[go: up one dir, main page]

CN110382136A - The crystal grain refinement of the ingot casting of shear-induced - Google Patents

The crystal grain refinement of the ingot casting of shear-induced Download PDF

Info

Publication number
CN110382136A
CN110382136A CN201880013971.6A CN201880013971A CN110382136A CN 110382136 A CN110382136 A CN 110382136A CN 201880013971 A CN201880013971 A CN 201880013971A CN 110382136 A CN110382136 A CN 110382136A
Authority
CN
China
Prior art keywords
molten metal
metal
grain size
reynolds number
jets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880013971.6A
Other languages
Chinese (zh)
Inventor
S.R.沃格斯塔夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Corp
Original Assignee
Novelis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novelis Corp filed Critical Novelis Corp
Publication of CN110382136A publication Critical patent/CN110382136A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2023Nozzles or shot sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • B22D15/04Machines or apparatus for chill casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Molten metal can be during direct chill (DC) casting (DC of such as aluminium be cast) by having the feed pipe of the nozzle with opening to be introduced into liquid storage vessel.The opening of the nozzle is capable of being shaped to and/or is dimensioned to generate molten metal jet stream in the liquid storage vessel.The molten metal jet stream can be presented in or higher than threshold quantity Reynolds number.Compared with standard casting techniques, this kind of jet stream can be realized improved metallurgy characteristic, such as improved crystal grain refinement.It can be realized sufficiently high Reynolds number by supplying the molten metal with sufficiently high speed.When with constant volume flow rate molten metal feed (for example, to avoid fluctuation of casting speed), the nozzle can be elaborated with the opening less than normal diameter, to generate the jet stream for being higher than standard speed.

Description

剪切诱导的铸锭的晶粒细化Shear-induced grain refinement of cast ingots

相关申请的交叉引用Cross References to Related Applications

本申请要求2017年2月28日提交并且题为“剪切诱导的铸锭的晶粒细化(SHEARINDUCED GRAIN REFINEMENT OF A CAST INGOT)”的美国临时申请第62/465,014号的权益,其内容以全文引用的方式并入本文中。This application claims the benefit of U.S. Provisional Application No. 62/465,014, filed February 28, 2017, and entitled "SHEARINDUCED GRAIN REFINEMENT OF A CAST INGOT," which reads It is incorporated herein by reference in its entirety.

技术领域technical field

本公开大体上涉及金属铸造,并且更具体地说涉及控制熔融金属向模腔的输送。The present disclosure relates generally to metal casting, and more particularly to controlling the delivery of molten metal to a mold cavity.

发明内容Contents of the invention

通过直接冷硬(DC)铸锭的横截面可发现晶粒尺寸的广泛变化,这是由于过程固有的位置依赖性凝固速率。使用湍流射流作为金属进入方法具有显著减小晶粒尺寸以及其在位置上的可变性的潜力。已经进行实验研究喷射功率对Al4.5Cu DC铸锭中晶粒尺寸和分布的影响。发现指示,显著增加喷射功率可不明显减小晶粒尺寸。相反,已经确定晶粒细化所需的阈值喷射功率,超过所述阈值喷射功率,预计仅有微小的改进。Wide variations in grain size can be found through cross-sections of direct chilled (DC) ingots due to the inherent position-dependent solidification rate of the process. The use of turbulent jets as a metal entry method has the potential to significantly reduce grain size as well as its variability in location. Experiments have been carried out to investigate the effect of spray power on grain size and distribution in Al4.5Cu DC ingots. The findings indicate that significantly increasing jetting power may not significantly reduce the grain size. In contrast, a threshold injection power required for grain refinement has been determined, beyond which only minor improvements are expected.

附图说明Description of drawings

说明书参照以下附图,其中不同图中的相似参考标号的使用旨在说明相似或类似组件。本文说明中包括的元件可不按比例绘制。The specification refers to the following drawings, in which the use of like reference numbers in different drawings is intended to illustrate like or analogous components. Elements included in the description herein may not be drawn to scale.

图1为描绘根据本公开的某些方面的从锭中获取用于金相分析的样品的位置的俯视示意图。FIG. 1 is a schematic top view depicting locations for taking samples from an ingot for metallographic analysis, according to certain aspects of the present disclosure.

图2为描绘标准铸造(SD铸造)Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。Figure 2 is a surface diagram depicting the grain size distribution in one quadrant of a standard cast (SD cast) Al4.5Cu alloy.

图3为描绘具有雷诺数为64,000的射流的喷射铸造(JT铸造)Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。3 is a surface diagram depicting the grain size distribution in one quadrant of a jet cast (JT cast) Al4.5Cu alloy with a jet having a Reynolds number of 64,000.

图4为描绘具有雷诺数为69,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。4 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 69,000.

图5为描绘具有雷诺数为81,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。5 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 81,000.

图6为描绘具有雷诺数为97,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。6 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 97,000.

图7为描绘具有雷诺数为121,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。7 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 121,000.

图8为描绘标准铸造(SD铸造)Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。Figure 8 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a standard cast (SD cast) Al4.5Cu alloy.

图9为描绘具有雷诺数为64,000的射流的喷射铸造(JT铸造)Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。9 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a jet cast (JT cast) Al4.5Cu alloy with a jet having a Reynolds number of 64,000.

图10为描绘具有雷诺数为69,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。10 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 69,000.

图11为描绘具有雷诺数为81,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。11 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 81,000.

图12为描绘具有雷诺数为97,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。12 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 97,000.

图13为描绘具有雷诺数为121,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。13 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 121,000.

图14为描绘平均晶粒尺寸和枝晶臂间距随射流雷诺数(Rej)变化的图表。Figure 14 is a graph depicting average grain size and dendrite arm spacing as a function of jet Reynolds number ( Rej ).

图15为描绘晶粒尺寸和枝晶臂间距的散度(例如,范围)随射流雷诺数(Rej)变化的图表。15 is a graph depicting the divergence (eg, range) of grain size and dendrite arm spacing as a function of jet Reynolds number (Re j ).

图16为描绘从使用喷射铸造技术和标准铸造技术铸造的锭中获取的样品的一系列显微照片。Figure 16 is a series of photomicrographs depicting samples taken from ingots cast using injection casting techniques and standard casting techniques.

图17为根据本公开的某些方面的具有单个喷嘴的金属铸造系统的部分横截面图。17 is a partial cross-sectional view of a metal casting system with a single nozzle, according to certain aspects of the present disclosure.

图18为根据本公开的某些方面的具有多个喷嘴的金属铸造系统的部分横截面图。18 is a partial cross-sectional view of a metal casting system with multiple nozzles in accordance with certain aspects of the present disclosure.

具体实施方式Detailed ways

本公开的某些方面和特征涉及湍流混合射流的应用,作为使直接冷硬(DC)铸造铝锭内发现的晶粒结构均匀化和细化的方法。通过利用对流凝固的理解,可检查喷射(例如剪切)功率对铸造铝产品(如Al4.5Cu轧制板坯锭)中晶粒细化和均匀性的影响。通过本文所述的实验,已经发现通过使用设计成提供高速流动的喷嘴将液体金属供应到模具和液体贮槽,可在直接冷硬(DC)铸造产品中实现令人惊讶的期望的冶金特性。这类喷嘴可具有直径减小的开口,从而与具有标准直径开口的喷嘴相比,以恒定的体积流率提供更高的速度流动。Certain aspects and features of the present disclosure relate to the application of turbulent mixing jets as a method of homogenizing and refining the grain structure found in direct chilled (DC) cast aluminum ingots. By exploiting the understanding of convective solidification, the effect of spray (eg shear) power on grain refinement and homogeneity in cast aluminum products such as Al4.5Cu rolled slab ingots can be examined. Through experiments described herein, it has been found that by supplying liquid metal to molds and liquid sumps using nozzles designed to provide high velocity flow, surprisingly desirable metallurgical properties can be achieved in direct chill (DC) cast products. Such nozzles may have reduced diameter openings to provide higher velocity flow at a constant volumetric flow rate than nozzles with standard diameter openings.

细小和均匀的晶粒结构对于锻造铝产品的最佳可成形性和均匀的机械特性为期望的。晶粒结构(尺寸、分布和形态)为影响缺陷(如热开裂)的重要参数。在直接冷硬(DC)铸件中,晶粒结构取决于许多因素,包括合金成分、异相成核位点(例如晶粒细化剂)的引入、生长条件和冷却速率。由于在DC铸造期间形成的凝固界面(例如,贮槽)的形状,单个晶粒的凝固速率极其依赖于位置。凝固速率的这种变化可通过大的轧制板坯锭导致晶粒尺寸和结构的大的变化。A fine and uniform grain structure is desirable for optimum formability and uniform mechanical properties of wrought aluminum products. Grain structure (size, distribution and morphology) is an important parameter affecting defects such as thermal cracking. In direct chilled (DC) castings, the grain structure depends on many factors including alloy composition, introduction of heterogeneous nucleation sites (e.g. grain refiners), growth conditions, and cooling rate. Due to the shape of the solidification interface (eg, sump) formed during DC casting, the solidification rate of individual grains is extremely position dependent. This variation in solidification rate can lead to large variations in grain size and structure through large rolled slab ingots.

通常,商业的晶粒细化的铸件中的晶粒形态为等轴的和树枝状的。然而,在晶粒细化时的DC铸造铝合金中已经报道非树枝状晶粒。据报道,在晶粒细化的AA2024合金的中心部分内,与树枝状的结构的其余部分相比,等温枝晶(“浮动晶粒”)看起来为非树枝状的。Typically, the grain morphology in commercial grain-refined castings is equiaxed and dendritic. However, non-dendritic grains have been reported in DC cast aluminum alloys upon grain refinement. It has been reported that within the central portion of the grain-refined AA2024 alloy, the isothermal dendrites ("floating grains") appear non-dendritic compared to the rest of the dendritic structure.

为了试图修改宏观偏析模式,使用配备有特定混合喷嘴的湍流射流来移动已沉降到贮槽底部的晶粒。湍流搅拌导致发现非树枝状晶粒,并且观察到凝固结构的晶粒细化和均匀性的增加。类似于这些结果,在电磁铸造(EMC)中,与常规DC铸造不同,晶粒尺寸更均匀地分布在锭的整个横截面上,这是强制对流、较低的热梯度和更强烈传输浆料区(例如,“糊状区”)内的固相的结果。In an attempt to modify the macrosegregation pattern, a turbulent jet equipped with a specific mixing nozzle was used to move the grains that had settled to the bottom of the tank. Turbulent agitation resulted in the discovery of non-dendritic grains, and an increase in grain refinement and homogeneity of the solidified structure was observed. Similar to these results, in electromagnetic casting (EMC), unlike conventional DC casting, the grain size is more uniformly distributed across the entire cross-section of the ingot, which is the result of forced convection, lower thermal gradients, and more intense transport of the slurry The result is a solid phase within the region (eg, the "mushy region").

非树枝状结构的形成有利于DC铸造产品的结构均匀性,从而改善其在固相曲线附近的机械特性、减少宏观偏析并且降低开裂敏感性。另一方面,由于半固体区域(即“糊状区”)的渗透性有限,所以人们认为非常细的球状晶粒的形成可增加热撕裂敏感性。在凝固期间形成的非树枝状晶粒的重要特征为非树枝状晶粒尺寸对冷却速率的独特依赖性。在一定冷却速率下的非树枝状晶粒的尺寸与在相同冷却速率下形成的树枝状晶粒的枝晶臂间距相同。The formation of a non-dendritic structure favors the structural homogeneity of DC cast products, thereby improving their mechanical properties near the solid-phase curve, reducing macrosegregation, and reducing crack susceptibility. On the other hand, the formation of very fine spherical grains is believed to increase hot tear susceptibility due to the limited permeability of the semi-solid region (ie, the "mushy region"). An important feature of the non-dendritic grains formed during solidification is the unique dependence of the non-dendritic grain size on the cooling rate. The size of the non-dendritic grains at a certain cooling rate is the same as the dendrite arm spacing of the dendritic grains formed at the same cooling rate.

这些观察结果对于DC铸造可为非独特的。使用库艾特粘度计研究部分凝固的熔体的粘度。无意地,树枝状结构被剪切和破碎,并且发现部分凝固的材料表现出触变行为。此发现导致流变铸造,这为利用剪切和破碎的树枝状结构的特性和独特的微观结构的挤压和压铸技术。此发现激发人们对强制对流下凝固的研究兴趣。为了试图将本公开放入视角,呈现本研究的一个亮点。These observations may not be unique to DC casting. The viscosity of partially solidified melts was studied using a Couette viscometer. Inadvertently, the dendritic structure was sheared and broken, and the partially solidified material was found to exhibit thixotropic behavior. This discovery led to rheocasting, an extrusion and die-casting technique that exploits the properties and unique microstructure of sheared and broken dendritic structures. This discovery stimulated people's research interest in forced convective solidification. In an attempt to put the disclosure into perspective, a highlight of this study is presented.

在强制对流下的凝固行为。Solidification behavior under forced convection.

几乎所有具有商业重要性的合金都以柱状或等轴树枝状结构树枝状地凝固。在铸件和锭的树枝状凝固期间,在半固体区域(例如,“糊状区”)内同时发生许多过程。这些过程包括结晶、溶质再分布、成熟、枝晶间流体流动和固体运动。树枝状结构受枝晶间流动和固体运动的影响很大,这在常规凝固中是由内在因素如密度差和温度的不均匀分布引起的。Almost all alloys of commercial importance solidify dendriticly, in columnar or equiaxed dendritic structures. During dendritic solidification of castings and ingots, a number of processes occur simultaneously within the semi-solid region (eg, the "mushy region"). These processes include crystallization, solute redistribution, maturation, interdendritic fluid flow, and solid motion. The dendritic structure is greatly influenced by interdendritic flow and solid motion, which in conventional solidification is caused by intrinsic factors such as density difference and uneven distribution of temperature.

在研究常规凝固中,透明有机合金已被广泛用于通过直接观察研究微观结构水平的凝固行为。然而,由于强烈搅拌造成的模糊图像,即使使用有机类似物,这也不可能在强制对流下凝固。出于此原因,目前对强制惯例下凝固行为的理解是通过检查最终凝固的微观结构间接获得的。In studying conventional solidification, transparent organic alloys have been widely used to study the solidification behavior at the microstructural level by direct observation. However, this was not possible to solidify under forced convection, even with organic analogues, due to the blurry images caused by vigorous agitation. For this reason, the current understanding of solidification behavior under forced conventions is obtained indirectly by examining the final solidified microstructure.

根据实验观察已经确立,在熔体搅拌下的凝固产生非树枝状结构。使用旋转流变仪对Sn-Pb系统进行的工作证实,半固态的固相具有退化的树枝状结构或玫瑰花状形态。随着搅拌时间的延长,这类颗粒通过成熟过程变成或多或少含有截留的液体的球形形态。增加剪切速率加速这种形态转变并且减少固体颗粒内部的截留液体的量。其他研究者使用棒和叶轮类型的搅拌器在许多搅拌合金中也观察到固体颗粒的玫瑰花状形态。随后在磁流体动力学(MHD)搅拌下对凝固进行的工作证实细小和退化的树枝状结构的形成。It has been established from experimental observations that solidification under agitation of the melt produces non-dendritic structures. Work on Sn-Pb systems using a rotational rheometer confirmed that the semi-solid solid phase has a degenerate dendritic structure or rosette morphology. With prolonged stirring time, such particles become more or less spherical in shape with entrapped liquid through the ripening process. Increasing the shear rate accelerates this morphological transition and reduces the amount of entrapped liquid inside the solid particles. Rosette morphology of solid particles has also been observed in many stirred alloys by other investigators using rod and impeller type stirrers. Subsequent work on solidification under magnetohydrodynamic (MHD) stirring confirmed the formation of fine and degenerated dendritic structures.

晶粒密度。grain density.

已经观察到,在强制对流下,存在比常规凝固技术下更大的晶粒密度。晶粒细化归因于与模具填充相关联的对流在凝固开始时仍然很强的事实。已经执行的实验示出,如果在凝固起始时存在对流,那么可形成具有许多较小晶粒的结构。将过热液体Al4.5Cu合金拉入薄板铜模具。铸造板表面上的树枝状结构肉眼可见。如果以大量过热将金属拉入模具,那么在铸造板表面上观察到大的枝晶。如果以显著较少过热拉制金属,那么观察到更多数量的较小枝晶。据信,在实验期间,通道中的金属尖端将首先冻结,从而停止流动。对于以较高过热铸造的金属,冻结流动尖端后面的金属在开始凝固时将处于静止状态。由于在凝固期间不存在对流,所以最终晶粒尺寸很大。对于以显著较少过热铸造的金属的情况,流动尖端后面的金属很可能在流动尖端冻结之前已经开始凝固,这导致在整个铸件中的晶粒尺寸更细。It has been observed that under forced convection there is a greater grain density than under conventional solidification techniques. The grain refinement is attributed to the fact that the convection associated with mold filling was still strong at the onset of solidification. Experiments that have been performed have shown that if there is convection at the onset of solidification, structures with many smaller grains can form. The superheated liquid Al4.5Cu alloy is drawn into a thin sheet copper mold. The dendritic structure on the surface of the cast plate is visible to the naked eye. If the metal is drawn into the mold with a lot of superheat, large dendrites are observed on the surface of the cast plate. If the metal is drawn with significantly less superheat, a greater number of smaller dendrites is observed. It is believed that during the experiment, the metal tip in the channel would freeze first, stopping the flow. For metals cast at higher superheats, the metal behind the tip of the frozen flow will be at rest as it begins to solidify. Due to the absence of convection during solidification, the final grain size is large. In the case of metals cast with significantly less superheat, the metal behind the flow tip will likely have started to solidify before the flow tip freezes, which results in a finer grain size throughout the casting.

一种解释对流对晶粒细化的影响的理论通过使用四溴化碳与水杨酸苯酯、透明模拟铸造系统和视频设备来测试,以示出当在凝固期间存在对流时,许多固体颗粒将突然从“糊状区”中释放出来并且将移动到大块熔体中。“大爆炸”理论通过假设对流引起的热波动来解释此观察结果,这反过来又导致生长速率的波动和枝晶臂的重新熔融。然后认为分离的臂通过对流流动或浮力传输到大块熔体中,从而产生具有许多较小晶粒的结构。A theory to explain the effect of convection on grain refinement was tested using carbon tetrabromide with phenyl salicylate, a transparent simulated casting system, and video equipment to show that when convection is present during solidification, many solid particles Will suddenly be released from the "mushy zone" and will move into the bulk melt. The "big bang" theory explains this observation by assuming convection-induced thermal fluctuations, which in turn lead to fluctuations in growth rates and remelting of dendrite arms. The separated arms are then thought to be transported into the bulk melt by convective flow or buoyancy, resulting in a structure with many smaller grains.

为了解释通过熔体搅拌观察到的晶粒细化,提出枝晶臂碎裂机制来解释晶粒倍增。提出枝晶臂在由熔体搅拌产生的剪切力作用下塑性弯曲。塑性弯曲以“几何学上必要的位错”的形式将大的取向误差引入枝晶臂中。在高温下,这类位错通过再结晶自身重新排列以形成大角度晶界。然后,能量大于固/液界面能两倍的任何晶界被液体金属润湿,从而导致枝晶臂的分离。To explain the observed grain refinement by melt stirring, a dendrite arm fragmentation mechanism is proposed to explain the grain multiplication. It is proposed that the dendrite arms bend plastically under the shear forces generated by the stirring of the melt. Plastic bending introduces large orientation errors into the dendrite arms in the form of "geometrically necessary dislocations". At high temperatures, such dislocations rearrange themselves through recrystallization to form high-angle grain boundaries. Any grain boundaries with energy greater than twice the solid/liquid interfacial energy are then wetted by the liquid metal, resulting in the separation of dendrite arms.

根据这些早期的建议,提出由于溶质富集和热溶质对流,二次枝晶臂可因其重新熔融而在其根部处分离。为了解释半固体加工中的晶体倍增,提出MHD流变铸造过程中的温度波动在结构演变中起着重要作用。在没有明显再辉的情况下可发生连续成核,其中液体的每个体积元素周期性地通过不同的温度区。Following these earlier proposals, it was proposed that secondary dendrite arms could detach at their roots as a result of their remelting due to solute enrichment and thermosolute convection. To explain crystal doubling in semisolid processing, it is proposed that temperature fluctuations during MHD rheocasting play an important role in the structure evolution. Continuous nucleation can occur without appreciable reglow, with each volume element of the liquid periodically passing through different temperature regions.

枝晶碎裂机制试图使在固体中观察到的最终微观结构特征合理化,但剩下的重要问题为剪切可对小枝晶臂施加如此高的弯曲力矩使其碎裂的可能性有多大。在一些理论下,湍流的微尺度必须为颗粒尺寸的数量级,粘性力才能在弯曲枝晶臂时起作用,这只有在非常高的剪切速率下才有可能。此外,碎裂的枝晶臂预期至少在生长的初始阶段期间在熔体中树枝状地生长,直至发生扩散场的碰撞。此理解与一些实验观察不相容,在所述实验观察中可看出初级颗粒数量很少但是表现出退化的树枝状或球形微观结构。Dendrite fragmentation mechanisms attempt to rationalize the final microstructural features observed in solids, but the important question remaining is how likely it is that shear can exert such high bending moments on small dendrite arms that they fragment. Under some theories, the microscale of turbulent flow must be on the order of the particle size for viscous forces to act in bending dendrite arms, which is only possible at very high shear rates. Furthermore, fragmented dendrite arms are expected to grow dendriticly in the melt at least during the initial phase of growth until collision of the diffusion field occurs. This understanding is incompatible with some experimental observations in which primary particles can be seen in small numbers but exhibit degenerate dendritic or spherical microstructures.

鉴于现有枝晶碎裂理论的一些困难,在高度对流湍流下实验观察到的晶粒细化可用大量的成核机制来解释。在强烈的混合作用下,液体合金内部的温度和成分场都极其均匀。在强制对流下的连续冷却期间,在整个液相中同时发生异相成核。与常规凝固相比,实际成核速率可不增加,但是由于均匀的温度场,形成的所有核将存活,导致有效成核速率增加。此外,强烈的混合作用将分散潜在的成核剂簇,从而产生更多数量的潜在成核位点。Given some difficulties with existing theories of dendrite fragmentation, the experimentally observed grain refinement under highly convective turbulence can be explained by a number of nucleation mechanisms. Under the intense mixing action, the temperature and composition field inside the liquid alloy are extremely uniform. During continuous cooling under forced convection, heterogeneous nucleation occurs simultaneously throughout the liquid phase. The actual nucleation rate may not increase compared to conventional solidification, but due to the uniform temperature field, all nuclei formed will survive, resulting in an increase in the effective nucleation rate. In addition, the strong mixing action will disperse potential nucleating agent clusters, resulting in a greater number of potential nucleating sites.

实验装置和程序Experimental setup and procedures

对于每个实验,将装料装载到商业气体燃烧炉中。将熔体脱气并且过滤至商业标准。装料接种大约25ppm的TiB晶粒细化剂,以便维持与先前研究的一致性。使用典型的“棺材型”底部块以及600×1750mmWAGSTAFF LHCTM敞口顶部模具。稳态铸造速度大约为65毫米/分钟。铸造速度和金属水平在达到稳态值之前在铸造的大约前500mm期间变化。使用的合金为Al4.5Cu合金,尽管用其它合金也可实现类似或对应的结果。For each experiment, the charge was loaded into a commercial gas fired furnace. The melt was degassed and filtered to commercial standard. The charge was inoculated with approximately 25 ppm TiB grain refiner in order to maintain consistency with previous studies. A typical "coffin type" bottom block was used with a 600 x 1750mm WAGSTAFF LHC open top mould. The steady state casting speed was about 65 mm/min. Casting speed and metal levels varied during approximately the first 500 mm of casting before reaching steady state values. The alloy used was an Al4.5Cu alloy, although similar or corresponding results could be achieved with other alloys.

为了变化用于细化晶粒结构的喷射功率的程度,制备各自具有独特直径的一系列熔融石英落水管。独特直径以及Al4.5Cu合金的流率和物理特性为每次试验产生独特湍流雷诺数。在此一系列实验期间研究的雷诺数为:64,000、69000、81,000、97,000和121,000。相比而言,与标准喷嘴相关联的雷诺数可处于或小于15,000。为了维持混合射流的强度,在这些试验期间没有使用组合袋。在一些情况下,使用通常为标准的组合袋可降低喷嘴产生的任何射流的功效。To vary the degree of jet power used to refine the grain structure, a series of fused silica downspouts, each with a unique diameter, were prepared. The unique diameter along with the flow rate and physical properties of the Al4.5Cu alloy produces a unique turbulent Reynolds number for each test. The Reynolds numbers studied during this series of experiments were: 64,000, 69,000, 81,000, 97,000 and 121,000. In contrast, Reynolds numbers associated with standard nozzles may be at or below 15,000. In order to maintain the strength of the mixed jet, no combination bag was used during these trials. In some cases, the use of generally standard combination bags can reduce the efficacy of any jets produced by the nozzles.

在铸造之后,冷锭各自在大约1800mm的铸造长度下横断。通过对称将每个横截面分成象限,并且使用1英寸岩心钻除去一系列45个样品用于金相分析,如图1所描绘。After casting, the chilled ingots were each traversed at a casting length of approximately 1800 mm. Each cross section was divided into quadrants by symmetry, and a series of 45 samples were removed for metallographic analysis using a 1 inch core drill, as depicted in FIG. 1 .

图1为描绘根据本公开的某些方面的从锭100中获取用于金相分析的样品102的位置的俯视示意图。符号A、C和E对应于图16中描绘的显微照片图像。锭100可被认为具有四个象限,包括象限1(未标记)、象限2、象限3和象限4。1 is a schematic top view depicting the location of a sample 102 from an ingot 100 for metallographic analysis in accordance with certain aspects of the present disclosure. Symbols A, C and E correspond to the photomicrograph images depicted in FIG. 16 . Ingot 100 may be considered to have four quadrants, including Quadrant 1 (not labeled), Quadrant 2, Quadrant 3, and Quadrant 4.

用稀氢氟酸溶液蚀刻金相样品,并且根据确立的截线法使用光学显微镜来分析晶粒尺寸和枝晶臂间距。Metallographic samples were etched with dilute hydrofluoric acid solution and analyzed for grain size and dendrite arm spacing using optical microscopy according to the established intercept method.

图2-7为描绘根据本公开的某些方面的使用标准铸造技术或各种喷射搅拌技术(例如,高速喷射技术或喷射铸锭)制备的铸锭的一个象限中的晶粒尺寸分布的表面图。可沿锭的铸造长度在大约1800mm的长度处获取表面图。表面图使用相同比例的彩条描绘晶粒尺寸分布,范围从大约50微米(例如,深蓝色)至多达或大于250微米(例如,深红色)。通常,晶粒尺寸可从凝固最快的短面(例如,图的最左侧)处的约50μm变化到贮槽最陡并且凝固速率最慢的中心附近的250μm以上。2-7 are surfaces depicting the grain size distribution in one quadrant of an ingot produced using standard casting techniques or various jet stirring techniques (e.g., high velocity jet technology or jet ingot casting) according to certain aspects of the present disclosure picture. Surface maps can be taken along the cast length of the ingot at a length of approximately 1800 mm. Surface plots depict the grain size distribution using color bars of the same scale, ranging from about 50 microns (eg, dark blue) to up to or greater than 250 microns (eg, dark red). Typically, the grain size can vary from about 50 μm at the short face where solidification is fastest (eg, the far left of the figure) to over 250 μm near the center of the sump where the steepest and slowest solidification rate.

图2为描绘标准铸造(SD铸造)Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。标准铸造合金可在没有高速射流(例如,雷诺数处于或低于15,000的射流,或者使用组合袋)的情况下进行。在标准铸锭中看到的晶粒尺寸范围在大约50微米至处于或高于大约250微米的范围内。沿x轴距中心大约-500至0mm并且沿y轴距中心大约50至150mm的区域示出大的晶粒尺寸分布(例如,大晶粒的分布)。表面图左下角附近的区域示出小的晶粒尺寸分布(例如,较小晶粒的分布)。作为参考,表面图左下角处的区域表示锭的短面中间附近的区域。Figure 2 is a surface diagram depicting the grain size distribution in one quadrant of a standard cast (SD cast) Al4.5Cu alloy. Standard cast alloys can be performed without high velocity jets (eg, jets with Reynolds numbers at or below 15,000, or with combination bags). Grain sizes seen in standard ingots range from about 50 microns to at or above about 250 microns. A region of about −500 to 0 mm from the center along the x-axis and about 50 to 150 mm from the center along the y-axis shows a large grain size distribution (eg, a distribution of large grains). The area near the lower left corner of the surface plot shows a small grain size distribution (eg, a distribution of smaller grains). For reference, the area at the lower left corner of the surface plot represents the area near the middle of the short face of the ingot.

图3为描绘具有雷诺数为64,000的射流的喷射铸造(JT铸造)Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。图的边缘附近的区域示出比图的中间附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。3 is a surface diagram depicting the grain size distribution in one quadrant of a jet cast (JT cast) Al4.5Cu alloy with a jet having a Reynolds number of 64,000. The area near the edge of the plot shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle of the plot.

图4为描绘具有雷诺数为69,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。4 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 69,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图5为描绘具有雷诺数为81,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。5 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 81,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图6为描绘具有雷诺数为97,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。6 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 97,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图7为描绘具有雷诺数为121,000的射流的喷射铸造Al4.5Cu合金的一个象限中的晶粒尺寸分布的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。7 is a surface diagram depicting the grain size distribution in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 121,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

关于图2-7,显而易见的是,来自喷射铸锭试验中的每一个的晶粒尺寸图案在其标准结果的变形方面看起来非常相似。不管喷射功率的大小(例如雷诺数)如何,观察到朝向锭中心的冷却变慢-并且因此晶粒尺寸变大-的趋势类似于标准铸造试验中观察到的趋势。然而,观察到的晶粒尺寸范围大大减小。虽然标准铸锭的晶粒尺寸至多达或高于大约250微米,但喷射铸锭的晶粒尺寸要小得多,大多数晶粒处于大约100微米,并且最大晶粒的直径处于、约或低于150微米。With respect to Figures 2-7, it is evident that the grain size patterns from each of the spray ingot tests look very similar in their variation from the standard results. Regardless of the magnitude of the injection power (eg Reynolds number), the observed trend towards slower cooling - and thus larger grain size - towards the center of the ingot is similar to that observed in standard casting tests. However, the observed grain size range is greatly reduced. While standard ingots have grain sizes up to and above about 250 microns, spray cast ingots have much smaller grain sizes, with most grains at about 100 microns and the largest grains having a diameter at, about, or below at 150 microns.

图8-13为描绘根据本公开的某些方面的使用标准铸造技术或各种喷射搅拌技术(例如,高速喷射技术或喷射铸锭)制备的铸锭的一个象限中的空间二次枝晶臂间距(DAS)轮廓的表面图。可沿锭的铸造长度在大约1800mm的长度处获取表面图。表面图使用相同比例的彩条描绘枝晶臂间距,范围从大约20微米(例如,深蓝色)至多达或大于70微米(例如,深红色)。用于图8-13的表面图的锭可为与图2-7的相应表面图相同的锭。8-13 are diagrams depicting spatial secondary dendrite arms in one quadrant of ingots produced using standard casting techniques or various jet stirring techniques (e.g., high velocity jet technology or jet ingot casting) according to certain aspects of the present disclosure Surface plot of the spacing (DAS) profile. Surface maps can be taken along the cast length of the ingot at a length of approximately 1800mm. Surface maps depict dendrite arm spacing using the same scale colored bars, ranging from about 20 microns (eg, dark blue) to up to or greater than 70 microns (eg, dark red). The ingots used for the surface maps of Figures 8-13 may be the same ingots as the corresponding surface maps of Figures 2-7.

图8为描绘标准铸造(SD铸造)Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。标准铸造合金可在没有高速射流(例如,雷诺数处于或低于15,000的射流,或者使用组合袋)的情况下进行。在标准铸锭中看到的晶粒尺寸范围在大约50微米至处于或高于大约250微米的范围内。沿x轴距中心大约-500至0mm并且沿y轴距中心大约50至150mm的区域示出大的晶粒尺寸分布(例如,大晶粒的分布)。表面图左下角附近的区域示出小的晶粒尺寸分布(例如,较小晶粒的分布)。作为参考,表面图左下角处的区域表示锭的短面中间附近的区域。Figure 8 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a standard cast (SD cast) Al4.5Cu alloy. Standard cast alloys can be performed without high velocity jets (eg, jets with Reynolds numbers at or below 15,000, or with combination bags). Grain sizes seen in standard ingots range from about 50 microns to at or above about 250 microns. A region of about −500 to 0 mm from the center along the x-axis and about 50 to 150 mm from the center along the y-axis shows a large grain size distribution (eg, a distribution of large grains). The area near the lower left corner of the surface plot shows a small grain size distribution (eg, a distribution of smaller grains). For reference, the area at the lower left corner of the surface plot represents the area near the middle of the short face of the ingot.

图9为描绘具有雷诺数为64,000的射流的喷射铸造(JT铸造)Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。图的边缘附近的区域示出比图的中间附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。9 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a jet cast (JT cast) Al4.5Cu alloy with a jet having a Reynolds number of 64,000. The area near the edge of the plot shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle of the plot.

图10为描绘具有雷诺数为69,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。10 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 69,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图11为描绘具有雷诺数为81,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。11 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 81,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图12为描绘具有雷诺数为97,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。12 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 97,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

图13为描绘具有雷诺数为121,000的射流的喷射铸造Al4.5Cu合金的一个象限中的空间二次枝晶臂间距的表面图。图的边缘附近的区域示出比图的中右侧附近的区域更小的晶粒尺寸分布(例如,更小晶粒的分布)。13 is a surface diagram depicting the spatial secondary dendrite arm spacing in one quadrant of a spray cast Al4.5Cu alloy with a jet having a Reynolds number of 121,000. The area near the edge of the graph shows a smaller grain size distribution (eg, a distribution of smaller grains) than the area near the middle right of the graph.

关于图8-13,显而易见的是,来自喷射铸锭试验中的每一个的最大空间二次枝晶臂间距看起来基本上低于标准铸锭的最大空间二次枝晶臂间距。此外,对于最低雷诺数(例如,分别为图9-11的64,000;69,000;和81,000)的射流,DAS的范围要小得多,其中周边大约为35-40微米并且在中心处增长至大约为50微米。对于这些铸件,DAS也比标准或更高雷诺数的射流更加均匀。对于较高雷诺数(例如,分别为图12和13的97,000和121,000)的这些射流,锭的周边例示仅大约25微米的DAS并且在中心处增长至可能50微米。虽然在一些方面轮廓可类似于标准情况,但这些铸件的平均DAS小于其它样品。With respect to Figures 8-13, it is evident that the maximum spatial secondary dendrite arm spacing from each of the spray-cast ingot tests appears to be substantially lower than that of the standard ingot. Furthermore, for jets with the lowest Reynolds numbers (e.g., 64,000; 69,000; and 81,000, Figures 9-11, respectively), the extent of the DAS is much smaller, with around 35-40 microns at the periphery and growing to approximately 50 microns. For these castings, DAS is also more uniform than standard or higher Reynolds number jets. For these jets at higher Reynolds numbers (eg, 97,000 and 121,000 for Figures 12 and 13, respectively), the periphery of the ingot exemplifies a DAS of only about 25 microns and grows to perhaps 50 microns at the center. Although in some respects the profile may be similar to the standard case, the average DAS of these castings is less than the other samples.

图14为描绘平均晶粒尺寸和枝晶臂间距随射流雷诺数(Rej)变化的图表。为了更好地定量湍流射流搅拌的效果,利用指定的标准分布袋尺寸和速度,以产生标准情况下15,000的有效雷诺数。Figure 14 is a graph depicting average grain size and dendrite arm spacing as a function of jet Reynolds number ( Rej ). To better quantify the effect of turbulent jet agitation, standard distribution bag sizes and velocities were specified to yield an effective Reynolds number of 15,000 for the standard case.

射流的功率看起来对相应尺寸几乎没有影响。混合射流的简单添加实现所有混合射流的晶粒尺寸减小大约25%。DAS响应性稍差,对于最强的射流(例如97,000和121,000)仅表现出减小大约10%,而其它混合射流表现出较小的偏差。The power of the jet appears to have little effect on the corresponding dimensions. The simple addition of the mixing jets achieved about a 25% reduction in the grain size of all mixing jets. The DAS is somewhat less responsive, showing only about a 10% reduction for the strongest jets (eg, 97,000 and 121,000), while the other mixed jets show smaller deviations.

本公开的某些方面和特征可导致铸造产品具有处于或低于大约150μm、149μm、148μm、147μm、146μm、145μm、144μm、143μm、142μm、141μm、140μm、139μm、138μm、137μm、136μm、135μm、134μm、133μm、132μm、131μm、130μm、129μm、128μm、127μm、126μm、125μm、124μm、123μm、122μm、121μm、120μm、119μm、118μm、117μm、116μm、115μm、114μm、113μm、112μm、111μm、110μm、109μm、108μm、107μm、106μm、105μm、104μm、103μm、102μm、101μm或100μm的平均晶粒尺寸。Certain aspects and features of the present disclosure may result in a cast product having a cast product having a thickness at or below about 150 μm, 149 μm, 148 μm, 147 μm, 146 μm, 145 μm, 144 μm, 143 μm, 142 μm, 141 μm, 140 μm, 139 μm, 138 μm, 137 μm, 136 μm, 135 μm, 134μm、133μm、132μm、131μm、130μm、129μm、128μm、127μm、126μm、125μm、124μm、123μm、122μm、121μm、120μm、119μm、118μm、117μm、116μm、115μm、114μm、113μm、112μm、111μm、110μm、 Average grain size of 109 μm, 108 μm, 107 μm, 106 μm, 105 μm, 104 μm, 103 μm, 102 μm, 101 μm or 100 μm.

图15为描绘晶粒尺寸和枝晶臂间距的散度(例如,范围)随射流雷诺数(Rej)变化的图表。同样,标准铸锭的雷诺数识别为15,000。湍流射流的引入对DAS的散度影响不大。然而,晶粒尺寸表现出剧烈的改变。标准铸锭具有大约200微米(例如,大约100微米至大约300微米)的晶粒尺寸分布,而湍流射流的引入将此范围减小至仅大约75微米(例如,大约100微米至大约175微米)。喷射功率似乎对此范围几乎没有影响,射流的简单存在立即减小晶粒尺寸分布。15 is a graph depicting the divergence (eg, range) of grain size and dendrite arm spacing as a function of jet Reynolds number (Re j ). Likewise, the Reynolds number for a standard ingot is identified as 15,000. The introduction of turbulent jet has little effect on the divergence of DAS. However, the grain size exhibits drastic changes. A standard ingot has a grain size distribution of about 200 microns (e.g., about 100 microns to about 300 microns), while the introduction of a turbulent jet reduces this range to only about 75 microns (e.g., about 100 microns to about 175 microns) . Jet power seems to have little effect on this range, the simple presence of the jet immediately reduces the grain size distribution.

本公开的某些方面和特征可导致铸造产品具有处于或低于大约290μm、285μm、280μm、275μm、270μm、265μm、260μm、255μm、250μm、245μm、240μm、235μm、230μm、225μm、220μm、215μm、210μm、205μm、200μm、195μm、190μm、185μm、180μm、175μm、170μm、165μm、160μm、155μm、150μm、145μm、140μm、135μm或130μm的最大晶粒尺寸。Certain aspects and features of the present disclosure may result in a cast product having a cast product having a thickness at or below about 290 μm, 285 μm, 280 μm, 275 μm, 270 μm, 265 μm, 260 μm, 255 μm, 250 μm, 245 μm, 240 μm, 235 μm, 230 μm, 225 μm, 220 μm, 215 μm, Maximum grain size of 210 μm, 205 μm, 200 μm, 195 μm, 190 μm, 185 μm, 180 μm, 175 μm, 170 μm, 165 μm, 160 μm, 155 μm, 150 μm, 145 μm, 140 μm, 135 μm or 130 μm.

本公开的某些方面和特征可导致铸造产品具有处于或小于大约200μm、195μm、190μm、185μm、180μm、175μm、170μm、165μm、160μm、155μm、150μm、145μm、140μm、135μm、130μm、125μm、120μm、115μm、110μm、105μm、100μm、95μm、90μm、85μm、80μm、75μm、70μm、65μm、60μm或55μm的晶粒尺寸散度(例如,最小和最大晶粒尺寸之间的范围)。换句话说,具有较小晶粒尺寸散度的铸造产品可被认为具有更均匀的晶粒尺寸分布,而具有较大晶粒尺寸散度的铸造产品可被认为具有较不均匀的晶粒尺寸分布。Certain aspects and features of the present disclosure can result in a cast product having a thickness at or less than about 200 μm, 195 μm, 190 μm, 185 μm, 180 μm, 175 μm, 170 μm, 165 μm, 160 μm, 155 μm, 150 μm, 145 μm, 140 μm, 135 μm, 130 μm, 125 μm, 120 μm , 115 μm, 110 μm, 105 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70 μm, 65 μm, 60 μm, or 55 μm grain size spread (eg, the range between the smallest and largest grain size). In other words, a cast product with a smaller grain size spread can be considered to have a more uniform grain size distribution, while a cast product with a larger grain size spread can be considered to have a less uniform grain size distributed.

图16为描绘从使用喷射铸造技术和标准铸造技术铸造的锭中获取的样品的一系列显微照片。使用雷诺数为大约97,000的射流进行喷射铸造技术。样品在图1的锭的位置A、C和E处获取。位置A对应于锭的中心区域,C对应于中间厚度区域,并且E对应于边缘区域。Figure 16 is a series of photomicrographs depicting samples taken from ingots cast using injection casting techniques and standard casting techniques. The injection casting technique is performed using a jet having a Reynolds number of approximately 97,000. Samples were taken at positions A, C and E of the ingot in FIG. 1 . Position A corresponds to the central region of the ingot, C corresponds to the mid-thickness region, and E corresponds to the edge region.

虽然本文已经呈现可定量的数据,但是在图16中可看到其它定性观察结果。对于标准情况,位置E和C表现出树枝状结构,其中E的结构比C的结构更细。对于标准情况,样品A在结构上看起来为非树枝状的。相比之下,对于喷射铸造情况下的样品A和C的特征在于细小的非树枝状微观结构,而样品E似乎为非树枝状和树枝状微观结构的混合物,其也非常细的。While quantifiable data have been presented herein, other qualitative observations can be seen in FIG. 16 . For the standard case, positions E and C exhibit a dendritic structure, with the structure of E being finer than that of C. For the standard case, sample A appears to be non-dendritic in structure. In contrast, samples A and C in the case of injection casting are characterized by fine non-dendritic microstructures, while sample E appears to be a mixture of non-dendritic and dendritic microstructures, which is also very fine.

在实验和试验之后,显而易见的是,湍流射流的功率似乎对增加晶粒细化的程度几乎没有影响。这类似于与增加搅拌速度不显著影响颗粒密度或尺寸有关的其它观察结果。相反,搅拌的简单存在促进晶粒细化和非树枝状结构。值得注意的是,增加剪切速率可导致颗粒密度增加,同时降低平均颗粒尺寸。通过湍流射流的混合似乎足以使温度等温线均匀化以促进大量的成核机制。核的存活率增加限制晶粒的生长并且产生较小的整体晶粒尺寸。After experiments and trials, it became apparent that the power of the turbulent jet seemed to have little effect on increasing the degree of grain refinement. This is similar to other observations that increasing agitation speed does not significantly affect particle density or size. In contrast, the simple presence of stirring promotes grain refinement and non-dendritic structure. It is worth noting that increasing the shear rate can lead to an increase in particle density while reducing the average particle size. Mixing by turbulent jets appears to be sufficient to homogenize the temperature isotherms to promote a multitude of nucleation mechanisms. Increased survival of the nuclei limits grain growth and results in a smaller overall grain size.

值得注意的是,最大湍流的射流(例如,97,000和121,000)产生最均匀的晶粒轮廓,具有最小的均匀枝晶臂间距轮廓。虽然使熔池分层的较低雷诺数的射流足以产生均匀的凝固速率(例如,如通过类似的微观结构显而易见的),但是最大湍流的射流隔离微观结构同时产生均匀的晶粒尺寸。另外,宏观偏析研究中最大湍流的射流被设计成从中心悬浮晶粒并且通过重新分布“多余的”浮动晶粒来抑制优先沉降。虽然这种趋势似乎通过均匀的晶粒尺寸观察到,但似乎与DAS有脱节。一种可能的解释为晶粒尺寸数据和DAS数据之间存在串扰,因为DAS难以在非树枝状结构中隔离。这可人为地扭曲DAS在这些射流中的分布,因为它们最有可能产生球形结构(即DAS=晶粒尺寸)。Notably, the most turbulent jets (eg, 97,000 and 121,000) produced the most uniform grain profiles with the smallest uniform dendrite arm spacing profiles. While lower Reynolds number jets that stratify the melt pool are sufficient to produce uniform solidification rates (eg, as evident by similar microstructures), the most turbulent jets isolate microstructures while producing uniform grain sizes. Additionally, the most turbulent jets in macrosegregation studies are designed to suspend grains from the center and suppress preferential settling by redistributing "excess" floating grains. Although this trend seems to be observed with uniform grain size, there seems to be a disconnect with DAS. One possible explanation is that there is crosstalk between grain size data and DAS data, since DAS is difficult to isolate in non-dendritic structures. This can artificially distort the distribution of DAS in these jets, since they are most likely to give rise to spherical structures (ie DAS = grain size).

图17为根据本公开的某些方面的具有单个喷嘴1708的金属铸造1700的部分横截面图。金属铸造系统1700可用于铸造如本文所述的金属产品,如使用喷嘴铸造,所述喷嘴成形为产生具有足够高的雷诺数的熔融金属1726的射流1734,如参考图3-7和9-13描述的那些。然而,在一些情况下,可使用其它铸造系统。17 is a partial cross-sectional view of a metal casting 1700 with a single nozzle 1708 in accordance with certain aspects of the present disclosure. The metal casting system 1700 may be used to cast metal products as described herein, such as using a nozzle shaped to produce a jet 1734 of molten metal 1726 having a sufficiently high Reynolds number, as with reference to FIGS. 3-7 and 9-13 those described. However, in some cases other casting systems may be used.

金属源1702(如浇口杯)可沿进料管1736向下供应熔融金属1726。底部块1722可由液压缸1724提升以与模腔1716的壁相接。随着熔融金属在模具内开始凝固,底部块1722可稳定地降低。铸造金属1712可包括已凝固的侧面1720,而添加到铸造中的熔融金属1726可用于连续拉长铸造金属1712。在一些情况下,模腔1716的壁限定中空空间并且可含有冷却剂1718,如水。冷却剂1718可作为射流从中空空间离开并且沿铸造金属1712的侧面1720向下流动以帮助凝固铸造金属1712。正在铸造的锭可包括凝固金属1730、过渡金属1728和熔融金属1726。Metal source 1702 , such as a sprue cup, may supply molten metal 1726 down feed tube 1736 . Bottom block 1722 may be lifted by hydraulic cylinder 1724 to interface with the walls of mold cavity 1716 . The bottom block 1722 may be lowered steadily as the molten metal begins to solidify within the mold. Cast metal 1712 may include solidified sides 1720 , and molten metal 1726 added to the cast may be used to continuously elongate cast metal 1712 . In some cases, the walls of mold cavity 1716 define a hollow space and may contain a coolant 1718, such as water. Coolant 1718 may exit the hollow space as a jet and flow down side 1720 of cast metal 1712 to help solidify cast metal 1712 . The ingot being cast may include solidified metal 1730 , transition metal 1728 and molten metal 1726 .

熔融金属1726可在浸没在熔融金属1726中的喷嘴1708处离开进料管1736。喷嘴1708可为进料管1736的一部分或可为可分离的部分。喷嘴1708可具有被设计成以或大约以期望的雷诺数提供熔融金属1726(例如,熔融金属1726的射流1734)的流动的参数。Molten metal 1726 may exit feed tube 1736 at nozzle 1708 submerged in molten metal 1726 . Nozzle 1708 may be part of feed tube 1736 or may be a detachable part. Nozzle 1708 may have parameters designed to provide flow of molten metal 1726 (eg, jet 1734 of molten metal 1726 ) at or about a desired Reynolds number.

在一些情况下,雷诺数可使用等式来近似,其中Re为雷诺数,L模具为在所得锭的轧制面(例如,图1中所描绘的锭100的“轧制面”)处的模具的长度,D射流为射流的直径,并且C为常数。常数C可依赖于合金,并且可通过实验确定。常数C可随模具宽度(例如,在所得锭的短面处的模具的长度,如图1中所描绘的锭100的“短面”)、铸造速度、运动粘度和其它解释射流的横截面形状的数值常数而变化。用于雷诺数近似的此实例为在矩形模具中铸造矩形锭时给出的。然而,本领域普通技术人员可使用其它形状的模具(如圆形坯料或非标准形状)计算用于铸造的射流的雷诺数。在一些情况下,雷诺数可随射流直径和有效液压周长而变化,或者可以其他方式来近似。In some cases, the Reynolds number can be obtained using the equation to approximate where Re is the Reynolds number, Ldie is the length of the die at the rolling face of the resulting ingot (e.g., the "rolling face" of ingot 100 depicted in Figure 1), Djet is the diameter of the jet , And C is a constant. The constant C can be alloy dependent and can be determined experimentally. The constant C can vary with mold width (e.g., the length of the mold at the short side of the resulting ingot, such as the "short side" of ingot 100 as depicted in FIG. 1), casting speed, kinematic viscosity, and other cross-sectional shapes to account for the jet. varies with the numerical constant. This example for the Reynolds number approximation is given when casting a rectangular ingot in a rectangular mold. However, one of ordinary skill in the art can calculate the Reynolds number of the jet for casting using other shaped molds, such as round billets or non-standard shapes. In some cases, the Reynolds number may vary with jet diameter and effective hydraulic circumference, or may be approximated in other ways.

射流的直径可处于或大约为喷嘴(例如,喷嘴1708)的开口直径。因此,特定金属铸造系统(例如,金属铸造系统1700)的雷诺数将随着喷嘴(例如,喷嘴1708)的开口直径的增加和/或随着模具长度的减小(例如,减小成尺寸与射流直径相同的圆形坯料)而减小。限定特定铸造系统和合金的雷诺数的常数可由本领域普通技术人员确定。The diameter of the jet may be at or about the diameter of the opening of the nozzle (eg, nozzle 1708). Accordingly, the Reynolds number for a particular metal casting system (e.g., metal casting system 1700) will increase as the opening diameter of the nozzle (e.g., nozzle 1708) increases and/or as the die length decreases (e.g., to a size comparable to round billets with the same jet diameter) and reduced. The constants defining the Reynolds number for a particular casting system and alloy can be determined by one of ordinary skill in the art.

离开喷嘴1708的熔融金属1726可产生具有特定雷诺数的熔融金属1726的射流1734。可利用喷嘴1708实现如本文所述的射流1734的所期望特性(例如,以改善冶金特性,如晶粒细化),所述喷嘴1708被设计或成形为产生具有所期望的雷诺数(例如,处于或高于阈值数)的射流。Molten metal 1726 exiting nozzle 1708 may produce jet 1734 of molten metal 1726 having a particular Reynolds number. Desirable properties of the jet 1734 as described herein (e.g., to improve metallurgical properties such as grain refinement) can be achieved using nozzles 1708 designed or shaped to produce jets with a desired Reynolds number (e.g., jets at or above the threshold number).

图18为根据本公开的某些方面的具有多个喷嘴1807、1808、1809的金属铸造系统1800的部分横截面图。除了存在多个喷嘴1807、1808、1809来代替单个喷嘴之外,金属铸造系统1800可类似于金属铸造系统1700。金属铸造系统1800被描绘成具有三个喷嘴,尽管可使用任何数量的喷嘴。在一些情况下,多个喷嘴1807、1808、1809可各自由相应的单独的进料管1835、1836、1837从金属源1802供应。然而,在一些情况下,多个喷嘴可从单个进料管(例如,分支进料管)进料。熔融金属1826通过多个喷嘴1807、1808、1809的流动可产生相应射流1833、1834、1835。18 is a partial cross-sectional view of a metal casting system 1800 having multiple nozzles 1807, 1808, 1809 in accordance with certain aspects of the present disclosure. Metal casting system 1800 may be similar to metal casting system 1700 except that there are multiple nozzles 1807, 1808, 1809 instead of a single nozzle. Metal casting system 1800 is depicted with three nozzles, although any number of nozzles may be used. In some cases, multiple nozzles 1807 , 1808 , 1809 may each be supplied from metal source 1802 by respective separate feed tubes 1835 , 1836 , 1837 . However, in some cases, multiple nozzles may be fed from a single feed tube (eg, a branch feed tube). The flow of molten metal 1826 through the plurality of nozzles 1807 , 1808 , 1809 may generate respective jets 1833 , 1834 , 1835 .

当使用被设计成产生雷诺数处于或高于特定阈值雷诺数的射流的喷嘴铸造金属时(例如,如参考图17所述),本文所述的所期望冶金效果可通过使用多个喷嘴类似地实现,其中由多个喷嘴产生的多个射流的雷诺数的总和处于或高于特定阈值雷诺数。在这类情况下,多个喷嘴中的每一个可产生雷诺数低于阈值雷诺数的射流,但是如果来自多个喷嘴的多个射流的雷诺数的总和高于所述阈值,那么可获得所期望的冶金效果。特别地,在特定时间点由多个喷嘴产生的射流的雷诺数的总和可高于阈值雷诺数。在一些情况下,具有多个喷嘴的铸造系统可使少于所有的喷嘴同时运行,如在铸造的不同阶段期间(例如,启动期、稳态期和结束期)。因此,只要产生的那些射流的雷诺数的总和处于或高于阈值雷诺数,就可实现所期望的结果。When casting metal using nozzles designed to produce jets with a Reynolds number at or above a certain threshold Reynolds number (e.g., as described with reference to FIG. An implementation wherein the sum of the Reynolds numbers of the plurality of jets produced by the plurality of nozzles is at or above a certain threshold Reynolds number. In such cases, each of the plurality of nozzles may produce a jet having a Reynolds number below a threshold Reynolds number, but if the sum of the Reynolds numbers of the plurality of jets from the plurality of nozzles is above the threshold, then the desired desired metallurgical effect. In particular, the sum of the Reynolds numbers of the jets produced by the plurality of nozzles at a certain point in time may be above a threshold Reynolds number. In some cases, a casting system with multiple nozzles may have less than all of the nozzles operating simultaneously, such as during different phases of casting (eg, start-up, steady state, and end). Thus, as long as the sum of the Reynolds numbers of those jets generated is at or above the threshold Reynolds number, the desired result is achieved.

结论in conclusion

已经检查湍流射流对Al4.5Cu轧制板坯锭的微观结构特性和分布的影响。已经发现,湍流射流的引入促进晶粒细化,同时对DAS的影响非常小。即使是最大湍流的喷流的晶粒细化也没有展示相对于最小湍流射流的显著增加。这似乎指示存在湍流射流的阈值雷诺数,其使等温线去稳定并且促进晶粒细化低于在此研究期间评估的最低值。虽然湍流射流的影响为明显的,但它可能最适合于数值研究,因为其效果非常稳健并且与精细的流体动力学参数无关。设想在DC铸造系统中用于增加剪切的系统应该在速度的简单增加不可增加晶粒细化时增加晶粒细化。The effect of turbulent jets on the microstructural properties and distribution of Al4.5Cu rolled slab ingots has been examined. It has been found that the introduction of a turbulent jet promotes grain refinement while having very little effect on the DAS. Even the grain refinement of the most turbulent jet did not show a significant increase relative to the least turbulent jet. This seems to indicate the existence of a threshold Reynolds number for turbulent jets that destabilizes the isotherm and promotes grain refinement below the lowest value evaluated during this study. Although the effect of turbulent jets is obvious, it is probably best suited for numerical studies because the effect is very robust and independent of fine hydrodynamic parameters. A system contemplated for increasing shear in a DC casting system should increase grain refinement when a simple increase in speed does not.

基于本文进行的实验,预期当使用处于或高于阈值雷诺数的处于或大约为14000、15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000、63000、64000、65000、66000、67000、68000、69000、70000、71000、72000、73000、74000、75000、76000、77000、78000、79000、80000、81000、82000、83000、84000、85000、86000、87000、88000、89000、90000、91000、92000、93000、94000、95000、96000、97000、98000、99000、100000、101000、102000、103000、104000、105000、106000、107000、108000、109000、110000、111000、112000、113000、114000、115000、116000、117000、118000、119000、120000或121000的雷诺数的射流时,可在直接冷硬铸造中实现促进的晶粒细化。更具体地,预期当使用处于或高于阈值雷诺数的处于或大约为14000、15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000、63000或64000的雷诺数的射流时,可在直接冷硬铸造中实现促进的晶粒细化。如本文另外详细描述的,当来自多个喷嘴的多个射流的雷诺数的总和处于或高于前述阈值雷诺数中的任一个时,可在多喷嘴直接冷硬铸造系统中实现促进的晶粒细化。Based on experiments performed herein, it is expected that when using a Reynolds number at or above a threshold Reynolds number at or around 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000 , 29000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000, 42000, 43000, 44000, 45000, 47000, 48000, 49000, 51000, 52000, 53000, 53000, 53000 , 54000, 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000, 63000, 64000, 65000, 66000, 67000, 69000, 70000, 71000, 73000, 74000, 76000, 77000, 78000, 78000, 78000 , 79000, 80000, 81000, 82000, 83000, 84000, 85000, 86000, 87000, 88000, 89000, 90000, 92000, 93000, 94000, 96000, 97000, 98000, 99000, 101000, 102000, 103000, 103000, 103000, 103000, 103000, 103000, 103000, 103000, 103000, 103000, 103000, 103000 , 104000, 105000, 106000, 107000, 108000, 109000, 110000, 111000, 112000, 113000, 114000, 115000, 116000, 117000, 118000, 119000, 119000, 111000, 112000, 113000, 114000, 115000, 116000, 117000, 118000, 119000, 119000 Promoted grain refinement is achieved. More specifically, it is expected that when using a Reynolds number at or above a threshold Reynolds number at or about 14000, 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000 , 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000, 42000, 43000, 44000, 45000, 47000, 49000, 50000, 52000, 53000, 54000, 54000, 54000 Promoted grain refinement can be achieved in direct chill casting when jetting at a Reynolds number of 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000, 63000 or 64000. Promoted grain can be achieved in a multi-nozzle direct chill casting system when the sum of the Reynolds numbers of the multiple jets from the multiple nozzles is at or above any of the aforementioned threshold Reynolds numbers, as described in additional detail herein. refinement.

包括所说明实施例的实施例的前述描述仅出于说明和描述的目的而呈现,并且不旨在为详尽的或局限于所公开的精确形式。对于本领域的技术人员来说,其许多修改、调整和使用将为显而易见的。The foregoing description of the embodiments, including the illustrated embodiments, have been presented for purposes of illustration and description only, and are not intended to be exhaustive or to be limited to the precise forms disclosed. Many modifications, adaptations, and uses thereof will be apparent to those skilled in the art.

如下所使用的,对一系列实例的任何提及应理解为对那些实例中的每一个的分别提及(例如,“实例1至4”应理解为“实例1、2、3或4”)。As used below, any reference to a series of examples should be read as a separate reference to each of those examples (eg, "Examples 1 to 4" should be read as "Examples 1, 2, 3, or 4") .

实例1为一种铸造系统,其包含:可联接至熔融金属源的进料管;和位于所述进料管的远端处的喷嘴,所述喷嘴可浸没在熔融贮槽中用于将所述熔融金属输送至所述熔融贮槽,其中所述喷嘴被设计成以至少14,000的雷诺数供应所述熔融金属。Example 1 is a casting system comprising: a feed tube couplable to a source of molten metal; The molten metal is delivered to the molten storage tank, wherein the nozzle is designed to supply the molten metal at a Reynolds number of at least 14,000.

实例2为根据实例1所述的铸造系统,其中所述喷嘴被设计成以至少64,000的雷诺数供应所述熔融金属,Example 2 is the casting system of example 1, wherein the nozzle is designed to supply the molten metal at a Reynolds number of at least 64,000,

实例3为根据实例1所述的铸造系统,其中所述喷嘴被设计成以至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000的雷诺数供应所述熔融金属。Example 3 is the casting system of Example 1, wherein the nozzle is designed to operate at least , 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000, 42000, 43000, 44000, 45000, 47000, 49000, 50000, 52000, 53000, 54000, 54000, 54000 The molten metal is supplied at a Reynolds number of 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000 or 63000.

实例4为根据实例1至3所述的铸造系统,其另外包含用于接收所述熔融金属的模具,其中所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。Example 4 is the casting system of Examples 1-3, further comprising a mold for receiving the molten metal, wherein the mold comprises one or more mold walls and a bottom block lowerable to support a solidified ingot.

实例5为一种铸造系统,其包含:可联接至熔融金属源的至少一个进料管;和包含一个或多个喷嘴的喷嘴组,其中所述一个或多个喷嘴中的每一个位于所述至少一个进料管的远端处并且可浸没在熔融贮槽中用于将所述熔融金属输送至所述熔融贮槽,其中所述一个或多个喷嘴中的每一个具有开口,所述开口的尺寸设计成在一定雷诺数下在所述熔融贮槽内实现熔融金属射流,其中每个熔融金属射流的所述雷诺数的总和为至少14,000。Example 5 is a casting system comprising: at least one feed tube couplable to a source of molten metal; and a nozzle bank comprising one or more nozzles, wherein each of the one or more nozzles is located on the at least one feed tube at a distal end and submersible in a melting sump for delivering the molten metal to the melting sump, wherein each of the one or more nozzles has an opening, the opening is dimensioned to achieve molten metal jets within said molten sump at a Reynolds number, wherein the sum of said Reynolds numbers for each molten metal jet is at least 14,000.

实例6为根据实例5所述的铸造系统,其中所述一个或多个喷嘴的所述开口的尺寸设计成使得每个熔融金属射流的所述雷诺数的所述总和为至少64,000,Example 6 is the casting system of example 5, wherein the openings of the one or more nozzles are sized such that the sum of the Reynolds numbers per jet of molten metal is at least 64,000,

实例7为根据实例5所述的铸造系统,其中所述一个或多个喷嘴的所述开口的尺寸设计成使得每个熔融金属射流的所述雷诺数的所述总和为至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000。Example 7 is the casting system of example 5, wherein said openings of said one or more nozzles are sized such that said sum of said Reynolds numbers per jet of molten metal is at least 15000, 16000, 17000 , 18000, 19000, 2000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000, 31000, 32000, 34000, 35000, 37000, 38000, 40000, 41000, 42000, 42000 .

实例8为根据实例5至7所述的铸造系统,其中所述喷嘴组包括至少两个喷嘴。Example 8 is the casting system of examples 5-7, wherein the set of nozzles includes at least two nozzles.

实例9为根据实例5至8所述的铸造系统,其另外包含用于接收所述熔融金属的模具,其中所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。Example 9 is the casting system of Examples 5-8, further comprising a mold for receiving the molten metal, wherein the mold comprises one or more mold walls and a bottom block lowerable to support a solidified ingot.

实例10为一种方法,其包含:通过进料管将熔融金属从金属源输送至金属贮槽,其中所述熔融金属在离开所述进料管时在所述金属贮槽内产生一个或多个熔融金属射流,其中所述一个或多个熔融金属射流中的每一个具有一定雷诺数,并且其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的总和为至少14,000。Example 10 is a method comprising: conveying molten metal from a metal source to a metal storage tank through a feed tube, wherein the molten metal produces one or more jets of molten metal, wherein each of the one or more jets of molten metal has a Reynolds number, and wherein the sum of the Reynolds numbers of each of the one or more jets of molten metal is at least 14,000.

实例11为根据实例10所述的方法,其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的所述总和为至少64,000,Example 11 is the method of example 10, wherein the sum of the Reynolds numbers of each of the one or more molten metal jets is at least 64,000,

实例12为根据实例10所述的方法,其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的所述总和为至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000。Example 12 is the method of example 10, wherein the sum of the Reynolds numbers of each of the one or more molten metal jets is at least 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000, 31000, 32000, 34000, 35000, 36000, 37000, 39000, 40000, 41000, 42000, 44000, 45000, 46000, 46000 47000, 48000, 49000, 50000, 51000, 52000, 53000, 54000, 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000, or 63000.

实例13为根据实例10至12所述的方法,其另外包含使用模具将所述熔融金属凝固成锭,所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。Example 13 is the method of examples 10-12, further comprising solidifying the molten metal into an ingot using a mold comprising one or more mold walls and a bottom block lowerable to support the solidified ingot.

实例14为一种金属产品,其根据实例10至13所述的方法铸造。Example 14 is a metal product cast according to the method described in Examples 10-13.

实例15为根据实例14所述的金属产品,其中所述金属产品的平均晶粒尺寸处于或低于大约130μm。Example 15 is the metal product of example 14, wherein the metal product has an average grain size at or below about 130 μm.

实例16为根据实例14所述的金属产品,其中所述金属产品的平均晶粒尺寸处于或低于大约129μm、128μm、127μm、126μm、125μm、124μm、123μm、122μm、121μm、120μm、119μm、118μm、117μm、116μm、115μm、114μm、113μm、112μm、111μm、110μm、109μm、108μm、107μm、106μm、105μm、104μm、103μm、102μm、101μm或100μm。Example 16 is the metal product of example 14, wherein the metal product has an average grain size at or below about 129 μm, 128 μm, 127 μm, 126 μm, 125 μm, 124 μm, 123 μm, 122 μm, 121 μm, 120 μm, 119 μm, 118 μm .

实例17为根据实例14至16所述的金属产品,其中所述金属产品的最大晶粒尺寸处于或低于大约250μm。Example 17 is the metal product of examples 14 to 16, wherein the metal product has a maximum grain size at or below about 250 μm.

实例18为根据实例14至16所述的金属产品,其中所述金属产品的最大晶粒尺寸处于或低于大约245μm、240μm、235μm、230μm、225μm、220μm、215μm、210μm、205μm、200μm、195μm、190μm、185μm、180μm、175μm、170μm、165μm、160μm、155μm、150μm、145μm、140μm、135μm或130μm。Example 18 is the metal product of Examples 14 to 16, wherein the metal product has a maximum grain size at or below about 245 μm, 240 μm, 235 μm, 230 μm, 225 μm, 220 μm, 215 μm, 210 μm, 205 μm, 200 μm, 195 μm , 190μm, 185μm, 180μm, 175μm, 170μm, 165μm, 160μm, 155μm, 150μm, 145μm, 140μm, 135μm or 130μm.

实例19为根据实例14至18所述的金属产品,其中所述金属产品的晶粒尺寸散度处于或低于大约130μm。Example 19 is the metal product of Examples 14 to 18, wherein the metal product has a grain size spread at or below about 130 μm.

实例20为根据实例14至18所述的金属产品,其中所述金属产品的晶粒尺寸散度处于或低于大约125μm、120μm、115μm、110μm、105μm、100μm、95μm、90μm、85μm、80μm、75μm、70μm、65μm、60μm或55μm。Example 20 is the metal product of examples 14 to 18, wherein the metal product has a grain size spread at or below about 125 μm, 120 μm, 115 μm, 110 μm, 105 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75μm, 70μm, 65μm, 60μm or 55μm.

Claims (20)

1.一种铸造系统,其包含:1. A casting system comprising: 可联接至熔融金属源的进料管;和a feed tube connectable to a source of molten metal; and 位于所述进料管的远端处的喷嘴,所述喷嘴可浸没在熔融贮槽中用于将所述熔融金属输送至所述熔融贮槽,其中所述喷嘴被设计成以至少14,000的雷诺数供应所述熔融金属。a nozzle at the distal end of the feed pipe, the nozzle being submersible in a melting tank for delivering the molten metal to the melting tank, wherein the nozzle is designed to operate at a Reynolds temperature of at least 14,000 Several supply the molten metal. 2.根据权利要求1所述的铸造系统,其中所述喷嘴被设计成以至少64,000的雷诺数供应所述熔融金属。2. The casting system of claim 1, wherein the nozzle is designed to supply the molten metal at a Reynolds number of at least 64,000. 3.根据权利要求1所述的铸造系统,其中所述喷嘴被设计成以至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000的雷诺数供应所述熔融金属。3. The casting system of claim 1 , wherein the nozzle is designed to have a , 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000, 42000, 43000, 44000, 45000, 47000, 49000, 50000, 52000, 53000, 54000, 54000, 54000 The molten metal is supplied at a Reynolds number of 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000 or 63000. 4.根据权利要求1所述的铸造系统,其另外包含用于接收所述熔融金属的模具,其中所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。4. The casting system of claim 1, additionally comprising a mold for receiving the molten metal, wherein the mold comprises one or more mold walls and a bottom block lowerable to support a solidified ingot. 5.一种铸造系统,其包含:5. A casting system comprising: 可联接至熔融金属源的至少一个进料管;和at least one feed tube couplable to a source of molten metal; and 包含一个或多个喷嘴的喷嘴组,其中所述一个或多个喷嘴中的每一个位于所述至少一个进料管的远端处并且可浸没在熔融贮槽中用于将所述熔融金属输送至所述熔融贮槽,其中所述一个或多个喷嘴中的每一个具有开口,所述开口的尺寸设计成在一定雷诺数下在所述熔融贮槽内实现熔融金属射流,其中每个熔融金属射流的所述雷诺数的总和为至少14,000。a nozzle bank comprising one or more nozzles, wherein each of the one or more nozzles is located at the distal end of the at least one feed pipe and is submersible in a melting sump for conveying the molten metal to the melting sump, wherein each of the one or more nozzles has an opening sized to achieve a jet of molten metal within the melting sump at a certain Reynolds number, wherein each melt The sum of said Reynolds numbers of the metal jets is at least 14,000. 6.根据权利要求5所述的铸造系统,其中所述一个或多个喷嘴的所述开口的尺寸设计成使得每个熔融金属射流的所述雷诺数的所述总和为至少64,000。6. The casting system of claim 5, wherein the openings of the one or more nozzles are sized such that the sum of the Reynolds numbers per jet of molten metal is at least 64,000. 7.根据权利要求5所述的铸造系统,其中所述一个或多个喷嘴的所述开口的尺寸设计成使得每个熔融金属射流的所述雷诺数的所述总和为至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000。7. The casting system of claim 5, wherein said openings of said one or more nozzles are sized such that said sum of said Reynolds numbers per jet of molten metal is at least 15000, 16000, 17000 , 18000, 19000, 2000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000, 31000, 32000, 34000, 35000, 37000, 38000, 40000, 41000, 42000, 42000 . 8.根据权利要求5所述的铸造系统,其中所述喷嘴组包括至少两个喷嘴。8. The casting system of claim 5, wherein the set of nozzles includes at least two nozzles. 9.根据权利要求5所述的铸造系统,其另外包含用于接收所述熔融金属的模具,其中所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。9. The casting system of claim 5, further comprising a mold for receiving the molten metal, wherein the mold comprises one or more mold walls and a bottom block lowerable to support a solidified ingot. 10.一种方法,其包含:10. A method comprising: 通过进料管将熔融金属从金属源输送至金属贮槽,其中所述熔融金属在离开所述进料管时在所述金属贮槽内产生一个或多个熔融金属射流,其中所述一个或多个熔融金属射流中的每一个具有一定雷诺数,并且其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的总和为至少14,000。Molten metal is conveyed from a metal source to a metal storage tank through a feed pipe, wherein the molten metal produces one or more jets of molten metal in the metal storage tank as it exits the feed pipe, wherein the one or Each of the plurality of molten metal jets has a Reynolds number, and wherein the sum of the Reynolds numbers of each of the one or more molten metal jets is at least 14,000. 11.根据权利要求10所述的方法,其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的所述总和为至少64,000。11. The method of claim 10, wherein the sum of the Reynolds numbers of each of the one or more molten metal jets is at least 64,000. 12.根据权利要求10所述的方法,其中所述一个或多个熔融金属射流中的每一个的所述雷诺数的所述总和为至少15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、26000、27000、28000、29000、30000、31000、32000、33000、34000、35000、36000、37000、38000、39000、40000、41000、42000、43000、44000、45000、46000、47000、48000、49000、50000、51000、52000、53000、54000、55000、56000、57000、58000、59000、60000、61000、62000或63000。12. The method of claim 10, wherein the sum of the Reynolds numbers of each of the one or more molten metal jets is at least 15000, 16000, 17000, 18000, 19000, 20000, 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000, 31000, 32000, 34000, 35000, 36000, 37000, 39000, 40000, 41000, 42000, 44000, 45000, 46000, 46000 47000, 48000, 49000, 50000, 51000, 52000, 53000, 54000, 55000, 56000, 57000, 58000, 59000, 60000, 61000, 62000, or 63000. 13.根据权利要求10所述的方法,其另外包含使用模具将所述熔融金属凝固成锭,所述模具包含一个或多个模具壁和可降低以支撑凝固锭的底部块。13. The method of claim 10, further comprising solidifying the molten metal into an ingot using a mold comprising one or more mold walls and a bottom block lowerable to support the solidified ingot. 14.一种金属产品,其根据权利要求10所述的方法铸造。14. A metal product cast according to the method of claim 10. 15.根据权利要求14所述的金属产品,其中所述金属产品的平均晶粒尺寸处于或低于大约130μm。15. The metal product of claim 14, wherein the metal product has an average grain size at or below about 130 μm. 16.根据权利要求14所述的金属产品,其中所述金属产品的平均晶粒尺寸处于或低于大约129μm、128μm、127μm、126μm、125μm、124μm、123μm、122μm、121μm、120μm、119μm、118μm、117μm、116μm、115μm、114μm、113μm、112μm、111μm、110μm、109μm、108μm、107μm、106μm、105μm、104μm、103μm、102μm、101μm或100μm。16. The metal product of claim 14, wherein the metal product has an average grain size at or below about 129 μm, 128 μm, 127 μm, 126 μm, 125 μm, 124 μm, 123 μm, 122 μm, 121 μm, 120 μm, 119 μm, 118 μm . 17.根据权利要求14所述的金属产品,其中所述金属产品的最大晶粒尺寸处于或低于大约250μm。17. The metal product of claim 14, wherein the metal product has a maximum grain size at or below about 250 μm. 18.根据权利要求14所述的金属产品,其中所述金属产品的最大晶粒尺寸处于或低于大约245μm、240μm、235μm、230μm、225μm、220μm、215μm、210μm、205μm、200μm、195μm、190μm、185μm、180μm、175μm、170μm、165μm、160μm、155μm、150μm、145μm、140μm、135μm或130μm。18. The metal product of claim 14, wherein the metal product has a maximum grain size at or below about 245 μm, 240 μm, 235 μm, 230 μm, 225 μm, 220 μm, 215 μm, 210 μm, 205 μm, 200 μm, 195 μm, 190 μm , 185μm, 180μm, 175μm, 170μm, 165μm, 160μm, 155μm, 150μm, 145μm, 140μm, 135μm or 130μm. 19.根据权利要求14所述的金属产品,其中所述金属产品的晶粒尺寸散度处于或低于大约130μm。19. The metal product of claim 14, wherein the metal product has a grain size spread at or below about 130 μm. 20.根据权利要求14所述的金属产品,其中所述金属产品的晶粒尺寸散度处于或低于大约125μm、120μm、115μm、110μm、105μm、100μm、95μm、90μm、85μm、80μm、75μm、70μm、65μm、60μm或55μm。20. The metal product of claim 14, wherein the metal product has a grain size spread at or below about 125 μm, 120 μm, 115 μm, 110 μm, 105 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm, 75 μm, 70μm, 65μm, 60μm or 55μm.
CN201880013971.6A 2017-02-28 2018-02-27 The crystal grain refinement of the ingot casting of shear-induced Pending CN110382136A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762465014P 2017-02-28 2017-02-28
US62/465014 2017-02-28
PCT/US2018/019812 WO2018160508A1 (en) 2017-02-28 2018-02-27 Shear induced grain refinement of a cast ingot

Publications (1)

Publication Number Publication Date
CN110382136A true CN110382136A (en) 2019-10-25

Family

ID=61622717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880013971.6A Pending CN110382136A (en) 2017-02-28 2018-02-27 The crystal grain refinement of the ingot casting of shear-induced

Country Status (4)

Country Link
US (1) US20180243822A1 (en)
EP (1) EP3589435A1 (en)
CN (1) CN110382136A (en)
WO (1) WO2018160508A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843067B2 (en) 2020-07-22 2023-12-12 GAF Energy LLC Photovoltaic modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097186A (en) * 1965-03-11 1967-12-29 Reynolds Metals Co Continuous casting system
JPS61162254A (en) * 1985-01-11 1986-07-22 Sumitomo Metal Ind Ltd Method of supplying hot water to continuous casting molds
JPH11277219A (en) * 1998-03-30 1999-10-12 Itsuo Onaka Stirring and transporting device for conductive high-temperature liquid
CN106457368A (en) * 2014-05-21 2017-02-22 诺维尔里斯公司 Mixing eductor nozzle and flow control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115812A (en) * 2009-12-02 2011-06-16 Reizu Eng:Kk Method for producing light alloy vehicle wheel
CN102740996B (en) * 2010-02-11 2014-11-12 诺维尔里斯公司 Casting composite ingot with metal temperature compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1097186A (en) * 1965-03-11 1967-12-29 Reynolds Metals Co Continuous casting system
JPS61162254A (en) * 1985-01-11 1986-07-22 Sumitomo Metal Ind Ltd Method of supplying hot water to continuous casting molds
JPH11277219A (en) * 1998-03-30 1999-10-12 Itsuo Onaka Stirring and transporting device for conductive high-temperature liquid
CN106457368A (en) * 2014-05-21 2017-02-22 诺维尔里斯公司 Mixing eductor nozzle and flow control device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMUEL R. WAGSTAFF ETAL: "Minimization of Macrosegregation in DC Cast Ingots Through Jet Processing", 《METALLURGICAL AND MATERIALS TRANSACTIONS B》 *
SAMUEL R. WAGSTAFF ETAL: "shear induced grain refinement of a continuously cast ingot", 《LIGHT METALS 2017》 *

Also Published As

Publication number Publication date
US20180243822A1 (en) 2018-08-30
EP3589435A1 (en) 2020-01-08
WO2018160508A1 (en) 2018-09-07

Similar Documents

Publication Publication Date Title
US4960163A (en) Fine grain casting by mechanical stirring
Nafisi et al. Semi-solid processing of aluminum alloys
CN106457368B (en) Mixing injector nozzle and flow control device
Hitchcock et al. Secondary solidification behaviour of the Al–Si–Mg alloy prepared by the rheo-diecasting process
US4621676A (en) Casting of metallic materials
Liu et al. An investigation of direct-chill cast 2024 aluminum alloy under the influence of high shearing with regards to different shear positions
CN108883462A (en) Liquid metal jet optimization in direct-chill casting
JP2015208748A (en) Manufacturing method of aluminum alloy billet and aluminum alloy billet
Nourouzi et al. Microstructure evolution of A356 aluminum alloy produced by cooling slope method
Patel et al. Melt conditioned direct chill casting (MC-DC) process for production of high quality Aluminium alloy billets
Zhu et al. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy
Xia et al. Solidification mechanisms in melt conditioned direct chill (MC-DC) cast AZ31 billets
Tamura et al. Improved solidification structures and mechanical properties of Al–20 wt% Sn alloys processed by an electromagnetic vibration technique
CN110382136A (en) The crystal grain refinement of the ingot casting of shear-induced
Patel et al. Liquid metal engineering by application of intensive melt shearing
EP4076788B1 (en) A 7xxx series aluminum alloys ingot and a method for direct chill casting
Hao et al. Improvement of casting speed and billet quality of direct chill cast aluminum wrought alloy with combination of slit mold and electromagnetic coil
EP4076787B1 (en) Reduced final grain size of unrecrystallized wrought material produced via the direct chill (dc) route
Li et al. Solidification mechanisms of melt conditioned direct-chill (MC-DC) casting
Pahlevani et al. Quick semi-solid slurry making method using metallic cup
Jones Investigation into the contribution of the MC-DC process on microstructural evolution of direct chill cast round ingots of 6XXX series aluminium alloys with an aim to reduce homogenisation
Jones et al. Microstructural evolution in intensively melt sheared direct chill cast Al-alloys
Cassinath et al. Process Optimization and Microstructure Control for Twin Screw Rheo-Extrusion of an AZ91D Magnesium Alloy
PL236911B1 (en) Method and device for intensive shearing and mixing of alloys in the liquid phase and in the temperature range between solidus and liquidus
Borisov Process for production of aluminum-alloy ingots with non-dendritic thixotropic structure.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191025