CN108883462A - Liquid metal jet optimization in direct-chill casting - Google Patents
Liquid metal jet optimization in direct-chill casting Download PDFInfo
- Publication number
- CN108883462A CN108883462A CN201780019127.XA CN201780019127A CN108883462A CN 108883462 A CN108883462 A CN 108883462A CN 201780019127 A CN201780019127 A CN 201780019127A CN 108883462 A CN108883462 A CN 108883462A
- Authority
- CN
- China
- Prior art keywords
- metal
- jet
- nozzle
- casting
- liquid metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
- B22D15/04—Machines or apparatus for chill casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/003—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/049—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/103—Distributing the molten metal, e.g. using runners, floats, distributors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D37/00—Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请要求2016年3月25日提交的且名称为《直接激冷铸造中的液态金属射流优化(LIQUID METAL JET OPTIMIZATION IN DIRECT CHILL CASTING)》的美国临时专利申请第62/313,493号的权益,所述申请以全文引用的方式并入本文中。This application claims the benefit of U.S. Provisional Patent Application No. 62/313,493, filed March 25, 2016, and entitled LIQUID METAL JET OPTIMIZATION IN DIRECT CHILL CASTING, Said application is incorporated herein by reference in its entirety.
技术领域technical field
本公开大体上涉及金属铸造,且更确切地说涉及在直接激冷铸造期间控制引入熔融金属贮槽中的液态金属。The present disclosure relates generally to metal casting, and more particularly to controlling the introduction of liquid metal into a molten metal sump during direct chill casting.
背景技术Background technique
在金属铸造工艺中,将熔融金属传送到模腔中。对于一些类型的铸造,使用具有假或移动的底部的模腔。随着熔融金属基本上从顶部进入模腔,假底部以与熔融金属的流速有关的速率降低。已在侧部凝固的熔融金属可用以将液态和部分液态的金属保留在熔融物贮槽中。金属可以是99.9%固体(例如,全固体)、100%液体以及其间的任何状态。由于随着熔融金属冷却固体区域的厚度愈来愈大,因此熔融物贮槽可采用V形或U形。固态与液态金属之间的界面可称为凝固界面。In the metal casting process, molten metal is conveyed into a mold cavity. For some types of casting, mold cavities with false or shifted bottoms are used. As the molten metal enters the cavity substantially from the top, the false bottom decreases at a rate related to the flow rate of the molten metal. Molten metal that has solidified on the side can be used to retain liquid and partially liquid metal in the melt sump. Metals can be 99.9% solid (eg, all solid), 100% liquid, and anything in between. Because the thickness of the solid region increases as the molten metal cools, the melt sump can be V-shaped or U-shaped. The interface between solid and liquid metal may be called the solidification interface.
当熔融物贮槽中的熔融金属在大约0%固体到大约5%固体之间变化时,可发生成核且可形成小的金属晶体(例如,内源性,例如来自均质成核或由枝晶破碎形成,或外源性,例如通过添加晶粒细化剂)。当熔融金属冷却时,这些小(例如,纳米到微米大小)的晶体开始成核且形成枝晶。当熔融金属冷却到枝晶相干点(例如,用于饮料罐端部的5182铝的632℃)时,枝晶开始粘在一起以形成互连网络。在熔融温度与相干温度之间,这些晶体可移动且可能易受流体动力阻力和重力影响,这可能导致这些晶体在贮槽的底部中积聚。由于工业凝固过程的限制,不会发生完全扩散,导致单个晶粒在溶质中耗尽。当这些单个晶粒积聚时,整体效果可极大地改变铸造产品内的局部组分,这可引起铸造产品的特性改变。此外,取决于熔融金属的温度和固体百分比,晶体可包含或捕获不同颗粒,例如某些铝原料中的FeAl6、Mg2Si、FeAl3以及Al8Mg5的颗粒;或杂质,例如H2的气泡。When the molten metal in the melt sump varies between about 0% solids to about 5% solids, nucleation can occur and small metal crystals can form (e.g., endogenous, e.g., from homogeneous nucleation or from dendritic crystal fragmentation, or exogenously, e.g. by addition of grain refiners). As the molten metal cools, these small (eg, nanometer to micrometer sized) crystals begin to nucleate and form dendrites. When the molten metal cools to the dendrite coherence point (for example, 632°C for 5182 aluminum used in beverage can ends), the dendrites begin to stick together to form an interconnected network. Between the melting temperature and the coherent temperature, these crystals are mobile and may be susceptible to hydrodynamic drag and gravity, which may cause these crystals to accumulate in the bottom of the tank. Due to the limitations of the industrial solidification process, complete diffusion does not occur, resulting in depletion of individual grains in the solute. When these individual grains accumulate, the overall effect can greatly alter the local composition within the cast product, which can cause changes in the properties of the cast product. Also, depending on the temperature and percent solids of the molten metal, the crystals can contain or trap different particles, such as particles of FeAl 6 , Mg 2 Si, FeAl 3 and Al 8 Mg 5 in certain aluminum feedstocks; or impurities such as H 2 bubbles.
另外,当晶体在凝固和后续冷却期间时,额外的溶质材料(例如,合金元素)可吸取于晶体之间(例如,于晶体的枝晶之间)且可积聚在熔融物贮槽中,通常在中间厚度处,从而导致铸锭内合金元素的不均衡。合金元素在宏观尺度上的分离可称为宏观偏析。当分析铸锭或半成品时,宏观偏析可视为铸造铸锭的组分在铸造产品的尺寸(例如,宽度、长度、高度或直径)上的变化。铸造铸锭的宏观偏析可导致浪费和成本增加。宏观偏析可进一步导致弱化的铸锭或半成品,这对于某些用途(例如航空航天框架)可能是特别不合期望的。In addition, as the crystals solidify and subsequently cool, additional solute material (e.g., alloying elements) can be drawn between the crystals (e.g., between dendrites of the crystals) and can accumulate in the melt sump, typically At intermediate thicknesses, this results in an imbalance of alloying elements within the ingot. Separation of alloying elements on a macroscopic scale can be referred to as macrosegregation. When analyzing ingots or semi-finished products, macrosegregation can be seen as variations in the composition of the cast ingot over the dimensions (eg, width, length, height, or diameter) of the cast product. Macrosegregation of cast ingots can lead to waste and increased costs. Macrosegregation can further lead to weakened ingots or semi-finished products, which may be particularly undesirable for certain applications such as aerospace frames.
对于各种可测量的量,例如组分,铸锭可能需要落在某些所需规格内。这些量可受到不合期望的宏观偏析的不利影响。虽然具有不合期望的宏观偏析的铸锭总体上可具有落在所需规格内的可测量的量,但铸锭的单个区域,尤其具有较高水平的宏观偏析的那些区域,可具有落在所需规格之外的可测量的量。举例来说,铸锭可具有在铸锭的尺寸上变化大约25%或更大的组分。在这种实例中,铸锭总体上可引起落在铸锭的所需规格内的可测量的量,但铸锭中心附近的宏观偏析量可大致上更强,使得铸锭的中心区域具有远落在所需规格之外的可测量的量。因此,至少部分地由于不合期望的宏观偏析,当铸锭的任何给定部分的性能可小于预期时,使用这种标准铸锭制造的产品的各种规格可能需要大的安全系数(例如,在任何给定点处,平均材料强度远超过材料上的预期负载)。For various measurable quantities, such as components, the ingot may need to fall within certain desired specifications. These quantities can be adversely affected by undesirable macrosegregation. While ingots with undesired macrosegregation overall may have measurable amounts that fall within desired specifications, individual regions of the ingot, especially those regions with higher levels of macrosegregation, may have measurable amounts that fall within desired specifications. A measurable quantity outside the required specification. For example, an ingot may have a composition that varies by about 25% or more over the dimension of the ingot. In such instances, the ingot as a whole may result in a measurable amount that falls within the desired specification of the ingot, but the amount of macrosegregation near the center of the ingot may be substantially stronger such that the central region of the ingot has far greater A measurable quantity that falls outside the required specification. Thus, various specifications of products made using such standard ingots may require large safety margins (e.g., in At any given point, the average material strength far exceeds the expected load on the material).
减少铸造产品中不合乎希望的宏观偏析的尝试依赖于使用过量晶粒细化剂,这可能由于各种原因而不合需要,所述原因包含成本和铸锭污染的风险。在一些情况下,减少铸造产品中不合乎希望的宏观偏析的尝试依赖于使用物理屏障来减缓或减少液体贮槽内的流体流量。Attempts to reduce undesirable macrosegregation in cast products have relied on the use of excess grain refiners, which may be undesirable for a variety of reasons including cost and the risk of ingot contamination. In some cases, attempts to reduce undesirable macrosegregation in cast products have relied on the use of physical barriers to slow or reduce fluid flow within liquid sumps.
附图说明Description of drawings
说明书参照以下附图,其中不同图式中的相似附图标记的使用旨在说明相似或类似组件。The specification refers to the following drawings, wherein the use of like reference numerals in different drawings is intended to illustrate like or analogous components.
图1是用于供应液态金属射流的实例金属铸造系统的局部剖视图。FIG. 1 is a partial cross-sectional view of an example metal casting system for supplying a jet of liquid metal.
图2是撞击熔融金属贮槽的浆料区的液态金属射流的示意性表示。Figure 2 is a schematic representation of a jet of liquid metal impinging on the slurry zone of a molten metal sump.
图3是描绘根据本公开的某些方面的用于各种实例铝合金的预测的无量纲射流处理参数的曲线图,所述参数设计成提供用于使金属贮槽的浆料区中的晶粒重新悬浮的最优液态金属射流。3 is a graph depicting predicted dimensionless jet processing parameters for various example aluminum alloys designed to provide crystallinity in the slurry region of the metal storage tank, according to certain aspects of the present disclosure. Optimal Liquid Metal Jet for Particle Resuspension.
图4是描绘在没有本文所公开的液态金属射流优化技术的情况下根据在使用现有技术铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图。4 is a contour plot depicting macrosegregation intensity according to vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using the prior art without the liquid metal jet optimization techniques disclosed herein.
图5是描绘根据在使用设定成实现大约1600的模具雷诺数(Reynolds number)的参数和被选择以实现大约64000的射流雷诺数的喷嘴开口铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图。5 is a graph depicting the vertical flow in an aluminum alloy Al4.5Cu ingot cast using parameters set to achieve a mold Reynolds number (Reynolds number) of approximately 1600 and a nozzle opening selected to achieve a jet Reynolds number of approximately 64000. Contour plots of macrosegregation intensities at and horizontal positions.
图6是描绘根据在使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约69000的射流雷诺数的喷嘴开口铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图。6 is a graph depicting the vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 69000. Contour plot of macrosegregation intensity.
图7是描绘根据在使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约81000的射流雷诺数的喷嘴开口铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图。7 is a graph depicting the vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 81000. Contour plot of macrosegregation intensity.
图8是描绘根据在使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约97000的射流雷诺数的喷嘴开口铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图。8 is a graph depicting the vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 97000. Contour plot of macrosegregation intensity.
图9是描绘根据在使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约121000的射流雷诺数的喷嘴开口铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图=。9 is a graph depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 121000 Contour plot of macrosegregation intensity = .
图10是描绘随图5到9的铸锭中的每一个的射流雷诺数而变化的宏观偏析指数(Macrosegregation Index;MI)的曲线图。10 is a graph depicting Macrosegregation Index (MI) as a function of jet Reynolds number for each of the ingots of FIGS. 5 to 9 .
图11是描绘根据本公开的某些方面的用于基于已知模具来确定优化铸造参数的过程的流程图。11 is a flowchart depicting a process for determining optimal casting parameters based on known molds, according to certain aspects of the present disclosure.
具体实施方式Detailed ways
本公开的某些方面和特征涉及用于在直接激冷(direct chill;DC)铸造操作期间供应熔融金属的液态金属射流的优化。可对熔融物贮槽的浆料区中的凝固晶粒的腐蚀建模,以确定可用于以等于铸造速度的速率腐蚀熔融物贮槽的浆料区而非凝固金属的优化的液态金属射流。所述模型的无量纲形式可用于生成将在铸造过程期间提供优化的液态金属射流的铸造参数(例如,最优尺寸的喷嘴开口和最优熔融金属流速),从而导致金属铸锭具有改进的宏观偏析特性(例如,减小或几乎消除的宏观偏析、更均匀分布的溶质或更均一的宏观偏析分布)。使用本文中所描述的优化的液态金属射流铸造的铸锭可具有低宏观偏析,其中溶质浓度在铸锭的宽度、长度或高度上从熔融金属供应源浓度变化大约10%或更小或5%或更小。Certain aspects and features of the present disclosure relate to optimization of liquid metal jets for supplying molten metal during direct chill (DC) casting operations. Erosion of solidified grains in the slurry zone of the melt tank can be modeled to determine an optimized liquid metal jet that can be used to corrode the slurry zone of the melt tank rather than the solidified metal at a rate equal to the casting velocity. The dimensionless form of the model can be used to generate casting parameters (e.g., optimally sized nozzle openings and optimal molten metal flow rates) that will provide optimized liquid metal jets during the casting process, resulting in metal ingots with improved macroscopic Segregation properties (eg, reduced or nearly eliminated macrosegregation, more evenly distributed solute, or more uniform macrosegregation distribution). Ingots cast using the optimized liquid metal jet casting described herein can have low macrosegregation, where the solute concentration varies by about 10% or less or 5% from the molten metal supply concentration across the width, length or height of the ingot or smaller.
由于在凝固期间液相和固相的相对运动,可能发生宏观偏析。液相与固相之间的溶质的微尺度分割(例如,微观偏析)可转化为化学组分的较大尺度差异(例如,宏观偏析)。这种相对运动可由各种因素驱动,所述因素的量值可不仅取决于铸造实践,且还取决于过渡区的合金组分和形状。例如熔融物贮槽中的温度对流和收缩流的各种因素可能难以控制。在一些情况下,由于晶粒形成时的收缩流和液体贮槽底部处的晶粒沉积的组合中的一种或多种情况,可能发生宏观偏析。在相对大的铸锭和坯料(例如,具有等于或高于大约300mm的直径或厚度)中,晶粒沉积成为宏观偏析的主要因素,然而在相对小的铸锭和坯料(例如,具有等于或低于大约300mm的直径或厚度)中,收缩流在宏观偏析中成为主要因素。收缩流可导致液体贮槽中溶质分布的不均匀性。本公开的某些方面和特征涉及通过抵消收缩流和/或晶粒沉积的某些宏观偏析诱导效应来改进宏观偏析的技术。Macrosegregation may occur due to the relative motion of the liquid and solid phases during solidification. Microscale partitioning of solutes between liquid and solid phases (eg, microsegregation) can translate into larger scale differences in chemical composition (eg, macrosegregation). This relative motion can be driven by various factors, the magnitude of which can depend not only on casting practice, but also on the alloy composition and shape of the transition zone. Various factors such as temperature convection and constricted flow in the smelt storage tank can be difficult to control. In some cases, macrosegregation may occur due to one or more of a combination of constricted flow as grains form and grain deposition at the bottom of the liquid sump. In relatively large ingots and billets (e.g., having a diameter or thickness equal to or greater than about 300 mm), grain deposition becomes the dominant factor for macrosegregation, whereas in relatively small ingots and billets (e.g., having Below about 300 mm in diameter or thickness), constricted flow becomes the dominant factor in macrosegregation. Constricted flow can cause inhomogeneity in the distribution of solutes in the liquid sump. Certain aspects and features of the present disclosure relate to techniques for improving macrosegregation by counteracting certain macrosegregation-inducing effects of constriction flow and/or grain deposition.
通常由于外源成核位点(例如,晶粒细化剂)的添加,工业铸造的铝合金可能倾向于凝固为等轴晶粒。在液相线与相干等温线之间的浆料区中,凝固晶粒可以是移动的且可取决于熔融物贮槽的条件(例如,温度对流、收缩流以及接触铝的体积变化)移动短或长的距离。当自由移动的晶粒迁移且沉降在贮槽底部时,可获得大于目标平衡条件下的固相的一部分。沉降在贮槽底部的这些晶粒可称为晶粒沉积。在包含许多(如果不是大多数)DC铸造产品的亚共晶铝合金中,固相可比液态富含更少溶质,导致更多固相具有负偏析(例如,溶质浓度低于熔融金属供应源的平均溶质浓度)。在实例中,DC铸造铸锭中心线处的溶质的浓度可比用于铸造铸锭的熔融金属的炉组成的浓度低大约15%到20%。Commercially cast aluminum alloys may tend to solidify into equiaxed grains, often due to the addition of exogenous nucleation sites (eg, grain refiners). In the slurry region between the liquidus and the coherent isotherm, the solidified grains may be mobile and may move short distances depending on the conditions of the melt tank (e.g., temperature convection, constricted flow, and volume change in contact with aluminum). or long distances. When the freely moving grains migrate and settle to the bottom of the tank, a fraction of the solid phase greater than that at the target equilibrium conditions can be obtained. These grains that settle to the bottom of the tank may be referred to as grain deposits. In hypoeutectic aluminum alloys comprising many, if not most, DC casting products, the solid phase can be less solute-rich than the liquid state, resulting in more solid phases with negative segregation (e.g., lower solute concentration than that of the molten metal supply source average solute concentration). In an example, the concentration of solute at the centerline of the DC cast ingot may be about 15% to 20% lower than the concentration of the furnace composition of the molten metal used to cast the ingot.
负偏析可显著改变铸造铸锭或半成品(例如,1xxx、2xxx、3xxx、4xxx、5xxx、6xxx、7xxx以及8xxx系列铝合金的铸锭或半成品铸造)的最终机械特性。防止自由移动晶粒的优先沉积可改变宏观偏析,最终减少DC铸造铸锭的组分在铸锭尺寸上的变化。可将熔融金属射流直接引入到贮槽的底部以防止晶粒沉积。在一些情况下,例如坯料(例如,圆形挤压或锻造铸锭)铸造等,将某些射流引入到贮槽的底部可引起贮槽自身的腐蚀(例如,完全凝固金属的腐蚀),这可能导致问题且对铸锭的凝固产生不利影响。举例来说,在坯料铸造中,理想直径射流可具有非常窄的范围,其中太小直径的射流在具有不合期望的陡峭贮槽轮廓的贮槽中产生不合期望的深孔,且太大直径的射流在具有不合期望的宽贮槽轮廓的贮槽中产生不合期望的宽孔。本公开的某些方面涉及优化具有足以使晶粒的沉积悬浮而不会引起贮槽腐蚀的功率的熔融金属射流。在一些情况下,本公开的方面与矩形铸锭的DC铸造一起使用。在一些情况下,本公开的方面与竖直铸造一起使用。在一些情况下,本公开的方面与距竖直方向30°、25°、20°、15°或10°处或距竖直方向30°、25°、20°、15°或10°内发生的铸造一起使用。在一些情况下,本公开的方面与水平铸造一起使用。Negative segregation can significantly alter the final mechanical properties of cast ingots or semi-finished products (eg, ingot or semi-finished castings of 1xxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx, and 8xxx series aluminum alloys). Preventing the preferential deposition of freely moving grains can alter the macrosegregation, ultimately reducing the variation in the composition of the DC cast ingot over the ingot size. Jets of molten metal can be introduced directly into the bottom of the tank to prevent grain deposition. In some cases, such as billet (e.g., round extruded or forged ingot) casting, etc., the introduction of certain jets into the bottom of the tank can cause corrosion of the tank itself (e.g., of fully solidified metal), which May cause problems and adversely affect the solidification of the ingot. For example, in billet casting, the ideal diameter jets can have a very narrow range, with jets of too small diameter producing undesirably deep holes in sump with undesirably steep sump profiles, and jets of too large diameter The jets create undesirably wide holes in sumps with undesirably wide sump profiles. Certain aspects of the present disclosure relate to optimizing a molten metal jet with sufficient power to suspend a deposit of grains without causing corrosion of the sump. In some cases, aspects of the present disclosure are used with DC casting of rectangular ingots. In some cases, aspects of the present disclosure are used with vertical casting. In some cases, aspects of the present disclosure occur at or within 30°, 25°, 20°, 15°, or 10° from vertical. used together with casting. In some cases, aspects of the present disclosure are used with horizontal casting.
优化的铸造参数(例如,金属流速和/或喷嘴开口直径)可产生足以从贮槽的浆料区去除多余晶粒同时允许一些晶粒沉降且完全凝固的液态金属射流。这种射流可抵消晶粒沉积的影响以及潜在地抵消收缩流的一些影响。液态金属射流的最优能量可落在由射流的无量纲雷诺数定义的窄范围内。可确定优化的铸造参数,使得所得射流的无量纲雷诺数和所得模具的无量纲雷诺数落在基于本文中所公开的技术的预测值范围内。Optimized casting parameters (eg, metal flow rate and/or nozzle opening diameter) can produce a jet of liquid metal sufficient to remove excess grains from the slurry region of the sump while allowing some grains to settle and fully solidify. This jet can counteract the effects of grain deposition and potentially some of the effects of constricted flow. The optimal energy of a liquid metal jet can fall within a narrow range defined by the dimensionless Reynolds number of the jet. Optimized casting parameters can be determined such that the resulting dimensionless Reynolds number of the jet and the resulting dimensionless Reynolds number of the mold fall within the range of predicted values based on the techniques disclosed herein.
除晶粒沉积之外或作为晶粒沉积的替代,收缩流可引发宏观偏析问题。举例来说,凝固晶粒可引起直接邻近凝固晶粒的液态金属中的溶质浓度的局部化增加,而远离凝固晶粒的液体贮槽的部分的溶质浓度保持相对较低。随着晶粒凝固,溶质可包覆在晶粒内或晶粒之间。由于邻近凝固晶粒的液体的溶质浓度往往相对高,因此这种溶质包覆可能导致不合期望的金属间化合物。这些高溶质浓度的包覆区可以是收缩流的结果。In addition to or as an alternative to grain deposition, constricting flow can cause macrosegregation problems. For example, a solidified grain may cause a localized increase in solute concentration in the liquid metal immediately adjacent to the solidified grain, while the solute concentration in portions of the liquid sump remote from the solidified grain remains relatively low. As the grains solidify, solutes can become encapsulated within or between grains. Since the solute concentration of the liquid adjacent to the solidified grains tends to be relatively high, this solute coating can lead to undesirable intermetallic compounds. These high solute concentration clad regions may be the result of constricted flow.
在一些情况下,优化铸造参数可产生足以优化或增加液态金属贮槽内的溶质分布均匀性的液态金属射流。这种射流可抵消收缩流的影响以及潜在地抵消晶粒沉积的一些影响。足够的液态金属射流可导入到液体贮槽中且可在贮槽内诱导足够的液体运动,以将相对高溶质浓度的局部化区域与相对低溶质浓度的局部化区域混合,从而产生整体更均匀的液态金属贮槽。因此,当使用足够的液态金属射流时,任何包覆的溶质可比不使用液态金属射流时(例如,当使用组合袋或过滤袋时)的浓度相对更低。In some cases, optimizing the casting parameters can produce a liquid metal jet sufficient to optimize or increase the uniformity of solute distribution within the liquid metal storage tank. Such jets can counteract the effects of constricted flow and potentially some of the effects of grain deposition. Sufficient jets of liquid metal can be directed into the liquid sump and can induce sufficient liquid motion within the sump to mix localized regions of relatively high solute concentration with localized regions of relatively low solute concentration, resulting in an overall more uniform liquid metal storage tank. Thus, when a sufficient jet of liquid metal is used, the concentration of any coated solutes can be relatively lower than when no jet of liquid metal is used (eg, when a combination bag or filter bag is used).
另外,由于液态金属中存在氢气,因此足够的液态金属射流可减小孔隙率。在标准铸造条件下,氢气可包覆在枝晶臂之间。然而,当提供足够的液态金属射流时,液态金属贮槽内的所得液体运动可促进氢气泡的聚结,从而使氢气泡更容易漂浮到贮槽的顶部且从液态金属中释放出。在一些情况下,邻近凝固晶粒排出的氢气中的至少一些可在液态金属内混合,而不是包覆在枝晶之间。Additionally, sufficient liquid metal jets reduce porosity due to the presence of hydrogen in the liquid metal. Under standard casting conditions, hydrogen gas can be packed between the dendrite arms. However, when sufficient liquid metal jets are provided, the resulting liquid motion within the liquid metal sump can promote the coalescence of hydrogen bubbles, making it easier for the hydrogen bubbles to float to the top of the sump and be released from the liquid metal. In some cases, at least some of the hydrogen gas expelled adjacent to the solidified grains may be mixed within the liquid metal rather than being trapped between dendrites.
因此,本公开的某些方面和特征可通过抵消收缩流和/或晶粒沉积的某些宏观偏析诱导效应来改进宏观偏析。所得金属铸锭或坯料可在不使用本公开的某些方面和特征的情况下形成的金属铸锭或坯料上具有改进的宏观偏析特性。如本文中所描述,改进的宏观偏析属性可通过宏观偏析指数来表示,其中较高的数目表示在铸锭或坯料内增大的不合期望的宏观偏析。改进的宏观偏析特性可具有小于在不使用本公开的某些方面和特征的情况下铸造的铸锭的宏观偏析指数。Accordingly, certain aspects and features of the present disclosure may improve macrosegregation by counteracting certain macrosegregation-inducing effects of constriction flow and/or grain deposition. The resulting metal ingots or ingots may have improved macrosegregation characteristics over metal ingots or ingots formed without the use of certain aspects and features of the present disclosure. As described herein, improved macrosegregation properties can be represented by a macrosegregation index, where higher numbers indicate increased undesirable macrosegregation within the ingot or billet. Improved macrosegregation properties may have a macrosegregation index that is lower than that of an ingot cast without using certain aspects and features of the present disclosure.
为了对DC铸造过程进行建模,可假设异相成核充当凝固界面处的晶粒的唯一来源。因此,质量守恒可提供浆料区中的管控迁移等式,如等式1中所展示。等式1可基于欧拉迁移等式的简化版本,其中N是成核的源项(例如,以m-3s-1为单位),n是晶粒的数量密度(例如,以m-3为单位),且ut是移动液态金属的速度(例如,以米/秒为单位)。To model the DC casting process, it can be assumed that heterogeneous nucleation acts as the sole source of grains at the solidification interface. Therefore, mass conservation can provide a governing migration equation in the slurry region, as shown in Equation 1. Equation 1 can be based on a simplified version of the Euler transfer equation, where N is the source term for nucleation (e.g., in m −3 s −1 ), and n is the number density of grains (e.g., in m −3 s −1 in units), and u t is the velocity of the moving liquid metal (eg, in meters per second).
可使用如式2中所展示的高斯分布来确定随平均过冷(ΔTN±ΔTσ)和最大晶粒密度(nmax)而变化的晶粒密度的统计模型,其中ΔTN是平均过冷,ΔTσ是过冷的标准差且ΔT是过冷的量。A statistical model of grain density as a function of average undercooling (ΔT N ±ΔT σ ) and maximum grain density (n max ) can be determined using a Gaussian distribution as shown in Equation 2, where ΔT N is the average undercooling , ΔT σ is the standard deviation of supercooling and ΔT is the amount of supercooling.
对于给定的合金组分、所使用晶粒细化剂的类型以及晶粒细化剂的添加持续时间,可通过实验确定等式2的特定参数(例如,过冷项)。每个独特的过冷可对应于例如通过Gibbs-Thomson关系给定的某个成核半径。Certain parameters of Equation 2 (eg, the subcooling term) can be determined experimentally for a given alloy composition, type of grain refiner used, and duration of grain refiner addition. Each unique subcooling may correspond to a certain nucleation radius given, for example, by the Gibbs-Thomson relationship.
等式1中的晶核形成和熔融可包含在经由等式2的积分与特定给出的过冷ΔT下的总晶粒密度n(ΔT)相关的单个源项N中,如等式3中所展示:Nucleation and melting in Equation 1 can be contained in a single source term N related to the total grain density n(ΔT) at a given given supercooling ΔT via the integration of Equation 2, as in Equation 3 Shown:
稳态晶粒密度中存在额外条件(例如,等式1中的)。因此,考虑到局部过冷,可通过使平流贡献与界面处的成核相等来定义首要迁移等式。将这种形式的等式作为凝固界面处的边界条件的应用可实施为有限元代码以确定适当的射流参数。这种方法可提供准确的解决方案,但可能在计算上是昂贵的(例如,在计算时间、能量成本以及资金成本方面)。因此,可期望以可由从业人员快速使用而无需大量计算费用的无量纲形式呈现问题。There are additional conditions in the steady-state grain density (e.g., in Equation 1 ). Therefore, the primary transport equation can be defined by equating the advection contribution with the nucleation at the interface, taking into account the local subcooling. The application of equations of this form as boundary conditions at the solidification interface can be implemented as a finite element code to determine appropriate jet parameters. This approach may provide an accurate solution, but may be computationally expensive (eg, in terms of computation time, energy cost, and capital cost). Therefore, it is desirable to present problems in a dimensionless form that can be used quickly by practitioners without significant computational expense.
在颗粒表面上对晶粒流且特别是晶粒腐蚀进行建模,可通过屏蔽参数Sh表征颗粒床上统计稳定的湍流中的颗粒的悬浮和迁移来开始。屏蔽参数可表示由于流体流动引起的剪应力相对于床内单个晶粒的每单位面积体重的比率,如等式4中所展示,其中U是特征流速,dg是晶粒直径,g是由于重力引起的加速度(例如,在竖直DC铸造过程中),且ρf和ρg分别是流体和晶粒密度。Modeling grain flow, and in particular grain corrosion, on particle surfaces can begin by characterizing the suspension and migration of particles in a statistically stable turbulent flow over the particle bed by the shielding parameter Sh. The shielding parameter can represent the ratio of the shear stress due to fluid flow relative to the weight per unit area of individual grains within the bed, as shown in Equation 4, where U is the characteristic flow velocity, dg is the grain diameter, and g is due to gravity induced acceleration (eg, during vertical DC casting), and ρf and ρg are the fluid and grain densities, respectively.
如果屏蔽参数超过临界值,则会发生晶粒迁移,这可取决于晶粒大小、形状、粘结性以及浮力。这个关键的屏蔽参数可能难以通过实验确定,部分原因是重新悬浮的物理机制由于湍流波动而暂时发生。If the shielding parameters exceed critical values, grain migration can occur, which can depend on grain size, shape, cohesion, and buoyancy. This critical shielding parameter can be difficult to determine experimentally, in part because the physical mechanism of resuspension occurs temporarily due to turbulent fluctuations.
颗粒重新悬浮和沉积的替代性分类可用Rouse数(Rs)表示,Rouse数与晶粒的沉降速度和床的湍流剪切速度的比率成正比。这种关系在以下等式5中表示,其中u*是剪切速度,κ是von Kármán常数(例如,大约0.40或0.41),且Us是晶粒的末端沉降速度。An alternative classification of particle resuspension and sedimentation can be expressed by the Rouse number (Rs), which is proportional to the ratio of the sedimentation velocity of the grains to the turbulent shear velocity of the bed. This relationship is expressed in Equation 5 below, where u * is the shear rate, κ is a von Kármán constant (eg, about 0.40 or 0.41), and Us is the terminal sedimentation velocity of the grains.
低于Rs的临界值,流动可能能够维持晶粒处于悬浮状态,因为湍流速度波动大于每个晶粒的末端速度。在单向的稳定流中,充分床迁移预计为Rs≤2.5,如果Rs≤1,则发生显著的重新悬浮。不同于屏蔽数,Rouse数可通过其各自的沉降速度的值Us来解释粘度对每个颗粒的影响。对于非常小的晶粒(例如,在铝系统中,大约70μm或更小的直径),Us可通过Stokes给出沉降速度Us,如等式6中所展示,其中υ是动态粘度(例如,熔融铝是大约5.5×10-7m2/s)。Below the critical value of Rs, the flow may be able to maintain the grains in suspension because the turbulent velocity fluctuations are greater than the terminal velocity of each grain. In unidirectional steady flow, sufficient bed migration is expected to be Rs ≤ 2.5, and if Rs ≤ 1, significant resuspension occurs. Unlike the screening number, the Rouse number can account for the effect of viscosity on each particle through its respective value of sedimentation velocity U s . For very small grains (e.g., about 70 μm or less in diameter in aluminum systems), U s gives the settling velocity U s by Stokes, as shown in Equation 6, where υ is the dynamic viscosity (e.g. , molten aluminum is about 5.5×10 -7 m 2 /s).
接着可使用Us作为特征速度来最有效地定义颗粒雷诺数(Reg),如等式7中所展示,其中dg是晶粒直径。The particle Reynolds number (Reg ) can then be most effectively defined using Us as the characteristic velocity, as shown in Equation 7, where dg is the grain diameter.
如本文中所描述,上述参数已经通过实验确定为流过水平颗粒床的水平流。然而,对于竖直撞击在颗粒床上的射流,可重新定义限定参数的对应物,如在下文参考图2进一步详细描述。因此,可生成无量纲化模型,所述模型可用于优化铸造参数以确保存在可使铸造铸锭中的宏观偏析的强度最小化的优化的液态金属射流。The above parameters have been determined experimentally for horizontal flow through a horizontal bed of particles, as described herein. However, for a jet impinging vertically on a particle bed, the counterparts of the defined parameters can be redefined, as described in further detail below with reference to FIG. 2 . Thus, a dimensionless model can be generated that can be used to optimize casting parameters to ensure that there is an optimized liquid metal jet that minimizes the intensity of macrosegregation in the cast ingot.
使铸造铸锭中的宏观偏析的强度最小化可带来直接的好处(例如,工业上更期望的铸锭或更一致的铸锭形成物),以及其它好处,例如减小的晶粒大小、改进的枝晶形成以及对晶粒细化剂的需求减小。在一些情况下,可在少量或未添加晶粒细化剂的情况下产生所需铸造铸锭。另外,优化的液态金属射流可使晶粒破碎,这可促进整个铸造产品中较小大小晶粒的扩增,这可以是合乎期望的。举例来说,优化的液态金属射流可使用其它标准DC铸造来产生球状晶粒。Minimizing the intensity of macrosegregation in cast ingots can lead to immediate benefits (e.g., more industrially desirable ingots or more consistent ingot formation), as well as other benefits such as reduced grain size, Improved dendrite formation and reduced need for grain refiners. In some cases, desired cast ingots can be produced with little or no added grain refiner. In addition, an optimized liquid metal jet can break up the grains, which can promote the expansion of smaller sized grains throughout the cast product, which can be desirable. For example, optimized liquid metal jets can be used to produce spherical grains using otherwise standard DC casting.
在一些情况下,优化的液态金属射流可帮助对熔融金属进行除气。举例来说,溶解在液态铝中的氢气可通过在熔融物贮槽的浆料区处由优化的液态金属射流提供的搅动来洗去。由于氢气在固态铝中的溶解度有限,因此可通过液态金属射流来搅拌且朝表面洗涤包含不足以使气泡成核的量的少量氢气。已经洗涤到表面的氢气能够作为杂质去除。另外,在一些情况下,如本文中所公开的定制喷嘴大小或流速可用于改变第二相颗粒的形态或分布。另外,在一些情况下,如本文中所公开的定制喷嘴大小或流速可用于提供改进的混合,例如通过将额外的熔融金属提供到富含溶质的区域(例如,邻近凝固前沿)中以稀释那些区域。In some cases, optimized liquid metal jets can help degas molten metal. For example, hydrogen gas dissolved in liquid aluminum can be washed away by agitation provided by optimized liquid metal jets at the slurry zone of the melt storage tank. Due to the limited solubility of hydrogen in solid aluminum, small amounts of hydrogen containing insufficient amounts to nucleate gas bubbles can be stirred and washed towards the surface by a jet of liquid metal. Hydrogen that has been scrubbed to the surface can be removed as an impurity. Additionally, in some cases, tailoring the nozzle size or flow rate as disclosed herein can be used to alter the morphology or distribution of the second phase particles. Additionally, in some cases, custom nozzle sizes or flow rates as disclosed herein can be used to provide improved mixing, for example by providing additional molten metal into solute-rich regions (e.g., adjacent to the solidification front) to dilute those area.
给出这些说明性实例以向读者介绍本文中所论述的一般主题,且并不希望限制所公开的概念的范围。以下部分参照图式描述各种额外特征和实例,其中相似标号指示相似元件,且方向性描述用以描述说明性实施例,但类似于说明性实施例,不应用以限制本公开。本文中的说明中包含的元件可不按比例绘制。These illustrative examples are given to introduce the reader to the general subject matter discussed herein, and are not intended to limit the scope of the concepts disclosed. The following sections describe various additional features and examples with reference to the drawings, wherein like numerals indicate like elements, and directional descriptions are used to describe illustrative embodiments, but like illustrative embodiments, should not be used to limit the present disclosure. Elements contained in the descriptions herein may not be drawn to scale.
图1是用于供应液态金属射流134的金属铸造系统100的局部剖视图。金属源102(例如浇口杯)可沿进料管136向下供应熔融金属且从喷嘴110流出。底部块122可由液压缸124提升以与模腔116的壁相接。随着熔融金属在模具内开始凝固,底部块122可稳定降低。铸造金属106可包含已凝固的侧面120,而添加到铸造中的熔融金属可用于连续拉长铸造金属106。在一些情况下,模腔116的壁定义中空空间且可含有冷却剂118,例如水。冷却剂118可作为射流从中空空间离开且沿铸造金属106的侧面120向下流动以帮助凝固铸造金属106。铸造的铸锭可包含凝固金属区130、过渡金属区128以及熔融金属区126。FIG. 1 is a partial cross-sectional view of a metal casting system 100 for supplying a liquid metal jet 134 . Metal source 102 , such as a sprue cup, may supply molten metal down feed tube 136 and out nozzle 110 . The bottom block 122 may be lifted by hydraulic cylinders 124 to interface with the walls of the mold cavity 116 . The bottom block 122 may be lowered steadily as the molten metal begins to solidify within the mold. The cast metal 106 may include solidified sides 120 , and molten metal added to the cast may be used to continuously elongate the cast metal 106 . In some cases, the walls of mold cavity 116 define a hollow space and may contain coolant 118, such as water. The coolant 118 may exit the hollow space as a jet and flow down the side 120 of the cast metal 106 to help solidify the cast metal 106 . The cast ingot may contain a solidified metal region 130 , a transition metal region 128 , and a molten metal region 126 .
经由其将熔融金属供应到熔融物贮槽112的喷嘴110可定位在熔融物贮槽112的表面114下方,至少在稳态操作期间(例如,在开始铸造过程之后,但在完成铸造过程之前)。喷嘴110可成形以具有开口108(例如,出口),所述开口的大小设计成产生进入熔融物贮槽112中的优化的液态金属射流134。在一些情况下,喷嘴110可包含设计成产生一个或多个液态金属射流的多个开口。离开喷嘴110的液态金属射流134可以是湍流或层流。可将优化的液态金属射流134优化以撞击到金属贮槽112的浆料区中,例如靠近铸造的铸锭的中心的过渡区128的部分,所述优化的射流具有足以重新悬浮其中的任何沉积晶粒的足够的力,但不具有将腐蚀熔融物贮槽112的底部(例如,凝固区130)的力的量。The nozzle 110 through which molten metal is supplied to the melt sump 112 may be positioned below the surface 114 of the melt sump 112, at least during steady state operation (e.g., after starting the casting process but before completing the casting process) . The nozzle 110 may be shaped to have an opening 108 (eg, an outlet) sized to produce an optimized liquid metal jet 134 into the melt sump 112 . In some cases, nozzle 110 may include multiple openings designed to produce one or more jets of liquid metal. The liquid metal jet 134 exiting the nozzle 110 may be turbulent or laminar. An optimized liquid metal jet 134 may be optimized to impinge into the slurry region of the metal sump 112, such as the portion of the transition region 128 near the center of the cast ingot, with sufficient jet flow to resuspend any deposits therein Sufficient force of the grains, but not an amount of force that would corrode the bottom of the melt sump 112 (eg, solidification zone 130 ).
在一些情况下,可选的流量控制装置104可操作地耦合到喷嘴110,以提供对离开喷嘴110的熔融金属流的控制。在一些情况下,流量控制装置104是减流装置,其能够减少来自进料管136的熔融金属流。合适的减流装置的实例是位于进料管136内的控制销。在一些情况下,流量控制装置104可以是增流装置,其能够增加来自进料管136的熔融金属流。合适的增流装置的实例可以是金属泵,例如2015年5月21日提交的美国申请第14/719,050号中所描述的非接触熔融金属泵,所述申请以全文引用的方式并入。在一些情况下,增流装置还可充当减流装置。In some cases, optional flow control device 104 is operatively coupled to nozzle 110 to provide control over the flow of molten metal exiting nozzle 110 . In some cases, flow control device 104 is a flow reducing device capable of reducing the flow of molten metal from feed tube 136 . An example of a suitable flow reducing device is a control pin located within feed tube 136 . In some cases, flow control device 104 may be a flow booster device capable of increasing the flow of molten metal from feed tube 136 . An example of a suitable flow enhancing device may be a metal pump, such as the non-contact molten metal pump described in US Application Serial No. 14/719,050, filed May 21, 2015, which is incorporated by reference in its entirety. In some cases, the flow enhancer may also act as a flow reducer.
流量控制装置104可由控制器132控制,以调节离开喷嘴110的熔融金属的流速。在一些情况下,控制器132可耦合到用于感测金属铸造系统100的参数的一个或多个传感器,所述参数可由控制器132使用以估计或计算金属贮槽112的深度。合适的传感器的实例包含距离传感器(例如,激光、超声波或其它)、温度传感器或其它传感器。Flow control device 104 may be controlled by controller 132 to regulate the flow rate of molten metal exiting nozzle 110 . In some cases, controller 132 may be coupled to one or more sensors for sensing parameters of metal casting system 100 that may be used by controller 132 to estimate or calculate the depth of metal storage tank 112 . Examples of suitable sensors include distance sensors (eg, laser, ultrasonic, or other), temperature sensors, or other sensors.
当使用流量控制装置104时,可使用由流量控制装置104对通过喷嘴110的熔融金属流的控制,以及对喷嘴110的大小和/或模腔116的特性的了解,以为熔融物贮槽112提供优化的液态金属射流134。控制器132可调节一个或多个流量控制装置104,例如泵和/或控制销,以调节通过喷嘴110的金属流。在一些情况下,控制器132可监测铸造过程以确定铸造速度或金属贮槽112的估计深度,以经由流量控制装置104调节通过喷嘴110的熔融金属流,从而优化离开喷嘴110的液态金属射流134。When the flow control device 104 is used, control of the flow of molten metal through the nozzle 110 by the flow control device 104 can be used, along with knowledge of the size of the nozzle 110 and/or the characteristics of the cavity 116, to provide the molten metal for the melt sump 112. Optimized liquid metal jet 134 . Controller 132 may adjust one or more flow control devices 104 , such as pumps and/or control pins, to regulate the flow of metal through nozzle 110 . In some cases, the controller 132 may monitor the casting process to determine the casting rate or the estimated depth of the metal sump 112 to adjust the flow of molten metal through the nozzle 110 via the flow control device 104 to optimize the liquid metal jet 134 exiting the nozzle 110 .
在一些情况下,流量控制装置104用于至少在铸造初始阶段(例如第一个100-300mm的铸造)期间使通过喷嘴110的熔融金属的流速减慢,以使得熔融金属的流速可随铸造速度从零到全速缓慢上升。In some cases, the flow control device 104 is used to slow down the flow rate of molten metal through the nozzle 110 at least during the initial stage of casting (eg, the first 100-300mm of casting), so that the flow rate of molten metal can follow the casting speed. Rise slowly from zero to full speed.
在一些情况下,控制器132可控制一个或多个流量控制装置104以在振荡模式下调节通过喷嘴110的金属流。振荡模式可包含随时间推移增加和减少通过喷嘴110的金属流,这可以进一步促进抵消导致宏观偏析的因素,例如晶粒沉积和/或溶质不均匀性。In some cases, controller 132 may control one or more flow control devices 104 to regulate the flow of metal through nozzle 110 in an oscillatory mode. The oscillatory pattern may involve increasing and decreasing metal flow through the nozzle 110 over time, which may further facilitate counteracting factors that cause macrosegregation, such as grain deposition and/or solute inhomogeneity.
图2是撞击熔融金属贮槽212的浆料区228的液态金属射流234的示意性表示200。举例来说,液态金属射流234可以是撞击图1的金属贮槽112的过渡区128的液态金属流134。液态金属射流234可具有通过具有直径为的开口208的喷嘴210喷射到颗粒床236上的熔融金属的体积通量Q0,其中离开喷嘴210的射流234的速度可用U0表示。射流234可位于相干等温线238上方的高度H0处。在DC铸造的情况下,由于浆料区域可能难以探测,H0可基于贮槽深度244来估算。可使用各种关系来估计随铸造参数而变化的贮槽深度。形成熔融金属贮槽212的浆料区228的材料的颗粒床236可定位在相干等温线238上方。浆料区228可具有高于相干等温线238的高度h0。可定义浆料区228中的单个晶粒242具有直径d。FIG. 2 is a schematic representation 200 of a liquid metal jet 234 impinging on the slurry region 228 of the molten metal sump 212 . For example, liquid metal jet 234 may be liquid metal stream 134 impinging on transition region 128 of metal sump 112 of FIG. 1 . The liquid metal jet 234 may have a diameter of The volume flux Q 0 of the molten metal injected by the nozzle 210 of the opening 208 onto the particle bed 236 , where The velocity of jet 234 exiting nozzle 210 may be denoted by U 0 . Jet 234 may be located at height H 0 above coherence isotherm 238 . In the case of DC casting, H 0 may be estimated based on the sump depth 244 since the slurry region may be difficult to detect. Various relationships can be used to estimate sump depth as a function of casting parameters. A bed 236 of particles of material forming the slurry region 228 of the molten metal sump 212 may be positioned above a coherence isotherm 238 . The slurry region 228 may have a height h 0 above the coherence isotherm 238 . Individual grains 242 in slurry region 228 may be defined to have a diameter d.
如上文所描述,对于竖直撞击在颗粒床236上的射流234,可重新定义表示在水平域中撞击颗粒床的湍流射流的Rouse数的等式5,如图2中所示。该竖直域的重新定义的等式可由等式8表示,其中Uj是颗粒床236的表面处(例如,距喷嘴开口208的距离H0-h0处)的射流234的速度,k是von Kármán常数(例如,大约0.40或0.41),且Us是晶粒242的终端沉降速度。As described above, for a jet 234 impinging vertically on a bed of particles 236, Equation 5 representing the Rouse number for a turbulent jet impinging on the bed of particles in the horizontal domain can be redefined, as shown in FIG. A redefined equation for this vertical domain can be expressed by Equation 8, where Uj is the velocity of the jet 234 at the surface of the particle bed 236 (e.g., at a distance H0- h0 from the nozzle opening 208 ) , and k is von Kármán constant (eg, about 0.40 or 0.41), and U s is the terminal sedimentation velocity of the grains 242 .
颗粒床236的表面处的射流234的速度可通过应用如等式9中所展示的湍流射流的理论来确定,其中b0是喷嘴开口208半径,H0和h0分别表示流体(例如,熔融金属)和颗粒床236的大致总高度,且U0是如由等式10(例如,表示为体积流速的函数Q0)确定的在喷嘴开口208处进入到熔融物贮槽中的流体的平均速度。The velocity of the jet 234 at the surface of the particle bed 236 can be determined by applying the theory of turbulent jet flow as shown in Equation 9 , where b0 is the radius of the nozzle opening 208 and H0 and h0 represent the fluid ( e.g., molten metal) and particle bed 236, and U 0 is the average of the fluid entering the melt sump at nozzle opening 208 as determined by Equation 10 (e.g., expressed as a function of volumetric flow rate Q 0 ). speed.
对于湍流射流,卷吸常数α可采用大约0.08。For turbulent jets, an entrainment constant α of about 0.08 can be used.
对于遵循斯托克斯定律的球形颗粒(例如,Reg<.1),因此可通过等式11来关联Sh、Rs以及Reg。For spherical particles following Stokes' law (eg, Reg <.1), Sh, Rs, and Reg can thus be related by Equation 11.
根据可看出临界屏蔽数Shc与颗粒雷诺数有关。因此,可根据等式12确定临界Rouse数以使用颗粒雷诺数进行缩放。according to It can be seen that the critical shielding number Sh c is related to the particle Reynolds number. Therefore, the critical Rouse number can be determined according to Equation 12 for scaling using the particle Reynolds number.
通过等式13提供以群集速度Uth下降的一起下降的若干晶粒的存在,其中Cv是固体颗粒的体积分数,且m是通过等式14得到的颗粒雷诺数的常数。The presence of several grains descending together at a cluster velocity U th is provided by Equation 13, where Cv is the volume fraction of solid particles and m is a constant for the Reynolds number of the particles obtained by Equation 14.
Uth=Us(1-Cv)m (13)U th = U s (1-C v ) m (13)
使用来自M.G.Chu,J.E.Jacoby的等式5。《由直接激冷方法铸造的工业大小铝合金铸锭的宏观偏析特征(Macrosegregation characteristics ofcommercial sizealuminum alloy ingot cast by the direct chill method)》。见于:C.M.Bickert(编),轻金属,TMS,PA,(1990),关于沉降晶粒的体积分数,结合在Wagstaff,S.R.,Allanore,A.《轧制板铸锭中宏观偏析的实验观察和分析(Experimental Observations andAnalysisofMacrosegregation in Rolling Slab Ingots)》中观察到的中心线溶质消耗程度,见于:M.Hyland(编),轻金属,TMS,PA,2015,所述参考文献并入本文中,固体颗粒的体积分数(Cv)可确定为约0.2。将这一效应应用于等式11得到等式15。Equation 5 from MGChu, JE Jacoby was used. "Macrosegregation characteristics of commercial size aluminum alloy ingot cast by the direct chill method". In: CM Pickert (ed.), Light Metals, TMS, PA, (1990), on the volume fraction of sedimentation grains, combined in Wagstaff, SR, Allanore, A. "Experimental observation and analysis of macrosegregation in rolled plate ingots ( Extent of centerline solute depletion as observed in Experimental Observations and Analysis of Macrosegregation in Rolling Slab Ingots), in: M. Hyland (ed.), Light Metals, TMS, PA, 2015, which reference is incorporated herein, Volume fraction of solid particles (C v ) can be determined to be about 0.2. Applying this effect to Equation 11 yields Equation 15.
如上文所描述,如果超过临界屏蔽参数Shc或如果Rouse数低于Rsc(例如,临界Rouse数),那么液态金属射流234能够使来自颗粒床236的晶粒242悬浮。对于水平通道流,底沙迁移可由每单位流宽度Q的晶粒体积通量来定义。接着通过晶粒大小和沉降速度使底沙迁移标准化,可获得每单位宽度的无量纲通量。As described above, liquid metal jet 234 is capable of suspending grains 242 from particle bed 236 if a critical screening parameter Sh c is exceeded or if the Rouse number is below Rs c (eg, a critical Rouse number). For horizontal channel flows, bottom sand migration can be defined by the grain volume flux per unit flow width Q. Substrate transport is then normalized by grain size and settling velocity to obtain a dimensionless flux per unit width.
对于颗粒床上均匀水平流的底沙迁移,实验关系已确定以使与以下等式16的差值Sh-Shc相关,其中P和Cs的值是取决于晶粒大小、密度以及由床上的流体施加的应力的常数。常数P和Cs可通过实验确定。For substrate transport in uniform horizontal flow over a granular bed, an experimental relationship has been determined such that This is related to the difference Sh-Sh c of Equation 16 below, where the values of P and C s are constants that depend on the grain size, density, and stress imposed by the fluid in the bed. The constants P and C s can be determined experimentally.
由撞击射流234产生的凹坑240的半径可能不会随着射流功率的增加而显著变化。因此,凹坑240可能随着凹坑240底部处的射流速度的增大而加深,同时维持几乎恒定的半径(r0)。这种假设和外推可能至少对于形成渗透性床的无粘结性晶粒是有效的。然而,除了施加的剪应力之外,粘结性颗粒床(例如,焊接的晶粒)还可依赖于高温蠕变效应来重新悬浮。因此,粘结性颗粒床可“反射”撞击射流的至少一部分,且因此导致射流的效果不太均匀和可预测。另外,撞击行为可能引起床内的表面压力分布和渗流。这种渗流可允许剪应力在床内深处作用而不是快速消散,如非渗透性床的情况。The radius of the dimple 240 created by the impinging jet 234 may not change significantly with increasing jet power. Thus, the dimple 240 may deepen as the jet velocity at the bottom of the dimple 240 increases, while maintaining a nearly constant radius (r 0 ). Such assumptions and extrapolations are likely to be valid at least for uncohesive grains forming permeable beds. However, in addition to applied shear stress, cohesive particle beds (eg, welded grains) can also rely on high temperature creep effects for resuspension. Thus, the bed of cohesive particles may "reflect" at least a portion of the impinging jet and thus cause the jet to have a less uniform and predictable effect. Additionally, impingement behavior may induce surface pressure distribution and percolation within the bed. This percolation may allow shear stresses to act deep within the bed rather than dissipate quickly, as is the case with impermeable beds.
因此,由于液态金属射流234而从凹坑240悬浮的晶粒的体积通量可根据等式17表示,其中假设凹坑下降速度(Uc)(例如,凹坑240加深的速度)是常数(例如,还假设体积通量是常数)。换句话说,等式17可表示由于液态金属射流234的撞击而从浆料区228移位的晶粒的体积通量。术语r0可表示凹坑的半径。Thus, the volumetric flux of grains suspended from the dimple 240 due to the liquid metal jet 234 can be expressed according to Equation 17, assuming that the dimple descent velocity (U c ) (e.g., the speed at which the dimple 240 deepens) is constant ( For example, also assume that the volumetric flux is constant). In other words, Equation 17 may represent the volumetric flux of grains displaced from the slurry zone 228 due to the impingement of the liquid metal jet 234 . The term r 0 may denote the radius of the pit.
晶粒的每单位面积密度的晶粒通量可用表示,其使用受阻的沉降速度来解释凹坑内的晶粒间相互作用。The grain flux per unit area density of the grain is available indicated that it uses the hindered settling velocity to explain the grain-to-grain interactions within the pits.
晶粒的每单位面积密度的晶粒通量可用于无量纲等式17,如等式18中所展示,其中是无量纲体积通量。The grain flux per unit area density of grains can be used in dimensionless Equation 17, as shown in Equation 18, where is the dimensionless volumetric flux.
等式18中所展示的关系定义了相对的凹坑下降速度,从而表明凹坑240独立于晶粒本身的特性而下降。The relationship shown in Equation 18 defines the relative pit descent velocity, showing that the pits 240 descend independently of the properties of the die itself.
由于等式8中Rs的定义明确调用晶粒242的沉降速度,且因此可解释湍流波动的影响,等式16可用如等式19中所展示的晶粒的无量纲通量替换,其中Cr是取决于晶粒大小、密度以及由床上的流体施加的应力的比例常数。常数Cr可通过实验确定。Since the definition of Rs in Equation 8 explicitly invokes the sedimentation velocity of the grain 242, and thus can account for the effect of turbulent fluctuations, Equation 16 can be replaced by the dimensionless flux of the grain as shown in Equation 19, where Cr is a constant of proportionality that depends on the grain size, density, and stress exerted by the fluid in the bed. The constant C r can be determined experimentally.
因此,使用等式8和18以及来自等式15的临界Rouse数的关系,等式19提供随床326上的射流234的速度而变化的凹坑下降速度Uc的明确表达,如等式20中所展示,其中C1和C2是取决于晶粒大小、密度以及由床上的流体施加的应力的比例常量。常数C1和和C2可通过实验确定。Thus, using Equations 8 and 18 and the relationship of the critical Rouse number from Equation 15, Equation 19 provides an explicit expression of the pit descent velocity Uc as a function of the velocity of the jet 234 over the bed 326, as in Equation 20 , where C1 and C2 are constants of proportionality that depend on the grain size, density, and stress imposed by the fluid in the bed. The constants C1 and C2 can be determined experimentally.
为提供最优的凝固环境,至少出于改进宏观偏析的目的,可能期望设计一种液态金属射流234,其具有在足以使沉降晶粒242重新悬浮但不足以腐蚀贮槽212的底部的精确范围内的功率。因此,液态金属射流234应设计成引起大约等于铸造速度(例如,固体铸锭的竖直移位速度)的凹坑下降速度(Uc)。这种标准可确保在铸锭的中心中没有或有少量积聚晶粒242,且射流的功率在颗粒再悬浮中耗散(例如,而不是腐蚀完全凝固的金属)。在一些情况下,可使用喷嘴来铸造合乎期望的铸锭,所述喷嘴提供至少在稳定铸造期间,足以维持大约等于铸造速度或与所述铸造速度相比慢不大于1%、2%、3%、4%或5%的凹坑下降速度的液态金属射流。在一些情况下,可使用喷嘴来铸造合乎期望的铸锭,所述喷嘴提供至少在稳态铸造期间,足以使凹坑下降速度维持在与铸造速度相差大约1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%或更小的变化内的液态金属射流。To provide an optimal solidification environment, at least for the purpose of improving macrosegregation, it may be desirable to design a liquid metal jet 234 with a precise range sufficient to resuspend the settled grains 242 but insufficient to corrode the bottom of the sump 212 power within. Accordingly, the liquid metal jet 234 should be designed to induce a pit descent velocity (U c ) approximately equal to the casting velocity (eg, the vertical displacement velocity of the solid ingot). Such criteria can ensure that there are no or few accumulated grains 242 in the center of the ingot, and that the power of the jet is dissipated in particle resuspension (eg, rather than eroding fully solidified metal). In some cases, the desired ingot may be cast using nozzles that provide sufficient to maintain, at least during steady casting, approximately equal to or no more than 1%, 2%, 3% slower than the casting rate. %, 4% or 5% of the pit drop speed of the liquid metal jet. In some cases, the desired ingot may be cast using nozzles that provide sufficient dimple drop rates to maintain a rate of about 1%, 2%, 3%, 4% from the casting rate, at least during steady state casting. %, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15% or less variation within the liquid metal jet.
由于颗粒床表面处的射流速度(Uj)可定义为体积流速的函数,且因此也可以定义为铸造速度的函数,因此可实施迭代计算求解器直到汇聚为止。上文所描述的等式可应用于确定最优铸造参数,包含喷嘴开口和流动速率,如本文中所描述。Since the jet velocity (U j ) at the particle bed surface can be defined as a function of the volumetric flow rate, and thus also of the casting velocity, an iterative computational solver can be implemented until convergence. The equations described above can be applied to determine optimal casting parameters, including nozzle opening and flow rate, as described herein.
图3是描绘根据本公开的某些方面的用于各种实例铝合金的预测的无量纲射流加工参数的曲线图300,所述射流加工参数设计成提供用于使金属贮槽的浆料区中的晶粒重新悬浮的最优液态金属射流。模具雷诺数(Rem)304可基于等效的水力半径和铸造速度。射流雷诺数(Rej)302可基于射流速度和直径。阴影区312可表示取决于合金性质的一系列值,所述值适用于提供最优液态金属射流以使金属贮槽的浆料区中的晶粒重新悬浮。举例来说,线306可表示用于铝合金5182的预测无量纲射流加工参数,线308可表示用于铝合金Al4.5Cu的预测无量纲射流加工参数,且线310可表示用于铝合金1050的预测无量纲射流加工参数。3 is a graph 300 depicting predicted dimensionless fluidic processing parameters for various example aluminum alloys designed to provide a slurry zone for metal sump, according to certain aspects of the present disclosure. Optimal Liquid Metal Jet for Grain Resuspension. The mold Reynolds number (Re m ) 304 may be based on equivalent hydraulic radii and casting speeds. Jet Reynolds number (Re j ) 302 may be based on jet velocity and diameter. The shaded area 312 may represent a range of values depending on the properties of the alloy suitable for providing an optimal liquid metal jet to resuspend the grains in the slurry region of the metal sump. For example, line 306 may represent predicted dimensionless jet processing parameters for aluminum alloy 5182, line 308 may represent predicted dimensionless jet processing parameters for aluminum alloy Al4.5Cu, and line 310 may represent predicted dimensionless jet processing parameters for aluminum alloy 1050 Prediction of dimensionless jet machining parameters.
曲线图300的数据可视为最优化相关数据,其用以将已知的模具雷诺数与射流雷诺数相关联,所述射流雷诺数可用于确定最优铸造参数,如本文中进一步详细地公开。曲线图300的数据可通过实验、通过建模或通过现有数据的应用来确定。The data of graph 300 can be considered optimization correlation data used to correlate known mold Reynolds numbers with jet Reynolds numbers that can be used to determine optimal casting parameters, as disclosed in further detail herein . The data for graph 300 may be determined experimentally, by modeling, or by application of existing data.
通过操纵铸造参数(例如,喷嘴开口的直径和离开喷嘴的熔融金属的流速),使得所得的无量纲射流加工参数(例如,射流雷诺数和模具雷诺数)落在曲线图300的适当预测线上,可获得最优液态金属射流。举例来说,对于铝合金Al4.5Cu,可选择一组最优铸造参数(例如,喷嘴大小和金属流速),使得所得的射流雷诺数是大约88000,且所得模具雷诺数是大约1600,其在点318处与线308相接。可类似地获得用于铝合金Al4.5Cu或用于其它铝合金的其它最优铸造参数。By manipulating the casting parameters (e.g., the diameter of the nozzle opening and the flow rate of the molten metal exiting the nozzle) such that the resulting dimensionless jet processing parameters (e.g., the jet Reynolds number and the mold Reynolds number) fall on the appropriate predicted line of the graph 300 , the optimal liquid metal jet can be obtained. For example, for the aluminum alloy Al4.5Cu, an optimal set of casting parameters (e.g., nozzle size and metal flow rate) can be selected such that the resulting jet Reynolds number is about 88000 and the resulting mold Reynolds number is about 1600, which is at Line 308 is joined at point 318 . Other optimal casting parameters for the aluminum alloy Al4.5Cu or for other aluminum alloys can be obtained similarly.
合金组分可以是模型的重要参数,这是因为合金组分影响固相的相对密度和贮槽的稳态深度。实际上,对于通过底部固体块去除大部分热量的DC铸造,某些元素(例如镁或锌)可能显著影响贮槽深度,因这些元素相对于纯铝具有较低导热性。这种贮槽深度差异会影响射流膨胀的程度。由于射流的中心线速度将随深度的增加而减小,因此对于不同合金组分可能期望不同的射流直径。实验或建模数据可用于生成边界曲线,所述边界曲线表示通常用于DC铸造中的铝合金范围的最小中心线偏析的有效加工参数,如曲线图300中所描绘。曲线图300表示随模具雷诺数变化的预测射流雷诺数的范围,其中射流和模具雷诺数(即,分别是Rej和Rem)分别根据等式21和等式22来定义,其中Ml和Mw分别表示模具长度和宽度。Alloy composition can be an important parameter of the model because alloy composition affects the relative density of the solid phase and the steady state depth of the sump. Indeed, for DC casting where most of the heat is removed by a solid mass at the bottom, certain elements such as magnesium or zinc can significantly affect sump depth due to their low thermal conductivity relative to pure aluminium. This difference in sump depth affects the degree to which the jet expands. Since the centerline velocity of the jet will decrease with depth, different jet diameters may be expected for different alloy compositions. Experimental or modeling data can be used to generate boundary curves representing effective processing parameters typically used for minimum centerline segregation of a range of aluminum alloys in DC casting, as depicted in graph 300 . Graph 300 represents the range of predicted jet Reynolds number as a function of mold Reynolds number, where the jet and mold Reynolds numbers (i.e., Re j and Re m , respectively) are defined according to Equation 21 and Equation 22, respectively, where M 1 and M w represent the mold length and width, respectively.
创建阴影区312的边界线306和310以用于识别为限制情况的两种合金(例如,铝合金5182和1050)。用于DC铸造中的大多数铝合金将落在这些边界之间。Boundary lines 306 and 310 of shaded area 312 are created for two alloys identified as limiting cases (eg, aluminum alloys 5182 and 1050). Most aluminum alloys used in DC casting will fall between these boundaries.
在一些情况下,可使用线性近似值来估计曲线图300,以便在计算上快或在计算上容易地确定优化的雷诺数。出于提供无量纲数的目的,与模具参数的关系作为雷诺数的关系呈现,以便于与模具的各种形状一起使用,然而,可使用与模具参数的其它关系(例如,空间化关系)。In some cases, linear approximation may be used to estimate graph 300 in order to computationally quickly or computationally easily determine an optimal Reynolds number. For purposes of providing dimensionless numbers, the relationship to mold parameters is presented as a relationship to Reynolds number for use with various shapes of molds, however other relationships to mold parameters (eg, spatialized relationships) may be used.
采样点314、316、318、320、322表示在图5到9的实例中所使用的实际铸造参数,如下文所描述。Sample points 314, 316, 318, 320, 322 represent actual casting parameters used in the examples of Figures 5-9, as described below.
图4到9是根据使用不同技术铸造的铝合金Al4.5Cu的各种铸锭中的竖直和水平位置的宏观偏析的强度描绘的等高线图。这些曲线图中的每一个的水平轴线表示距铸锭的中心的水平距离,单位为mm,其中铸锭的外部位于曲线图的左端且铸锭的中心位于曲线图的右端。这些曲线图中的每一个的竖直轴线表示距铸锭中心的竖直距离,单位为mm,其中铸锭的外部位于曲线图的顶端且铸锭的中心位于曲线图的底端。等高线图基于沿垂直于铸锭长度的平面截取的铸锭的横向截面。这些曲线图中的宏观偏析的强度以溶质浓度与熔融金属供应源的百分比差异给出。举例来说,-15的宏观偏析强度可表示比预期的溶质浓度(例如,由炉供应的熔融金属的浓度)低15%的溶质浓度,而10的宏观偏析强度可表示比预期的溶质浓度高10%的溶质浓度。因此,高正数和高负数表示强烈的且通常不合期望的宏观偏析,而基本上低的数目(例如,接近零)表示低的且通常合乎期望的宏观偏析。Figures 4 to 9 are contour diagrams plotted according to the intensity of macrosegregation at vertical and horizontal positions in various ingots of aluminum alloy Al4.5Cu cast using different techniques. The horizontal axis of each of these graphs represents the horizontal distance in mm from the center of the ingot, with the outside of the ingot at the left end of the graph and the center of the ingot at the right end of the graph. The vertical axis of each of these graphs represents the vertical distance in mm from the center of the ingot, with the outside of the ingot at the top of the graph and the center of the ingot at the bottom of the graph. The contour plot is based on a transverse section of the ingot taken along a plane perpendicular to the length of the ingot. The magnitude of the macrosegregation in these plots is given as the percent difference in solute concentration versus molten metal supply. For example, a macrosegregation intensity of -15 may indicate a solute concentration that is 15% lower than the expected solute concentration (e.g., the concentration of molten metal supplied by the furnace), while a macrosegregation intensity of 10 may indicate a higher than expected solute concentration 10% solute concentration. Thus, high positive and high negative numbers indicate strong and generally undesirable macrosegregation, while substantially low numbers (eg, near zero) indicate low and generally desirable macrosegregation.
图4是描绘在没有本文所公开的液态金属射流优化技术的情况下根据使用现有技术铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图400。如曲线图400中所示,在沿水平轴线的铸锭中心的0到600mm内且在沿竖直轴线的铸锭中心的0到50mm内看出明显的负宏观偏析(例如,处于或差大约-10%或-15%)。另外,在铸锭中心与铸锭外部之间(例如,沿竖直轴线处于距中心100mm或约100mm和沿水平轴线在距中心200与500mm之间)的某些区域中看出明显的正宏观偏析。在不使用本文中所公开的液态金属射流优化技术的情况下铸造的铸锭中看出强宏观偏析的区域是相对大的且是连续的。4 is a contour plot 400 depicting macrosegregation intensity at vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast using prior art techniques without the liquid metal jet optimization techniques disclosed herein. As shown in graph 400, significant negative macrosegregation (e.g., at or around -10% or -15%). Additionally, a pronounced positive macroscopic pattern is seen in certain regions between the center of the ingot and the outside of the ingot (e.g., at or about 100 mm from the center along the vertical axis and between 200 and 500 mm from the center along the horizontal axis). Segregation. The areas of strong macrosegregation seen in ingots cast without the use of the liquid metal jet optimization techniques disclosed herein were relatively large and continuous.
图5到9是跨越不同射流雷诺数但维持大约1600的恒定模具雷诺数的使用各种程度的本文中所公开的液态金属射流优化技术铸造的铝合金Al4.5Cu铸锭的等高线图。射流雷诺数因通过改变铸造期间所使用的喷嘴开口来铸造的铸锭而改变,而所有其它铸造参数维持不变。图5到9中所描绘的射流雷诺数对应于图3的点314、316、318、320、322。5 to 9 are contour plots of aluminum alloy Al4.5Cu ingots cast using various degrees of the liquid metal jet optimization technique disclosed herein across different jet Reynolds numbers but maintaining a constant mold Reynolds number of approximately 1600. The jet Reynolds number was varied for the ingot cast by changing the nozzle opening used during casting, while all other casting parameters were kept constant. The jet Reynolds numbers depicted in FIGS. 5 to 9 correspond to points 314 , 316 , 318 , 320 , 322 of FIG. 3 .
图5是描绘根据使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约64000的射流雷诺数的喷嘴开口来铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图500。如曲线图500中所见,在铸锭中心附近不存在或几乎没有负偏析,然而,在铸锭中心和铸锭的短边缘附近存在一些正偏析。5 is a diagram depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast according to parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 64000 Contour plot 500 of macrosegregation intensity. As seen in graph 500, there is little or no negative segregation near the center of the ingot, however, there is some positive segregation near the center of the ingot and the short edges of the ingot.
图6是描绘根据使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约69000的射流雷诺数的喷嘴开口来铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图600。如曲线图600中所见,在铸锭中心附近不存在或几乎没有负偏析,然而,在铸锭中心和铸锭的边缘附近存在一些正偏析。6 is a graph depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast according to parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 69000 Contour plot 600 of macrosegregation intensity. As seen in graph 600, there is little or no negative segregation near the center of the ingot, however, there is some positive segregation near the center of the ingot and near the edges of the ingot.
图7是描绘根据使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约81000的射流雷诺数的喷嘴开口来铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图700。如曲线图700中所见,在铸锭中心附近不存在或几乎没有负偏析,然而,在铸锭中心和铸锭的长边附近存在一些正偏析。然而,总体来说,曲线图700中所描绘的整个横截面上的宏观偏析强度大部分接近零(例如,在与熔融金属供应源相差±5%或±10%的溶质浓度变化内)。7 is a diagram depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast according to parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 81000 Contour plot 700 of macrosegregation intensity. As seen in graph 700, there is little or no negative segregation near the center of the ingot, however, there is some positive segregation near the center of the ingot and the long sides of the ingot. Overall, however, the macrosegregation intensity across the cross-section depicted in graph 700 is mostly close to zero (eg, within ±5% or ±10% variation in solute concentration from the molten metal supply).
图8是描绘根据使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约97000的射流雷诺数的喷嘴开口来铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图800。如曲线图800中所见,除了沿铸锭的边缘的一些正偏析之外,在大部分横截面上存在极少偏析。8 is a graph depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast according to parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 97000 Contour map 800 of macrosegregation intensity. As seen in graph 800, there is very little segregation over most of the cross-section, except for some positive segregation along the edges of the ingot.
图9是描绘根据使用设定成实现大约1600的模具雷诺数的参数和被选择以实现大约121000的射流雷诺数的喷嘴开口来铸造的铝合金Al4.5Cu铸锭中的竖直和水平位置的宏观偏析强度的等高线图900。如曲线图900中所见,除了沿铸锭的边缘的一些正偏析之外,在大部分横截面上存在极少偏析。9 is a graph depicting vertical and horizontal positions in an aluminum alloy Al4.5Cu ingot cast according to parameters set to achieve a mold Reynolds number of about 1600 and a nozzle opening selected to achieve a jet Reynolds number of about 121000 Contour map 900 of macrosegregation intensity. As seen in graph 900, there is very little segregation over most of the cross-section, except for some positive segregation along the edges of the ingot.
如图5到9中所示,利用低于大约97000的射流雷诺数铸造的铸锭显示出正(例如,富集)中心线偏析(例如,与图4中所观察到的负偏析相反)。另外,利用为97000或高于97000的射流雷诺数铸造的铸锭显示出非常低的中心线偏析,且若存在,显示出负(例如,耗尽)偏析。另外,与无这种射流(例如,如图4中所见)相反,当使用一定程度的优化液态金属射流(例如,如图5到9中所见)时,中心线区的范围相对于短轴线明显更窄。As shown in Figures 5-9, ingots cast using jet Reynolds numbers below about 97,000 exhibit positive (eg, enriched) centerline segregation (eg, as opposed to the negative segregation observed in Figure 4). In addition, ingots cast using a jet Reynolds number of 97,000 or above exhibit very low centerline segregation, and, if present, negative (eg, depletion) segregation. In addition, as opposed to the absence of such jets (as seen, for example, in FIG. 4 ), when a certain degree of optimized liquid metal jets are used (as seen, for example, in FIGS. 5 to 9 ), the extent of the centerline region is relatively short. The axis is significantly narrower.
图4到9说明了优化的液态金属射流改变DC铸造产品(例如轧制板铸锭)的中心线偏析的可能性。中心线偏析区本身减小的事实可能是理想的,因为铸锭的热机械加工可减小剩余偏析。可使用量化中心线偏析程度的宏观偏析指数(MI)度量来进行更定量的过程性能分析。等式23是修改的第二区力矩等式,所述第二区力矩等式基于其与目标合金组分的偏差和其与中心的距离,将定量值分配给在每个位置处测量的浓度,其中Y是铸锭的半厚度,Adom是所测量的板横截面的面积,y是距量测点的中间厚度的距离,A是指示铸锭横截面上方的积分边界的定界符,C0是目标合金组分的溶质浓度,且C是所测量位置处的溶质浓度(例如,贯穿铸锭厚度的距离)。Figures 4 to 9 illustrate the possibility of optimized liquid metal jets to alter the centerline segregation of DC cast products such as rolled plate ingots. The fact that the centerline segregation zone itself is reduced may be desirable since thermomechanical working of the ingot reduces residual segregation. A more quantitative process performance analysis can be performed using a macroscopic segregation index (MI) metric that quantifies the degree of centerline segregation. Equation 23 is a modified second zone moment equation that assigns a quantitative value to the concentration measured at each location based on its deviation from the target alloy composition and its distance from the center , where Y is the half-thickness of the ingot, A dom is the area of the plate cross-section being measured, y is the distance from the mid-thickness of the measuring point, A is a delimiter indicating the boundary of the integration above the ingot cross-section, C 0 is the solute concentration of the target alloy composition, and C is the solute concentration at the location measured (eg, the distance through the thickness of the ingot).
坯料(沿半径或直径)。铸锭(贯穿厚度)Blank (along radius or diameter). Ingot (through thickness)
在度量中并入距离可能是重要的,因为可通过铸造后的物理方式处理的富集激冷区域可能会扭曲铸锭的整个部分的分析。由于指数包含平方项,因此其将正或负偏析视为同等不利。对于具有较少宏观偏析的横截面,MI最小(例如,其中来自熔融金属供应源的溶质浓度变化最接近零)。Incorporating distance in the metric may be important because enriched chill regions, which may be addressed by post-cast physical means, may distort the analysis of entire sections of the ingot. Since the index contains squared terms, it treats positive or negative segregation as equally unfavorable. MI is smallest for cross-sections with less macrosegregation (eg, where the change in solute concentration from the molten metal supply is closest to zero).
图10是描绘随图5到9的铸锭中的每一个的射流雷诺数而变化的宏观偏析指数(MI)的曲线图1000。虚线1002表示图4的标准铸锭的MI,其描绘大约0.104的MI。在一些情况下,根据本公开的某些方面的合适的金属射流可产生具有处于或低于大约0.115、0.110、0.105、0.104、0.100、0.095、0.090、0.085、0.080、0.075、0.070、0.065、0.060、0.055、0.050、0.045或0.040的MI的铸锭或坯料。10 is a graph 1000 depicting macrosegregation index (MI) as a function of jet Reynolds number for each of the ingots of FIGS. 5-9. Dashed line 1002 represents the MI of the standard ingot of Figure 4, which depicts a MI of approximately 0.104. In some cases, a suitable metal jet in accordance with certain aspects of the present disclosure may produce a metal jet having an , 0.055, 0.050, 0.045 or 0.040 MI ingots or billets.
点1022描绘用于具有64000射流雷诺数的图5的铸锭的大约0.06的MI,所述点与图3的点322相关联。点1020描绘用于具有69000射流雷诺数的图6的铸锭的大约0.07的MI,所述点与图3的点320相关联。点1018描绘用于具有81000射流雷诺数的图7的铸锭的大约0.06的MI,所述点与图3的点318相关联。点1016描绘用于具有97000射流雷诺数的图8的铸锭的大约0.04的MI,所述点与图3的点316相关联。点1014描绘用于具有121000射流雷诺数的图9的铸锭的大约0.07的MI,所述点与图3的点314相关联。Point 1022 depicts an MI of approximately 0.06 for the ingot of FIG. 5 having a jet Reynolds number of 64000, which point is associated with point 322 of FIG. 3 . Point 1020 depicts an MI of approximately 0.07 for the ingot of FIG. 6 having a jet Reynolds number of 69000, which point is associated with point 320 of FIG. 3 . Point 1018 depicts an MI of approximately 0.06 for the ingot of FIG. 7 having a jet Reynolds number of 81000, which point is associated with point 318 of FIG. 3 . Point 1016 depicts an MI of about 0.04 for the ingot of FIG. 8 having a jet Reynolds number of 97000, which point is associated with point 316 of FIG. 3 . Point 1014 depicts an MI of about 0.07 for the ingot of FIG. 9 having a jet Reynolds number of 121000, which point is associated with point 314 of FIG. 3 .
对于图5到9中所描绘的射流雷诺数的范围,宏观偏析指数显示出与标准铸造方法相比减少至少大约30%。射流雷诺数为97000的最佳执行射流显示中心线偏析减少大约60%。在一些情况下,根据本公开的某些方面的合适的金属射流可使中心线偏析与标准铸造方法相比减少或减少大于大约5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%或65%。For the range of jet Reynolds numbers depicted in Figures 5 to 9, the macrosegregation index shows a reduction of at least about 30% compared to the standard casting method. A best performing jet with a jet Reynolds number of 97,000 showed approximately a 60% reduction in centerline segregation. In some cases, a suitable metal jet according to certain aspects of the present disclosure can reduce centerline segregation by more than about 5%, 10%, 15%, 20%, 25%, 30% compared to standard casting methods , 35%, 40%, 45%, 50%, 55%, 60%, or 65%.
如本文中所描述,无量纲模型可用于确定用于各种铝合金和各种模具尺寸的铸造参数。As described herein, a dimensionless model can be used to determine casting parameters for various aluminum alloys and various mold sizes.
图11是描绘根据本公开的某些方面的用于基于已知模具确定优化铸造参数的过程1100的流程图。在框1102处,可确定模具尺寸。模具尺寸可包含用于确定雷诺数的任何合适的尺寸,如本文中所描述。举例来说,可为矩形模具确定长度和宽度的尺寸,然而,可针对不同形状的模具确定其它尺寸。模具尺寸可基于其它标准预先确定,例如所需铸锭大小或合适模具的预先存在情况。确定模具尺寸的方法的实例可以是测量现有模具,从而根据曲线图或计划(例如,通过计算机辅助设计)确定测量值,或预设待生产模具的测量值。在框1104处,可确定铸造速度。可基于其它铸造考虑因素来预先确定铸造速度。在一些情况下,在框1104处确定铸造速度可包含确定多个潜在的期望铸造速度,其可进一步用于在以下框1106处确定多个潜在的模具雷诺数,所述模具雷诺数可用于计算多个优化的铸造参数,所述铸造参数继而可用于选择待使用的多个铸造速度中的一个。11 is a flowchart depicting a process 1100 for determining optimal casting parameters based on known molds, according to certain aspects of the present disclosure. At block 1102, mold dimensions may be determined. Die dimensions may comprise any suitable dimensions for determining Reynolds number, as described herein. For example, the length and width dimensions can be determined for a rectangular mold, however, other dimensions can be determined for different shaped molds. Mold dimensions may be predetermined based on other criteria, such as the desired ingot size or the pre-existence of suitable molds. An example of a method of dimensioning a mold may be to measure an existing mold, thereby determining measurements from a graph or plan (eg, by computer-aided design), or to preset measurements for a mold to be produced. At block 1104, a casting speed may be determined. The casting speed may be predetermined based on other casting considerations. In some cases, determining the casting speed at block 1104 may include determining a number of potential desired casting speeds, which may further be used to determine a number of potential mold Reynolds numbers at block 1106, which may be used to calculate A plurality of optimized casting parameters which in turn can be used to select one of the plurality of casting speeds to be used.
在框1106处,确定模具雷诺数。模具雷诺数可使用等式22和在框1102处确定的模具尺寸以及在框1104处确定的铸造速度来确定。举例来说,具有1.5m×0.7m尺寸的模具可提供的模具雷诺数,在所述模具尺寸的情况下铸造速度和凹坑下降速率保持相等,大约0.001m/s。At block 1106, the mold Reynolds number is determined. The mold Reynolds number may be determined using Equation 22 and the mold size determined at block 1102 and the casting speed determined at block 1104 . As an example, a mold with dimensions of 1.5m x 0.7m can provide The Reynolds number of the mold, the casting speed and the sinking rate of the dimple are kept equal at the mold size, about 0.001 m/s.
在可选框1110处,可确定金属组分。举例来说,可通过测试样本、检查数据库或手动输入来确定所需金属组分(例如,铝合金的类型)。在一些情况下,当不确定实际金属组分时,可假设通用金属组分。At optional block 1110, metal composition may be determined. For example, the desired metal composition (eg, type of aluminum alloy) can be determined by testing samples, checking a database, or manual entry. In some cases, a generic metal composition may be assumed when the actual metal composition is uncertain.
在框1108处,确定射流雷诺数。射流雷诺数可通过将在框1106处确定的模具雷诺数与定义模具雷诺数与射流雷诺数之间的优化关系的优化相关数据相匹配来确定。优化相关数据可呈曲线图(例如图3的曲线图300)的形式或呈等式(例如定义来自图3的曲线图300的线或估算的等式(例如,遵循[1]的线性近似))的形式或呈单个数据点的形式。优化相关数据也可以采用其它形式。在一些情况下,在框1110处确定的金属组分可与优化相关数据一起使用以确定射流雷诺数。在具有大约1735的模具雷诺数的模具的以上实例中,铝合金Al4.5Cu的对应射流雷诺数可以是大约78000,如图3中所描绘。At block 1108, the jet Reynolds number is determined. The jet Reynolds number may be determined by matching the mold Reynolds number determined at block 1106 with optimization-related data defining an optimal relationship between the mold Reynolds number and the jet Reynolds number. Optimization-related data may be in the form of a graph (e.g., graph 300 of FIG. 3 ) or in an equation (e.g., an equation defining a line or estimate from graph 300 of FIG. 3 (e.g., following the linear approximation of [1]) ) or as a single data point. Optimization-related data may also take other forms. In some cases, the metallic composition determined at block 1110 may be used with optimization correlation data to determine the jet Reynolds number. In the above example of a mold with a mold Reynolds number of about 1735, the corresponding jet Reynolds number of the aluminum alloy Al4.5Cu may be about 78000, as depicted in FIG. 3 .
在一些情况下,可通过实验获得优化相关数据。在一些情况下,可如上文所描述参考图3获得优化相关数据。In some cases, optimization-related data may be obtained experimentally. In some cases, optimization-related data may be obtained as described above with reference to FIG. 3 .
在框1112处,可基于来自框1108的确定的射流雷诺数和来自框1106的确定的模具雷诺数来确定所需的铸造参数。在一些情况下,确定所需铸造参数可包含在框1114处确定所需金属流速。在一些情况下,确定所需铸造参数可包含在框1116处确定喷嘴开口的大小。在一些情况下,喷嘴开口的半径(b0)可通过将来自框1106的模具雷诺数和来自框1108的射流雷诺数应用到等式21和22来确定,使得在射流雷诺数确定为大约78000的以上实例中,喷嘴开口的半径可被计算为 At block 1112 , desired casting parameters may be determined based on the determined jet Reynolds number from block 1108 and the determined mold Reynolds number from block 1106 . In some cases, determining desired casting parameters may include determining a desired metal flow rate at block 1114 . In some cases, determining desired casting parameters may include determining a nozzle opening size at block 1116 . In some cases, the radius of the nozzle opening (b 0 ) can be determined by applying the mold Reynolds number from block 1106 and the jet Reynolds number from block 1108 to Equations 21 and 22 such that In the above example where the jet Reynolds number was determined to be approximately 78000, the radius of the nozzle opening can be calculated as
在可选框1118处,可使用在框1112处确定的优化铸造参数来准备铸造环境。可通过制造或选择具有如在框1116处确定的合适喷嘴开口大小的喷嘴来准备铸造环境。在雷诺数确定为大约78000的以上实例中,可选择合适的喷嘴,如具有大约15.6半径或31.2mm直径的开口的喷嘴。在一些情况下,准备铸造环境可包含将合适的喷嘴附接到与用于在框1106处确定模具雷诺数的特定模具相关联的铸造设备。在一些情况下,可通过基于在框1114处确定的金属流速控制熔融金属流量控制装置来准备铸造环境。At optional block 1118 , the casting environment may be prepared using the optimized casting parameters determined at block 1112 . The casting environment may be prepared by fabricating or selecting nozzles with appropriate nozzle opening sizes as determined at block 1116 . In the above example where the Reynolds number was determined to be about 78000, a suitable nozzle may be selected, such as a nozzle with an opening of about 15.6 radii or 31.2 mm diameter. In some cases, preparing the casting environment may include attaching suitable nozzles to casting equipment associated with the particular mold used to determine the mold Reynolds number at block 1106 . In some cases, the casting environment may be prepared by controlling the molten metal flow control device based on the metal flow rate determined at block 1114 .
包含所说明实施例的实施例的前述描述仅出于说明和描述的目的呈现,且不旨在为详尽的或局限于所公开的精确形式。所属领域的技术人员将显而易见众多修改、调整和其用途。The foregoing descriptions of the embodiments, including the illustrated embodiments, have been presented for purposes of illustration and description only, and are not intended to be exhaustive or to be limited to the precise forms disclosed. Numerous modifications, adaptations, and uses thereof will be readily apparent to those skilled in the art.
如下文所使用,对一系列实例的任何参照应理解为分离性地参照那些实例中的每一个(例如,“实例1到4”应被理解为“实例1、2、3或4”)。As used hereinafter, any reference to a series of examples should be read as a separate reference to each of those examples (eg, "Examples 1 to 4" should be read as "Examples 1, 2, 3, or 4").
实例1是直接激冷铸造系统,其包括:模腔;熔融金属的供应源,其用于将熔融金属提供到模腔;以及喷嘴,其耦合到熔融金属的供应源且具有大小设定成产生流速的开口,所述流速引起液态金属射流具有足够的力以在熔融物贮槽的浆料区中引起晶粒的重新悬浮,而不会在稳态操作期间改变浆料区的形状。Example 1 is a direct chill casting system comprising: a mold cavity; a supply of molten metal for providing molten metal to the mold cavity; and a nozzle coupled to the supply of molten metal and having a size sized to produce An opening for a flow rate that causes the liquid metal jet to have sufficient force to cause resuspension of grains in the slurry zone of the melt sump without changing the shape of the slurry zone during steady state operation.
实例2是实例1的系统,其中对喷嘴的开口进行大小设定使得液态金属射流具有足够的力以在以铸造速度铸造金属产品的熔融物贮槽中引起凹坑,其中对喷嘴的开口进行大小设定使得所产生的液态金属射流引起凹坑的凹坑下降速度在稳态操作期间具有与铸造速度相差10%或更小的变化。Example 2 is the system of Example 1, wherein the opening of the nozzle is sized such that the jet of liquid metal has sufficient force to cause a depression in the melt sump casting the metal product at the casting speed, wherein the opening of the nozzle is sized Set such that the resulting jet of liquid metal causes the dimple descent speed of the dimples to have a variation of 10% or less from the casting speed during steady state operation.
实例3是实例1或2的系统,其进一步包括在在稳态操作期间以铸造速度从喷嘴向远处延伸的底部块。Example 3 is the system of Example 1 or 2, further comprising a bottom block extending distally from the nozzle at a casting speed during steady state operation.
实例4是实例1到3的系统,其进一步包括耦合在熔融金属的供应源与喷嘴之间以用于控制熔融金属进入到模腔中的流速的流量控制装置。Example 4 is the system of Examples 1-3, further comprising a flow control device coupled between the supply of molten metal and the nozzle for controlling a flow rate of the molten metal into the mold cavity.
实例5是实例4的系统,其进一步包括控制器,其耦合到传感器以估计熔融物贮槽的深度且耦合到流量控制装置以基于所估计的熔融物贮槽的深度来调节熔融金属的流速。Example 5 is the system of Example 4, further comprising a controller coupled to the sensor to estimate the depth of the smelt sump and coupled to the flow control device to adjust the flow rate of the molten metal based on the estimated depth of the smelt sump.
实例6是一种在铸造操作期间优化金属铸造的方法,其包括:确定用于适用于从耦合到液态金属源的喷嘴接收液态金属的模腔的模具尺寸;确定铸造速度;以及使用模具尺寸和铸造速度来确定优化的铸造参数,其中确定优化的铸造参数包含确定金属流速和喷嘴的开口大小中的至少一个,使得通过液态金属以金属流速离开喷嘴的开口产生的液态金属射流适用于在熔融物贮槽的浆料区中引起晶粒的重新悬浮,而不会在稳态操作期间改变浆料区的形状。Example 6 is a method of optimizing metal casting during a casting operation comprising: determining a mold size for a mold cavity suitable for receiving liquid metal from a nozzle coupled to a source of liquid metal; determining a casting speed; and using the mold size and casting speed to determine optimized casting parameters, wherein determining the optimized casting parameters includes determining at least one of the metal flow rate and the opening size of the nozzle so that the liquid metal jet produced by the liquid metal leaving the nozzle opening at the metal flow rate is suitable for use in molten metal Resuspension of the grains is induced in the slurry zone of the tank without changing the shape of the slurry zone during steady state operation.
实例7是实例6的方法,其中确定优化的铸造参数包括确保计算金属流速和喷嘴的开口大小中的至少一个,使得液态金属射流具有足够的力以在熔融物贮槽中引起凹坑,其中对喷嘴的开口进行大小设定,使得所产生的液态金属射流引起凹坑的凹坑下降速度在稳态操作期间具有与铸造速度相差10%或更小的变化。Example 7 is the method of Example 6, wherein determining optimized casting parameters includes ensuring that at least one of the metal flow rate and the opening size of the nozzle is calculated such that the liquid metal jet has sufficient force to cause a crater in the melt sump, wherein for The opening of the nozzle is sized such that the resulting jet of liquid metal causes the dimple drop rate of the dimple to have a variation of 10% or less from the casting speed during steady state operation.
实例8是实例6或7的方法,其中确定优化的铸造参数包括:使用模具尺寸和铸造速度来确定模具雷诺数;使用模具雷诺数来确定射流雷诺数;以及使用模具雷诺数和射流雷诺数来计算优化的铸造参数。Example 8 is the method of example 6 or 7, wherein determining optimized casting parameters comprises: using mold size and casting speed to determine mold Reynolds number; using mold Reynolds number to determine jet Reynolds number; and using mold Reynolds number and jet Reynolds number to determine Calculation of optimized casting parameters.
实例9是实例8的方法,其中确定射流雷诺数包括确定所铸造产品的金属组分且使用金属组分和模具雷诺数来确定射流雷诺数。Example 9 is the method of example 8, wherein determining the jet Reynolds number comprises determining a metallic composition of the cast product and using the metallic composition and the mold Reynolds number to determine the jet Reynolds number.
实例10是实例6到9的方法,其中优化的铸造参数是喷嘴的开口大小。Example 10 is the method of Examples 6 to 9, wherein the optimized casting parameter is the opening size of the nozzle.
实例11是实例6到10的方法,其进一步包括基于喷嘴的开口大小来选择或制造喷嘴。Example 11 is the method of Examples 6 to 10, further comprising selecting or fabricating the nozzle based on the size of the opening of the nozzle.
实例12是实例6到11的方法,其进一步包括使用金属流速控制流量控制装置。Example 12 is the method of Examples 6 to 11, further comprising controlling the flow control device using a metal flow rate.
实例13是一种铸造金属产品的方法,其包括:在稳态操作期间通过喷嘴的开口以流速将熔融金属从熔融金属供应源提供到模腔,其中通过喷嘴的开口以流速提供熔融金属包含在熔融物贮槽中产生液态金属射流;以及使用液态金属射流将晶粒重新悬浮在熔融物贮槽的浆料区中,而不会在稳态操作期间改变浆料区的形状。Example 13 is a method of casting a metal product comprising: providing molten metal from a supply of molten metal at a flow rate through an opening of a nozzle to a mold cavity during steady state operation, wherein the molten metal provided at a flow rate through the opening of the nozzle is contained in generating a jet of liquid metal in the smelt tank; and using the jet of liquid metal to resuspend the grains in the slurry zone of the smelt tank without changing the shape of the slurry zone during steady state operation.
实例14是实例13的方法,其中对开口进行大小设定,使得液态金属射流具有足够的力以在浆料区中引起凹坑且在稳态操作期间将凹坑下降速度维持在与铸造速度相差10%的变化内。Example 14 is the method of Example 13, wherein the opening is sized such that the liquid metal jet has sufficient force to induce dimples in the slurry zone and maintain the dimple drop rate at a difference from the casting speed during steady state operation Within 10% variation.
实例15是实例14的方法,其进一步包括:制造或选择喷嘴以具有适合于产生液态金属射流的开口大小,所述液态金属射流具有足够的力以在稳态操作期间将凹坑下降速度维持在与铸造速度相差10%的变化内;以及将喷嘴耦合到熔融金属供应源。Example 15 is the method of Example 14, further comprising: fabricating or selecting the nozzle to have an opening size suitable for producing a liquid metal jet having sufficient force to maintain a dimple descent velocity at within 10% of the casting speed; and coupling the nozzle to a molten metal supply.
实例16是实例13到15的方法,其进一步包括在稳态操作期间缩回远离喷嘴的底部块。Example 16 is the method of examples 13 to 15, further comprising retracting the bottom block away from the nozzle during steady state operation.
实例17是实例13到16的方法,其中通过喷嘴以流速提供熔融金属进一步包括使用耦合在熔融金属供应源与喷嘴之间的流量控制装置来控制流速。Example 17 is the method of examples 13 to 16, wherein providing the molten metal at a flow rate through the nozzle further comprises controlling the flow rate using a flow control device coupled between the molten metal supply and the nozzle.
实例18是实例17的方法,其中使用液态金属射流重新悬浮晶粒包括通过开口控制流速以确保液态金属射流具有足够的力以在稳态操作期间将凹坑下降速度维持在与铸造速度相差5%的变化内。Example 18 is the method of Example 17, wherein using the liquid metal jet to resuspend the grains includes controlling the flow rate through the opening to ensure that the liquid metal jet has sufficient force to maintain the dimple drop rate within 5% of the casting speed during steady state operation within the changes.
实例19是实例13到18的方法,其中使用液态金属射流重新悬浮晶粒包括使液态金属射流在距竖直方向30°处或以内的方向上定向。Example 19 is the method of examples 13 to 18, wherein resuspending the grains using the liquid metal jet comprises orienting the liquid metal jet in a direction at or within 30° from vertical.
实例20是使用实例13到19的方法生产的铸造金属产品,其中铸造金属产品具有低于0.104的宏观偏析指数。Example 20 is a cast metal product produced using the method of Examples 13 to 19, wherein the cast metal product has a macrosegregation index of less than 0.104.
实例21是具有处于或低于0.10的宏观偏析指数的金属产品,其中使用耦合到熔融金属的供应源的喷嘴来将金属产品铸造在模腔中,以通过大小设定成产生流速从而使液态金属射流进入到熔融物贮槽中的开口来将熔融金属导入到模腔中。Example 21 is a metal product having a macrosegregation index at or below 0.10, wherein the metal product is cast in a mold cavity using a nozzle coupled to a supply of molten metal to be sized to produce a flow rate such that the liquid metal The jet enters an opening in the melt sump to introduce molten metal into the mold cavity.
实例22是实例21的金属产品,其中宏观偏析指数是根据以下计算:Example 22 is the metal product of Example 21, wherein the macrosegregation index is calculated according to:
其中Y是金属产品的半厚度或半直径,Adom是测量点的测量横截面的面积,y是距测量点的中间厚度的距离,A是指示金属产品的横截面上方的积分边界的定界符,C0是目标合金组分的溶质浓度,且C是测量点处的溶质浓度。where Y is the half-thickness or half-diameter of the metal product, A dom is the area of the measured cross-section of the measuring point, y is the distance from the mid-thickness of the measuring point, and A is the delimitation of the integral boundary above the cross-section indicating the metal product , C 0 is the solute concentration of the target alloy composition, and C is the solute concentration at the measurement point.
实例23是实例21或22的金属产品,其中液态金属射流具有足够的力以在熔融物贮槽的浆料区中引起晶粒的重新悬浮,而不会在稳态操作期间改变浆料区的形状。Example 23 is the metal product of Example 21 or 22, wherein the liquid metal jet has sufficient force to cause resuspension of grains in the slurry zone of the melt storage tank without altering the slurry zone during steady state operation. shape.
实例24是实例21到23的金属产品,其中对喷嘴的开口进行大小设定,使得液态金属射流具有足够的力以在熔融物贮槽中引起凹坑,其中对喷嘴的开口进行大小设定使得在稳态操作期间所产生的液态金属射流引起凹坑的凹坑下降速度具有与铸造速度相差10%或更小的变化。Example 24 is the metal product of Examples 21 to 23, wherein the opening of the nozzle is sized such that the jet of liquid metal has sufficient force to cause a depression in the melt sump, wherein the opening of the nozzle is sized such that The jet of liquid metal produced during steady state operation causes the dimple descent speed of the dimples to have a variation of 10% or less from the casting speed.
实例25是实例21到24的金属产品,其中液态金属射流具有足够的力以在熔融物贮槽内引起足以使整个熔融物贮槽中的溶质浓度均匀化的流体流动。Example 25 is the metal product of Examples 21 to 24, wherein the liquid metal jet has sufficient force to induce fluid flow within the smelt sump sufficient to homogenize the solute concentration throughout the smelt sump.
实例26是实例21到25的金属产品,其中宏观偏析指数处于或低于0.090。Example 26 is the metal product of Examples 21 to 25, wherein the Macrosegregation Index is at or below 0.090.
实例27是实例21到26的金属产品,其中宏观偏析指数处于或低于0.070。Example 27 is the metal product of Examples 21 to 26, wherein the Macrosegregation Index is at or below 0.070.
实例28是实例21到27的金属产品,其中流量控制装置耦合在熔融金属的供应源与喷嘴之间以用于控制熔融金属进入到模腔中的流速。Example 28 is the metal product of Examples 21 to 27, wherein the flow control device is coupled between the supply of molten metal and the nozzle for controlling the flow rate of molten metal into the mold cavity.
实例29是实例28的金属产品,其中控制器耦合到传感器以估计熔融物贮槽的深度且耦合到流量控制装置以基于熔融物贮槽的所估计深度来调节熔融金属的流速。Example 29 is the metal product of example 28, wherein the controller is coupled to the sensor to estimate the depth of the smelt sump and to the flow control device to adjust the flow rate of the molten metal based on the estimated depth of the smelt sump.
实例30是一种在铸造操作期间优化金属铸造的方法,其包括:确定用于适用于从耦合到液态金属源的喷嘴接收液态金属的模腔的模具尺寸;确定铸造速度;以及使用模具尺寸和铸造速度来确定优化的铸造参数,其中确定优化的铸造参数包含确定金属流速和喷嘴的开口大小中的至少一个,使得通过液态金属以金属流速离开喷嘴的开口产生的液态金属射流适用于减少铸造金属产品的宏观偏析,使得使用优化的铸造参数铸造的金属产品具有处于或低于0.100的宏观偏析指数。Example 30 is a method of optimizing metal casting during a casting operation comprising: determining a mold size for a mold cavity suitable for receiving liquid metal from a nozzle coupled to a source of liquid metal; determining a casting speed; and using the mold size and casting speed to determine optimized casting parameters, wherein determining the optimized casting parameters includes determining at least one of the metal flow rate and the opening size of the nozzle so that the liquid metal jet produced by the liquid metal leaving the nozzle opening at the metal flow rate is suitable for reducing the cast metal Macrosegregation of the product such that the metal product cast using optimized casting parameters has a macrosegregation index at or below 0.100.
实例31是实例30的方法,其中宏观偏析指数是根据以下计算:Example 31 is the method of example 30, wherein the macrosegregation index is calculated according to:
其中Y是金属产品的半厚度或半直径,Adom是测量点的测量横截面的面积,y是距测量点的中间厚度的距离,A是指示金属产品的横截面上方的积分边界的定界符,C0是目标合金组分的溶质浓度,且C是测量点处的溶质浓度。where Y is the half-thickness or half-diameter of the metal product, A dom is the area of the measured cross-section of the measuring point, y is the distance from the mid-thickness of the measuring point, and A is the delimitation of the integral boundary above the cross-section indicating the metal product , C 0 is the solute concentration of the target alloy composition, and C is the solute concentration at the measurement point.
实例32是实例30或31的方法,其中确定优化的铸造参数包括确保计算金属流速和喷嘴的开口大小中的至少一个,使得液态金属射流适合于在熔融物贮槽的浆料区中引起晶粒的重新悬浮,而不会在稳态操作期间改变浆料区的形状。Example 32 is the method of example 30 or 31, wherein determining the optimized casting parameters comprises ensuring that at least one of the metal flow rate and the opening size of the nozzle is calculated such that the liquid metal jet is suitable for inducing grains in the slurry region of the melt sump resuspension without changing the shape of the slurry zone during steady state operation.
实例33是实例30到32的方法,其中确定优化的铸造参数包括确保计算金属流速和喷嘴的开口大小中的至少一个,使得液态金属射流具有足够的力以在熔融物贮槽中引起凹坑,其中对喷嘴的开口进行大小设定,使得所产生的液态金属射流引起凹坑的凹坑下降速度在稳态操作期间具有与铸造速度相差10%或更小的变化。Example 33 is the method of Examples 30 to 32, wherein determining the optimized casting parameters comprises ensuring that at least one of the metal flow rate and the opening size of the nozzle is calculated such that the liquid metal jet has sufficient force to cause a crater in the melt sump, Wherein the opening of the nozzle is sized such that the resulting jet of liquid metal causes the dimple drop rate of the dimple to have a variation of 10% or less from the casting speed during steady state operation.
实例34是实例30到33的方法,其中确定优化的铸造参数包括:使用模具尺寸和铸造速度来确定模具雷诺数;使用模具雷诺数来确定射流雷诺数;以及使用模具雷诺数和射流雷诺数来计算优化的铸造参数。Example 34 is the method of examples 30 to 33, wherein determining optimized casting parameters comprises: using the mold size and casting speed to determine the mold Reynolds number; using the mold Reynolds number to determine the jet Reynolds number; and using the mold Reynolds number and the jet Reynolds number to determine Calculation of optimized casting parameters.
实例35是实例34的方法,其中确定射流雷诺数包括确定所铸造产品的金属组分且使用金属组分和模具雷诺数来确定射流雷诺数。Example 35 is the method of example 34, wherein determining the jet Reynolds number comprises determining a metallic composition of the cast product and using the metallic composition and the mold Reynolds number to determine the jet Reynolds number.
实例36是实例30到35的方法,其中优化的铸造参数是喷嘴的开口大小。Example 36 is the method of examples 30 to 35, wherein the optimized casting parameter is the opening size of the nozzle.
实例37是实例30到36的方法,其进一步包括基于喷嘴的开口大小来选择或制造喷嘴。Example 37 is the method of examples 30 to 36, further comprising selecting or fabricating the nozzle based on an opening size of the nozzle.
实例38是实例30到37的方法,其进一步包括使用金属流速来控制流量控制装置。Example 38 is the method of examples 30-37, further comprising using the metal flow rate to control the flow control device.
实例39是实例30到38的方法,其中确定优化的铸造参数包括确保计算金属流速和喷嘴的开口大小中的至少一个,以使得液态金属射流具有足够的力以在熔融物贮槽内引起足以使整个熔融物贮槽中的溶质浓度均匀化的流体流动。Example 39 is the method of Examples 30 to 38, wherein determining optimized casting parameters includes ensuring that at least one of the metal flow rate and the opening size of the nozzle is calculated such that the liquid metal jet has sufficient force to cause sufficient Fluid flow that homogenizes solute concentration throughout the melt sump.
实例40是实例30到39的方法,其中宏观偏析指数处于或低于0.090。Example 40 is the method of Examples 30 to 39, wherein the Macrosegregation Index is at or below 0.090.
实例41是实例30到40的方法,其中宏观偏析指数处于或低于0.070。Example 41 is the method of Examples 30 to 40, wherein the Macrosegregation Index is at or below 0.070.
实例42是一种铸造金属产品的方法,其包括:在稳态操作期间通过喷嘴的开口以流速将熔融金属从熔融金属供应源提供到模腔,其中通过喷嘴的开口以流速提供熔融金属包含在熔融物贮槽中产生足以减小金属产品中的宏观偏析的液态金属射流,使得金属产品具有处于或低于0.100的宏观偏析指数。Example 42 is a method of casting a metal product comprising: providing molten metal from a supply of molten metal at a flow rate through an opening of a nozzle to a mold cavity during steady state operation, wherein the molten metal provided at a flow rate through the opening of the nozzle is contained in A jet of liquid metal is generated in the melt tank sufficient to reduce macrosegregation in the metal product such that the metal product has a macrosegregation index at or below 0.100.
实例43是实例42的方法,其中宏观偏析指数根据以下来计算:Example 43 is the method of example 42, wherein the macrosegregation index is calculated according to:
其中Y是金属产品的半厚度或半直径,Adom是测量点的测量横截面的面积,y是距测量点的中间厚度的距离,A是指示金属产品的横截面上方的积分边界的定界符,C0是目标合金组分的溶质浓度,且C是测量点处的溶质浓度。where Y is the half-thickness or half-diameter of the metal product, A dom is the area of the measured cross-section of the measuring point, y is the distance from the mid-thickness of the measuring point, and A is the delimitation of the integral boundary above the cross-section indicating the metal product , C 0 is the solute concentration of the target alloy composition, and C is the solute concentration at the measurement point.
实例44是实例42或43的方法,其进一步包括使用液态金属射流将晶粒重新悬浮在熔融物贮槽的浆料区中,而不会在稳态操作期间改变浆料区的形状。Example 44 is the method of example 42 or 43, further comprising using the liquid metal jet to resuspend the grains in the slurry zone of the melt tank without changing the shape of the slurry zone during steady state operation.
实例45是实例44的方法,其中对开口进行大小设定,使得液态金属射流具有足够的力以在浆料区中产生凹坑且在稳态操作期间将凹坑下降速度维持在与铸造速度相差10%的变化内。Example 45 is the method of Example 44, wherein the opening is sized such that the liquid metal jet has sufficient force to create a dimple in the slurry zone and maintain the dimple drop rate at a difference from the casting speed during steady state operation Within 10% variation.
实例46是实例42到45的方法,其进一步包括在熔融物贮槽内引起足以使整个熔融物贮槽中的溶质浓度均匀化的流体流动。Example 46 is the method of Examples 42 to 45, further comprising causing a fluid flow within the smelt sump sufficient to homogenize the solute concentration throughout the smelt sump.
实例47是实例42到46的方法,其中通过喷嘴以流速提供熔融金属进一步包括使用耦合在熔融金属供应源与喷嘴之间的流量控制装置来控制流速。Example 47 is the method of examples 42 to 46, wherein providing the molten metal at a flow rate through the nozzle further comprises controlling the flow rate using a flow control device coupled between the molten metal supply and the nozzle.
实例48是实例42到47的方法,其中宏观偏析指数处于或低于0.090。Example 48 is the method of Examples 42 to 47, wherein the Macrosegregation Index is at or below 0.090.
实例49是实例42到48的方法,其中宏观偏析指数处于或低于0.070。Example 49 is the method of Examples 42 to 48, wherein the Macrosegregation Index is at or below 0.070.
Claims (49)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662313493P | 2016-03-25 | 2016-03-25 | |
US62/313493 | 2016-03-25 | ||
PCT/US2017/024002 WO2017165758A1 (en) | 2016-03-25 | 2017-03-24 | Liquid metal jet optimization in direct chill casting |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108883462A true CN108883462A (en) | 2018-11-23 |
Family
ID=58489110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780019127.XA Pending CN108883462A (en) | 2016-03-25 | 2017-03-24 | Liquid metal jet optimization in direct-chill casting |
Country Status (9)
Country | Link |
---|---|
US (1) | US20170274446A1 (en) |
EP (1) | EP3433037A1 (en) |
JP (1) | JP2019513082A (en) |
KR (1) | KR20180127449A (en) |
CN (1) | CN108883462A (en) |
CA (1) | CA3018743A1 (en) |
MX (1) | MX2018011649A (en) |
RU (1) | RU2720414C2 (en) |
WO (1) | WO2017165758A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113438993A (en) * | 2019-02-13 | 2021-09-24 | 诺维尔里斯公司 | Cast metal product with high grain roundness |
CN114786837A (en) * | 2019-12-20 | 2022-07-22 | 诺维尔里斯公司 | Reduced final grain size of unrecrystallized wrought material produced via direct cooling (DC) route |
CN114867569A (en) * | 2019-12-20 | 2022-08-05 | 诺维尔里斯公司 | Reduced Crack Susceptibility of 7XXX Series Direct Cool (DC) Ingots |
CN118011981A (en) * | 2024-02-06 | 2024-05-10 | 山东焱鑫矿用材料加工有限公司 | Production quality optimization method and system for coal mine support |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
US11931802B2 (en) * | 2019-05-17 | 2024-03-19 | Molten Metal Equipment Innovations, Llc | Molten metal controlled flow launder |
CN110751893A (en) * | 2019-10-30 | 2020-02-04 | 苏州大学 | A system and method for simulating the whole process of steelmaking |
US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019578A1 (en) * | 1990-06-13 | 1991-12-26 | Alcan International Limited | Apparatus and process for direct chill casting of metal ingots |
CN1157197A (en) * | 1995-10-30 | 1997-08-20 | 犹齐诺-萨西洛公司 | Nozzle for introducing liquid metal into mould, for continuous casting of metal products, bottom of which has holes |
CN104325100A (en) * | 2014-11-18 | 2015-02-04 | 上海东震冶金工程技术有限公司 | Novel method for feeding material to center of crystallizer for continuous casting |
WO2015179680A2 (en) * | 2014-05-21 | 2015-11-26 | Novelis Inc. | Mixing eductor nozzle and flow control device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4166495A (en) * | 1978-03-13 | 1979-09-04 | Aluminum Company Of America | Ingot casting method |
JPS6039459B2 (en) * | 1981-10-12 | 1985-09-06 | 株式会社神戸製鋼所 | Bumping prevention method during continuous or semi-continuous casting |
SU1736673A1 (en) * | 1990-01-02 | 1992-05-30 | Днепродзержинский Индустриальный Институт Им.М.И.Арсеничева | Method of continuous ingot casting vertical and curvilinear installations |
JPH0970656A (en) * | 1995-09-06 | 1997-03-18 | Kobe Steel Ltd | Production of metal and alloy cast block |
JP3197806B2 (en) * | 1995-11-28 | 2001-08-13 | 株式会社アリシウム | Vertical continuous casting method of aluminum |
JP4289205B2 (en) * | 2004-04-22 | 2009-07-01 | 住友金属工業株式会社 | Continuous casting method and continuous cast slab |
-
2017
- 2017-03-24 US US15/468,285 patent/US20170274446A1/en not_active Abandoned
- 2017-03-24 KR KR1020187030864A patent/KR20180127449A/en not_active Abandoned
- 2017-03-24 CN CN201780019127.XA patent/CN108883462A/en active Pending
- 2017-03-24 MX MX2018011649A patent/MX2018011649A/en unknown
- 2017-03-24 CA CA3018743A patent/CA3018743A1/en not_active Abandoned
- 2017-03-24 RU RU2018134479A patent/RU2720414C2/en not_active IP Right Cessation
- 2017-03-24 EP EP17715616.3A patent/EP3433037A1/en not_active Withdrawn
- 2017-03-24 WO PCT/US2017/024002 patent/WO2017165758A1/en active Application Filing
- 2017-03-24 JP JP2018549882A patent/JP2019513082A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991019578A1 (en) * | 1990-06-13 | 1991-12-26 | Alcan International Limited | Apparatus and process for direct chill casting of metal ingots |
CN1157197A (en) * | 1995-10-30 | 1997-08-20 | 犹齐诺-萨西洛公司 | Nozzle for introducing liquid metal into mould, for continuous casting of metal products, bottom of which has holes |
WO2015179680A2 (en) * | 2014-05-21 | 2015-11-26 | Novelis Inc. | Mixing eductor nozzle and flow control device |
WO2015179677A1 (en) * | 2014-05-21 | 2015-11-26 | Novelis Inc. | Non-contacting molten metal flow control |
CN104325100A (en) * | 2014-11-18 | 2015-02-04 | 上海东震冶金工程技术有限公司 | Novel method for feeding material to center of crystallizer for continuous casting |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113438993A (en) * | 2019-02-13 | 2021-09-24 | 诺维尔里斯公司 | Cast metal product with high grain roundness |
CN114786837A (en) * | 2019-12-20 | 2022-07-22 | 诺维尔里斯公司 | Reduced final grain size of unrecrystallized wrought material produced via direct cooling (DC) route |
CN114867569A (en) * | 2019-12-20 | 2022-08-05 | 诺维尔里斯公司 | Reduced Crack Susceptibility of 7XXX Series Direct Cool (DC) Ingots |
CN118011981A (en) * | 2024-02-06 | 2024-05-10 | 山东焱鑫矿用材料加工有限公司 | Production quality optimization method and system for coal mine support |
Also Published As
Publication number | Publication date |
---|---|
CA3018743A1 (en) | 2017-09-28 |
RU2018134479A (en) | 2020-04-27 |
RU2018134479A3 (en) | 2020-04-27 |
WO2017165758A1 (en) | 2017-09-28 |
JP2019513082A (en) | 2019-05-23 |
KR20180127449A (en) | 2018-11-28 |
RU2720414C2 (en) | 2020-04-29 |
EP3433037A1 (en) | 2019-01-30 |
US20170274446A1 (en) | 2017-09-28 |
MX2018011649A (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108883462A (en) | Liquid metal jet optimization in direct-chill casting | |
Eskin et al. | Structure formation and macrosegregation under different process conditions during DC casting | |
Vreeman et al. | The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys: Part I: model development | |
Nadella et al. | Macrosegregation in direct-chill casting of aluminium alloys | |
Eskin et al. | Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy | |
Kolahdooz et al. | Effects of important parameters in the production of Al-A356 alloy by semi-solid forming process | |
Qi et al. | Correlation between segregation behavior and wall thickness in a rheological high pressure die-casting AC46000 aluminum alloy | |
Tang et al. | Effects of annulus gap on flow and temperature field in electromagnetic direct chill casting process | |
Zyska et al. | Comparison of the porosity of aluminum alloys castings produced by squeeze casting | |
Sowa et al. | Numerical simulation of the molten steel flow in the tundish of CSC machine | |
KR102666365B1 (en) | Reduces cracking susceptibility to 7xxx series direct cooled (DC) cast ingots | |
Beckermann | Macrosegregation | |
Yang et al. | High-strength aluminum alloys hollow billet prepared by two-phase zone continuous casting | |
Begum et al. | 3-D prediction of alloy solidification in the presence of turbulent fow in a vertical direct chill caster with a porous filter near the top | |
CN110382136A (en) | The crystal grain refinement of the ingot casting of shear-induced | |
Rihan et al. | Numerical study on the effect of solidification parameters during the continuous casting of Al-Si alloys | |
Griffiths et al. | Macrostructural development in aluminium alloys solidified vertically downwards | |
Tøndel et al. | Improved Metal Distribution during DC‐casting of Aluminum Alloy Sheet Ingots | |
Ludwig et al. | Recent developments and future perspectives in simulation of metallurgical processes | |
Akhlaghi et al. | Characterization of globular microstructure in NMS processed aluminum A356 alloy: The role of casting size | |
Wagstaff | Experimental observations and analysis of macrosegregation in rolling slab ingots | |
Mahmoudi | Horizontal continuous casting of copper-based alloys | |
Yadav et al. | Investigation of fluid flow characterization in single strand tundish using flow developers and inclusions | |
Soni et al. | Transient Evolution of Interface and Temperature in Twin Roll Casting Process Using Coupled Phase Field and Thermo-Fluid Model | |
You et al. | Numerical study on porosity distribution in casting under micro-amplitude vibration condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20210716 |
|
AD01 | Patent right deemed abandoned |