CN104697526A - Strapdown inertial navitation system and control method for agricultural machines - Google Patents
Strapdown inertial navitation system and control method for agricultural machines Download PDFInfo
- Publication number
- CN104697526A CN104697526A CN201510134478.8A CN201510134478A CN104697526A CN 104697526 A CN104697526 A CN 104697526A CN 201510134478 A CN201510134478 A CN 201510134478A CN 104697526 A CN104697526 A CN 104697526A
- Authority
- CN
- China
- Prior art keywords
- msub
- mrow
- mtd
- mtr
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 239000011159 matrix material Substances 0.000 claims abstract description 147
- 230000001133 acceleration Effects 0.000 claims abstract description 75
- 238000004364 calculation method Methods 0.000 claims description 105
- 239000013598 vector Substances 0.000 claims description 39
- 238000004422 calculation algorithm Methods 0.000 claims description 32
- 230000009466 transformation Effects 0.000 claims description 32
- 238000005070 sampling Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 3
- 230000026676 system process Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 3
- 238000012937 correction Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
The invention relates to a strapdown inertial navitation system for agricultural machines. The system comprises a six-axis inertial sensor and a central control unit. The six-axis inertial sensor comprises acceleration sensors in three directions and a three-axis gyroscope sensor. The central control unit comprises a coordinate conversion module, a speed position calculating module, an attitude matrix calculating module and an attitude calculating module. The invention further relates to a control method for the agricultural machines based on the strapdown inertial navitation system. According to the strapdown inertial navitation system and control method for the agricultural machines of the structure, the six-axis inertial sensor is adopted, the size is small, weight is low, the structure is simple, the cost performance is high, the system can be integrated into a control center of the agricultural machines conveniently through the modular design, meanwhile, the advantages of being stable in running, rich in output motion information and the like are achieved, control precision is high, especially the requirement of the agricultural machines and other ground vehicles for aided driving control is met, and the application range is wide.
Description
Technical Field
The invention relates to the field of machine control, in particular to high-precision machine control, and specifically relates to a strapdown inertial navigation system and a control method for agricultural machinery.
Background
With the development of MEMS (Micro-Electro-Mechanical-System) sensors, navigation and control technologies and the further increase of agricultural supporting strength of China, precision agriculture is rapidly becoming a trend, and in the auxiliary driving control process of agricultural machinery, the attitude (including pitch angle, roll angle and course angle), speed and position information of a vehicle body can reflect the motion and position information of the vehicle body in real time, and the information can provide important data input for high-precision combined navigation and control algorithms.
In the auxiliary driving control process of the agricultural machine, the position information and the heading information of the vehicle body in the navigation coordinate system are the two most important parameters. The common positioning modes in the agricultural machinery auxiliary driving system are as follows: mechanical haptics, dead reckoning, machine vision, laser positioning, and multi-sensor information fusion (IMU + GPS). The multi-sensor information fusion fully utilizes a plurality of sensor resources, redundant or complementary information of a plurality of sensors in space or time is combined according to a certain criterion through reasonable domination and utilization of the sensors and observation information thereof, so as to obtain consistent explanation or description of a measured object.
The position information is mainly acquired according to high-precision GPS positioning information (such as RTK) in multi-sensor information fusion, but the GPS data output precision and the output frequency are in direct proportion to the price, and when obstacles are shielded or weather and the like exists, the GPS cannot ensure effective data output, and a set of high-frequency high-precision data acquisition and calculation system is needed to provide data filling for the blind area in real time.
Currently, Inertial Navigation systems are divided into PINS (platform Inertial Navigation system) and SINS (strapdown Inertial Navigation system), and compared with PINS, SINS uses an imu (Inertial measurement unit) sensor to establish a "mathematical platform" by calculation to replace PINS. The SINS is mostly used in an aircraft navigation control system, research and application in the field of agricultural machine control belong to a starting stage, application objects and environmental conditions of the SINS and the agricultural machine control are greatly different, and a method for realizing the strapdown inertial navigation in the aircraft control system is not suitable for agricultural machine control.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a strap-down inertial navigation system for agricultural machinery and a control method.
In order to achieve the above object, the strapdown inertial navigation system for agricultural machine and the control method according to the present invention are configured as follows:
the strapdown inertial navigation system for the agricultural machine is mainly characterized by comprising a six-axis inertial sensor and a central controller; the six-axis inertial sensor comprises acceleration sensors in three directions and a three-axis gyroscope sensor; the central controller comprises:
the coordinate transformation module is used for converting the acceleration of the carrier coordinate system of the agricultural machine sent by the acceleration sensor into the acceleration of an aerospace coordinate system;
the speed and position calculation module is used for calculating and obtaining the speed information and the position information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module;
the attitude matrix calculation module is used for calculating and obtaining an updated attitude matrix according to the angular velocity value of the agricultural machine sent by the gyroscope sensor and the position angular velocity value calculated by the velocity position calculation module; and
and the attitude calculation module is used for obtaining the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module.
The invention also relates to a control method for realizing the agricultural machinery, which is mainly characterized by comprising the following steps:
(1) the acceleration sensor sends the acceleration of the agricultural machine to the coordinate transformation module in real time, and the gyroscope sensor sends the angular velocity of the agricultural machine to the attitude matrix calculation module in real time;
(2) the attitude matrix calculation module calculates to obtain an updated attitude matrix according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyroscope sensor, and sends the updated attitude matrix to the coordinate transformation module;
(3) the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machine, which is sent by the acceleration sensor, into the acceleration of an aerospace coordinate system according to the updated attitude matrix;
(4) the speed and position calculation module outputs the position information and the speed information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module, and the attitude calculation module outputs the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module;
(5) and the control center of the agricultural machine controls the agricultural machine according to the position information, the speed information and the attitude angle.
Further, the navigation coordinate system is a geographical coordinate system of northeast, the attitude matrix calculation module calculates an updated attitude matrix according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyroscope sensor, and the method specifically comprises the following steps:
(2.1) the attitude matrix calculation module calculates an attitude rate according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyro sensor;
(2.2) the attitude matrix calculation module solving a quaternion differential equation according to the attitude rate to obtain a first attitude matrix;
and (2.3) normalizing the first attitude matrix by the attitude matrix calculation module to obtain an updated attitude matrix.
Further, the step (2.1) is specifically:
the attitude matrix calculation module obtains an attitude rate through the following formula:
wherein,is an Euler angle representationThe attitude matrix of, i.e.
An angular velocity of the agricultural machine output for the gyro sensor, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ib</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bx</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>by</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bz</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the attitude rate, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUFor northeast speed, provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m and e ═ 1/298.257), L, λ and h are latitude, longitude and altitude, respectively,the intermediate variable is the projection of the total angular velocity of the earth rotation and the angular velocity of the space coordinate system relative to the earth in a carrier coordinate system; omegaeThe earth's rotation makes an angular velocity.
Further, the step (2.2) specifically comprises the following steps:
the attitude matrix calculation module obtains a quaternion updating differential equation according to the attitude rate and the equivalent rotation vector algorithm to obtain a first attitude matrix, wherein the quaternion updating differential equation is as follows:
the quaternion updating differential equation is as follows:
wherein,is the angular velocity output by the gyro sensor in an attitude period, andt is a time scale in which the angle is increasedAccording to the two-subsample algorithm with equivalent rotation vectors, <math>
<mrow>
<mi>Δ</mi>
<mi>θ</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>×</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> i is an identity matrix; q is a quaternion vector;is the quaternion derivative; Δ t is a data update period; the result of the first attitude matrix is Q ═ Q0+q1i+q2j+q3k,q0、q1、q2、q3Is a scalar quantity forming a quaternion vector, i, j, k are three-dimensional coordinate system unit vectors, theta1And theta2Respectively carrying out angle increment of twice equal-interval time sampling on the gyroscope in the attitude updating period;θ0、γ0、ψ0the pitch angle, the roll angle and the course angle in the initial state are respectively, and Q (0) is an initial quaternion value calculated by using the initial attitude angle.
Further, the attitude matrix calculation module normalizes the first attitude matrix to obtain an updated attitude matrix, specifically:
the attitude matrix calculation module normalizes the first attitude matrix according to the following formula to obtain an updated attitude matrix:
the updated attitude matrix is as follows:
wherein Q is a quaternion vector, Q0、q1、q2、q3I, j, k are unit vectors of a three-dimensional coordinate system,a rotation matrix from the carrier coordinate system to the navigation coordinate system.
Furthermore, the navigation coordinate system is a geographical coordinate system of northeast, the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machine, which is sent by the acceleration sensor, into an acceleration of an aerospace coordinate system according to the updated attitude matrix, and the method specifically comprises the following steps:
the coordinate transformation module converts the acceleration of the agricultural machine carrier coordinate system sent by the acceleration sensor into the acceleration of an aerospace coordinate system according to the updated attitude matrix and through the following formula
Wherein, acceleration output from an acceleration sensor, fE、fN、fURespectively are the specific force components along the geographic coordinate system in the east, north and sky directions,the updated attitude matrix is:
Furthermore, the navigation coordinate system is a geographical coordinate system of northeast, the speed and position calculation module outputs the position information and the speed information of the agricultural machine, and the method specifically comprises the following steps:
(4.1) the speed position calculation module integrates the acceleration output by the coordinate transformation module to obtain the speed information of the agricultural machine;
(4.2) the speed and position calculation module integrates the speed to obtain the position information of the agricultural machine.
Still further, the step (4.1) is specifically:
the speed position calculation module integrates the acceleration output by the coordinate transformation module according to the following formula to obtain the speed information of the agricultural machine:
wherein, <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msup>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> the matrix of equation (8) is represented as:
wherein,is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> l, lambda and h are respectively latitude, longitude and altitude; psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUThe speed of east, north and sky of the space coordinate system is provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m, e ═ 1/298.257), fE、fN、fUAre respectively sitting along the geographyThe scale is the specific force component in the east, north and sky directions, omegaeThe earth's rotation makes an angular velocity.
Still further, the step (4.2) is specifically:
the speed and position calculation module integrates the speed through the following formula to obtain the position information of the agricultural machine:
wherein L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, vE、vN、vUThe speed of east, north and sky of the space coordinate system is provided by a speed position calculation module, k is a sampling point, and T is a sampling period.
Furthermore, the navigation coordinate system is a geographical coordinate system of northeast, the attitude calculation module outputs the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module, and the method specifically comprises the following steps:
and the attitude calculation module extracts the attitude angle of the agricultural machine comprising a pitch angle, a roll angle and a course angle from the updated attitude matrix.
Furthermore, the navigation coordinate system is a geographical coordinate system of northeast, and the following steps are further included between step (4) and step (5):
(4.3) the central controller determines that the system angle error is calculated according to the following equation (10), the velocity error is calculated according to the following equation (11), the position error is calculated according to the following equation (12), and the inertial instrument error is calculated according to the following equation (13):
=b+r+ωg (13)
▽=▽b+▽a+ωa
wherein phi isE,φN,φUFor navigating three attitude angles, v, in a coordinate system in the northeastE、vN、vUThe speed in northeast, L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, fE、fN、fUAre the specific force components in the east, north and sky directions along the geographical coordinate system, RM、RNThe curvature radius of meridian plane and unitary plane of earth,(X is phi, v, L, lambda, h) is the corresponding derivative,(Y is v, L, lambda, h) is the error of its corresponding derivative, which is the total error of the gyroscope,b、r、grespectively, constant drift, first order Markov process and white Gaussian noise, wherein delta is the total error of the accelerometer, and delta isb、Δa、ωaRespectively constant drift, first order Markov process and white Gaussian noise; omegaieIs the angular velocity of the earth, v is knownE、vN、vUIs the speed error of northeast in navigation coordinate system, L, lambda and h are the position errors, <math>
<mrow>
<mi>ϵ</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> and <math>
<mrow>
<mo>▿</mo>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> the total error of the gyroscope and accelerometer in the northeast of the navigation coordinate system, respectively, is denoted by the E, N, U subscripts as the components in the three directions, respectively.
And (4.4) the central controller performs error compensation on the position information, the speed information and the attitude angle according to the calculated system angle error, the calculated speed error, the calculated position error and the calculated inertial instrument error and according to a Kalman filtering algorithm.
Further, the performing error compensation on the position information, the speed information and the attitude angle according to a kalman filtering algorithm specifically comprises:
the position information, the speed information and the attitude angle are compensated according to a Kalman filtering algorithm to obtain a fifteen-dimensional state equation as follows:
wherein,
X(t)=[φE φN φU vE vN vU L λ h bx by bz ▽bx ▽by ▽bz]Tis a state vector of the system in which,the subscripts E, N, U denote the three directions, φ, of the northeast geographic coordinate system, respectivelyE、φN、φUIs an error angle, v, of a strapdown inertial navigation systemE、vN、vUIs a speed error, L, lambda and h are position errors,bx、by、bzrandom drift of gyroscope +bx、▽by、▽bzZero error of the accelerometer; w (t) ═ ωgx ωgy ωgz ωax ωay ωaz]TIs a system process white noise vector, where ω isgx、ωgy、ωgzWhite noise, omega, of the gyroax、ωay、ωazWhite noise for an accelerometer; f (t) is the system state matrix, and G (t) is the system noise propagation matrix.
Compared with the prior art, the strapdown inertial navigation system for agricultural machinery and the control method have the following beneficial effects:
(1) the error compensation and correction algorithm adopted by the invention greatly reduces the algorithm error of the strapdown inertial navigation system and the interference of earth rotation and the like;
(2) the algorithm of the six-axis inertial sensor and the strapdown inertial navigation system is adopted, so that the strapdown inertial navigation system for the agricultural machine has high performance parameters, the error of a course angle output by the device outside a tractor test chamber is less than 0.1 degrees, the error of a pitch angle and a rolling angle is less than 0.01 degrees, the position information output by the strapdown inertial navigation system for the agricultural machine is matched with a GPS (global position system) to realize that the combined navigation position error is in the cm level, the data output frequency reaches 50HZ, and the requirement of an auxiliary driving control system of the agricultural machine is met;
(3) the invention adopts six-axis inertial sensors which comprise acceleration sensors in three directions and three-axis gyroscope sensors, has small volume, light weight and high cost performance, and is convenient to integrate into an agricultural machinery auxiliary driving control system due to modular design;
(4) the strapdown inertial navigation system for the agricultural machinery has the advantages of stable operation, rich output motion information and the like, and particularly meets the requirements of ground vehicle auxiliary driving control systems of the agricultural machinery and the like.
Drawings
Fig. 1 is a schematic structural diagram of a strapdown inertial navigation system for agricultural machinery according to the present invention.
FIG. 2 is a flow chart illustrating the steps of the control method for the agricultural machine based on the strapdown inertial navigation system according to the present invention.
Detailed Description
In order to more clearly describe the technical contents of the present invention, the following further description is given in conjunction with specific embodiments.
The invention relates to a strapdown inertial navigation system for agricultural machinery and a control method thereof, wherein a six-axis inertial sensor with higher precision is adopted, the six-axis inertial sensor comprises acceleration sensors in three directions and three-axis gyroscope sensors, the acceleration sensors acquire the acceleration and the angular velocity of the motion of an object in real time, the acceleration and the angular velocity can be calculated through integration of the acceleration, the position information can be calculated through second integration, the current attitude angle (a pitch angle, a roll angle and a course angle) of a vehicle body can be calculated through integration of the angular velocity, and then the attitude is converted into an attitude matrix, so that the conversion of a carrier coordinate system and a navigation coordinate system is realized, and the attitude matrix plays a role of a mathematical platform.
In the implementation of the sins (strapdown Inertial Navigation system) algorithm, the attitude matrix is particularly important, and the attitude of the agricultural machine constantly changes due to the movement of the agricultural machine at any moment, i.e., the attitude matrix is also constantly recalculated and updated. The commonly used attitude updating algorithm comprises an Euler angle, a direction cosine and a quaternion, the quaternion has no singular point compared with the Euler angle algorithm, and the calculation amount is small compared with the direction cosine, so that the method is very suitable for being used in embedded products. When the attitude matrix is calculated, the angular increment quaternion attitude updating algorithm is adopted, but the algorithm has the defect that the rotation irreplaceable error is generated due to the rotation of an indefinite axis when the angular increment is used for solving the differential equation, so that the error can be corrected by adopting an equivalent rotation vector method to solve the differential equation.
Aiming at the error interferences such as earth rotation, cone motion effect, rowing effect, scroll effect and the like, the invention adopts a plurality of compensation and correction algorithms to process the errors.
Referring to fig. 1, a schematic structural diagram of a strapdown inertial navigation system for agricultural machinery according to the present invention is shown, wherein the system includes six-axis inertial sensors and a central controller; the six-axis inertial sensor comprises acceleration sensors in three directions and a three-axis gyroscope sensor; the central controller comprises:
the coordinate transformation module is used for converting the acceleration of the carrier coordinate system of the agricultural machine sent by the acceleration sensor into the acceleration of an aerospace coordinate system;
the speed and position calculation module is used for calculating and obtaining the speed information and the position information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module;
the attitude matrix calculation module is used for calculating and obtaining an updated attitude matrix according to the angular velocity value of the agricultural machine sent by the gyroscope sensor and the position angular velocity value calculated by the velocity position calculation module; and
and the attitude calculation module is used for obtaining the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module.
Fig. 2 is a flowchart illustrating steps of a control method for an agricultural machine based on a strapdown inertial navigation system according to the present invention. Wherein, the method comprises the following steps:
(1) the acceleration sensor sends the acceleration of the agricultural machine to the coordinate transformation module in real time, and the gyroscope sensor sends the angular velocity of the agricultural machine to the attitude matrix calculation module in real time;
(2) the attitude matrix calculation module calculates to obtain an updated attitude matrix according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyroscope sensor, and sends the updated attitude matrix to the coordinate transformation module;
(3) the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machine, which is sent by the acceleration sensor, into the acceleration of an aerospace coordinate system according to the updated attitude matrix;
(4) the speed and position calculation module outputs the position information and the speed information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module, and the attitude calculation module outputs the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module;
(5) and the control center of the agricultural machine controls the agricultural machine according to the position information, the speed information and the attitude angle.
Firstly, calculating a posture matrix, wherein the posture matrix refers to a transformation matrix from a navigation coordinate system (n system) to a carrier coordinate system (b system), and when a geographical coordinate system of 'northeast sky' is adopted as the navigation coordinate system, the posture matrix is as follows:
where ψ is the azimuth angle (heading angle), θ is the pitch angle, and γ is the roll angle (roll angle), these three angles are referred to as the attitude angle of the carrier (provided by the initialized quaternion, and the attitude matrix thereafter is provided by the quaternion calculation).
When the attitude of the agricultural machine fixedly connected with the six-axis inertial sensor changes, the gyroscope sensor in the six-axis inertial sensor can sense the corresponding angular rate and attitude matrixWith consequent change, the differential equation is:in the formula,is angular velocity <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<msup>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mi>T</mi>
</msup>
</mrow>
</math> An antisymmetric array is formed; x, y, z are defined as the three directions of the front right and the top right.
The instant correction of the attitude matrix of the strapdown inertial navigation system is to give the attitude matrix in real time, which is a key task of strapdown inertial navigation and is completed by a certain algorithm. Because the quaternion arithmetic method has small calculated amount and small storage capacity, the orthogonality of the attitude matrix can be ensured only by carrying out simple quaternion normalization processing. The unit quaternion can be described in the form:
in strapdown navigation, a carrier system to navigation system conversion matrix is required, and the following quaternion motion equation is solved: <math>
<mrow>
<mover>
<mi>Q</mi>
<mo>·</mo>
</mover>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>ΩQ</mi>
<mo>,</mo>
</mrow>
</math> in the formula, <math>
<mrow>
<mi>Ω</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mo>-</mo>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<mo>-</mo>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<mo>-</mo>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
<mtd>
<mo>-</mo>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<mo>-</mo>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> q is the rotational quaternion from the carrier system to the navigation system.
The navigation coordinate system is a geographical coordinate system of northeast, the attitude matrix calculation module calculates and obtains an updated attitude matrix according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyroscope sensor, and the method specifically comprises the following steps:
(2.1) the attitude matrix calculation module calculates an attitude rate according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyro sensor;
(2.2) the attitude matrix calculation module solving a quaternion differential equation according to the attitude rate to obtain a first attitude matrix;
and (2.3) normalizing the first attitude matrix by the attitude matrix calculation module to obtain an updated attitude matrix.
Wherein, in a preferred real-time mode, the step (2.1) is specifically:
the attitude matrix calculation module obtains an attitude rate through the following formula:
wherein,is a matrix of poses represented by Euler angles, i.e.
An angular velocity of the agricultural machine output for the gyro sensor, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ib</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bx</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>by</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bz</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the attitude rate, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUFor northeast speed, provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m and e ═ 1/298.257), L, λ and h are latitude, longitude and altitude, respectively,the intermediate variable is the projection of the total angular velocity of the earth rotation and the angular velocity of the space coordinate system relative to the earth in a carrier coordinate system; omegaeThe earth's rotation makes an angular velocity.
Thus, it can be obtained that,
the earth coordinate system is a coordinate system fixedly connected to the earth and rotates along with the earth, and the earth coordinate system rotates relative to the inertial coordinate system at the rotational angular velocity of the earth, wherein the rotational angular velocity of the earth is omega ie, and the omega ie is 15 pi/180.
The output of the gyro sensor is usually an angular velocity, and therefore, in order to calculate the vehicle attitude, a quaternion differential equation is introduced. The differential equation is introduced, so that a new attitude quaternion (namely an attitude matrix of the carrier coordinate system relative to the navigation coordinate system) can be obtained by sampling the triaxial angle increment of the carrier coordinate system at regular time according to the attitude quaternion at the last moment. The angle increment obtained by the equivalent rotation vector method can eliminate the irreplaceable error of rotation; the step (2.2) specifically comprises the following steps:
the attitude matrix calculation module obtains a quaternion updating differential equation according to the attitude rate and the equivalent rotation vector algorithm to obtain a first attitude matrix, wherein the quaternion updating differential equation is as follows:
the quaternion updating differential equation is as follows:
wherein,is the angular velocity output by the gyro sensor in an attitude period, andt is a time scale in which the angle is increasedAccording to the two-subsample algorithm with equivalent rotation vectors, <math>
<mrow>
<mi>Δ</mi>
<mi>θ</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>×</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> i is an identity matrix; q is a quaternion vector;is the quaternion derivative; Δ t is a data update period; the result of the first attitude matrix is Q ═ Q0+q1i+q2j+q3k,q0、q1、q2、q3Is a scalar quantity forming a quaternion vector, i, j, k are three-dimensional coordinate system unit vectors, theta1And theta2Respectively carrying out angle increment of twice equal-interval time sampling on the gyroscope in the attitude updating period; theta0、γ0、ψ0The pitch angle, the roll angle and the course angle in the initial state are respectively, and Q (0) is an initial quaternion value calculated by using the initial attitude angle.
The attitude matrix calculation module normalizes the first attitude matrix to obtain an updated attitude matrix, and specifically comprises:
the attitude matrix calculation module normalizes the first attitude matrix according to the following formula to obtain an updated attitude matrix:
the updated attitude matrix is as follows:
wherein Q is a quaternion vector, Q0、q1、q2、q3I, j, k are unit vectors of a three-dimensional coordinate system,a rotation matrix from the carrier coordinate system to the navigation coordinate system.
The navigation coordinate system is a geographical coordinate system of 'northeast-earth', the coordinate transformation module converts the acceleration of the agricultural machine carrier coordinate system sent by the acceleration sensor into the acceleration of an aerospace coordinate system according to the updated attitude matrix, and the method specifically comprises the following steps:
the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machine, which is sent by the acceleration sensor, into the acceleration of an aerospace coordinate system according to the updated attitude matrix and by the following formula:
wherein, acceleration output from an acceleration sensor, fE、fN、fURespectively are the specific force components along the geographic coordinate system in the east, north and sky directions,the updated attitude matrix is:
The navigation coordinate system is a geographical coordinate system of northeast, the speed and position calculation module outputs the position information and the speed information of the agricultural machine, and the method specifically comprises the following steps:
(4.1) the speed position calculation module integrates the acceleration output by the coordinate transformation module to obtain the speed information of the agricultural machine;
(4.2) the speed and position calculation module integrates the speed to obtain the position information of the agricultural machine.
9. The control method for assisting driving of an agricultural machine according to claim 8, wherein the step (4.1) is specifically:
the speed position calculation module integrates the acceleration output by the coordinate transformation module according to the following formula to obtain the speed information of the agricultural machine:
wherein, <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> <math>
<mrow>
<msup>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> the matrix of equation (8) is represented as:
wherein,is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> l, lambda and h are respectively latitude, longitude and altitude; psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUFor northeast speed, provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m, e ═ 1/298.257), fE、fN、fUAre the specific force components, omega, in the east, north and sky directions, respectively, along the geographical coordinate systemeThe earth's rotation makes an angular velocity.
In order to improve the calculation speed, the invention adopts a second-order Runge-Kutta numerical integration method to calculate the speed update, and the formula is as follows:
in the formula, K1And K2At a speed tmAnd tm+1The slope of time; the step (4.2) is specifically as follows:
the speed and position calculation module integrates the speed through the following formula to obtain the position information of the agricultural machine:
wherein L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, vE、vN、vUThe speed of the northeast is provided by a speed position calculation module, k is a sampling point, and T is a sampling period.
After updating the longitude and latitude, substituting the calculation result L (k) into R for calculating kT timeM(k)、RN(k)
RM(k)=Re[1-2f+3fsin2L(k)],RN(k)=Re[1+fsin2L(k)]In the formula, ReIs the earth radius and f is the ellipticity. The change rule of gravity along with latitude and height is approximately as follows:
g=g0[l+0.00527094sin2(L)+0.0000232718sin4(L)]0.000003086h, wherein g0=9.7803267714。
The navigation coordinate system is a geographical coordinate system of northeast, the attitude calculation module outputs the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module, and the method specifically comprises the following steps:
and the attitude calculation module extracts the attitude angle of the agricultural machine comprising a pitch angle, a roll angle and a course angle from the updated attitude matrix.
In a preferred embodiment, the attitude angle of the agricultural machine may be calculated from the updated attitude matrixMedium extraction, including pitch angle, roll angle and yawAnd the azimuth angle is defined in a range of +/-90 degrees by the pitch angle theta and is consistent with the main value of the arcsine function, so that the multi-value problem does not exist. And the roll angle gamma is defined at-180 DEG and 180 DEG]The heading angle psi is defined at [0 deg. ], 360 deg. ]]The interval, so there is a multi-value problem for both gamma and psi, after calculating the main value, it can be calculated fromThe element in (1) determines which quadrant is in.
Due to the fact that
For pitch angle: theta is equal to thetaMaster and slave;
For the roll angle:
for the heading angle:
therefore:
it must be noted that due to the highly unstable pure inertial navigation altitude channel, some error sources including acceleration sensor error may form an accumulative error, and the altitude error may increase with time. Therefore, the height information of the agricultural machine in a long time cannot be calculated only by using the speed, and the correction must be carried out by using a barometric altimeter or a radio altimeter signal. Since the altitude channel is divergent in a pure inertial navigation system, damping can be introduced with extraneous altitude reference information, where altitude and altitude-related terms are not considered.
And (3) error analysis: the inertial navigation system has many error sources, mainly including the error of the inertial instrument itself, the installation error and the scale error of the inertial instrument, the initial condition error of the system, the calculation error of the system, the error caused by various interferences, and the like. Inertial navigation errors can be divided into two categories: deterministic errors and random errors. The deterministic errors include platform angle errors, speed errors and position errors, and the random errors mainly include gyroscope sensor drift, zero offset of an acceleration sensor and the like. Although various error sources exist in the inertial navigation system, part of the error sources have little influence on the inertial navigation system. Because the strapdown inertial navigation system adopts a mathematical platform to replace a physical platform, namely, angular velocity information measured by a gyroscope sensor is used for carrying out attitude matrix calculation, and specific force information measured by an acceleration sensor is used for carrying out navigation calculation through attitude matrix transformation, errors of the inertial sensor and initial condition errors are propagated in the system through an attitude matrix, and important influence is generated on navigation. That is, the three error sources, i.e., the gyroscope sensor drift, the acceleration sensor zero offset error and the initial value error, have a certain degree of influence on the navigation parameters. In the following description of an error model of a strapdown inertial navigation system, a geographical coordinate system of northeast China is adopted as a strapdown inertial navigation coordinate system (n system), the navigation information error is 9-dimensional, and the three-dimensional platform error angle, the three-dimensional speed error and the three-dimensional position error are adopted.
The navigation coordinate system is a geographical coordinate system of northeast, and the following steps are further included between the step (4) and the step (5):
(4.3) the central controller determines that the system angle error is calculated according to the following equation (10), the velocity error is calculated according to the following equation (11), the position error is calculated according to the following equation (12), and the inertial instrument error is calculated according to the following equation (13):
=b+r+ωg (13)
▽=▽b+▽a+ωa
wherein phi isE,φN,φUFor navigating three attitude angles, v, in a coordinate system in the northeastE、vN、vUThe speed in northeast, L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, fE、fN、fUAre the specific force components in the east, north and sky directions along the geographical coordinate system, RM、RNThe curvature radius of meridian plane and unitary plane of earth,(X is phi, v, L, lambda, h) is the corresponding derivative,(Y is v, L, lambda, h) is the error of its corresponding derivative, which is the total error of the gyroscope,b、r、grespectively, constant drift, first order Markov process and white Gaussian noise, wherein delta is the total error of the accelerometer, and delta isb、Δa、ωaRespectively constant drift, first order Markov process and white Gaussian noise; omegaieIs the angular velocity of the earth, v is knownE、vN、vUIs the speed error of northeast in navigation coordinate system, L, lambda and h are the position errors, <math>
<mrow>
<mi>ϵ</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> and <math>
<mrow>
<mo>▿</mo>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> the total error of the gyroscope and accelerometer in the northeast of the navigation coordinate system, respectively, is denoted by the E, N, U subscripts as the components in the three directions, respectively.
And (4.4) the central controller performs error compensation on the position information, the speed information and the attitude angle according to the calculated system angle error, the calculated speed error, the calculated position error and the calculated inertial instrument error and according to a Kalman filtering algorithm.
Other errors comprise cone motion error, rowing error, scroll error and the like, wherein the cone motion error can be compensated by optimizing a rotating vector algorithm, and the rowing error and the scroll error have small and negligible influence on the strapdown inertial navigation system by matlab simulation.
By the error term formula, compensation can be performed through a Kalman filtering algorithm by establishing an accurate mathematical model. By combining the above formulas, a 15-dimensional state equation of the combined navigation system in a position and speed combined mode can be obtained; the error compensation is carried out on the position information, the speed information and the attitude angle according to a Kalman filtering algorithm, and the method specifically comprises the following steps:
the position information, the speed information and the attitude angle are compensated according to a Kalman filtering algorithm to obtain a fifteen-dimensional state equation as follows:
wherein,
X(t)=[φE φN φU vE vN vU L λ h bx by bz ▽bx ▽by ▽bz]Tis a state vector of the system, wherein the subscripts E, N, U respectively represent the three directions, φ, of the northeast geographic coordinate systemE、φN、φUIs an error angle, v, of a strapdown inertial navigation systemE、vN、vUIs a speed error, L, lambda and h are position errors,bx、by、bzrandom drift of gyroscope +bx、▽by、▽bzZero error of the accelerometer; w (t) ═ ωgx ωgy ωgz ωax ωay ωaz]TIs a system process white noise vector, where ω isgx、ωgy、ωgzWhite noise, omega, of the gyroax、ωay、ωazWhite noise for an accelerometer; f (t) is the system state matrix, and G (t) is the system noise propagation matrix.
The invention fully considers various error items in an automatic control system of agricultural machinery, performs mathematical modeling on the error items, realizes the filter algorithm through software programming, and obtains a test result that an attitude error angle is less than 0.1 degrees, a course angle error is less than 1 degree and a position deviation is about 5cm through a field tractor test.
Compared with the prior art, the strapdown inertial navigation system for agricultural machinery and the control method have the following beneficial effects:
(2) the error compensation and correction algorithm adopted by the invention greatly reduces the algorithm error of the strapdown inertial navigation system and the interference of earth rotation and the like;
(2) the algorithm of the six-axis inertial sensor and the strapdown inertial navigation system is adopted, so that the strapdown inertial navigation system for the agricultural machine has high performance parameters, the error of a course angle output by the device outside a tractor test chamber is less than 1 degree, the error of a pitch angle and a rolling angle is less than 0.1 degree, the position information output by the strapdown inertial navigation system for the agricultural machine is matched with a GPS to realize that the combined navigation position error is in the level of cm, the data output frequency reaches 50HZ, and the requirement of an auxiliary driving control system of the agricultural machine is met;
(3) the invention adopts six-axis inertial sensors which comprise acceleration sensors in three directions and three-axis gyroscope sensors, has small volume, light weight and high cost performance, and is convenient to integrate into an agricultural machinery auxiliary driving control system due to modular design;
(4) the strapdown inertial navigation system for the agricultural machinery has the advantages of stable operation, rich output motion information and the like, and particularly meets the requirements of ground vehicle auxiliary driving control systems of the agricultural machinery and the like.
In this specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims (13)
1. A strapdown inertial navigation system for agricultural machinery, comprising a six-axis inertial sensor, a central controller; the six-axis inertial sensor comprises acceleration sensors in three directions and a three-axis gyroscope sensor; the central controller comprises:
the coordinate transformation module is used for converting the acceleration of the carrier coordinate system of the agricultural machine sent by the acceleration sensor into the acceleration of an aerospace coordinate system;
the speed and position calculation module is used for calculating and obtaining the speed information and the position information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module;
the attitude matrix calculation module is used for calculating and obtaining an updated attitude matrix according to the angular velocity value of the agricultural machine sent by the gyroscope sensor and the position angular velocity value calculated by the velocity position calculation module; and
and the attitude calculation module is used for obtaining the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module.
2. A method for controlling an agricultural machine based on the system of claim 1, comprising the steps of:
(1) the acceleration sensor sends the acceleration of the agricultural machine to the coordinate transformation module in real time, and the gyroscope sensor sends the angular velocity of the agricultural machine to the attitude matrix calculation module in real time;
(2) the attitude matrix calculation module calculates to obtain an updated attitude matrix according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyroscope sensor, and sends the updated attitude matrix to the coordinate transformation module;
(3) the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machine, which is sent by the acceleration sensor, into the acceleration of an aerospace coordinate system according to the updated attitude matrix;
(4) the speed and position calculation module outputs the position information and the speed information of the agricultural machine according to the acceleration of the aerospace coordinate system output by the coordinate transformation module, and the attitude calculation module outputs the attitude angle of the agricultural machine according to the updated attitude matrix of the attitude matrix calculation module;
(5) and the control center of the agricultural machine controls the agricultural machine according to the position information, the speed information and the attitude angle.
3. The control method for realizing agricultural machinery according to claim 2, wherein the navigation coordinate system is a geographical coordinate system of "northeast sky", and the attitude matrix calculation module calculates an updated attitude matrix according to the angular position value calculated by the speed and position calculation module and the received angular position value of the gyro sensor, and specifically comprises the following steps:
(2.1) the attitude matrix calculation module calculates an attitude rate according to the position angular velocity value calculated by the velocity position calculation module and the received angular velocity value of the gyro sensor;
(2.2) the attitude matrix calculation module solving a quaternion differential equation according to the attitude rate to obtain a first attitude matrix;
and (2.3) normalizing the first attitude matrix by the attitude matrix calculation module to obtain an updated attitude matrix.
4. The control method for realizing an agricultural machine according to claim 3, wherein the step (2.1) is specifically as follows:
the attitude matrix calculation module obtains an attitude rate through the following formula:
wherein,is a matrix of poses represented by Euler angles, i.e.
An angular velocity of the agricultural machine output for the gyro sensor, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ib</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bx</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>by</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>bz</mi>
<mi>b</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> is the attitude rate, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>b</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bx</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>by</mi>
</msubsup>
</mtd>
<mtd>
<msubsup>
<mi>ω</mi>
<mi>nb</mi>
<mi>bz</mi>
</msubsup>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUFor northeast speed, provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m and e ═ 1/298.257), L, λ and h are latitude, longitude and altitude, respectively,the intermediate variable is the projection of the total angular velocity of the earth rotation and the angular velocity of the space coordinate system relative to the earth in a carrier coordinate system; omegaeThe earth's rotation makes an angular velocity.
5. A control method for realizing an agricultural machine according to claim 3, wherein the step (2.2) comprises the following steps:
the attitude matrix calculation module obtains a quaternion updating differential equation according to the attitude rate and the equivalent rotation vector algorithm to obtain a first attitude matrix, wherein the quaternion updating differential equation is as follows:
the quaternion updating differential equation is as follows:
wherein,is the angular velocity output by the gyro sensor in an attitude period, andt is a time scale in which the angle is increasedAccording to the two-subsample algorithm with equivalent rotation vectors, <math>
<mrow>
<mi>Δθ</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>+</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
<mrow>
<mo>(</mo>
<msub>
<mi>θ</mi>
<mn>1</mn>
</msub>
<mo>×</mo>
<msub>
<mi>θ</mi>
<mn>2</mn>
</msub>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mi>Q</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>+</mo>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cos</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mo>-</mo>
<mi>sin</mi>
<mfrac>
<msub>
<mi>θ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>sin</mi>
<mfrac>
<msub>
<mi>γ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
<mi>cos</mi>
<mfrac>
<msub>
<mi>ψ</mi>
<mn>0</mn>
</msub>
<mn>2</mn>
</mfrac>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> i is an identity matrix; q is a quaternion vector;is the quaternion derivative; Δ t is a data update period; the result of the first attitude matrix is Q ═ Q0+q1i+q2j+q3k,q0、q1、q2、q3Is a scalar quantity forming a quaternion vector, i, j, k are three-dimensional coordinate system unit vectors, theta1And theta2Respectively carrying out angle increment of twice equal-interval time sampling on the gyroscope in the attitude updating period; theta0、γ0、ψ0The pitch angle, the roll angle and the course angle in the initial state are respectively, and Q (0) is an initial quaternion value calculated by using the initial attitude angle.
6. The control method for realizing agricultural machinery according to claim 3, wherein the attitude matrix calculation module normalizes the first attitude matrix to obtain an updated attitude matrix, and specifically comprises:
the attitude matrix calculation module normalizes the first attitude matrix according to the following formula to obtain an updated attitude matrix:
the updated attitude matrix is as follows:
wherein Q is a quaternion vector, Q0、q1、q2、q3I, j, k are unit vectors of a three-dimensional coordinate system,a rotation matrix from the carrier coordinate system to the navigation coordinate system.
7. The control method for realizing agricultural machinery according to claim 2, wherein the navigation coordinate system is a geographical coordinate system of "northeast", and the coordinate transformation module converts the acceleration of the carrier coordinate system of the agricultural machinery, which is sent by the acceleration sensor, into the acceleration of the aerospace coordinate system according to the updated attitude matrix, specifically:
the coordinate transformation module converts the acceleration of the agricultural machine carrier coordinate system sent by the acceleration sensor into the acceleration of an aerospace coordinate system according to the updated attitude matrix and through the following formula
Wherein, acceleration output from an acceleration sensor, fE、fN、fURespectively are the specific force components along the geographic coordinate system in the east, north and sky directions,the updated attitude matrix is:
8. The method of claim 2, wherein the navigation coordinate system is a geographic coordinate system of "northeast", and the speed and position calculation module outputs the position information and the speed information of the agricultural machine, and the method specifically includes the following steps:
(4.1) the speed position calculation module integrates the acceleration output by the coordinate transformation module to obtain the speed information of the agricultural machine;
(4.2) the speed and position calculation module integrates the speed to obtain the position information of the agricultural machine.
9. The control method for assisting driving of an agricultural machine according to claim 8, wherein the step (4.1) is specifically:
the speed position calculation module integrates the acceleration output by the coordinate transformation module according to the following formula to obtain the speed information of the agricultural machine:
wherein, <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>ie</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>ie</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<msup>
<mi>f</mi>
<mi>n</mi>
</msup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>f</mi>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>f</mi>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>f</mi>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<msup>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>n</mi>
</msup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mover>
<mi>v</mi>
<mo>·</mo>
</mover>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<msup>
<mi>v</mi>
<mi>n</mi>
</msup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>v</mi>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
<mi>g</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>-</mo>
<mi>g</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math>
the matrix of equation (8) is represented as:
wherein,is the angular velocity of the earth, is known as <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>ie</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
</math> To navigate the angular velocity of the coordinate system relative to the earth, it may be determined from the instantaneous velocityIs obtained, and <math>
<mrow>
<msubsup>
<mi>ω</mi>
<mi>en</mi>
<mi>n</mi>
</msubsup>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<mo>-</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>N</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>M</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>cos</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ω</mi>
<mi>e</mi>
</msub>
<mi>sin</mi>
<mi>L</mi>
<mo>+</mo>
<mfrac>
<msub>
<mi>v</mi>
<mi>E</mi>
</msub>
<mrow>
<msub>
<mi>R</mi>
<mi>N</mi>
</msub>
<mo>+</mo>
<mi>h</mi>
</mrow>
</mfrac>
<mi>tan</mi>
<mi>L</mi>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>,</mo>
</mrow>
</math> l, lambda and h are respectivelyLatitude, longitude, altitude; psi is azimuth angle, theta is pitch angle, gamma is roll angle, vE、vN、vUThe speed of east, north and sky of the space coordinate system is provided by a speed position calculation module, RM、RNRadius of curvature R of meridian plane and unitary plane of earthM≈R(1-2e+3esin2L),RN≈R(1+esin2L), where R ═ m, e ═ 1/298.257), fE、fN、fUAre the specific force components, omega, in the east, north and sky directions, respectively, along the geographical coordinate systemeThe earth's rotation makes an angular velocity.
10. The control method for realizing an agricultural machine according to claim 8, wherein the step (4.2) is specifically as follows:
the speed and position calculation module integrates the speed through the following formula to obtain the position information of the agricultural machine:
wherein L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, vE、vN、vUThe speed of east, north and sky of the space coordinate system is provided by a speed position calculation module, k is a sampling point, and T is a sampling period.
11. The control method for realizing agricultural machinery according to claim 2, wherein the navigation coordinate system is a geographical coordinate system of "northeast sky", and the attitude calculation module outputs the attitude angle of the agricultural machinery according to the updated attitude matrix of the attitude matrix calculation module, specifically comprising the following steps:
and the attitude calculation module extracts the attitude angle of the agricultural machine comprising a pitch angle, a roll angle and a course angle from the updated attitude matrix.
12. The control method for realizing agricultural machinery according to claim 2, wherein the navigation coordinate system is a geographical coordinate system of "northeast", and the following steps are further included between the step (4) and the step (5):
(4.3) the central controller determines that the system angle error is calculated according to the following equation (10), the velocity error is calculated according to the following equation (11), the position error is calculated according to the following equation (12), and the inertial instrument error is calculated according to the following equation (13):
=b+r+ωg (13)
▽=▽b+▽a+ωa
wherein phi isE,φN,φUFor navigating three attitude angles, v, in a coordinate system in the northeastE、vN、vUThe speed in northeast, L, lambda and h are respectively latitude, longitude and altitude of the ground vehicle, fE、fN、fUAre the specific force components in the east, north and sky directions along the geographical coordinate system, RM、RNThe curvature radius of meridian plane and unitary plane of earth,(X is phi, v, L, lambda, h) is the corresponding derivative,(Y is v, L, lambda, h) is the error of its corresponding derivative, which is the total error of the gyroscope,b、r、grespectively, constant drift, first order Markov process and white Gaussian noise, wherein delta is the total error of the accelerometer, and delta isb、Δa、ωaRespectively constant drift, first order Markov process and white Gaussian noise; omegaieIs the angular velocity of the earth, v is knownE、vN、vUIs the speed error of northeast in navigation coordinate system, L, lambda and h are the position errors, <math>
<mrow>
<mi>ϵ</mi>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>ϵ</mi>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> and <math>
<mrow>
<mo>▿</mo>
<mo>=</mo>
<mfenced open='[' close=']'>
<mtable>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>E</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>N</mi>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mo>▿</mo>
<mi>U</mi>
</msub>
</mtd>
</mtr>
</mtable>
</mfenced>
</mrow>
</math> the total error of the gyroscope and accelerometer in the northeast of the navigation coordinate system, respectively, is denoted by the E, N, U subscripts as the components in the three directions, respectively.
And (4.4) the central controller performs error compensation on the position information, the speed information and the attitude angle according to the calculated system angle error, the calculated speed error, the calculated position error and the calculated inertial instrument error and according to a Kalman filtering algorithm.
13. The control method for realizing agricultural machinery according to claim 12, wherein the error compensation is performed on the position information, the speed information and the attitude angle according to a kalman filter algorithm, and specifically comprises:
the position information, the speed information and the attitude angle are compensated according to a Kalman filtering algorithm to obtain a fifteen-dimensional state equation as follows:
wherein,
X(t)=[φE φN φU vE vN vU L λ h bx by bz ▽bx ▽by ▽bz]Tis a state vector of the system, wherein the subscripts E, N, U respectively represent the three directions, φ, of the northeast geographic coordinate systemE、φN、φUIs an error angle, v, of a strapdown inertial navigation systemE、vN、vUIs a speed error, L, lambda and h are position errors,bx、by、bzrandom drift of gyroscope +bx、▽by、▽bzZero error of the accelerometer; w (t) ═ ωgx ωgy ωgz ωax ωay ωaz]TIs a system process white noise vector, where ω isgx、ωgy、ωgzWhite noise, omega, of the gyroax、ωay、ωazWhite noise for an accelerometer; f (t) is the system state matrix, and G (t) is the system noise propagation matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510134478.8A CN104697526A (en) | 2015-03-26 | 2015-03-26 | Strapdown inertial navitation system and control method for agricultural machines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510134478.8A CN104697526A (en) | 2015-03-26 | 2015-03-26 | Strapdown inertial navitation system and control method for agricultural machines |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104697526A true CN104697526A (en) | 2015-06-10 |
Family
ID=53344895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510134478.8A Pending CN104697526A (en) | 2015-03-26 | 2015-03-26 | Strapdown inertial navitation system and control method for agricultural machines |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104697526A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203098A (en) * | 2015-10-13 | 2015-12-30 | 上海华测导航技术股份有限公司 | Whole attitude angle updating method applied to agricultural machinery and based on nine-axis MEMS (micro-electromechanical system) sensor |
CN105509740A (en) * | 2015-12-31 | 2016-04-20 | 广州中海达卫星导航技术股份有限公司 | Measuring method and module for attitude of agriculture machinery vehicle |
CN105607093A (en) * | 2015-12-20 | 2016-05-25 | 上海华测导航技术股份有限公司 | Integrated navigation system and method for acquiring navigation coordinate |
CN106441275A (en) * | 2016-09-23 | 2017-02-22 | 深圳大学 | Method and device for updating planned path of robot |
CN106595637A (en) * | 2016-12-21 | 2017-04-26 | 上海华测导航技术股份有限公司 | Visual navigation method for agricultural machine |
CN106931965A (en) * | 2015-12-31 | 2017-07-07 | 中国移动通信集团吉林有限公司 | A kind of method and device for determining terminal attitude |
CN107421494A (en) * | 2017-04-01 | 2017-12-01 | 深圳市元征科技股份有限公司 | Vehicle attitude detection method and device |
CN107607113A (en) * | 2017-08-02 | 2018-01-19 | 华南农业大学 | A kind of two axle posture inclination angle measurement methods |
CN108151736A (en) * | 2017-12-14 | 2018-06-12 | 中船重工西安东仪科工集团有限公司 | One kind is suitable for underwater MEMS directional gyroes course angle calculation method |
CN109781096A (en) * | 2017-11-15 | 2019-05-21 | 洛阳中科晶上智能装备科技有限公司 | A kind of integrated navigation and location system and method for intelligent agricultural machinery |
CN109927726A (en) * | 2019-03-13 | 2019-06-25 | 深兰科技(上海)有限公司 | A kind of method and apparatus adjusting target vehicle motion state |
CN109987097A (en) * | 2019-03-13 | 2019-07-09 | 深兰科技(上海)有限公司 | A kind of method and apparatus adjusting target vehicle motion state |
CN110044321A (en) * | 2019-03-22 | 2019-07-23 | 北京理工大学 | The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope |
CN112363249A (en) * | 2020-09-02 | 2021-02-12 | 广东工业大学 | Mobile meteorological measurement method and device |
CN112729222A (en) * | 2020-12-14 | 2021-04-30 | 北京航空航天大学 | Real-time measurement method for position of pile digging rotating rod |
CN112859138A (en) * | 2019-11-28 | 2021-05-28 | 中移物联网有限公司 | Attitude measurement method and device and electronic equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413800A (en) * | 2008-01-18 | 2009-04-22 | 南京航空航天大学 | Navigating and steady aiming method of navigation / steady aiming integrated system |
CN103712623A (en) * | 2014-01-20 | 2014-04-09 | 东南大学 | Optical-fiber gyroscope inertial navigation system attitude optimization method based on angular rate input |
-
2015
- 2015-03-26 CN CN201510134478.8A patent/CN104697526A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101413800A (en) * | 2008-01-18 | 2009-04-22 | 南京航空航天大学 | Navigating and steady aiming method of navigation / steady aiming integrated system |
CN103712623A (en) * | 2014-01-20 | 2014-04-09 | 东南大学 | Optical-fiber gyroscope inertial navigation system attitude optimization method based on angular rate input |
Non-Patent Citations (4)
Title |
---|
汪懋华 等,: "《现代精细农业理论与实践》", 31 October 2012 * |
蒋黎星: ""捷联惯性导航算法及半实物仿真系统研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
陈勇: ""基于等效旋转矢量法的捷联惯导系统仿真"", 《淮阴师范学院学报(自然科学版)》 * |
陈曙光: ""捷联惯性导航系统的仿真研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203098A (en) * | 2015-10-13 | 2015-12-30 | 上海华测导航技术股份有限公司 | Whole attitude angle updating method applied to agricultural machinery and based on nine-axis MEMS (micro-electromechanical system) sensor |
CN105607093A (en) * | 2015-12-20 | 2016-05-25 | 上海华测导航技术股份有限公司 | Integrated navigation system and method for acquiring navigation coordinate |
CN105607093B (en) * | 2015-12-20 | 2018-05-08 | 上海华测导航技术股份有限公司 | A kind of integrated navigation system and the method for obtaining navigation coordinate |
CN105509740A (en) * | 2015-12-31 | 2016-04-20 | 广州中海达卫星导航技术股份有限公司 | Measuring method and module for attitude of agriculture machinery vehicle |
CN106931965A (en) * | 2015-12-31 | 2017-07-07 | 中国移动通信集团吉林有限公司 | A kind of method and device for determining terminal attitude |
CN106931965B (en) * | 2015-12-31 | 2021-04-13 | 中国移动通信集团吉林有限公司 | A method and device for determining the attitude of a terminal |
CN106441275A (en) * | 2016-09-23 | 2017-02-22 | 深圳大学 | Method and device for updating planned path of robot |
CN106595637A (en) * | 2016-12-21 | 2017-04-26 | 上海华测导航技术股份有限公司 | Visual navigation method for agricultural machine |
CN107421494B (en) * | 2017-04-01 | 2019-12-10 | 深圳市元征科技股份有限公司 | vehicle attitude detection method and device |
CN107421494A (en) * | 2017-04-01 | 2017-12-01 | 深圳市元征科技股份有限公司 | Vehicle attitude detection method and device |
CN107607113B (en) * | 2017-08-02 | 2020-03-17 | 华南农业大学 | Method for measuring inclination angles of two-axis attitude |
CN107607113A (en) * | 2017-08-02 | 2018-01-19 | 华南农业大学 | A kind of two axle posture inclination angle measurement methods |
CN109781096A (en) * | 2017-11-15 | 2019-05-21 | 洛阳中科晶上智能装备科技有限公司 | A kind of integrated navigation and location system and method for intelligent agricultural machinery |
CN108151736A (en) * | 2017-12-14 | 2018-06-12 | 中船重工西安东仪科工集团有限公司 | One kind is suitable for underwater MEMS directional gyroes course angle calculation method |
CN108151736B (en) * | 2017-12-14 | 2021-11-19 | 中船重工西安东仪科工集团有限公司 | Course angle resolving method suitable for underwater MEMS course gyroscope |
CN109927726A (en) * | 2019-03-13 | 2019-06-25 | 深兰科技(上海)有限公司 | A kind of method and apparatus adjusting target vehicle motion state |
CN109987097A (en) * | 2019-03-13 | 2019-07-09 | 深兰科技(上海)有限公司 | A kind of method and apparatus adjusting target vehicle motion state |
CN110044321A (en) * | 2019-03-22 | 2019-07-23 | 北京理工大学 | The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope |
CN112859138A (en) * | 2019-11-28 | 2021-05-28 | 中移物联网有限公司 | Attitude measurement method and device and electronic equipment |
CN112859138B (en) * | 2019-11-28 | 2023-09-05 | 中移物联网有限公司 | Gesture measurement method and device and electronic equipment |
CN112363249A (en) * | 2020-09-02 | 2021-02-12 | 广东工业大学 | Mobile meteorological measurement method and device |
CN112729222A (en) * | 2020-12-14 | 2021-04-30 | 北京航空航天大学 | Real-time measurement method for position of pile digging rotating rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104697526A (en) | Strapdown inertial navitation system and control method for agricultural machines | |
CN108180925B (en) | Odometer-assisted vehicle-mounted dynamic alignment method | |
CN112629538B (en) | Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering | |
CN107655476B (en) | Pedestrian high-precision foot navigation method based on multi-information fusion compensation | |
CN107588769B (en) | Vehicle-mounted strapdown inertial navigation, odometer and altimeter integrated navigation method | |
CN101173858B (en) | A three-dimensional attitude determination and local positioning method for a lunar patrol probe | |
CN100476360C (en) | A Deep Integrated Integrated Navigation Method Based on Star Sensor Calibration | |
EP2856273B1 (en) | Pose estimation | |
CN103245359B (en) | A kind of inertial sensor fixed error real-time calibration method in inertial navigation system | |
CN104764467B (en) | Re-entry space vehicle inertial sensor errors online adaptive scaling method | |
CN105371844B (en) | A kind of inertial navigation system initial method based on inertia/astronomical mutual assistance | |
CN103941273B (en) | Adaptive filtering method of onboard inertia/satellite integrated navigation system and filter | |
CN106767797B (en) | inertial/GPS combined navigation method based on dual quaternion | |
CN101074881B (en) | A Method of Inertial Navigation for Lunar Probe Soft Landing Phase | |
CN110954102B (en) | Magnetometer-assisted inertial navigation system and method for robot positioning | |
CN105823481A (en) | GNSS-INS vehicle attitude determination method based on single antenna | |
CN108051866A (en) | Gravimetric Method based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation | |
CN102809377A (en) | Aircraft inertia/pneumatic model integrated navigation method | |
CN109708663B (en) | Star sensor online calibration method based on aerospace plane SINS assistance | |
CN103090870A (en) | Spacecraft attitude measurement method based on MEMS (micro-electromechanical systems) sensor | |
CN102169184A (en) | Method and device for measuring installation misalignment angle of double-antenna GPS (Global Position System) in integrated navigation system | |
CN104697520B (en) | Integrated gyro free strap down inertial navigation system and gps system Combinated navigation method | |
CN110849360B (en) | Distributed relative navigation method for multi-machine collaborative formation flight | |
CN111189442A (en) | Multi-source navigation information state prediction method of unmanned aerial vehicle based on CEPF | |
CN103674059A (en) | External measured speed information-based horizontal attitude error correction method for SINS (serial inertial navigation system) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150610 |
|
RJ01 | Rejection of invention patent application after publication |