies |
CN106705968A (en) * | 2016-12-09 | 2017-05-24 | 北京工业大学 | Indoor inertial navigation algorithm based on posture recognition and step length model |
Non-Patent Citations (2)
Title |
---|
K.ABDULRAHIM: ""Aiding MEMS IMU with Building Heading for Indoor Pedestrian Navigation"", 《2010 UBIQUITOUS POSITIONING INDOOR NAVIGATION AND LOCATION BASED SERVICE》 * |
马明等: "基于地磁辅助的室内行人定位航向校正方法", 《电子与信息学报》 * |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108627152A (en) * | 2018-04-25 | 2018-10-09 | 珠海全志科技股份有限公司 | A kind of air navigation aid of the miniature drone based on Fusion |
CN109298436A (en) * | 2018-05-15 | 2019-02-01 | 重庆邮电大学 | A Multi-information Fusion Indoor Positioning and Navigation Method |
CN109001787B (en) * | 2018-05-25 | 2022-10-21 | 北京大学深圳研究生院 | A method for calculating and positioning attitude angle and its fusion sensor |
CN109001787A (en) * | 2018-05-25 | 2018-12-14 | 北京大学深圳研究生院 | A kind of method and its merge sensor of solving of attitude and positioning |
CN108931155B (en) * | 2018-07-09 | 2020-08-14 | 北京航天控制仪器研究所 | Autonomous guidance system independent of satellite navigation extended-range guidance ammunition |
CN108931155A (en) * | 2018-07-09 | 2018-12-04 | 北京航天控制仪器研究所 | One kind not depending on satellite navigation and increases journey guided munition self-contained guidance system |
CN108957510A (en) * | 2018-07-25 | 2018-12-07 | 南京航空航天大学 | Based on inertia/zero-speed/GPS pedestrian is seamless combined navigation locating method |
CN108957510B (en) * | 2018-07-25 | 2022-05-24 | 南京航空航天大学 | Pedestrian seamless combined navigation and positioning method based on inertia/zero speed/GPS |
CN109579836A (en) * | 2018-11-21 | 2019-04-05 | 阳光凯讯(北京)科技有限公司 | A kind of indoor pedestrian's bearing calibration method based on MEMS inertial navigation |
CN109579836B (en) * | 2018-11-21 | 2022-09-06 | 阳光凯讯(北京)科技有限公司 | Indoor pedestrian orientation calibration method based on MEMS inertial navigation |
CN109612464A (en) * | 2018-11-23 | 2019-04-12 | 南京航空航天大学 | Multi-algorithm enhanced indoor navigation system and method based on IEZ framework |
CN109612464B (en) * | 2018-11-23 | 2022-06-10 | 南京航空航天大学 | Multi-algorithm enhanced indoor navigation system and method based on IEZ framework |
CN109855620A (en) * | 2018-12-26 | 2019-06-07 | 北京壹氢科技有限公司 | A kind of indoor pedestrian navigation method based on from backtracking algorithm |
CN109855621A (en) * | 2018-12-27 | 2019-06-07 | 国网江苏省电力有限公司检修分公司 | A kind of composed chamber's one skilled in the art's navigation system and method based on UWB and SINS |
CN109883429A (en) * | 2019-04-15 | 2019-06-14 | 山东建筑大学 | Zero-speed detection method based on hidden Markov model and indoor pedestrian inertial navigation system |
CN110763228A (en) * | 2019-10-08 | 2020-02-07 | 哈尔滨工程大学 | Error correction method of integrated navigation system based on seabed oil and gas pipe node position |
CN110715659A (en) * | 2019-10-25 | 2020-01-21 | 高新兴物联科技有限公司 | Zero-speed detection method, pedestrian inertial navigation method, device and storage medium |
CN110764506B (en) * | 2019-11-05 | 2022-10-11 | 广东博智林机器人有限公司 | Course angle fusion method and device of mobile robot and mobile robot |
CN110764506A (en) * | 2019-11-05 | 2020-02-07 | 广东博智林机器人有限公司 | Course angle fusion method and device of mobile robot and mobile robot |
CN110763229A (en) * | 2019-11-12 | 2020-02-07 | 武汉大学 | A portable inertial navigation positioning rod and its positioning and attitude determination method |
CN110736457A (en) * | 2019-11-12 | 2020-01-31 | 苏州工业职业技术学院 | An integrated navigation method based on Beidou, GPS and SINS |
CN110793519A (en) * | 2019-11-26 | 2020-02-14 | 河南工业大学 | A Cooperative Navigation and Positioning Method Based on Incomplete Measurement |
CN111024075A (en) * | 2019-12-26 | 2020-04-17 | 北京航天控制仪器研究所 | Pedestrian navigation error correction filtering method combining Bluetooth beacon and map |
CN111189443A (en) * | 2020-01-14 | 2020-05-22 | 电子科技大学 | Pedestrian navigation method for online step length calibration, motion deviation angle correction and adaptive energy management |
CN111197974A (en) * | 2020-01-15 | 2020-05-26 | 重庆邮电大学 | A barometer-free altitude measurement method based on Android inertial platform |
CN111197974B (en) * | 2020-01-15 | 2021-12-17 | 重庆邮电大学 | Barometer height measuring and calculating method based on Android inertial platform |
CN111795694A (en) * | 2020-04-08 | 2020-10-20 | 应急管理部四川消防研究所 | An indoor positioning electromagnetic calibration method for fire rescue |
CN111795694B (en) * | 2020-04-08 | 2022-05-10 | 应急管理部四川消防研究所 | An indoor positioning electromagnetic calibration method for fire rescue |
CN111521178A (en) * | 2020-04-28 | 2020-08-11 | 中国人民解放军国防科技大学 | In-hole positioning method of positioning and orientation instrument for drilling based on pipe length constraint |
CN111750863A (en) * | 2020-06-18 | 2020-10-09 | 哈尔滨工程大学 | A Navigation System Error Correction Method Based on Subsea Pipeline Node Position Aid |
CN111795696A (en) * | 2020-06-28 | 2020-10-20 | 中铁第一勘察设计院集团有限公司 | An Initial Structure Optimization Method for Multiple Inertial Navigation Redundant Systems Based on Zero-speed Correction |
CN112033405A (en) * | 2020-08-10 | 2020-12-04 | 北京摩高科技有限公司 | Indoor environment magnetic anomaly real-time correction and navigation method and device |
CN112362057A (en) * | 2020-10-26 | 2021-02-12 | 中国人民解放军海军航空大学 | Inertial pedestrian navigation algorithm based on zero-speed correction and attitude self-observation |
CN112964257A (en) * | 2021-02-05 | 2021-06-15 | 南京航空航天大学 | Pedestrian inertia SLAM method based on virtual landmarks |
CN112964257B (en) * | 2021-02-05 | 2022-10-25 | 南京航空航天大学 | Pedestrian inertia SLAM method based on virtual landmarks |
CN112733409A (en) * | 2021-04-02 | 2021-04-30 | 中国电子科技集团公司信息科学研究院 | Multi-source sensing comprehensive integrated composite navigation micro-system collaborative design platform |
CN113419265A (en) * | 2021-06-15 | 2021-09-21 | 湖南北斗微芯数据科技有限公司 | Positioning method and device based on multi-sensor fusion and electronic equipment |
CN113608249A (en) * | 2021-07-16 | 2021-11-05 | 香港理工大学深圳研究院 | Indoor and outdoor seamless positioning and navigation library self-construction method |
CN113608249B (en) * | 2021-07-16 | 2024-01-12 | 香港理工大学深圳研究院 | Indoor and outdoor seamless positioning and navigation library self-construction method |
CN114001730B (en) * | 2021-09-24 | 2024-03-08 | 深圳元戎启行科技有限公司 | Fusion positioning method, fusion positioning device, computer equipment and storage medium |
CN114001730A (en) * | 2021-09-24 | 2022-02-01 | 深圳元戎启行科技有限公司 | Fusion positioning method and device, computer equipment and storage medium |
CN114061574A (en) * | 2021-11-20 | 2022-02-18 | 北京唯实深蓝科技有限公司 | Coal mining machine attitude determination and orientation method based on position invariant constraint and zero speed correction |
CN114061574B (en) * | 2021-11-20 | 2024-04-05 | 北京唯实深蓝科技有限公司 | Position-invariant constraint and zero-speed correction-based coal mining machine pose-determining and orienting method |
CN114463502A (en) * | 2022-01-14 | 2022-05-10 | 北京信息科技大学 | Non-contact type safety distance active early warning method and device and storage medium |
CN114608570B (en) * | 2022-02-25 | 2023-06-30 | 电子科技大学 | Multi-mode self-switching pipeline instrument self-adaptive precise positioning method |
CN114608570A (en) * | 2022-02-25 | 2022-06-10 | 电子科技大学 | A multi-mode self-switching self-adaptive precision positioning method of pipeline instrument |
CN114719858A (en) * | 2022-04-19 | 2022-07-08 | 东北大学秦皇岛分校 | 3-dimensional positioning method based on IMU and floor height target compensation |
CN114719858B (en) * | 2022-04-19 | 2024-05-07 | 东北大学秦皇岛分校 | A 3D positioning method based on IMU and floor height target compensation |
CN114964262A (en) * | 2022-05-24 | 2022-08-30 | 深圳大学 | A robot localization method based on multi-source fusion |
CN115235459A (en) * | 2022-05-27 | 2022-10-25 | 上海健康医学院 | Spherical particle motion state detection device and method thereof |
CN115574812A (en) * | 2022-08-31 | 2023-01-06 | 凌宇科技(北京)有限公司 | Attitude data processing method, device, electronic device and storage medium |
CN117647251A (en) * | 2024-01-30 | 2024-03-05 | 山东科技大学 | Robust self-adaptive combined navigation method based on observed noise covariance matrix |
CN117782001A (en) * | 2024-02-28 | 2024-03-29 | 爱瑞克(大连)安全技术集团有限公司 | PAPI navigation aid lamp dynamic angle monitoring and early warning method and system |
CN117782001B (en) * | 2024-02-28 | 2024-05-07 | 爱瑞克(大连)安全技术集团有限公司 | PAPI navigation aid lamp dynamic angle monitoring and early warning method and system |
Also Published As
Publication number | Publication date |
---|---|
CN107655476B (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107655476A (en) | Pedestrian's high accuracy foot navigation algorithm based on Multi-information acquisition compensation | |
CN112629538B (en) | Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering | |
CN108051866B (en) | Based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation Gravimetric Method | |
CN107270893B (en) | Lever arm and time asynchronous error estimation and compensation method for real estate measurement | |
CN107588769B (en) | Vehicle-mounted strapdown inertial navigation, odometer and altimeter integrated navigation method | |
CN101173858B (en) | A three-dimensional attitude determination and local positioning method for a lunar patrol probe | |
CN102169184B (en) | Method and device for measuring installation misalignment angle of double-antenna GPS (Global Position System) in integrated navigation system | |
CN103389092B (en) | A kind of kite balloon airship attitude measuring and measuring method | |
CN104698485B (en) | Integrated navigation system and air navigation aid based on BD, GPS and MEMS | |
CN102116634B (en) | Autonomous dimensionality reduction navigation method for deep sky object (DSO) landing detector | |
CN104697526A (en) | Strapdown inertial navitation system and control method for agricultural machines | |
CN111121766B (en) | A Method of Astronomical and Inertial Integrated Navigation Based on Starlight Vector | |
CN103217157A (en) | Inertial navigation/mileometer autonomous integrated navigation method | |
CN102879779B (en) | A Measuring and Compensating Method of Rod Arm Based on SAR Remote Sensing Imaging | |
CN103792561B (en) | A kind of tight integration reduced-dimensions filtering method based on GNSS passage difference | |
CN107677292B (en) | Compensation Method for Perpendicular Deviation Based on Gravity Field Model | |
CN111580144B (en) | Design method of MINS/GPS ultra-tight integrated navigation system | |
CN103941274B (en) | Navigation method and terminal | |
CN105910623B (en) | The method for carrying out the correction of course using magnetometer assisted GNSS/MINS tight integration systems | |
CN103017787A (en) | Initial alignment method suitable for rocking base | |
CN104880189A (en) | Low-cost tracking anti-jamming method of antenna for satellite communication in motion | |
CN108225312A (en) | A kind of GNSS/INS pine combinations Caused by Lever Arm estimation and compensation method | |
CN101900573A (en) | A Method for Realizing Motion Alignment of Land-Used Inertial Navigation System | |
CN103278165A (en) | Remanence-calibration-based autonomous navigation method of magnetic survey and starlight backup based on | |
CN108151765A (en) | Attitude positioning method is surveyed in a kind of positioning of online real-time estimation compensation magnetometer error |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |