CN108661732A - A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power - Google Patents
A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power Download PDFInfo
- Publication number
- CN108661732A CN108661732A CN201810444579.9A CN201810444579A CN108661732A CN 108661732 A CN108661732 A CN 108661732A CN 201810444579 A CN201810444579 A CN 201810444579A CN 108661732 A CN108661732 A CN 108661732A
- Authority
- CN
- China
- Prior art keywords
- natural gas
- gas
- carbon dioxide
- heat exchanger
- supercritical carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 162
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 83
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 81
- 239000003949 liquefied natural gas Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000002485 combustion reaction Methods 0.000 title description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 232
- 239000003345 natural gas Substances 0.000 claims abstract description 112
- 239000007789 gas Substances 0.000 claims abstract description 68
- 238000010248 power generation Methods 0.000 claims abstract description 25
- 239000000446 fuel Substances 0.000 claims abstract description 14
- 230000005611 electricity Effects 0.000 claims abstract description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 50
- 239000012530 fluid Substances 0.000 claims description 38
- 239000001294 propane Substances 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 23
- 230000006835 compression Effects 0.000 claims description 20
- 238000007906 compression Methods 0.000 claims description 20
- 238000000926 separation method Methods 0.000 claims description 15
- 239000012071 phase Substances 0.000 claims description 13
- 239000007791 liquid phase Substances 0.000 claims description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 8
- 239000005977 Ethylene Substances 0.000 claims description 8
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 5
- 239000002808 molecular sieve Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims 2
- 238000001816 cooling Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002343 natural gas well Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/08—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0095—Oxides of carbon, e.g. CO2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
本发明公开了一种燃气‑超临界二氧化碳联合动力的液化天然气生产系统,其中,中燃气轮机使用天然气作为燃料,对于燃气轮机的排气作为超临界二氧化碳布雷顿动力循环发电系统的热源实现燃气‑超临界二氧化碳联合循环,而燃气‑超临界二氧化碳联合循环所生产的电力供应整个液化天然气生产系统所需的电能。本发明综合了燃气轮机发电系统、超临界二氧化碳布雷顿动力循环发电系统和天然气液化生产系统,提供稳定的电源,供应整个系统自身使用,同时系统生产的天然气一部分作为系统中燃气‑超临界二氧化碳联合循环的燃料,其余供应输出,提高了系统整体效率,同时为超临界二氧化碳布雷顿动力循环的运用以及液化天然气的生产提供了新的思路。
The invention discloses a gas-supercritical carbon dioxide combined power liquefied natural gas production system, wherein the gas turbine uses natural gas as fuel, and the exhaust gas of the gas turbine is used as the heat source of the supercritical carbon dioxide Brayton power cycle power generation system to realize gas-supercritical Combined carbon dioxide cycle, and the electricity produced by the gas-supercritical carbon dioxide combined cycle supplies the electricity required for the entire LNG production system. The invention integrates a gas turbine power generation system, a supercritical carbon dioxide Brayton power cycle power generation system and a natural gas liquefaction production system to provide a stable power supply for the entire system itself, and at the same time, part of the natural gas produced by the system is used as a gas-supercritical carbon dioxide combined cycle in the system The fuel and the rest are supplied and exported, which improves the overall efficiency of the system, and at the same time provides a new idea for the application of supercritical carbon dioxide Brayton power cycle and the production of liquefied natural gas.
Description
技术领域technical field
本发明涉及一种燃气-超临界二氧化碳联合动力的液化天然气(LNG)生产系统。The invention relates to a gas-supercritical carbon dioxide combined power liquefied natural gas (LNG) production system.
背景技术Background technique
液化天然气(Liquefied Natural Gas)简称LNG,是如今世界增长最快的一种燃料。LNG是指在超低温(-162℃)、低压(一个大气压)条件下的液态天然气,其组分主要为:甲烷(CH4),LNG无色、无味、无毒并且无腐蚀性,其体积约为同质量气态天然气体积的1/600,也就是说每立方米LNG气化后可得到600立方米的天然气。LNG的密度约为同体积水的45%。由于产地不同,LNG的成分也会略有变化,其中甲烷的变化范围为85%~98%。这正也是不同产地的液化天然气热值和气化率不同的原因,其密度也会出现相应的波动。Liquefied Natural Gas (LNG) is the fastest growing fuel in the world today. LNG refers to liquefied natural gas at ultra-low temperature (-162°C) and low pressure (one atmosphere), its main components are: methane (CH 4 ), LNG is colorless, odorless, non-toxic and non-corrosive, and its volume is about It is 1/600 of the volume of gaseous natural gas of the same quality, that is to say, 600 cubic meters of natural gas can be obtained after gasification of every cubic meter of LNG. The density of LNG is about 45% of the same volume of water. Due to different origins, the composition of LNG will also change slightly, among which methane varies from 85% to 98%. This is why the calorific value and gasification rate of LNG from different origins are different, and its density will also fluctuate accordingly.
LNG在生产中经过预处理,甲烷的含量超过90%。其污染物排放量都有大大的降低。另外,在城市冬季用气高峰期间,LNG可以作为城市燃气调峰的重要手段,所以市场广阔。LNG作为汽车燃料,一氧化碳、碳烟的排放量大幅度降低,对改善环境质量将起到极其重要的作用。国家环境保护法规和汽车尾气排放标准的出台为LNG汽车发展提供了广阔的发展空间,也促进了汽车工业的快速发展。LNG is pre-treated during production and contains more than 90% methane. The emission of pollutants has been greatly reduced. In addition, LNG can be used as an important means of urban gas peak regulation during the peak period of urban gas consumption in winter, so the market is broad. As a vehicle fuel, LNG will greatly reduce the emissions of carbon monoxide and soot, which will play an extremely important role in improving environmental quality. The promulgation of national environmental protection regulations and vehicle exhaust emission standards provides a broad development space for the development of LNG vehicles, and also promotes the rapid development of the automobile industry.
基础研究是工业快速发展的必要保障,加速LNG工业的国产化对降低我国的LNG生产成本,推进我国的LNG技术水平的提高具有重要意义。另外,LNG工业是一个技术密集和高附加值的产业,它的工业链中涉及很多设备生产,发展这一工业必将刺激国内相关产业的迅猛发展。Basic research is the necessary guarantee for the rapid development of the industry. Accelerating the localization of the LNG industry is of great significance for reducing the cost of LNG production in my country and promoting the improvement of my country's LNG technology level. In addition, the LNG industry is a technology-intensive and high-value-added industry, and its industrial chain involves a lot of equipment production. The development of this industry will definitely stimulate the rapid development of related domestic industries.
利用超临界流体拟临界区物性突变现象,将压缩机组运行点设置在拟临界温度附近的大密度区,将换热器运行点设置在拟临界温度之后的低密度区,可以在保证气体冷却的前提下,降低压缩功耗,实现较高的效率。超临界流体的这一性质使其作为能量转换工质时具有明显的优势。二氧化碳(CO2)由于其临界压力相对适中(7.38MPa),具有较好的稳定性和核物理性质,在一定的温度范围内表现出惰性气体的性质,以及其无毒、储量丰富、天然存在等特性,被认为是最具应用前景的能量传输和能量转换工质之一。由于超临界二氧化碳(S-CO2)在一定的运行参数范围内密度较大且无相变,因此以S-CO2为工质的压缩机组、气轮机等动力系统设备结构紧凑、体积较小。布雷顿循环每个组合可以产出20MW的电力,占用空间只有四个立方米。超临界二氧化碳(S-CO2)布雷顿循环轮机通常用于大型热力和核能发电方面,包括下一代动力反应堆,目标是最终取代蒸汽驱动的兰金循环轮机(效率较低,高温条件存在腐蚀性,同时由于需要非常大的轮机和冷凝器来处理多余的蒸汽,占用空间是30倍)。Utilizing the sudden change of physical properties in the quasi-critical region of supercritical fluid, the operating point of the compressor unit is set in the high-density area near the pseudo-critical temperature, and the operating point of the heat exchanger is set in the low-density area after the pseudo-critical temperature, which can ensure the cooling of the gas. Under the premise, the compression power consumption is reduced to achieve higher efficiency. This property of supercritical fluids has obvious advantages as working fluids for energy conversion. Due to its relatively moderate critical pressure (7.38MPa), carbon dioxide (CO 2 ) has good stability and nuclear physical properties. It is considered to be one of the most promising energy transmission and energy conversion working fluids. Since supercritical carbon dioxide (S-CO 2 ) has a high density and no phase change within a certain range of operating parameters, power system equipment such as compressor units and gas turbines using S-CO 2 as a working medium have compact structures and small volumes . Each combination of Brayton cycles can produce 20MW of electricity, occupying only four cubic meters of space. Supercritical carbon dioxide (S-CO 2 ) Brayton cycle turbines are commonly used in large thermal and nuclear power generation, including next-generation power reactors, with the goal of eventually replacing steam-driven Rankine cycle turbines (less efficient, corrosive at high temperatures , while taking up 30 times the space due to the need for very large turbines and condensers to handle excess steam).
发明内容Contents of the invention
本发明的目的在于提供一种能够提高系统整体效率,同时能为超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环的运用提供新思路的燃气-超临界二氧化碳联合动力的液化天然气(LNG)生产系统。The object of the present invention is to provide a gas-supercritical carbon dioxide combined power liquefied natural gas (LNG) that can improve the overall efficiency of the system and can provide new ideas for the use of supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle. LNG) production system.
本发明采用如下技术方案来实现的:The present invention adopts following technical scheme to realize:
一种燃气-超临界二氧化碳联合循环的液化天然气生产系统,包括燃气轮机发电系统、超临界二氧化碳布雷顿动力循环发电系统和天然气液化生产系统;其中,A gas-supercritical carbon dioxide combined cycle liquefied natural gas production system, including a gas turbine power generation system, a supercritical carbon dioxide Brayton power cycle power generation system and a natural gas liquefaction production system; wherein,
所述的燃气轮机发电系统包括压缩机组,压缩机组的压缩空气出口与燃烧器的压缩空气入口连接,燃烧器的燃料入口与净化天然气压缩系统的出口相连接,净化天然气压缩系统的入口与天然气干燥器的供燃机天然气用气出口连接;燃烧器的出口与燃气透平的进口连接,燃气透平的出口与换热器组的进口连接;The gas turbine power generation system includes a compressor unit, the compressed air outlet of the compressor unit is connected to the compressed air inlet of the burner, the fuel inlet of the burner is connected to the outlet of the purified natural gas compression system, and the inlet of the purified natural gas compression system is connected to the natural gas drier The outlet of the natural gas for the combustion engine is connected; the outlet of the burner is connected to the inlet of the gas turbine, and the outlet of the gas turbine is connected to the inlet of the heat exchanger group;
所述的超临界二氧化碳布雷顿动力循环发电系统包括换热器组,换热器组的出口与超临界二氧化碳透平的进口相连,超临界二氧化碳透平的出口与高温回热器的高温侧流体进口连通,高温回热器的高温侧流体出口与低温回热器的高温侧流体进口连通,低温回热器的高温侧流体出口分为两路,一路与预冷器的进口连通,另一路与再压缩机组的进口连通,预冷器的出口与主压缩机组的进口连通,主压缩机组的出口与低温回热器的低温侧流体进口连通,低温回热器的低温侧流体出口与再压缩机组的出口汇合后与高温回热器的低温侧流体进口连通,高温回热器的低温侧流体出口与换热器组的进口连通;The supercritical carbon dioxide Brayton power cycle power generation system includes a heat exchanger group, the outlet of the heat exchanger group is connected to the inlet of the supercritical carbon dioxide turbine, and the outlet of the supercritical carbon dioxide turbine is connected to the high temperature side fluid of the high temperature regenerator. The inlet is connected. The high temperature side fluid outlet of the high temperature regenerator is connected with the high temperature side fluid inlet of the low temperature regenerator. The inlet of the recompression unit is connected, the outlet of the precooler is connected with the inlet of the main compressor unit, the outlet of the main compressor unit is connected with the low temperature side fluid inlet of the low temperature regenerator, and the low temperature side fluid outlet of the low temperature regenerator is connected with the recompressor unit The outlets of the high temperature regenerator are connected to the low temperature side fluid inlet of the high temperature regenerator after confluence, and the low temperature side fluid outlet of the high temperature regenerator is connected to the inlet of the heat exchanger group;
所述的天然气液化装置系统包括分液罐,分液罐的出口通过管道与过滤器入口连接,过滤器的出口与脱CO2塔的进口连接,脱CO2塔的出口与天然气干燥器的入口连接,天然气干燥器的出口与中压丙烷换热器的入口连接,中压丙烷换热器的出口与低压丙烷换热器的入口连接,低压丙烷换热器出口与高压天然气分离器的入口连接,高压天然气分离器通过管道重新与低压丙烷换热器连接,作为液相返回的通道,高压天然气分离器的出口与乙烯换热器的进口连接,乙烯换热器的出口与中压LNG换热器的进口连接,中压LNG换热器的出口与中压天然气分离器连接,中压天然气分离器通过管道重新与中压LNG换热器连接,作为气相的回收通道,中压天然气分离器的出口与低压LNG换热器的进口连接,低压LNG换热器的出口与低压天然气分离器的进口连接,低压天然气分离器的出口与LNG储槽的进口连接,低压天然气分离器和LNG储槽通过管道与低压LNG换热器连接,低压LNG换热器通过管道与中压LNG换热器连接。The natural gas liquefaction plant system includes a liquid separation tank, the outlet of the liquid separation tank is connected to the inlet of the filter through a pipeline, the outlet of the filter is connected to the inlet of the de- CO tower, and the outlet of the de- CO tower is connected to the inlet of the natural gas drier Connection, the outlet of the natural gas dryer is connected to the inlet of the medium pressure propane heat exchanger, the outlet of the medium pressure propane heat exchanger is connected to the inlet of the low pressure propane heat exchanger, and the outlet of the low pressure propane heat exchanger is connected to the inlet of the high pressure natural gas separator , the high-pressure natural gas separator is reconnected with the low-pressure propane heat exchanger through pipelines, as a channel for the return of the liquid phase, the outlet of the high-pressure natural gas separator is connected with the inlet of the ethylene heat exchanger, and the outlet of the ethylene heat exchanger exchanges heat with the medium-pressure LNG The inlet of the medium-pressure LNG heat exchanger is connected to the medium-pressure natural gas separator, and the medium-pressure natural gas separator is reconnected to the medium-pressure LNG heat exchanger through pipelines as a recovery channel for the gas phase. The outlet is connected to the inlet of the low-pressure LNG heat exchanger, the outlet of the low-pressure LNG heat exchanger is connected to the inlet of the low-pressure natural gas separator, the outlet of the low-pressure natural gas separator is connected to the inlet of the LNG storage tank, and the low-pressure natural gas separator and the LNG storage tank pass through The pipeline is connected to the low-pressure LNG heat exchanger, and the low-pressure LNG heat exchanger is connected to the medium-pressure LNG heat exchanger through the pipeline.
本发明进一步的改进在于,所述的燃气-超临界二氧化碳布雷顿联合循环中的燃气轮机发电系统,燃气透平后设置有换热器组,实现燃气与超临界二氧化碳再压缩布雷顿循环之间的能量传递。The further improvement of the present invention is that, in the gas turbine power generation system in the gas-supercritical carbon dioxide Brayton combined cycle, a heat exchanger group is arranged behind the gas turbine to realize the conversion between the gas gas and the supercritical carbon dioxide recompression Brayton cycle. energy transfer.
本发明进一步的改进在于,所述的燃气-超临界二氧化碳布雷顿联合循环中的超临界二氧化碳布雷顿动力循环发电系统使用超临界二氧化碳为工质,且为避免布雷顿循环中换热器出现夹点,影响换热,降低循环效率,系统中的超临界二氧化碳布雷顿动力循环中采用两个回热器,循环系统中具有高温回热器和低温回热器。The further improvement of the present invention is that the supercritical carbon dioxide Brayton power cycle power generation system in the gas-supercritical carbon dioxide Brayton combined cycle uses supercritical carbon dioxide as the working medium, and in order to avoid the heat exchanger in the Brayton cycle point, affecting heat transfer and reducing cycle efficiency, two regenerators are used in the supercritical carbon dioxide Brayton power cycle in the system, and the cycle system has a high-temperature regenerator and a low-temperature regenerator.
本发明进一步的改进在于,所述的燃气-超临界二氧化碳布雷顿联合循环中的超临界二氧化碳布雷顿动力循环发电系统使用超临界二氧化碳为工质,为充分利用二氧化碳在临界点附近密度较大、所需压缩功较小的优势,系统中的超临界二氧化碳布雷顿动力循环中采用分流再压缩循环,循环系统中具有主压缩机组和再压缩机组两台压缩机组。The further improvement of the present invention is that the supercritical carbon dioxide Brayton power cycle power generation system in the gas-supercritical carbon dioxide Brayton combined cycle uses supercritical carbon dioxide as a working medium, in order to make full use of carbon dioxide with a higher density near the critical point, The advantage of the required compression work is small. The supercritical carbon dioxide Brayton power cycle in the system adopts a split recompression cycle. The cycle system has two compressor units, the main compressor unit and the recompressor unit.
本发明进一步的改进在于,所述的低压丙烷换热器与高压天然气之间安装有第一节流阀,中压LNG换热器与中压天然气分离器之间安装有第二节流阀,低压LNG换热器与低压天然气分离器之间安装有第三节流阀,用以实现气液分离。The further improvement of the present invention is that a first throttle valve is installed between the low-pressure propane heat exchanger and the high-pressure natural gas, and a second throttle valve is installed between the medium-pressure LNG heat exchanger and the medium-pressure natural gas separator, A third throttle valve is installed between the low-pressure LNG heat exchanger and the low-pressure natural gas separator to realize gas-liquid separation.
本发明进一步的改进在于,经由净化天然气压缩系统压缩的天然气燃料和经由压缩机组压缩的空气在燃烧器中混合燃烧,形成高温燃气进入燃气透平做功,带动燃气轮机发电机组发电,燃气透平的排气进入换热器组进行换热,换热后的乏汽从烟囱排出;The further improvement of the present invention is that the natural gas fuel compressed by the purified natural gas compression system and the air compressed by the compressor unit are mixed and burned in the burner to form high-temperature gas and enter the gas turbine to do work, driving the gas turbine generator set to generate electricity, and the exhaust of the gas turbine The gas enters the heat exchanger group for heat exchange, and the exhaust steam after heat exchange is discharged from the chimney;
超临界二氧化碳透平出口的二氧化碳流体先进入高温回热器的高温侧进行放热,后进入低温回热器的高温侧进行热交换,而后,一部分流体直接通往再压缩机组被压缩;另一部分流体先经预冷器冷却后再进入主压缩机组压缩,然后通过低温回热器回热到与直接被再压缩机组压缩的流体相同的温度,混合后,一起再流经高温回热器、换热器组进行热交换,最后流入超临界二氧化碳透平做功,实现闭式循环;The carbon dioxide fluid at the outlet of the supercritical carbon dioxide turbine first enters the high-temperature side of the high-temperature regenerator for heat release, and then enters the high-temperature side of the low-temperature regenerator for heat exchange, and then part of the fluid is directly directed to the recompressor unit to be compressed; the other part The fluid is cooled by the pre-cooler before entering the main compressor unit for compression, and then reheated by the low-temperature regenerator to the same temperature as the fluid directly compressed by the re-compressor unit. After mixing, it flows through the high-temperature regenerator together to exchange The heater group performs heat exchange, and finally flows into the supercritical carbon dioxide turbine to do work, realizing a closed cycle;
其中,原料天然气进入天然气液化装置系统后,首先进入分液罐去除原料气中的液体,去除液体后的天然气随后进入过滤器过滤掉粒径大的液体和固体,过滤后的天然气进入脱CO2塔,用一乙醇胺法脱除CO2,脱CO2后的天然气用天然气分子筛干燥器进行脱水处理,净化后的天然气,一部分通过天然气干燥器的供燃机天然气用气出口进入净化天然气压缩系统,经压缩后供燃机使用,其余部分依次进入利用丙烷制冷循环的中压丙烷换热器和低压丙烷换热器,然后经过第一节流阀节流降温后,进入高压天然气分离器进行气液分离,液相返流,冷量回收,产生的气相依次经过乙烯换热器和中压LNG换热器冷却,冷却后,再经过第二节流阀进行节流降温,节流降温后进入中压天然气分离器,在中压天然气分离器中产生的液相进一步经低压LNG换热器冷却以及第三节流阀节流后进入低压天然气分离器,在低压天然气分离器中,气相返流,冷量回收,液相流入LNG储罐储存。Among them, after the raw natural gas enters the natural gas liquefaction plant system, it first enters the liquid separation tank to remove the liquid in the raw gas, and the natural gas after removing the liquid enters the filter to filter out the liquid and solid with large particle size, and the filtered natural gas enters the CO 2 removal The CO 2 tower is removed by the ethanolamine method, and the natural gas after CO 2 removal is dehydrated with a natural gas molecular sieve dryer, and part of the purified natural gas enters the purified natural gas compression system through the natural gas outlet of the natural gas dryer for the combustion engine. After being compressed, it is used by the combustion engine, and the rest enters the medium-pressure propane heat exchanger and the low-pressure propane heat exchanger that use the propane refrigeration cycle in turn, and then enters the high-pressure natural gas separator for gas-liquid separation after throttling and cooling through the first throttle valve. Separation, liquid phase reflux, cooling capacity recovery, the gas phase produced is cooled by the ethylene heat exchanger and the medium pressure LNG heat exchanger in turn, after cooling, it is throttled and cooled by the second throttle valve, and then enters the medium High-pressure natural gas separator. The liquid phase produced in the medium-pressure natural gas separator is further cooled by the low-pressure LNG heat exchanger and throttled by the third throttle valve, and then enters the low-pressure natural gas separator. In the low-pressure natural gas separator, the gas phase flows back. The cold energy is recovered, and the liquid phase flows into the LNG storage tank for storage.
本发明具有如下有益的技术效果:The present invention has following beneficial technical effect:
本发明使用天然气作为燃气轮机的燃料,对于燃气轮机的排气作为超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环发电系统的发电热源实现燃气-超临界二氧化碳(S-CO2)布雷顿(Brayton)联合循环,而燃气-超临界二氧化碳(S-CO2)布雷顿(Brayton)联合循环所生产的电力供应整个液化天然气(LNG)生产系统所需的电能。系统所生产的天然气,一部分作为燃气-超临界二氧化碳联合循环的燃料,供系统本身使用,其余的天然气液化为LNG供应输出,既提供了稳定的供电电源,又提高了系统的整体效率。综合了燃气轮机发电系统、超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环发电系统和天然气液化生产系统,提供稳定的供电系统,供应整个系统自身使用,同时生产的天然气一部分作为系统中燃气-蒸汽联合循环的燃料,其余液化为LNG供应输出,提高了系统效率,同时为超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环的运用以及液化天然气的生产提供了新的思路。The invention uses natural gas as the fuel of the gas turbine, and uses the exhaust gas of the gas turbine as the power generation heat source of the supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle power generation system to realize gas-supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) combined cycle, and the electricity produced by gas-supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) combined cycle supplies the electricity required by the entire liquefied natural gas (LNG) production system. Part of the natural gas produced by the system is used as fuel for the gas-supercritical carbon dioxide combined cycle for the system itself, and the rest of the natural gas is liquefied as LNG for supply and output, which not only provides a stable power supply, but also improves the overall efficiency of the system. Combining gas turbine power generation system, supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle power generation system and natural gas liquefaction production system, it provides a stable power supply system for the entire system itself, and at the same time, part of the natural gas produced is used as part of the system The fuel of the gas-steam combined cycle is liquefied into LNG supply and output, which improves the system efficiency and provides a new idea for the application of supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle and the production of liquefied natural gas .
附图说明Description of drawings
图1是本发明结构示意图;Fig. 1 is a structural representation of the present invention;
图中:1、压缩机组,2、燃烧器,3、燃气透平,4、燃气轮机发电机组,5、换热器组,6、高温回热器,7、低温回热器,8、预冷器,9、主压缩机组,10、再压缩机组,11、超临界二氧化碳透平,12、超临界二氧化碳透平发电机,13、分液罐,14、过滤器,15、脱CO2塔,16、天然气干燥器,17、中压丙烷换热器,18、低压丙烷换热器,19、第一节流阀,20、高压天然气分离器,21、乙炔换热器,22、中压LNG换热器,23、第二节流阀,24、中压天然气分离器,25、低压LNG换热器,26、第三节流阀,27、低压天然气分离器,28、LNG储罐,29、净化天然气压缩系统。In the figure: 1. Compressor unit, 2. Burner, 3. Gas turbine, 4. Gas turbine generator set, 5. Heat exchanger unit, 6. High temperature regenerator, 7. Low temperature regenerator, 8. Precooling Device, 9. Main compressor unit, 10. Recompressor unit, 11. Supercritical carbon dioxide turbine, 12. Supercritical carbon dioxide turbine generator, 13. Separator tank, 14. Filter, 15. CO removal tower, 16. Natural gas dryer, 17. Medium pressure propane heat exchanger, 18. Low pressure propane heat exchanger, 19. First throttle valve, 20. High pressure natural gas separator, 21. Acetylene heat exchanger, 22. Medium pressure LNG Heat exchanger, 23. Second throttle valve, 24. Medium pressure natural gas separator, 25. Low pressure LNG heat exchanger, 26. Third throttle valve, 27. Low pressure natural gas separator, 28. LNG storage tank, 29 , Purify natural gas compression system.
具体实施方式Detailed ways
参见图1,本发明一种燃气-超临界二氧化碳联合动力的液化天然气(LNG)生产系统;Referring to Fig. 1, the liquefied natural gas (LNG) production system of a kind of fuel gas-supercritical carbon dioxide combined power of the present invention;
所述的燃气轮机发电系统包括压缩机组1、燃烧器2、燃气透平3、燃气轮机发电机4和换热器5组,压缩机组1的气体出口与燃烧器2的入口连通,燃烧器2的燃料入口与净化天然气压缩系统29的出口相连通;经由净化天然气压缩系统29压缩的燃料和经由压缩机组1压缩的空气在燃烧器2中混合燃烧,形成高温燃气进入燃气透平3中做功,带动燃气轮机发电机4发电,燃气透平3的排气进入换热器组5进行换热,换热后从烟囱排出。The gas turbine power generation system includes a compressor unit 1, a combustor 2, a gas turbine 3, a gas turbine generator 4 and a heat exchanger 5 groups, the gas outlet of the compressor unit 1 communicates with the inlet of the burner 2, and the fuel of the burner 2 The inlet is connected to the outlet of the purified natural gas compression system 29; the fuel compressed by the purified natural gas compression system 29 and the air compressed by the compressor unit 1 are mixed and combusted in the burner 2 to form high-temperature gas that enters the gas turbine 3 to perform work and drive the gas turbine The generator 4 generates electricity, and the exhaust gas from the gas turbine 3 enters the heat exchanger group 5 for heat exchange, and is discharged from the chimney after heat exchange.
所述的超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环发电系统包括换热器组5、高温回热器6、低温回热器7、预冷器8、主压缩机组9、再压缩机组10、超临界二氧化碳透平11和超临界二氧化碳透平发电机12,换热器组5的出口与超临界二氧化碳透平11的进口相连,超临界二氧化碳透平11的出口与高温回热器6的高温侧流体进口连通,高温回热器6的高温侧流体出口与低温回热器7的高温侧流体进口连通,低温回热器7的高温侧流体出口分为两路,一路与预冷器8的进口连通,另一路与再压缩机组10的进口连通,预冷器8的出口与主压缩机组9的进口连通,主压缩机组9的出口与低温回热器7的低温侧流体进口连通,低温回热器7的低温侧流体出口与再压缩机组10的出口汇合后与高温回热器6的低温侧流体进口连通,高温回热器6的低温侧流体出口与换热器5的进口连通;超临界二氧化碳(S-CO2)透平11出口的二氧化碳流体先进入高温回热器6的高温侧进行放热,后进入低温回热器7的高温侧进行热交换,而后,一部分流体直接通往再压缩机组10被压缩;另一部分流体先流入预冷器8冷却后,再进入主压缩机组9进行压缩,然后通过低温回热器7的低温侧回热到与直接被再压缩机组10压缩的流体相同的温度,混合后一起再流经高温回热器6的低温侧、换热器组5进行热交换,最后流入超临界二氧化碳(S-CO2)透平11做功,超临界二氧化碳(S-CO2)透平11带动超临界二氧化碳透平发电机12发电,实现闭式循环。The supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle power generation system includes a heat exchanger group 5, a high temperature regenerator 6, a low temperature regenerator 7, a precooler 8, a main compressor unit 9, Recompressor group 10, supercritical carbon dioxide turbine 11 and supercritical carbon dioxide turbine generator 12, the outlet of heat exchanger group 5 is connected with the inlet of supercritical carbon dioxide turbine 11, and the outlet of supercritical carbon dioxide turbine 11 is connected with high temperature return The high-temperature side fluid inlet of the heater 6 is connected, the high-temperature side fluid outlet of the high-temperature regenerator 6 is connected with the high-temperature side fluid inlet of the low-temperature regenerator 7, and the high-temperature side fluid outlet of the low-temperature regenerator 7 is divided into two paths, and one path is connected with The inlet of the precooler 8 is connected, the other is connected with the inlet of the recompression unit 10, the outlet of the precooler 8 is connected with the inlet of the main compressor unit 9, and the outlet of the main compressor unit 9 is connected with the low temperature side fluid of the low temperature regenerator 7 The inlet is connected, the low-temperature side fluid outlet of the low-temperature regenerator 7 is connected with the outlet of the recompressor unit 10 after converging with the low-temperature side fluid inlet of the high-temperature regenerator 6, and the low-temperature side fluid outlet of the high-temperature regenerator 6 is connected with the heat exchanger 5 The inlet of the supercritical carbon dioxide (S-CO 2 ) turbine 11 outlet of the carbon dioxide fluid first enters the high-temperature side of the high-temperature regenerator 6 for heat release, and then enters the high-temperature side of the low-temperature regenerator 7 for heat exchange, and then, A part of the fluid is directly directed to the recompression unit 10 to be compressed; the other part of the fluid first flows into the precooler 8 to be cooled, then enters the main compressor unit 9 for compression, and then is reheated through the low temperature side of the low temperature regenerator 7 to be directly regenerated. The fluids compressed by the compressor unit 10 have the same temperature, and after being mixed, they flow together through the low temperature side of the high temperature regenerator 6 and the heat exchanger unit 5 for heat exchange, and finally flow into the supercritical carbon dioxide (S-CO 2 ) turbine 11 to perform work. The supercritical carbon dioxide (S-CO 2 ) turbine 11 drives the supercritical carbon dioxide turbine generator 12 to generate electricity, realizing a closed cycle.
所述的天然气液化装置系统包括依次连接的分液罐13、过滤器14、脱CO2塔15、天然气干燥器16、中压丙烷换热器17、低压丙烷换热器18、高压天然气分离器20、乙烯换热器21、中压LNG换热器22、中压天然气分离器24、低压LNG换热器25、低压天然气分离器27和LNG储槽28;原料天然气进入天然气液化装置系统后,首先进入分液罐13去除原料气中的液体,去除液体后的天然气然后进入过滤器14过滤掉粒径大的液体和固体,过滤后的天然气进入脱CO2塔15,用一乙醇胺(MEA)法脱除CO2,脱CO2后的天然气用天然气分子筛干燥器16进行脱水处理。净化后的天然气,一部分通过天然气干燥器16的供燃机天然气用气出口进入净化天然气压缩系统29,经压缩后供燃机使用,其余部分依次进入利用丙烷制冷循环的中压丙烷换热器17和低压丙烷换热器18,然后经过第一节流阀19节流降温后,进入高压天然气分离器20进行气液分离,液相返流,冷量回收,产生的气相依次经过乙烯换热器21和中压LNG换热器22冷却,冷却后,再经过第二节流阀23进行节流降温,节流降温后进入中压天然气分离器24,在中压天然气分离器24中产生的液相进一步经低压LNG换热器25冷却以及第三节流阀26节流后进入低压天然气分离器27,在低压天然气分离器27中,气相返流冷量回收,液相流入LNG储罐28储存。The natural gas liquefaction plant system includes a separatory tank 13, a filter 14, a CO removal tower 15, a natural gas drier 16, a medium-pressure propane heat exchanger 17, a low-pressure propane heat exchanger 18, and a high-pressure natural gas separator connected in sequence. 20. Ethylene heat exchanger 21, medium-pressure LNG heat exchanger 22, medium-pressure natural gas separator 24, low-pressure LNG heat exchanger 25, low-pressure natural gas separator 27, and LNG storage tank 28; after raw natural gas enters the natural gas liquefaction plant system, First enter the liquid separation tank 13 to remove the liquid in the feed gas, remove the natural gas after the liquid then enter the filter 14 to filter out the large liquid and solids, and the filtered natural gas enters the CO removal tower 15, and uses monoethanolamine (MEA) The natural gas after CO 2 removal is dehydrated by natural gas molecular sieve dryer 16. Part of the purified natural gas enters the purified natural gas compression system 29 through the natural gas outlet of the natural gas drier 16 for the combustion engine, and is compressed for use by the combustion engine, and the rest enters the medium-pressure propane heat exchanger 17 using the propane refrigeration cycle in turn. and the low-pressure propane heat exchanger 18, and then through the first throttle valve 19 to throttle and cool down, enter the high-pressure natural gas separator 20 for gas-liquid separation, the liquid phase reflows, the cooling capacity is recovered, and the gas phase generated passes through the ethylene heat exchanger 21 and the medium-pressure LNG heat exchanger 22 to cool, after cooling, throttling and cooling through the second throttle valve 23, and then entering the medium-pressure natural gas separator 24 after throttling and cooling, the liquid produced in the medium-pressure natural gas separator 24 The phase is further cooled by the low-pressure LNG heat exchanger 25 and throttled by the third throttle valve 26, and then enters the low-pressure natural gas separator 27. In the low-pressure natural gas separator 27, the gas-phase reflux cooling capacity is recovered, and the liquid phase flows into the LNG storage tank 28 for storage. .
本发明的超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环发电系统中,由于超临界二氧化碳(S-CO2)在一定的运行参数范围内密度较大且无相变,因此以超临界二氧化碳(S-CO2)为工质的压缩机组、气轮机等动力系统设备结构紧凑、体积较小,既节约成本,又节省空间。In the supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) power cycle power generation system of the present invention, because supercritical carbon dioxide (S-CO 2 ) has a relatively high density and no phase change within a certain range of operating parameters, it is Compressor units, gas turbines and other power system equipment with supercritical carbon dioxide (S-CO 2 ) as the working medium are compact in structure and small in size, which not only saves cost but also saves space.
超临界二氧化碳(S-CO2)布雷顿(Brayton)循环系统中,由于采用改进后的再压缩布雷顿循环,这样就避免了简单布雷顿(Brayton)循环出现的换热夹点,降低循环效率的现象,充分利用了超临界二氧化碳在其临界点附近密度较大、所需压缩功较小的优势。In the supercritical carbon dioxide (S-CO 2 ) Brayton (Brayton) cycle system, due to the improved recompression Brayton cycle, it avoids the heat exchange pinch point in the simple Brayton (Brayton) cycle and reduces the cycle efficiency. The phenomenon of supercritical carbon dioxide takes full advantage of the advantages of higher density near its critical point and less compression work required.
天然气液化装置系统中,可以充分利用天然气气井自身高压的特点(12MPa),以气体压力为能量,采取分离、脱水、脱CO2、脱重烃等预处理后,经过分级制冷、部分液化工艺,使天然气液化。该工艺与国外通常采用的“氮气+甲烷”混合制冷循环工艺相比,具有收率高、投资少、能耗低、运行费用低、运行可靠等特点。In the natural gas liquefaction plant system, the high pressure characteristics of the natural gas well (12MPa) can be fully utilized, and the gas pressure is used as energy. After pretreatments such as separation, dehydration, CO 2 removal, and heavy hydrocarbon removal, the staged refrigeration and partial liquefaction process are carried out. liquefy natural gas. Compared with the "nitrogen + methane" mixed refrigeration cycle process commonly used abroad, this process has the characteristics of high yield, low investment, low energy consumption, low operating cost, and reliable operation.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810444579.9A CN108661732A (en) | 2018-05-10 | 2018-05-10 | A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810444579.9A CN108661732A (en) | 2018-05-10 | 2018-05-10 | A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108661732A true CN108661732A (en) | 2018-10-16 |
Family
ID=63779022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810444579.9A Pending CN108661732A (en) | 2018-05-10 | 2018-05-10 | A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108661732A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109322743A (en) * | 2018-11-15 | 2019-02-12 | 中国华能集团清洁能源技术研究院有限公司 | A supercritical carbon dioxide power generation system and method for recovering natural gas waste heat |
CN109723557A (en) * | 2019-01-28 | 2019-05-07 | 华北电力大学 | Oxygen-combustion carbon dioxide power generation system with integrated solar methane dry reforming |
CN110953069A (en) * | 2019-12-17 | 2020-04-03 | 中国能源建设集团广东省电力设计研究院有限公司 | Multi-energy coupling power generation system of gas turbine power station |
CN111365130A (en) * | 2020-02-25 | 2020-07-03 | 山东大学 | Gas turbine waste heat utilization system and method utilizing LNG cold energy |
CN111577414A (en) * | 2020-05-19 | 2020-08-25 | 西安石油大学 | An LNG light hydrocarbon separation coupled with supercritical CO2 recompression Brayton/Karina combined cycle power generation system |
CN111648861A (en) * | 2020-04-20 | 2020-09-11 | 东南大学 | A mobile gas turbine power generation device coupled with supercritical CO2 cycle and LNG cold source |
CN112444099A (en) * | 2019-09-03 | 2021-03-05 | 中国石油化工股份有限公司 | Natural gas liquefaction equipment |
CN112483207A (en) * | 2020-12-10 | 2021-03-12 | 湖南大学 | Supercritical carbon dioxide circulation and double-effect absorption type power circulation combined power generation system |
CN113586187A (en) * | 2021-06-07 | 2021-11-02 | 浙江大学 | Rankine cycle system and Rankine cycle method |
WO2023024962A1 (en) * | 2021-08-26 | 2023-03-02 | 比亚迪股份有限公司 | Supercritical carbon dioxide cycle based power generation-brine lithium extraction coupling system |
CN116538432A (en) * | 2023-05-06 | 2023-08-04 | 彭桂云 | Centralized BOG and LNG gasification cold energy comprehensive utilization system and method |
CN116771450A (en) * | 2023-07-14 | 2023-09-19 | 华北电力大学 | Multi-energy control system and control method based on supercritical CO2 generator set |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104266454A (en) * | 2014-09-05 | 2015-01-07 | 西安交通大学 | Liquefied natural gas production system with gas-supercritical carbon dioxide united power |
CN205279602U (en) * | 2015-12-02 | 2016-06-01 | 重庆耐德能源装备集成有限公司 | BOG recovery system |
CN105840258A (en) * | 2016-04-18 | 2016-08-10 | 西安交通大学 | Combined power generation system for gradient utilization of wind energy, fuel gas and supercritical carbon dioxide energy |
CN106930834A (en) * | 2017-05-12 | 2017-07-07 | 上海博翎能源科技有限公司 | A kind of energy-saving distributing-supplying-energy system based on liquefied natural gas |
-
2018
- 2018-05-10 CN CN201810444579.9A patent/CN108661732A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104266454A (en) * | 2014-09-05 | 2015-01-07 | 西安交通大学 | Liquefied natural gas production system with gas-supercritical carbon dioxide united power |
CN205279602U (en) * | 2015-12-02 | 2016-06-01 | 重庆耐德能源装备集成有限公司 | BOG recovery system |
CN105840258A (en) * | 2016-04-18 | 2016-08-10 | 西安交通大学 | Combined power generation system for gradient utilization of wind energy, fuel gas and supercritical carbon dioxide energy |
CN106930834A (en) * | 2017-05-12 | 2017-07-07 | 上海博翎能源科技有限公司 | A kind of energy-saving distributing-supplying-energy system based on liquefied natural gas |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109322743A (en) * | 2018-11-15 | 2019-02-12 | 中国华能集团清洁能源技术研究院有限公司 | A supercritical carbon dioxide power generation system and method for recovering natural gas waste heat |
CN109723557A (en) * | 2019-01-28 | 2019-05-07 | 华北电力大学 | Oxygen-combustion carbon dioxide power generation system with integrated solar methane dry reforming |
CN109723557B (en) * | 2019-01-28 | 2023-08-01 | 华北电力大学 | Oxygen-enriched combustion carbon dioxide power generation system integrating solar methane dry reforming |
CN112444099A (en) * | 2019-09-03 | 2021-03-05 | 中国石油化工股份有限公司 | Natural gas liquefaction equipment |
CN112444099B (en) * | 2019-09-03 | 2022-05-17 | 中国石油化工股份有限公司 | Natural gas liquefaction equipment |
CN110953069A (en) * | 2019-12-17 | 2020-04-03 | 中国能源建设集团广东省电力设计研究院有限公司 | Multi-energy coupling power generation system of gas turbine power station |
CN111365130B (en) * | 2020-02-25 | 2021-06-04 | 山东大学 | A gas turbine waste heat utilization system and method using LNG cold energy |
CN111365130A (en) * | 2020-02-25 | 2020-07-03 | 山东大学 | Gas turbine waste heat utilization system and method utilizing LNG cold energy |
CN111648861A (en) * | 2020-04-20 | 2020-09-11 | 东南大学 | A mobile gas turbine power generation device coupled with supercritical CO2 cycle and LNG cold source |
CN111577414A (en) * | 2020-05-19 | 2020-08-25 | 西安石油大学 | An LNG light hydrocarbon separation coupled with supercritical CO2 recompression Brayton/Karina combined cycle power generation system |
CN112483207A (en) * | 2020-12-10 | 2021-03-12 | 湖南大学 | Supercritical carbon dioxide circulation and double-effect absorption type power circulation combined power generation system |
CN113586187A (en) * | 2021-06-07 | 2021-11-02 | 浙江大学 | Rankine cycle system and Rankine cycle method |
WO2023024962A1 (en) * | 2021-08-26 | 2023-03-02 | 比亚迪股份有限公司 | Supercritical carbon dioxide cycle based power generation-brine lithium extraction coupling system |
US12305259B2 (en) | 2021-08-26 | 2025-05-20 | Byd Company Limited | Coupling system of supercritical carbon dioxide cycle power generation and lithium extraction from brine |
CN116538432A (en) * | 2023-05-06 | 2023-08-04 | 彭桂云 | Centralized BOG and LNG gasification cold energy comprehensive utilization system and method |
CN116771450A (en) * | 2023-07-14 | 2023-09-19 | 华北电力大学 | Multi-energy control system and control method based on supercritical CO2 generator set |
CN116771450B (en) * | 2023-07-14 | 2024-01-23 | 华北电力大学 | Multi-energy control system based on supercritical CO2 generator set |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108661732A (en) | A kind of liquefied natural gas (LNG) production system of combustion gas-supercritical carbon dioxide combined power | |
CN207862275U (en) | Cold, heat and power triple supply system based on the comprehensive utilization of coking tail gas | |
CN104266454A (en) | Liquefied natural gas production system with gas-supercritical carbon dioxide united power | |
CN103967648B (en) | A kind of marine low speed diesel residual heat comprehensive recovery system | |
CN111121390B (en) | A method for using a liquefied air energy storage power generation system coupled with a steam-water system of a coal-fired generator set | |
CN102102586B (en) | Peak load power generation device | |
CN115750009B (en) | Energy storage power peak regulation system for carbon capture and liquefied natural gas cold energy utilization and operation method | |
CN216665760U (en) | Gas turbine-ORC combined cycle and intake air cooling power generation system and device | |
CN108374720A (en) | A kind of IGCC power generation system of coal gas-supercritical carbon dioxide recompression cycle | |
CN111810297A (en) | A gas supercritical carbon dioxide combined cycle power generation system and operation method based on LNG cold source | |
CN116006292A (en) | Liquefied air energy storage system coupling LNG cold energy, ORC technology and natural heat source and working method of liquefied air energy storage system | |
CN105115245A (en) | System device for trapping liquefied carbon dioxide by using cold energy of liquefied natural gas and method of device | |
CN103060036A (en) | Coal bed gas liquefaction method and coal bed gas liquefaction system | |
CN102212396A (en) | Coal gasification Fischer-Tropsch synthesis fuel cogeneration system and method with CO2 capture | |
CN108412613A (en) | A kind of biogas-supercritical carbon dioxide recompression cycle generating system | |
Wu et al. | Energy, exergy, economic, exergoeconomic, and exergoenvironmental (5E) analyses and optimization of a novel three‐stage cascade system based on liquefied natural gas cold energy | |
CN108252757B (en) | Multistage compression cycle power generation method adopting supercritical carbon dioxide | |
CN217129645U (en) | A High Temperature Gas Turbine-Kalina Combined Cycle Power Plant | |
CN115199367A (en) | Power generation system and method based on coupling zero-energy-consumption carbon dioxide capture of chemical reinjection natural gas reforming gas turbine | |
CN113864017B (en) | Kalina-organic Rankine combined cycle power generation system utilizing LNG cold energy and geothermal energy | |
CN201202536Y (en) | A recovery device for the pressure energy of the natural gas pipeline network in the field of gas turbine work | |
CN114776392A (en) | System and method for generating power based on integrated coal gasification and complete carbon capture cycle | |
CN212642880U (en) | A gas supercritical carbon dioxide combined cycle power generation system based on LNG cold source | |
Shu et al. | Thermo-economic analysis and multi-objective optimization of cryogenic CO2 capture systems based on liquefied natural gas cold energy utilization | |
CN109282575B (en) | Follow-on hydrogen mixed working medium waste heat utilization system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181016 |
|
RJ01 | Rejection of invention patent application after publication |