[go: up one dir, main page]

CN108570553A - 一种基于应变振型的振动时效激振频率的确定方法 - Google Patents

一种基于应变振型的振动时效激振频率的确定方法 Download PDF

Info

Publication number
CN108570553A
CN108570553A CN201810282496.4A CN201810282496A CN108570553A CN 108570553 A CN108570553 A CN 108570553A CN 201810282496 A CN201810282496 A CN 201810282496A CN 108570553 A CN108570553 A CN 108570553A
Authority
CN
China
Prior art keywords
frequency
vibration
component
strain
excitation frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810282496.4A
Other languages
English (en)
Other versions
CN108570553B (zh
Inventor
顾邦平
严小兰
胡雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Maritime University
Original Assignee
Shanghai Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Maritime University filed Critical Shanghai Maritime University
Priority to CN201810282496.4A priority Critical patent/CN108570553B/zh
Publication of CN108570553A publication Critical patent/CN108570553A/zh
Application granted granted Critical
Publication of CN108570553B publication Critical patent/CN108570553B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

基于应变振型的振动时效激振频率的确定方法,包括获取构件的表面残余应力分布状态;推导应变振型与位移振型的关系,建立应变振型的控制方程;采用有限元软件建立构件的有限元模型,对构件进行数值模态分析;获取构件的各阶应变振型和固有频率;确定振动时效的激振频率f0;以(f0‑f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1。本发明提出的基于应变振型的振动时效激振频率的确定方法确定的激振频率是以构件表面的残余应力分布为依据,共振应变函数为准则的,有利于获得较为理想的振动时效效果。

Description

一种基于应变振型的振动时效激振频率的确定方法
技术领域
本发明涉及振动时效技术领域,特指一种基于应变振型的振动时效激振频率的确定方法。
技术背景
消除构件加工制造过程中的残余应力是机械制造工业领域中的一项重要研究课题。振动时效技术因为具有设备简单、处理时间短、处理效果好等特点而成为备受关注的残余应力消除技术。国内外专家学者已经对振动时效工艺和理论开展了深入的研究,并取得了丰富的理论成果和应用实例。通过国内外专家学者的研究发现,影响振动时效效果的关键工艺参数主要包括:激振频率、激振振幅和激振时间。目前对于激振频率的选择主要采用扫频法,即对构件进行扫频振动,寻找构件振动幅值较大的共振频率,然后在其共振频率或者亚共振频率下进行振动时效处理。然而通过扫频法确定振动时效的激振频率时,通常并不考虑材料的残余应力分布状态以及振型的分布规律,极大地限制了振动时效消除残余应力的效果。针对扫频法确定振动时效激振频率存在的不足,本发明提出一种基于应变振型的振动时效激振频率的确定方法。
发明内容
针对扫频法确定振动时效激振频率存在的不足,本发明提出一种基于应变振型的振动时效激振频率的确定方法。
基于应变振型的振动时效激振频率的确定方法,包括以下步骤:
(1)、获取构件的表面残余应力分布状态;
(2)、推导应变振型与位移振型的关系,建立应变振型的控制方程;
(3)、采用有限元软件建立构件的有限元模型,对构件进行数值模态分析;
(4)、获取构件的各阶应变振型和固有频率;
(5)、在步骤(1)和(4)的基础上,确定振动时效的激振频率f0
(6)、以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1
步骤(2)中建立应变振型的控制方程过程为:以位移振型为基础,推导应变振型与位移振型的关系,建立应变振型的控制方程,为后续的数值模态分析奠定基础。一个典型的有限单元是由节点j,k,m和相应的连接直线来定义的,则该单元内任意一点的位移ui可以表示为
ui=Niai (1)
式中:Ni是基于节点位置事先给定的函数,称为形状函数矩阵,ai表示第i个单元所有节点位移组成的节点位移向量。
当已知单元内任意位置的位移,则相应的可以确定出单元内任意位置的应变εi,其表达式为
εi=Siui (2)
式中:Si为微分算子矩阵。若系统被划分为n个单元,则共有n个式(2)这样的方程,可以表示为
可以简写为
ε=Su (4)
式中:ε为n个单元的应变向量,u为n个单元的节点位移向量。式(4)建立的应变与位移的关系是在单元坐标系中建立的,考虑到各单元在连接节点上位移是连续变化的,则单元节点位移向量可以通过式(5)的坐标变换转换到总体坐标系中
u=Tug (5)
式中:T为坐标变换矩阵,ug为在总体坐标系中的节点位移向量。将式(5)代入到(4)中,可以得到总体坐标系中的应变方程为
采用有限元模型,在总体坐标系中,系统的无阻尼运动方程为
式中:üg为总体坐标系中的节点加速度向量,Fg为载荷向量。令Fg=Fmaxejωt,则节点的位移向量为ug=Umaxejωt,代入方程(7)可以得到
(Kg2M)Umax=Fmax (8)
采用模态叠加法,节点位移的响应可以表示为
式中:为固有位移振型矩阵,可以表示为矩阵Y可以表示为Y=diag[Y1Y2…Yn],其中Yr=(kr-ω2mr)-1,kr为第r阶模态刚度,可以表示为mr为第r阶模态质量,可以表示为
将方程(9)代入到方程(6)中,可以得到
对位移振型进行微分运算可以得到应变振型,而矩阵S为微分算子,因此ψ称为应变模态振型矩阵,ψr为第r阶应变模态振型,与第r阶位移模态振型相对应。从能量的角度,第r阶应变模态振型反应的是构件第r阶固有能量分布状态,与固有频率和位移模态振型一样也是反映构件固有特性的一个参数。
步骤(5)中,在步骤(1)和(4)的基础上,确定振动时效的激振频率f0包括以下步骤:
(5.1)、在步骤(1)的基础上,确定构件较大残余应力所在的区域;
(5.2)、在步骤(4)的基础上,确定应变振型较大应变所在的区域;
(5.3)、当应变振型较大应变所在的区域与构件较大残余应力所在的区域一致时,记录下该应变振型所对应的固有频率,并记为f0
步骤(6)中,以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1包括以下步骤:
(6.1)、扫频振动的初始激振频率f2设置为(f0-f0×20%)Hz,然后以10Hz为步长逐步增加扫频振动的频率;分别记录下每一激振频率时作用在构件上的振动幅值,得到振动幅值最大时的频率,并记为f21
(6.2)、扫频振动的初始激振频率设置为(f21-10)Hz,以1Hz为步长逐步增加扫频振动的频率;然后重复步骤(6.1)的过程,得到振动幅值最大时的频率,并记为f22,即为振动时效的激振频率f1
进一步,所述的有限元软件为ANSYS有限元软件。
本发明的技术构思是:通过本发明提出的方法确定的激振频率是以构件表面的残余应力分布为依据,共振应变函数ψr为准则的,有利于获得较为理想的振动时效效果。
本发明的有益效果如下:
1、传统的扫频振动法确定振动时效的激振频率是以0Hz为初始激振频率,而本发明通过采用有限元数值模拟的方式初步确定振动时效的激振频率,然后以此频率为基础,对构件进行扫频振动确定振动时效的激振频率,能够减少扫频振动的时间,提高振动时效的工作效率。
2、传统的扫频振动法确定振动时效的激振频率时并不考虑构件的残余应力分布状态,而本发明提出的基于应变振型的振动时效激振频率的确定方法,是以构件表面的残余应力分布状态为基础,并结合构件的应变振型,这样确定的激振频率能够提高振动时效的效果。
3、构件的应变振型相比于位移振型对构件的局部变化更加敏感,能够反映构件局部位置的能量变化情况,即反映构件局部位置的动应力分布情况,因此以应变振型为基础确定的构件振动时效激振频率能够提高振动时效的效果。
附图说明
图1基于应变振型的振动时效激振频率的确定方法的流程示意图。
图2模态分析构件示意图。
图3激光表面处理工艺的原理图。
图4残余应力测点示意图。
图5振动时效前后构件1#残余应力测试结果:(a)x轴向残余应力;(b)y轴向残余应力。
图6振动时效前后构件2#残余应力测试结果:(a)x轴向残余应力;(b)y轴向残余应力。
图7无孔和有孔构件的低阶和高阶模态位移。
图8无孔和有孔构件的低阶和高阶模态应变。
具体实施方式
参照附图,进一步说明本发明:
基于应变振型的振动时效激振频率的确定方法,包括以下步骤:
(1)、获取构件的表面残余应力分布状态;
具体实施细节为:
实验中选用45#优质碳素结构钢来制备实验构件。实验构件(即数值模态分析的构件)的尺寸为230mm×210mm×6mm,如图2所示。为了使得构件的表面产生较大的拉伸残余应力,实验中采用激光表面处理工艺来产生残余应力,如图3所示。这种工艺是通过激光与构件相互作用区域快速的升温来改变构件的微观组织形态,构件的表面产生热损伤而产生初始拉伸残余应力。激光表面处理工艺在SLC-2030D龙门式CO2多功能激光加工机上展开,激光器的型号为Rofin SLAB DC030。
构件残余应力测点以及应变花粘贴方向如图4所示。实验中对试样的两个区域进行激光表面处理,每个激光热损伤区域的中心距离试样的边缘均为55mm。实验中选取14个测点用于评价振动前后试样的残余应力,其中测点1#~7#被分为一组,用于测试振动前试样的残余应力,测点1'#~7'#被分为另一组,用于测试振动后试样的残余应力。每一组测点对称的分布在垂直于垂直中心线的直线上,距离垂直中心线的距离分别为0mm、40mm、60mm、80mm,每组测点距离试样边缘的距离均为80mm。以测点4为例,其应变花的粘贴方向如图4所示,其余测点处应变花的粘贴方向与测点4处应变花的粘贴方向一致。通过应变仪测试试样钻孔处的释放应变ε1、ε2、ε3,并将释放应变代入如下的方程就可以求解出试样钻孔处x轴向和y轴向的残余应力σx和σy
式中:E为弹性模量、ν为泊松比;为等二轴向应力的校准系数、为剪切应力的校准系数。小孔法测量残余应力的装置包括:ZDL-II型小孔法测残余应力钻孔装置、YE2538程控静态应变仪、TJ120-1.5-φ1.5应变花。钻孔直径为2mm,钻孔深度也为2mm;根据小孔法测试标准,选取a为0.192,b为0.482。
振动时效处理前构件1#和2#残余应力测试结果如图5和图6所示。构件1#和构件2#振动时效前残余应力的测试结果表明,构件较大的残余应力区域为激光表面烧伤处理中心区域,随着远离激光表面烧伤中心区域距离的增加,残余应力则逐渐降低。
(2)、推导应变振型与位移振型的关系,建立应变振型的控制方程;
(3)、采用有限元软件建立构件的有限元模型,对构件进行数值模态分析;
具体实施细节为:
建立物理模型:数值模态分析的构件就是实验中采用的45#钢板状构件,长230mm,宽210mm、厚6mm,如图2所示。为了研究构件局部结构的变化对其位移振型和应变振型的影响,对两种结构的板状构件进行数值模态分析,其中板状构件1#的中心无通孔,称为无孔构件,另外一板状构件2#的中心有φ6mm的通孔,称为有孔构件。由于数值模态分析的构件三维几何模型相对简单,此处选择直接在ANSYS经典GUI界面中建立构件的三维几何模型。
材料设置:数值模态分析时需要用到45#钢的密度ρ、弹性模量E、泊松比ν,具体数值分别为ρ=7850kg/m3、E=200GPa、ν=0.28。
有限元模型:采用20节点的SOLID95单元对构件划分网格,建立其三维有限元模型。为了提高求解的精度,在试件的长度、宽度以及厚度三个方向设置单元划分的数目分别为55、45以及3,如图2所示。然后采用扫掠(Volume Sweep)的方式对构件划分网格,可以得到规则的网格,也可以提高求解的精度。另外,SOLID95单元具有中间节点,这将使得求解的结果更为精确。
求解方法:采用ANSYS模态分析模块中的Block Lanczos方法(分块兰索斯法)求解构件的位移模态振型和应变模态振型。Block Lanczos法特征值求解器是ANSYS模态分析模块中的默认求解器,采用的是Lanczos算法。这种算法不仅可以保证求解的精确性,更能提高求解的速度。
数值模态分析的结果为:无孔构件低阶模态振型(模态频率为572Hz);有孔构件低阶模态振型(模态频率为571Hz)。无孔构件高阶模态振型(模态频率为3231Hz);有孔构件高阶模态振型(模态频率为3229Hz)。无孔和有孔构件的低阶和高阶模态位移沿着图2所示的映射路径的分布规律见图7所示;无孔和有孔构件的低阶和高阶模态应变沿着图2所示的映射路径的分布规律见图8所示。从图7可见,无孔和有孔构件的低阶和高阶模态位移值基本是重叠在一起的,即使在钻孔处无孔和有孔构件的低阶和高阶模态位移值也没有明显的变化,表明位移振型对结构的局部变化并不敏感。从图8可见,无孔和有孔构件的低阶和高阶模态应变值在钻孔以外的地方基本是重叠在一起的,但是在钻孔处无孔和有孔构件的低阶和高阶模态应变值却发生了明显的突变,表明应变振型对结构的局部变化是敏感的,并且高阶模态应变值在钻孔处的突变更加明显,这也说明了为什么从应变振型的角度确定振动时效的激振频率。
(4)、获取构件的各阶应变振型和固有频率;
(5)、在步骤(1)和(4)的基础上,确定振动时效的激振频率f0
(6)、以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1
步骤(2)中建立应变振型的控制方程过程为:以位移振型为基础,推导应变振型与位移振型的关系,建立应变振型的控制方程,为后续的数值模态分析奠定基础。一个典型的有限单元是由节点j,k,m和相应的连接直线来定义的,则该单元内任意一点的位移ui可以表示为
ui=Niai (1)
式中:Ni是基于节点位置事先给定的函数,称为形状函数矩阵,ai表示第i个单元所有节点位移组成的节点位移向量。
当已知单元内任意位置的位移,则相应的可以确定出单元内任意位置的应变εi,其表达式为
εi=Siui (2)
式中:Si为微分算子矩阵。若系统被划分为n个单元,则共有n个式(2)这样的方程,可以表示为
可以简写为
ε=Su (4)
式中:ε为n个单元的应变向量,u为n个单元的节点位移向量。式(4)建立的应变与位移的关系是在单元坐标系中建立的,考虑到各单元在连接节点上位移是连续变化的,则单元节点位移向量可以通过式(5)的坐标变换转换到总体坐标系中
u=Tug (5)
式中:T为坐标变换矩阵,ug为在总体坐标系中的节点位移向量。将式(5)代入到(4)中,可以得到总体坐标系中的应变方程为
采用有限元模型,在总体坐标系中,系统的无阻尼运动方程为
式中:üg为总体坐标系中的节点加速度向量,Fg为载荷向量。令Fg=Fmaxejωt,则节点的位移向量为ug=Umaxejωt,代入方程(7)可以得到
(Kg2M)Umax=Fmax (8)
采用模态叠加法,节点位移的响应可以表示为
式中:为固有位移振型矩阵,可以表示为矩阵Y可以表示为Y=diag[Y1Y2…Yn],其中Yr=(kr2mr)-1,kr为第r阶模态刚度,可以表示为mr为第r阶模态质量,可以表示为
将方程(9)代入到方程(6)中,可以得到
对位移振型进行微分运算可以得到应变振型,而矩阵S为微分算子,因此ψ称为应变模态振型矩阵,ψr为第r阶应变模态振型,与第r阶位移模态振型相对应。从能量的角度,第r阶应变模态振型反应的是构件第r阶固有能量分布状态,与固有频率和位移模态振型一样也是反映构件固有特性的一个参数。
步骤(5)中,在步骤(1)和(4)的基础上,确定振动时效的激振频率f0包括以下步骤:
(5.1)、在步骤(1)的基础上,确定构件较大残余应力所在的区域;
(5.2)、在步骤(4)的基础上,确定应变振型较大应变所在的区域;
(5.3)、当应变振型较大应变所在的区域与构件较大残余应力所在的区域一致时,记录下该应变振型所对应的固有频率,并记为f0
具体实施细节为:
综合图5和图6振动时效处理前的构件残余应力测试结果以及图8的模态应变分析结果可知,高阶应变振型较大应变所在的区域能够覆盖构件较大残余应力所在的区域,因此振动时效的激振频率为3231Hz,即构件2#通过数值模态分析的方法确定的振动时效的激振频率为3231Hz。
为了验证本发明提出的方法能够提高振动时效效果的有效性,同时选取振动时效的激振频率为572Hz,即构件1#通过数值模态分析的方法确定的振动时效的激振频率为572Hz。
步骤(6)中,以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1包括以下步骤:
(6.1)、扫频振动的初始激振频率f2设置为(f0-f0×20%)Hz,然后以10Hz为步长逐步增加扫频振动的频率;分别记录下每一激振频率时作用在构件上的振动幅值,得到振动幅值最大时的频率,并记为f21
(6.2)、扫频振动的初始激振频率设置为(f21-10)Hz,以1Hz为步长逐步增加扫频振动的频率;然后重复步骤(6.1)的过程,得到振动幅值最大时的频率,并记为f22,即为振动时效的激振频率f1
具体实施细节:
对于构件1#设置初始激振频率为(572-572×20%)Hz,然后按照步骤(6.1)和步骤(6.2)的方法寻找到振动幅值最大的频率为717Hz。
对于构件2#设置初始激振频率为(3231-3231×20%),然后按照步骤(6.1)和步骤(6.2)的方法寻找到振动幅值最大的频率为3311Hz。
通过本发明提出的方法确定的振动时效激振频率对构件1#和构件2#进行振动时效处理。构件1#和构件2#振动时效处理后的残余应力测试结果如图5和图6所示。构件1#和构件2#振动时效处理后残余应力峰值消除率均较大,而对于残余应力较小的地方(远离激光表面烧伤中心区域),振动时效处理后残余应力的消除率相对较小。由图5可见,构件1#经过振动时效处理后其x轴向和y轴向峰值残余应力的释放量分别为106.8MPa和131.8MPa;由图6可见,构件2#经过振动时效处理后其x轴向和y轴向峰值残余应力的释放量分别为183.6MPa和226.1MPa,表明根据残余应力分布状态和应变振型分布规律,合理的选择振动时效的激振频率能够获得较为理想的振动时效消除残余应力效果。由图5和图6可见,构件2#具有更好的振后残余应力均化分布效果,表明根据残余应力分布状态和应变振型分布规律,合理的选择振动时效的激振频率,可以获得较为理想的振动时效均化残余应力效果。综上所述,对于构件进行振动时效处理时,需要根据构件表面的残余应力分布状态和应变振型分布规律,合理选取振动时效的激振频率,能够获得较为理想的振动时效消除和均化残余应力效果。
进一步,所述的有限元软件为ANSYS有限元软件。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (4)

1.基于应变振型的振动时效激振频率的确定方法,包括以下步骤:
(1)、获取构件的表面残余应力分布状态;
(2)、推导应变振型与位移振型的关系,建立应变振型的控制方程;
(3)、采用有限元软件建立构件的有限元模型,对构件进行数值模态分析;
(4)、获取构件的各阶应变振型和固有频率;
(5)、在步骤(1)和(4)的基础上,确定振动时效的激振频率f0
(6)、以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1
2.如权利要求1所述的基于应变振型的振动时效激振频率的确定方法,其特征在于:步骤(5)中,在步骤(1)和(4)的基础上,确定振动时效的激振频率f0包括以下步骤:
(5.1)、在步骤(1)的基础上,确定构件较大残余应力所在的区域;
(5.2)、在步骤(4)的基础上,确定应变振型较大应变所在的区域;
(5.3)、当应变振型较大应变所在的区域与构件较大残余应力所在的区域一致时,记录下该应变振型所对应的固有频率,并记为f0
3.如权利要求1所述的基于应变振型的振动时效激振频率的确定方法,其特征在于:步骤(6)中,以(f0-f0×20%)Hz为初始激振频率,对构件进行扫频振动,获取振动幅值最大时的频率作为振动时效的激振频率f1包括以下步骤:
(6.1)、扫频振动的初始激振频率f2设置为(f0-f0×20%)Hz,然后以10Hz为步长逐步增加扫频振动的频率;分别记录下每一激振频率时作用在构件上的振动幅值,得到振动幅值最大时的频率,并记为f21
(6.2)、扫频振动的初始激振频率设置为(f21-10)Hz,以1Hz为步长逐步增加扫频振动的频率;然后重复步骤(6.1)的过程,得到振动幅值最大时的频率,并记为f22,即为振动时效的激振频率f1
4.如权利要求1所述的基于应变振型的振动时效激振频率的确定方法,其特征在于:所述的有限元软件为ANSYS有限元软件。
CN201810282496.4A 2018-04-02 2018-04-02 一种基于应变振型的振动时效激振频率的确定方法 Expired - Fee Related CN108570553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810282496.4A CN108570553B (zh) 2018-04-02 2018-04-02 一种基于应变振型的振动时效激振频率的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810282496.4A CN108570553B (zh) 2018-04-02 2018-04-02 一种基于应变振型的振动时效激振频率的确定方法

Publications (2)

Publication Number Publication Date
CN108570553A true CN108570553A (zh) 2018-09-25
CN108570553B CN108570553B (zh) 2019-08-06

Family

ID=63573930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810282496.4A Expired - Fee Related CN108570553B (zh) 2018-04-02 2018-04-02 一种基于应变振型的振动时效激振频率的确定方法

Country Status (1)

Country Link
CN (1) CN108570553B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554532A (zh) * 2018-11-30 2019-04-02 湖北武铁山桥轨道装备有限公司 降低与均化道岔尖轨淬火后残余应力的振动时效方法
CN111325718A (zh) * 2020-01-23 2020-06-23 深圳大学 应变模态分析方法及相关装置
CN113190786A (zh) * 2021-05-13 2021-07-30 岳聪 一种大型旋转装备利用多维装配参数的振动预测方法
CN113836650A (zh) * 2021-08-30 2021-12-24 北京工业大学 一种基于激光追踪测量系统机械结构的模态分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889140A1 (de) * 1997-07-24 1999-01-07 VSR Martin Engineering GmbH Verfahren zum Betreiben einer Maschine für die Entspannung von Werkstücken
CN103488850A (zh) * 2013-10-15 2014-01-01 北京航空航天大学 一种热振复合残余应力定位均化的方法
CN104268342A (zh) * 2014-09-28 2015-01-07 中航工业哈尔滨轴承有限公司 一种基于有限元的轴承保持架的振动特性分析方法
CN105779755A (zh) * 2016-04-28 2016-07-20 上海海事大学 一种振动时效效果的定量化评价方法
CN106446443A (zh) * 2016-10-12 2017-02-22 西南交通大学 一种轨道扣件系统共振频率的识别方法及装置
CN107038270A (zh) * 2016-10-27 2017-08-11 华中科技大学 一种表面加工残余应力场引起的加工变形的计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889140A1 (de) * 1997-07-24 1999-01-07 VSR Martin Engineering GmbH Verfahren zum Betreiben einer Maschine für die Entspannung von Werkstücken
CN103488850A (zh) * 2013-10-15 2014-01-01 北京航空航天大学 一种热振复合残余应力定位均化的方法
CN104268342A (zh) * 2014-09-28 2015-01-07 中航工业哈尔滨轴承有限公司 一种基于有限元的轴承保持架的振动特性分析方法
CN105779755A (zh) * 2016-04-28 2016-07-20 上海海事大学 一种振动时效效果的定量化评价方法
CN106446443A (zh) * 2016-10-12 2017-02-22 西南交通大学 一种轨道扣件系统共振频率的识别方法及装置
CN107038270A (zh) * 2016-10-27 2017-08-11 华中科技大学 一种表面加工残余应力场引起的加工变形的计算方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554532A (zh) * 2018-11-30 2019-04-02 湖北武铁山桥轨道装备有限公司 降低与均化道岔尖轨淬火后残余应力的振动时效方法
CN109554532B (zh) * 2018-11-30 2020-10-09 湖北武铁山桥轨道装备有限公司 降低与均化道岔尖轨淬火后残余应力的振动时效方法
CN111325718A (zh) * 2020-01-23 2020-06-23 深圳大学 应变模态分析方法及相关装置
CN113190786A (zh) * 2021-05-13 2021-07-30 岳聪 一种大型旋转装备利用多维装配参数的振动预测方法
CN113190786B (zh) * 2021-05-13 2024-03-15 岳聪 一种大型旋转装备利用多维装配参数的振动预测方法
CN113836650A (zh) * 2021-08-30 2021-12-24 北京工业大学 一种基于激光追踪测量系统机械结构的模态分析方法
CN113836650B (zh) * 2021-08-30 2023-04-28 北京工业大学 一种基于激光追踪测量系统机械结构的模态分析方法

Also Published As

Publication number Publication date
CN108570553B (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
CN108570553B (zh) 一种基于应变振型的振动时效激振频率的确定方法
US5533399A (en) Method and apparatus for non-destructive measurement of elastic properties of structural materials
CN102689229B (zh) 基于响应耦合的刀尖点频响函数获取方法
CN101261155B (zh) 大型机械设备结构动态相似试验方法
CN104526465B (zh) 一种测量刀尖点振动位移的方法
CN104316388A (zh) 一种对各向异性材料结构件进行疲劳寿命测定的方法
Ratnaparkhi et al. Vibration analysis of composite plate
CN110795884A (zh) 一种基于多尺度模型更新的新型混合试验方法
CN103823406A (zh) 一种基于模态质量分布矩阵的数控机床敏感环节辨识方法
De La Torre et al. Numerical and experimental study of a nearby solid boundary and partial submergence effects on hydrofoil added mass
CN107679301A (zh) 一种分段式重载横梁缩比模型设计方法
CN105068504B (zh) 一种考虑结合部特性的电主轴系统建模方法
CN106768767A (zh) 一种基于频响函数的轴承座特性参数的测量系统及测量方法
CN105825029A (zh) 一种用于优化设计高频振动能量放大装置的方法
CN107657073A (zh) 一种三明治复合材料结构的参数识别方法
CN110348166B (zh) 一种玄武岩纤维树脂混凝土结合面的虚拟材料参数可视化识别方法
CN107097101A (zh) 基于机床主轴‑刀柄‑刀具模态耦合技术的切削力测量方法
CN106670824A (zh) 移动式定梁龙门框十字交叉形筋板的设计方法
Lal et al. Static response of laminated composite plates resting on elastic foundation with uncertain system properties
CN108620951B (zh) 一种介观尺寸刀具刀尖直接频响函数提取方法
CN111596611A (zh) 一种数控机床动力学特性测试分析系统
CN103471794A (zh) 一种水工混凝土结构自振频率识别的测试装置及方法
Kannamwar et al. Free vibration of marine rudder: theoretical and numerical analysis with experimental verification
Yang et al. A partition-of-unity based three-node triangular element with continuous nodal stress using radial-polynomial basis functions
Meera Experimental and numerical study on dynamic behavior of composite beams with different cross section

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190806

Termination date: 20210402

CF01 Termination of patent right due to non-payment of annual fee