CN108538921A - A kind of thin film transistor (TFT) and preparation method thereof, array substrate - Google Patents
A kind of thin film transistor (TFT) and preparation method thereof, array substrate Download PDFInfo
- Publication number
- CN108538921A CN108538921A CN201810380871.9A CN201810380871A CN108538921A CN 108538921 A CN108538921 A CN 108538921A CN 201810380871 A CN201810380871 A CN 201810380871A CN 108538921 A CN108538921 A CN 108538921A
- Authority
- CN
- China
- Prior art keywords
- electrode
- layer
- thin film
- insulation layer
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims description 5
- 239000010408 film Substances 0.000 claims description 141
- 238000009413 insulation Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 20
- 229920002120 photoresistant polymer Polymers 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 13
- 238000000059 patterning Methods 0.000 claims description 9
- 239000011810 insulating material Substances 0.000 claims description 7
- 238000001039 wet etching Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims 8
- OFIYHXOOOISSDN-UHFFFAOYSA-N tellanylidenegallium Chemical compound [Te]=[Ga] OFIYHXOOOISSDN-UHFFFAOYSA-N 0.000 claims 8
- 239000004020 conductor Substances 0.000 claims 4
- 230000005611 electricity Effects 0.000 claims 2
- 230000003628 erosive effect Effects 0.000 claims 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 description 50
- 239000002184 metal Substances 0.000 description 50
- 239000004065 semiconductor Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- -1 hydrogen ions Chemical class 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- LGQLWSVDRFRGCP-UHFFFAOYSA-N [Mo].[Nd] Chemical compound [Mo].[Nd] LGQLWSVDRFRGCP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- UBSJOWMHLJZVDJ-UHFFFAOYSA-N aluminum neodymium Chemical compound [Al].[Nd] UBSJOWMHLJZVDJ-UHFFFAOYSA-N 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明的实施例提供一种薄膜晶体管及其制备方法、阵列基板,涉及显示技术领域,可改善产生寄生电容的问题。一种薄膜晶体管,包括:依次设置于衬底上的底栅电极、第一栅绝缘层、有源层、第二栅绝缘层、顶栅电极、有机绝缘层和源电极、漏电极;所述底栅电极、所述第一栅绝缘层、所述第二栅绝缘层和所述顶栅电极位于所述源电极和所述漏电极之间;所述有源层包括位于所述第一栅绝缘层和所述第二栅绝缘层之间的沟道区、分别位于所述沟道区两侧的源极区和漏极区;所述源极区和所述漏极区由所述有机绝缘层支撑;所述源电极通过过孔与所述源极区接触,所述漏电极通过过孔与所述漏极区接触。
Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof, and an array substrate, which relate to the field of display technology and can improve the problem of parasitic capacitance. A thin film transistor, comprising: a bottom gate electrode, a first gate insulating layer, an active layer, a second gate insulating layer, a top gate electrode, an organic insulating layer, a source electrode, and a drain electrode arranged sequentially on a substrate; The bottom gate electrode, the first gate insulating layer, the second gate insulating layer and the top gate electrode are located between the source electrode and the drain electrode; the active layer includes The channel region between the insulating layer and the second gate insulating layer, the source region and the drain region respectively located on both sides of the channel region; the source region and the drain region are composed of the organic The insulating layer is supported; the source electrode is in contact with the source region through a via hole, and the drain electrode is in contact with the drain region through a via hole.
Description
技术领域technical field
本发明涉及显示技术领域,尤其涉及一种薄膜晶体管及其制备方法、阵列基板。The invention relates to the field of display technology, in particular to a thin film transistor, a preparation method thereof, and an array substrate.
背景技术Background technique
有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示器具有自发光、反应快、视角光、亮度高、轻薄等优点,被认为是下一代显示技术。由于OLED显示器依靠电流驱动,因此大的驱动电流是保证显示质量,提高分辨率的基础。Organic light-emitting diode (Organic Light-Emitting Diode, OLED) display has the advantages of self-luminescence, fast response, viewing angle light, high brightness, light and thin, etc., and is considered to be the next generation display technology. Since OLED displays are driven by current, a large driving current is the basis for ensuring display quality and improving resolution.
双栅结构薄膜晶体管(Thin Film Transistor,TFT)具有开态电流大、栅控能力强(亚阈特性较好)等优势,满足OLED显示器对驱动电流的要求,但存在较大的寄生电容。Double-gate thin film transistor (Thin Film Transistor, TFT) has the advantages of large on-state current, strong gate control ability (better subthreshold characteristics), etc., and meets the requirements of OLED display for driving current, but there is a large parasitic capacitance.
目前,双栅结构TFT,如图1所示,包括依次设置于衬底10的底栅电极20、底栅绝缘层31、有源层40、源电极51和漏电极52、顶栅绝缘层32和顶栅电极60;底栅绝缘层31和顶栅绝缘层32平铺于衬底上。At present, a TFT with a double gate structure, as shown in FIG. and the top gate electrode 60; the bottom gate insulating layer 31 and the top gate insulating layer 32 are tiled on the substrate.
发明内容Contents of the invention
本发明的实施例提供一种薄膜晶体管及其制备方法、阵列基板,可改善产生寄生电容的问题。Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof, and an array substrate, which can improve the problem of parasitic capacitance.
为达到上述目的,本发明的实施例采用如下技术方案:In order to achieve the above object, embodiments of the present invention adopt the following technical solutions:
第一方面,提供一种薄膜晶体管,包括:依次设置于衬底上的底栅电极、第一栅绝缘层、有源层、第二栅绝缘层、顶栅电极、有机绝缘层和源电极、漏电极;所述底栅电极、所述第一栅绝缘层、所述第二栅绝缘层和所述顶栅电极位于所述源电极和所述漏电极之间;所述有源层包括位于所述第一栅绝缘层和所述第二栅绝缘层之间的沟道区、分别位于所述沟道区两侧的源极区和漏极区;所述源极区和所述漏极区由所述有机绝缘层支撑;所述源电极通过过孔与所述源极区接触,所述漏电极通过过孔与所述漏极区接触。In a first aspect, a thin film transistor is provided, comprising: a bottom gate electrode, a first gate insulating layer, an active layer, a second gate insulating layer, a top gate electrode, an organic insulating layer, and a source electrode arranged sequentially on a substrate, drain electrode; the bottom gate electrode, the first gate insulating layer, the second gate insulating layer and the top gate electrode are located between the source electrode and the drain electrode; the active layer includes A channel region between the first gate insulating layer and the second gate insulating layer, a source region and a drain region respectively located on both sides of the channel region; the source region and the drain The region is supported by the organic insulating layer; the source electrode is in contact with the source region through a via hole, and the drain electrode is in contact with the drain region through a via hole.
可选的,所述薄膜晶体管还包括设置于所述底栅电极靠近所述衬底一侧且与所述底栅电极电连接的导电层、与所述源电极和所述漏电极同层的辅助电极;所述辅助电极分别与所述顶栅电极、所述导电层电连接;所述导电层在所述衬底上的正投影覆盖所述有源层在所述衬底上的正投影。Optionally, the thin film transistor further includes a conductive layer disposed on the side of the bottom gate electrode close to the substrate and electrically connected to the bottom gate electrode, and a conductive layer on the same layer as the source electrode and the drain electrode. Auxiliary electrodes; the auxiliary electrodes are respectively electrically connected to the top gate electrode and the conductive layer; the orthographic projection of the conductive layer on the substrate covers the orthographic projection of the active layer on the substrate .
进一步可选的,所述导电层为透明导电层;所述透明导电层与所述底栅电极直接接触。Further optionally, the conductive layer is a transparent conductive layer; the transparent conductive layer is in direct contact with the bottom gate electrode.
可选的,所述薄膜晶体管还包括设置于所述有机绝缘层靠近所述源电极和所述漏电极一侧的无机绝缘层;所述源电极通过贯穿所述有机绝缘层和所述无机绝缘层的过孔与所述源极区接触,所述漏电极通过贯穿所述有机绝缘层和所述无机绝缘层的过孔与所述漏极区接触。Optionally, the thin film transistor further includes an inorganic insulating layer disposed on the side of the organic insulating layer close to the source electrode and the drain electrode; the source electrode passes through the organic insulating layer and the inorganic insulating layer The via hole in the layer is in contact with the source region, and the drain electrode is in contact with the drain region through the via hole penetrating through the organic insulating layer and the inorganic insulating layer.
可选的,所述有机绝缘层的材料为黑色有机绝缘材料。Optionally, the material of the organic insulating layer is a black organic insulating material.
可选的,所述有源层的厚度在30~80nm范围内。Optionally, the thickness of the active layer is in the range of 30-80 nm.
第二方面,提供一种阵列基板,包括第一方面所述的薄膜晶体管。In a second aspect, an array substrate is provided, including the thin film transistor described in the first aspect.
第三方面,提供一种薄膜晶体管的制备方法,包括:在衬底上依次形成第一金属薄膜、第一栅绝缘薄膜、半导体薄膜、第二栅绝缘薄膜、第二金属薄膜、光刻胶;利用掩模板对所述光刻胶曝光,并显影后,使保留的光刻胶的形状与待形成有源层的图案一致;以光刻胶为阻挡,连续对所述第二金属薄膜、所述第二栅绝缘薄膜、所述半导体薄膜、所述第一栅绝缘薄膜和所述第一金属薄膜进行刻蚀;以光刻胶为阻挡,采用湿法刻蚀工艺,分别对所述第二栅绝缘薄膜、所述第一栅绝缘薄膜、所述第二金属薄膜和所述第一金属薄膜进行第二次刻蚀,使所述第二栅绝缘薄膜形成第二栅绝缘层、所述第一栅绝缘薄膜形成第一栅绝缘层、所述第二金属薄膜形成顶栅电极、所述第一金属薄膜形成底栅电极,且所述第二栅绝缘层、所述第一栅绝缘层、所述顶栅电极和所述底栅电极位于待形成的源电极和漏电极之间;对所述半导体薄膜超出所述第一栅绝缘层和所述第二栅绝缘层的部分进行导体化,形成有源层,所述有源层包括位于所述第一栅绝缘层和所述第二栅绝缘层之间的沟道层、分别位于所述沟道区两侧经导体化后的源极区和漏极区;去除光刻胶,并通过一次构图工艺形成有机绝缘层;所述源极区和所述漏极区由所述有机绝缘层支撑;通过一次构图工艺形成源电极和漏电极,所述源电极通过过孔与所述源极区接触,所述漏电极通过过孔与所述漏极区接触。In a third aspect, a method for preparing a thin film transistor is provided, comprising: sequentially forming a first metal film, a first gate insulating film, a semiconductor film, a second gate insulating film, a second metal film, and a photoresist on a substrate; Use a mask to expose the photoresist, and after developing, make the shape of the remaining photoresist consistent with the pattern of the active layer to be formed; using the photoresist as a barrier, continuously process the second metal thin film, the photoresist, Etching the second gate insulating film, the semiconductor film, the first gate insulating film, and the first metal film; using photoresist as a barrier, using a wet etching process, respectively The gate insulating film, the first gate insulating film, the second metal film and the first metal film are etched for the second time, so that the second gate insulating film forms a second gate insulating layer, the first A gate insulating film forms a first gate insulating layer, the second metal film forms a top gate electrode, the first metal film forms a bottom gate electrode, and the second gate insulating layer, the first gate insulating layer, The top gate electrode and the bottom gate electrode are located between the source electrode and the drain electrode to be formed; conductorizing the part of the semiconductor film beyond the first gate insulating layer and the second gate insulating layer, forming an active layer, the active layer comprising a channel layer located between the first gate insulating layer and the second gate insulating layer, and conductorized source electrodes respectively located on both sides of the channel region region and drain region; remove the photoresist, and form an organic insulating layer through a patterning process; the source region and the drain region are supported by the organic insulating layer; form a source electrode and a drain electrode through a patterning process , the source electrode is in contact with the source region through a via hole, and the drain electrode is in contact with the drain region through a via hole.
可选的,采用湿法刻蚀工艺,分别对所述第二栅绝缘薄膜、所述第一栅绝缘薄膜、所述第二金属薄膜和所述第一金属薄膜进行第二次刻蚀,使所述第二栅绝缘薄膜形成第二栅绝缘层、所述第一栅绝缘薄膜形成第一栅绝缘层、所述第二金属薄膜形成顶栅电极、所述第一金属薄膜形成底栅电极,包括:采用氢氟酸对所述第二栅绝缘薄膜和所述第一栅绝缘薄膜进行第二次刻蚀,使所述第二栅绝缘薄膜形成第二栅绝缘层、所述第一栅绝缘薄膜形成第一栅绝缘层;在形成所述第二栅绝缘层和所述第一栅绝缘层的基础上,对所述第二金属薄膜和所述第一金属薄膜进行刻蚀,使所述第二金属薄膜形成顶栅电极、所述第一金属薄膜形成底栅电极。Optionally, a wet etching process is used to etch the second gate insulating film, the first gate insulating film, the second metal film, and the first metal film respectively, so that The second gate insulating film forms a second gate insulating layer, the first gate insulating film forms a first gate insulating layer, the second metal film forms a top gate electrode, and the first metal film forms a bottom gate electrode, It includes: using hydrofluoric acid to etch the second gate insulating film and the first gate insulating film for the second time, so that the second gate insulating film forms a second gate insulating layer, the first gate insulating film thin film to form a first gate insulating layer; on the basis of forming the second gate insulating layer and the first gate insulating layer, the second metal film and the first metal film are etched, so that the The second metal film forms a top gate electrode, and the first metal film forms a bottom gate electrode.
基于此,对所述半导体薄膜超出所述第一栅绝缘层和所述第二栅绝缘层的部分进行导体化,形成有源层,包括:采用氢氟酸对所述第二栅绝缘薄膜和所述第一栅绝缘薄膜进行第二次刻蚀时,氢氟酸中的氢离子进入所述半导体薄膜超出所述第一栅绝缘层和所述第二栅绝缘层的部分,实现导体化,形成有源层。Based on this, performing conductorization on the part of the semiconductor film beyond the first gate insulating layer and the second gate insulating layer to form an active layer includes: using hydrofluoric acid to treat the second gate insulating film and the second gate insulating layer When the first gate insulating film is etched for the second time, hydrogen ions in hydrofluoric acid enter the part of the semiconductor film beyond the first gate insulating layer and the second gate insulating layer to realize conductorization, Form the active layer.
可选的,在形成所述第一金属薄膜之前,所述方法还包括:通过一次构图工艺形成透明导电层;所述第一金属薄膜直接形成于所述透明导电层上方;在形成所述源电极和所述漏电极的同时,所述方法还包括:形成辅助电极;所述辅助电极通过过孔与所述顶栅电极电连接,通过过孔与所述透明导电层电连接;所述透明导电层在所述衬底上的正投影覆盖所述有源层在所述衬底上的正投影。Optionally, before forming the first metal thin film, the method further includes: forming a transparent conductive layer through a patterning process; forming the first metal thin film directly above the transparent conductive layer; forming the source At the same time as the electrode and the drain electrode, the method also includes: forming an auxiliary electrode; the auxiliary electrode is electrically connected to the top gate electrode through a via hole, and is electrically connected to the transparent conductive layer through a via hole; the transparent The orthographic projection of the conductive layer on the substrate covers the orthographic projection of the active layer on the substrate.
本发明的实施例提供一种薄膜晶体管及其制备方法、阵列基板,通过使底栅电极、第一栅绝缘层、第二栅绝缘层和顶栅电极位于源电极和漏电极之间,而使有源层延伸至源电极和漏电极下方,并由有机绝缘层支撑,实现源电极和漏电极分别与有源层的接触,从而可实现薄膜晶体管的性能,且可改善产生寄生电容的问题。Embodiments of the present invention provide a thin film transistor, a manufacturing method thereof, and an array substrate, wherein the bottom gate electrode, the first gate insulating layer, the second gate insulating layer, and the top gate electrode are located between the source electrode and the drain electrode, so that The active layer extends below the source electrode and the drain electrode and is supported by the organic insulating layer, so that the source electrode and the drain electrode are respectively in contact with the active layer, so that the performance of the thin film transistor can be realized and the problem of parasitic capacitance can be improved.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为现有技术提供的一种薄膜晶体管的结构示意图;FIG. 1 is a schematic structural diagram of a thin film transistor provided by the prior art;
图2为本发明提供的一种薄膜晶体管的俯视示意图一;Fig. 2 is a top view schematic diagram 1 of a thin film transistor provided by the present invention;
图3为图2中AA′向剖视示意图一;Fig. 3 is a schematic sectional view of AA' in Fig. 2;
图4为本发明提供的一种薄膜晶体管的俯视示意图二;FIG. 4 is a schematic top view II of a thin film transistor provided by the present invention;
图5为图4中BB′向剖视示意图一;Fig. 5 is a schematic cross-sectional view of BB' in Fig. 4;
图6为图2中AA′向剖视示意图二;Fig. 6 is the second schematic cross-sectional view of AA' direction in Fig. 2;
图7为图4中BB′向剖视示意图二;Fig. 7 is the second schematic cross-sectional view of BB' direction in Fig. 4;
图8为本发明提供的一种薄膜晶体管制备方法的流程示意图;Fig. 8 is a schematic flow chart of a thin film transistor manufacturing method provided by the present invention;
图9(a)~9(f)为本发明提供的一种制备薄膜晶体管的过程示意图;9(a) to 9(f) are schematic diagrams of a process for preparing a thin film transistor provided by the present invention;
图10为对第二栅绝缘薄膜和第一栅绝缘薄膜进行第二次刻蚀,并对半导体薄膜超出第二栅绝缘薄膜和第一栅绝缘薄膜的部分进行导体化后的示意图。FIG. 10 is a schematic diagram after second etching is performed on the second gate insulating film and the first gate insulating film, and the portion of the semiconductor film beyond the second gate insulating film and the first gate insulating film is conductorized.
附图标记:Reference signs:
10-衬底;20-底栅电极;31-底栅绝缘层;32-顶栅绝缘层;40-有源层;41-沟道区;42-源极区;43-漏极区;51-源电极;52-漏电极;60-顶栅电极;71-第一栅绝缘层;72-第二栅绝缘层;81-有机绝缘层;82-无机绝缘层;90-(透明)导电层;100-光刻胶;200-第一金属薄膜;400-半导体薄膜;600-第二金属薄膜;710-第一栅绝缘薄膜;720-第二栅绝缘薄膜。10-substrate; 20-bottom gate electrode; 31-bottom gate insulating layer; 32-top gate insulating layer; 40-active layer; 41-channel region; 42-source region; 43-drain region; 51 -source electrode; 52-drain electrode; 60-top gate electrode; 71-first gate insulating layer; 72-second gate insulating layer; 81-organic insulating layer; 82-inorganic insulating layer; 90-(transparent) conductive layer 100-photoresist; 200-first metal film; 400-semiconductor film; 600-second metal film; 710-first gate insulating film; 720-second gate insulating film.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供一种薄膜晶体管,如图2和图3所示,包括:依次设置于衬底10上的底栅电极20、第一栅绝缘层71、有源层40、第二栅绝缘层72、顶栅电极60、有机绝缘层81和源电极51、漏电极52。An embodiment of the present invention provides a thin film transistor, as shown in FIG. 2 and FIG. 3 , comprising: a bottom gate electrode 20 , a first gate insulating layer 71 , an active layer 40 , a second gate insulating layer disposed on a substrate 10 in sequence. layer 72 , top gate electrode 60 , organic insulating layer 81 , source electrode 51 , and drain electrode 52 .
其中,底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60位于源电极51和漏电极52之间。Wherein, the bottom gate electrode 20 , the first gate insulating layer 71 , the second gate insulating layer 72 and the top gate electrode 60 are located between the source electrode 51 and the drain electrode 52 .
有源层40包括位于第一栅绝缘层71和第二栅绝缘层72之间的沟道区41、分别位于沟道区41两侧的源极区42和漏极区43;源极区42和漏极区43由有机绝缘层81支撑;源电极51通过过孔(图2中左侧虚线圈)与源极区42接触,漏电极52通过过孔(图2中右侧虚线圈)与漏极区43接触。The active layer 40 includes a channel region 41 located between the first gate insulating layer 71 and the second gate insulating layer 72, a source region 42 and a drain region 43 respectively located on both sides of the channel region 41; the source region 42 And the drain region 43 is supported by the organic insulating layer 81; the source electrode 51 is in contact with the source region 42 through the via hole (the dotted circle on the left side in Fig. The drain region 43 contacts.
本领域技术人员明白,为降低源电极51与源极区42、漏电极52与漏极区43的接触电阻,在形成有源层40时,需要对有源层40的除沟道区41以外进行导体化(也可称为金属化),从而在沟道区41两侧分别形成源极区42和漏极区43。Those skilled in the art understand that in order to reduce the contact resistance between the source electrode 51 and the source region 42, and the drain electrode 52 and the drain region 43, when forming the active layer 40, it is necessary to Perform conductorization (also referred to as metallization), so that a source region 42 and a drain region 43 are respectively formed on both sides of the channel region 41 .
底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60位于源电极51和漏电极52之间,即,底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60在衬底10上的正投影与源电极51和漏电极52在衬底10上的正投影无交叠。The bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 are located between the source electrode 51 and the drain electrode 52, that is, the bottom gate electrode 20, the first gate insulating layer 71, the second The orthographic projections of the gate insulating layer 72 and the top gate electrode 60 on the substrate 10 do not overlap with the orthographic projections of the source electrode 51 and the drain electrode 52 on the substrate 10 .
源极区42和漏极区43由有机绝缘层81支撑,即:源极区42和漏极区43超出底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60,而分别延伸至源电极51和漏电极52的下方。其中,底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60的尺寸可以相等并重叠。The source region 42 and the drain region 43 are supported by the organic insulating layer 81, that is, the source region 42 and the drain region 43 are beyond the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 , and extend to below the source electrode 51 and the drain electrode 52 respectively. Wherein, the sizes of the bottom gate electrode 20 , the first gate insulating layer 71 , the second gate insulating layer 72 and the top gate electrode 60 may be equal and overlapped.
在源电极51和漏电极52与有源层40之间只有有机绝缘层81的情况下,源电极51和漏电极52分别通过设置于有机绝缘层81上的过孔与有源层40的源极区42和漏极区43接触;在源电极51和漏电极52与有源层40之间除存在有机绝缘层81外,还存在其他绝缘层的情况下,源电极51和漏电极52分别通过贯穿有机绝缘层81和其他绝缘层上的过孔与有源层40的源极区42和漏极区43接触。In the case where there is only the organic insulating layer 81 between the source electrode 51 and the drain electrode 52 and the active layer 40, the source electrode 51 and the drain electrode 52 are respectively connected to the source of the active layer 40 through the via holes arranged on the organic insulating layer 81. The electrode region 42 is in contact with the drain region 43; in addition to the organic insulating layer 81, there are other insulating layers between the source electrode 51 and the drain electrode 52 and the active layer 40, the source electrode 51 and the drain electrode 52 are respectively The source region 42 and the drain region 43 of the active layer 40 are in contact with the via holes penetrating through the organic insulating layer 81 and other insulating layers.
基于本发明实施例的所述薄膜晶体管的结构,第一栅绝缘层71和第二栅绝缘层72的尺寸由设定的沟道区41尺寸决定。Based on the structure of the TFT in the embodiment of the present invention, the size of the first gate insulating layer 71 and the second gate insulating layer 72 is determined by the set size of the channel region 41 .
本发明实施例提供一种薄膜晶体管,通过使底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60位于源电极51和漏电极52之间,而使有源层40延伸至源电极51和漏电极52下方,并由有机绝缘层81支撑,实现源电极51和漏电极52分别与有源层40的接触,从而可实现薄膜晶体管的性能,且可改善产生寄生电容的问题。An embodiment of the present invention provides a thin film transistor, by making the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 be located between the source electrode 51 and the drain electrode 52, so that the active The layer 40 extends to below the source electrode 51 and the drain electrode 52, and is supported by the organic insulating layer 81, so that the source electrode 51 and the drain electrode 52 are respectively in contact with the active layer 40, so that the performance of the thin film transistor can be realized, and the production can be improved. The problem of parasitic capacitance.
可选的,如图4和图5所示,所述薄膜晶体管还包括设置于底栅电极20靠近衬底10一侧且与底栅电极20电连接的导电层90、与源电极51和漏电极52同层的辅助电极53;辅助电极53分别与顶栅电极60、导电层90电连接;导电层90在衬底10上的正投影覆盖有源层40在衬底10上的正投影。Optionally, as shown in FIG. 4 and FIG. 5 , the thin film transistor further includes a conductive layer 90 disposed on the side of the bottom gate electrode 20 close to the substrate 10 and electrically connected to the bottom gate electrode 20 , and connected to the source electrode 51 and the drain electrode 90 . Auxiliary electrode 53 on the same layer as electrode 52 ; auxiliary electrode 53 is electrically connected to top gate electrode 60 and conductive layer 90 respectively; the orthographic projection of conductive layer 90 on substrate 10 covers the orthographic projection of active layer 40 on substrate 10 .
即,通过导电层90和辅助电极53,将顶栅电极60和底栅电极20电连接,实现顶栅电极60和底栅电极20等电位。辅助电极53通过过孔与导电层90电连接,辅助电极53通过过孔与顶栅电极60电连接。That is, the top gate electrode 60 and the bottom gate electrode 20 are electrically connected through the conductive layer 90 and the auxiliary electrode 53 , so that the top gate electrode 60 and the bottom gate electrode 20 are equipotentially realized. The auxiliary electrode 53 is electrically connected to the conductive layer 90 through the via hole, and the auxiliary electrode 53 is electrically connected to the top gate electrode 60 through the via hole.
其中,由于有源层40延伸至源电极51和漏电极52下方的源极区42和漏极区43由有机绝缘层81支撑,使得在源电极51、漏电极52与导电层90之间存在有机绝缘层81,因而,在设置导电层90的情况下,有机绝缘层81还可起到降低源电极51和漏电极52与导电层90寄生电容的作用。Wherein, since the active layer 40 extends to the source region 42 and the drain region 43 under the source electrode 51 and the drain electrode 52 are supported by the organic insulating layer 81, so that there is an The organic insulating layer 81 , therefore, when the conductive layer 90 is provided, the organic insulating layer 81 can also reduce the parasitic capacitance between the source electrode 51 and the drain electrode 52 and the conductive layer 90 .
需要说明的是,底栅电极20与导电层90的电连接,不限于图5中示意的直接接触而电连接,可以是通过过孔电连接。It should be noted that the electrical connection between the bottom gate electrode 20 and the conductive layer 90 is not limited to the direct contact shown in FIG. 5 , but may be through a via hole.
本发明实施例中,导电层90的设置,一方面,可配合辅助电极53使顶栅电极60和底栅电极20电连接,另一方面,可作为遮光层,起到遮挡环境光的效果。In the embodiment of the present invention, the arrangement of the conductive layer 90, on the one hand, can cooperate with the auxiliary electrode 53 to electrically connect the top gate electrode 60 and the bottom gate electrode 20; on the other hand, it can be used as a light-shielding layer to block ambient light.
进一步优选的,导电层90为透明导电层;透明导电层与底栅电极20直接接触。即,底栅电极20直接形成于透明导电层上。Further preferably, the conductive layer 90 is a transparent conductive layer; the transparent conductive layer is in direct contact with the bottom gate electrode 20 . That is, the bottom gate electrode 20 is directly formed on the transparent conductive layer.
其中,透明导电层的材料可以采用透明导电氧化物材料,如ITO(氧化铟锡)、IZO(氧化铟锌)等。Wherein, the material of the transparent conductive layer may be a transparent conductive oxide material, such as ITO (indium tin oxide), IZO (indium zinc oxide) and the like.
需要说明的是,当导电层90为透明导电层时,其可吸收环境光和面板内部短波长光线,因此,透明导电层也可作为遮光层。其中,当导电层90为金属导电层时,金属导电层通过反射环境光来实现遮挡环境光的效果,而当导电层90为透明导电层,其通过吸收环境光来实现遮挡环境光的效果。It should be noted that when the conductive layer 90 is a transparent conductive layer, it can absorb ambient light and short-wavelength light inside the panel. Therefore, the transparent conductive layer can also serve as a light-shielding layer. Wherein, when the conductive layer 90 is a metal conductive layer, the metal conductive layer realizes the effect of blocking ambient light by reflecting ambient light, and when the conductive layer 90 is a transparent conductive layer, it realizes the effect of blocking ambient light by absorbing ambient light.
本发明实施例,相对将导电层90设置为金属导电层,将导电层90设置为透明导电层,在刻蚀形成底栅电极20时,可无需考虑对导电层90的影响。In the embodiment of the present invention, compared with setting the conductive layer 90 as a metal conductive layer, the conductive layer 90 is set as a transparent conductive layer, and it is not necessary to consider the influence on the conductive layer 90 when forming the bottom gate electrode 20 by etching.
可选的,如图6和图7所示,所述薄膜晶体管还包括设置于有机绝缘层81靠近源电极51和漏电极52一侧的无机绝缘层82;源电极51通过贯穿有机绝缘层81和无机绝缘层82的过孔与源极区42接触,漏电极52通过贯穿有机绝缘层81和无机绝缘层82的过孔与漏极区43接触。Optionally, as shown in FIGS. 6 and 7 , the thin film transistor further includes an inorganic insulating layer 82 disposed on the side of the organic insulating layer 81 close to the source electrode 51 and the drain electrode 52; the source electrode 51 passes through the organic insulating layer 81 The via hole with the inorganic insulating layer 82 is in contact with the source region 42 , and the drain electrode 52 is in contact with the drain region 43 through the via hole penetrating through the organic insulating layer 81 and the inorganic insulating layer 82 .
其中,无机绝缘层82的材料例如可以为SiOx(氧化硅)和/或SiNx(氮化硅)等。Wherein, the material of the inorganic insulating layer 82 may be, for example, SiO x (silicon oxide) and/or SiN x (silicon nitride) and the like.
考虑到有机绝缘材料的绝缘性较无机绝缘的绝缘性差,因此,为降低源电极51和漏电极52与顶栅电极60的短路风险,在有机绝缘层81与源电极51和漏电极52之间设置无机绝缘层82。Considering that the insulation of organic insulating materials is worse than that of inorganic insulation, in order to reduce the risk of short circuit between source electrode 51 and drain electrode 52 and top gate electrode 60, between organic insulating layer 81 and source electrode 51 and drain electrode 52 An inorganic insulating layer 82 is provided.
可选的,有机绝缘层81的材料为黑色有机绝缘材料。Optionally, the material of the organic insulating layer 81 is a black organic insulating material.
相比于有机绝缘层81采用透明有机材料,当有机绝缘层81的材料为黑色有机绝缘材料,还可起到遮光作用,从远离衬底10一侧对有源层40起到保护作用。Compared with the transparent organic material used for the organic insulating layer 81 , when the material of the organic insulating layer 81 is a black organic insulating material, it can also play a light-shielding function and protect the active layer 40 from the side away from the substrate 10 .
可选的,有源层40的厚度在30~80nm范围内。Optionally, the thickness of the active layer 40 is in the range of 30-80 nm.
由于在形成有机绝缘层81之前,有源层40的源极区42和漏极区43超出底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60而处于悬空状态,当有源层40厚度较薄时,存在折断的风险,因此,可通过适当增加有源层40的厚度来提高其强度,而将有源层40的厚度设置在30~80nm范围内时,基本可避免折断的发生。Because before forming the organic insulating layer 81, the source region 42 and the drain region 43 of the active layer 40 exceed the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 and are suspended State, when the thickness of the active layer 40 is relatively thin, there is a risk of breaking, therefore, its strength can be improved by appropriately increasing the thickness of the active layer 40, and when the thickness of the active layer 40 is set in the range of 30-80nm , can basically avoid the occurrence of breakage.
可选的,有源层40的材料为氧化物。氧化物例如可以是IGZO(铟镓锌氧化物),ZnON(氮掺杂的氧化锌),IZTO(铟锌锡氧化物)等。Optionally, the material of the active layer 40 is oxide. The oxide may be, for example, IGZO (Indium Gallium Zinc Oxide), ZnON (Nitrogen Doped Zinc Oxide), IZTO (Indium Zinc Tin Oxide) or the like.
当然,有源层40的材料也可以为硅材料。Certainly, the material of the active layer 40 may also be silicon material.
采用氧化物作为有源层40的材料,可使薄膜晶体管具有更高的迁移率。Using oxide as the material of the active layer 40 can make the thin film transistor have higher mobility.
基于上述对薄膜晶体管的描述,可选的,底栅电极20、顶栅电极60、源电极51和漏电极52的材料可选自Ag(银),Cu(铜),Al(铝),Mo(钼)等金属,或者AlNd(铝钕)、MoNb(钼钕)等合金。底栅电极20、顶栅电极60、源电极51和漏电极52可以为一层结构,也可以为两层或两层以上的多层结构。Based on the above description of the thin film transistor, optionally, the materials of the bottom gate electrode 20, the top gate electrode 60, the source electrode 51 and the drain electrode 52 can be selected from Ag (silver), Cu (copper), Al (aluminum), Mo (molybdenum) and other metals, or AlNd (aluminum neodymium), MoNb (molybdenum neodymium) and other alloys. The bottom gate electrode 20 , the top gate electrode 60 , the source electrode 51 and the drain electrode 52 may have a one-layer structure, or a multi-layer structure of two or more layers.
其中,当顶栅电极60采用Cu材料时,有机绝缘层81还具有防止Cu氧化的作用。Wherein, when the top gate electrode 60 is made of Cu material, the organic insulating layer 81 also has the function of preventing Cu oxidation.
可选的,第一栅绝缘层71、第二栅绝缘层72的材料可选自SiOx、SiNx、SiON(氮氧化硅)等;或者,也可选自如AlOx(氧化铝),HfOx(氧化铪),TaOx(氧化钽)等高介电常数的绝缘材料。第一栅绝缘层71、第二栅绝缘层72可以为一层结构,也可以为两层或两层以上的多层结构。Optionally, the materials of the first gate insulating layer 71 and the second gate insulating layer 72 can be selected from SiOx , SiNx , SiON (silicon oxynitride), etc.; or, can also be selected from such as AlOx (aluminum oxide), HfO x (hafnium oxide), TaO x (tantalum oxide) and other high dielectric constant insulating materials. The first gate insulating layer 71 and the second gate insulating layer 72 may have a one-layer structure, or a multi-layer structure of two or more layers.
可选的,有机绝缘层81的材料可选自聚硅氧烷系材料、亚克力系材料、聚酰亚胺系材料等具有平坦化效果的材料。有机绝缘层81可以为一层结构,也可以为两层或两层以上的多层结构。Optionally, the material of the organic insulating layer 81 can be selected from polysiloxane-based materials, acrylic-based materials, polyimide-based materials and other materials with planarization effects. The organic insulating layer 81 may have a one-layer structure, or a multi-layer structure of two or more layers.
本发明实施例还提供一种阵列基板,包括上述的薄膜晶体管。An embodiment of the present invention also provides an array substrate, including the above thin film transistor.
所述阵列基板可以用于LCD(Liquid Crystal Display,液晶显示器),也可用于OLED(Organic Light-Emitting Diode,有机发光二极管)显示器。The array substrate can be used for LCD (Liquid Crystal Display, liquid crystal display), and can also be used for OLED (Organic Light-Emitting Diode, organic light-emitting diode) display.
本发明实施例提供的阵列基板,具有与所述薄膜晶体管相同的技术效果,在此不再赘述。The array substrate provided by the embodiment of the present invention has the same technical effect as that of the thin film transistor, which will not be repeated here.
本发明实施例还提供一种薄膜晶体管的制备方法,如图8所示,包括:The embodiment of the present invention also provides a method for preparing a thin film transistor, as shown in FIG. 8 , including:
S11、如图9(a)所示,在衬底10上依次形成第一金属薄膜200、第一栅绝缘薄膜710、半导体薄膜400、第二栅绝缘薄膜720、第二金属薄膜600、光刻胶100。S11. As shown in FIG. 9(a), sequentially form the first metal film 200, the first gate insulating film 710, the semiconductor film 400, the second gate insulating film 720, the second metal film 600, and photolithography on the substrate 10. Glue 100.
S12、如图9(b)所示,利用掩模板对光刻胶100曝光,并显影后,使保留的光刻胶100的形状与待形成有源层的图案一致。S12 , as shown in FIG. 9( b ), use a mask to expose the photoresist 100 , and after developing, make the shape of the remaining photoresist 100 consistent with the pattern of the active layer to be formed.
S13、如图9(c)所示,以光刻胶100为阻挡,连续对第二金属薄膜600、第二栅绝缘薄膜720、半导体薄膜400、第一栅绝缘薄膜710和第一金属薄膜200进行刻蚀。S13, as shown in FIG. 9(c), using the photoresist 100 as a barrier, continuously coat the second metal film 600, the second gate insulating film 720, the semiconductor film 400, the first gate insulating film 710, and the first metal film 200 Etching is performed.
S14、如图9(d)所示,以光刻胶为阻挡,采用湿法刻蚀工艺,分别对第二栅绝缘薄膜720、第一栅绝缘薄膜710、第二金属薄膜600和第一金属薄膜200进行第二次刻蚀,使第二栅绝缘薄膜720形成第二栅绝缘层72、第一栅绝缘薄膜710形成第一栅绝缘层71、第二金属薄膜600形成顶栅电极60、第一金属薄膜200形成底栅电极20,且第二栅绝缘层72、第一栅绝缘层71、顶栅电极60和底栅电极20位于待形成的源电极和漏电极之间。S14, as shown in FIG. 9( d ), use photoresist as a barrier, and adopt a wet etching process to respectively separate the second gate insulating film 720 , the first gate insulating film 710 , the second metal film 600 and the first metal film The film 200 is etched for the second time, so that the second gate insulating film 720 forms the second gate insulating layer 72, the first gate insulating film 710 forms the first gate insulating layer 71, the second metal film 600 forms the top gate electrode 60, and the first gate insulating film 710 forms the top gate electrode 60. A metal thin film 200 forms the bottom gate electrode 20 , and the second gate insulating layer 72 , the first gate insulating layer 71 , the top gate electrode 60 and the bottom gate electrode 20 are located between the source electrode and the drain electrode to be formed.
在S14中,可以先对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行第二次刻蚀,再对第二金属薄膜600和第一金属薄膜200进行第二次刻蚀;也可以是先对第二金属薄膜600和第一金属薄膜200进行第二次刻蚀,再对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行第二次刻蚀。In S14, the second gate insulating film 720 and the first gate insulating film 710 can be etched for the second time first, and then the second metal film 600 and the first metal film 200 can be etched for the second time; The second etching is first performed on the second metal film 600 and the first metal film 200 , and then the second etching is performed on the second gate insulating film 720 and the first gate insulating film 710 .
S15、如图9(e)所示,对所述半导体薄膜400超出第一栅绝缘层71和第二栅绝缘层72的部分进行导体化,形成有源层40,有源层40包括位于第一栅绝缘层71和第二栅绝缘层72之间的沟道区41、分别位于沟道区41两侧经导体化后的源极区42和漏极区43。S15. As shown in FIG. 9(e), conductorize the portion of the semiconductor thin film 400 beyond the first gate insulating layer 71 and the second gate insulating layer 72 to form the active layer 40, the active layer 40 includes The channel region 41 between the first gate insulating layer 71 and the second gate insulating layer 72 , the source region 42 and the drain region 43 respectively located on both sides of the channel region 41 after conductorization.
其中,第一栅绝缘层71和第二栅绝缘层72的尺寸由设定的沟道区41尺寸决定。Wherein, the size of the first gate insulating layer 71 and the second gate insulating layer 72 is determined by the set size of the channel region 41 .
S16、如图9(f)所示,去除光刻胶100,并通过一次构图工艺形成有机绝缘层81;源极区42和漏极区43由有机绝缘层81支撑。S16 , as shown in FIG. 9( f ), remove the photoresist 100 , and form an organic insulating layer 81 through a patterning process; the source region 42 and the drain region 43 are supported by the organic insulating layer 81 .
源极区42和漏极区43由有机绝缘层81支撑,即:源极区42和漏极区43超出底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60,而分别延伸至源电极51和漏电极52的下方。其中,底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60的尺寸可以相等并重叠。The source region 42 and the drain region 43 are supported by the organic insulating layer 81, that is, the source region 42 and the drain region 43 are beyond the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 , and extend to below the source electrode 51 and the drain electrode 52 respectively. Wherein, the sizes of the bottom gate electrode 20 , the first gate insulating layer 71 , the second gate insulating layer 72 and the top gate electrode 60 may be equal and overlapped.
S17、参考图3所示,通过一次构图工艺形成源电极51和漏电极52,源电极51通过过孔与源极区42接触,漏电极52通过过孔与漏极区53接触。S17. Referring to FIG. 3 , a source electrode 51 and a drain electrode 52 are formed through one patterning process, the source electrode 51 is in contact with the source region 42 through a via hole, and the drain electrode 52 is in contact with the drain region 53 through a via hole.
在源电极51和漏电极52与有源层40之间只有有机绝缘层81的情况下,源电极51和漏电极52分别通过设置于有机绝缘层81上的过孔与有源层40的源极区42和漏极区43接触;在源电极51和漏电极52与有源层40之间除存在有机绝缘层81外,还存在其他绝缘层的情况下,源电极51和漏电极52分别通过贯穿有机绝缘层81和其他绝缘层上的过孔与有源层40的源极区42和漏极区43接触。In the case where there is only the organic insulating layer 81 between the source electrode 51 and the drain electrode 52 and the active layer 40, the source electrode 51 and the drain electrode 52 are respectively connected to the source of the active layer 40 through the via holes arranged on the organic insulating layer 81. The electrode region 42 is in contact with the drain region 43; in addition to the organic insulating layer 81, there are other insulating layers between the source electrode 51 and the drain electrode 52 and the active layer 40, the source electrode 51 and the drain electrode 52 are respectively The source region 42 and the drain region 43 of the active layer 40 are in contact with the via holes penetrating through the organic insulating layer 81 and other insulating layers.
本发明实施例提供一种薄膜晶体管的制备方法,通过使底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60位于源电极51和漏电极52之间,而使有源层40延伸至源电极51和漏电极52下方,并由有机绝缘层81支撑,实现源电极51和漏电极52分别与有源层40的接触,从而可实现薄膜晶体管的性能,且可改善产生寄生电容的问题。其中,由于在形成底栅电极20、第一栅绝缘层71、第二栅绝缘层72和顶栅电极60的过程中,仅适用了一次掩模、曝光工艺,因此,可降低工艺难度,节省成本。The embodiment of the present invention provides a method for manufacturing a thin film transistor, by positioning the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60 between the source electrode 51 and the drain electrode 52, and The active layer 40 extends to below the source electrode 51 and the drain electrode 52, and is supported by the organic insulating layer 81, so that the source electrode 51 and the drain electrode 52 are respectively in contact with the active layer 40, thereby realizing the performance of a thin film transistor, and The problem of generating parasitic capacitance can be improved. Wherein, in the process of forming the bottom gate electrode 20, the first gate insulating layer 71, the second gate insulating layer 72 and the top gate electrode 60, only one mask and exposure process is applied, so the difficulty of the process can be reduced, saving cost.
上述S14中采用湿法刻蚀工艺,分别对第二栅绝缘薄膜720、第一栅绝缘薄膜710、第二金属薄膜600和第一金属薄膜200进行第二次刻蚀,使第二栅绝缘薄膜720形成第二栅绝缘层72、第一栅绝缘薄膜710形成第一栅绝缘层71、第二金属薄膜600形成顶栅电极60、第一金属薄膜200形成底栅电极20,具体可以包括:In the above S14, a wet etching process is adopted, and the second gate insulating film 720, the first gate insulating film 710, the second metal film 600 and the first metal film 200 are respectively etched for the second time, so that the second gate insulating film 720 to form the second gate insulating layer 72, the first gate insulating film 710 to form the first gate insulating layer 71, the second metal film 600 to form the top gate electrode 60, and the first metal film 200 to form the bottom gate electrode 20, which may specifically include:
S131、如图10所示,采用氢氟酸对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行第二次刻蚀,使第二栅绝缘薄膜720形成第二栅绝缘层72、第一栅绝缘薄膜710形成第一栅绝缘层71。S131. As shown in FIG. 10 , use hydrofluoric acid to etch the second gate insulating film 720 and the first gate insulating film 710 for the second time, so that the second gate insulating film 720 forms the second gate insulating layer 72 and the first gate insulating film 720. The gate insulating film 710 forms the first gate insulating layer 71 .
具体的,可将基板放入氢氟酸刻蚀液中,第二栅绝缘薄膜720和第一栅绝缘薄膜710受到腐蚀后产生横向钻蚀。其中,向内刻蚀的深度由设定的最终的沟道长度决定。Specifically, the substrate may be put into a hydrofluoric acid etching solution, and the second gate insulating film 720 and the first gate insulating film 710 are corroded to produce lateral undercutting. Wherein, the depth of inward etching is determined by the set final channel length.
S132、参考图9(e)所示,在形成第二栅绝缘层72和第一栅绝缘层71的基础上,对第二金属薄膜600和第一金属薄膜200进行刻蚀,使第二金属薄膜600形成顶栅电极60、第一金属薄膜200形成底栅电极20。S132. Referring to FIG. 9(e), on the basis of forming the second gate insulating layer 72 and the first gate insulating layer 71, etch the second metal film 600 and the first metal film 200, so that the second metal The thin film 600 forms the top gate electrode 60 , and the first metal thin film 200 forms the bottom gate electrode 20 .
具体的,第二金属薄膜600和第一金属薄膜200进行湿法刻蚀时,由于失去了第二栅绝缘层72和第一栅绝缘层71的保护,最终顶栅电极60和底栅电极20被刻蚀成与第二栅绝缘层72和第一栅绝缘层71相同的尺寸,实现自对准结构。Specifically, when the second metal film 600 and the first metal film 200 are wet-etched, due to the loss of the protection of the second gate insulating layer 72 and the first gate insulating layer 71, the top gate electrode 60 and the bottom gate electrode 20 etched to the same size as the second gate insulating layer 72 and the first gate insulating layer 71 to realize a self-aligned structure.
其中,如图10所示,采用氢氟酸对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行第二次刻蚀时,氢氟酸中的氢离子进入半导体薄膜400超出第一栅绝缘层71和第二栅绝缘层72的部分,实现导体化,形成有源层40。Wherein, as shown in FIG. 10, when hydrofluoric acid is used to etch the second gate insulating film 720 and the first gate insulating film 710 for the second time, the hydrogen ions in the hydrofluoric acid enter the semiconductor film 400 beyond the first gate insulating film 400. Parts of the layer 71 and the second gate insulating layer 72 are conductorized to form the active layer 40 .
即,第二栅绝缘层72和第一栅绝缘层71被刻蚀的同时,暴露出的半导体薄膜400的材料被掺入氢离子,实现导体化。That is, while the second gate insulating layer 72 and the first gate insulating layer 71 are etched, the exposed material of the semiconductor thin film 400 is doped with hydrogen ions to realize conductorization.
一方面,通过采用氢氟酸对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行第二次刻蚀,形成第一栅绝缘层71和第二栅绝缘层72的同时,还使半导体薄膜400超出第一栅绝缘层71和第二栅绝缘层72的部分,实现导体化形成有源层40,相比较于大功率的等离子体道题化方案来说,工艺难度和成本更低;另一方面,利用氢氟酸对第二栅绝缘薄膜720和第一栅绝缘薄膜710进行湿法腐蚀过程中形成的底切,在对第二金属薄膜600和第一金属薄膜200进行第二次刻蚀中可以实现自对准结构,减小寄生电容(栅源寄生电容)。On the one hand, the second gate insulating film 720 and the first gate insulating film 710 are etched a second time with hydrofluoric acid to form the first gate insulating layer 71 and the second gate insulating layer 72, and the semiconductor film The part of 400 beyond the first gate insulating layer 71 and the second gate insulating layer 72 is conductive to form the active layer 40. Compared with the high-power plasma channeling solution, the process difficulty and cost are lower; in addition On the one hand, the undercut formed during the wet etching process of the second gate insulating film 720 and the first gate insulating film 710 is performed with hydrofluoric acid, and the second metal film 600 and the first metal film 200 are etched for the second time. The self-aligned structure can be realized in the etching, and the parasitic capacitance (gate-source parasitic capacitance) can be reduced.
可选的,在形成第一金属薄膜200之前,所述方法还包括:通过一次构图工艺形成透明导电层90;第一金属薄膜200直接形成于透明导电层90上方。在此基础上,如图5所示,在形成源电极51和漏电极52的同时,所述方法还包括形成辅助电极53;辅助电极53通过过孔与顶栅电极60电连接,通过过孔与透明导电层90电连接;透明导电层90在衬底10上的正投影覆盖有源层40在衬底10上的正投影。Optionally, before forming the first metal thin film 200 , the method further includes: forming the transparent conductive layer 90 through a patterning process; the first metal thin film 200 is directly formed on the transparent conductive layer 90 . On this basis, as shown in FIG. 5, while forming the source electrode 51 and the drain electrode 52, the method also includes forming an auxiliary electrode 53; the auxiliary electrode 53 is electrically connected to the top gate electrode 60 through a via hole, and through the via hole It is electrically connected with the transparent conductive layer 90 ; the orthographic projection of the transparent conductive layer 90 on the substrate 10 covers the orthographic projection of the active layer 40 on the substrate 10 .
即,通过透明导电层90和辅助电极53,将顶栅电极60和底栅电极20电连接,实现顶栅电极60和底栅电极20等电位。That is, the top gate electrode 60 and the bottom gate electrode 20 are electrically connected through the transparent conductive layer 90 and the auxiliary electrode 53 , so that the top gate electrode 60 and the bottom gate electrode 20 are equipotentially realized.
其中,由于有源层40延伸至源电极51和漏电极52下方的源极区42和漏极区43由有机绝缘层81支撑,使得在源电极51和漏电极52和透明导电层90之间存在有机绝缘层81,因而,在形成透明导电层90的情况下,有机绝缘层81还可起到降低源电极51和漏电极52与透明导电层90寄生电容的作用。Wherein, since the active layer 40 extends to the source region 42 and the drain region 43 below the source electrode 51 and the drain electrode 52 are supported by the organic insulating layer 81, so that between the source electrode 51 and the drain electrode 52 and the transparent conductive layer 90 There is an organic insulating layer 81 . Therefore, when the transparent conductive layer 90 is formed, the organic insulating layer 81 can also reduce the parasitic capacitance between the source electrode 51 and the drain electrode 52 and the transparent conductive layer 90 .
本发明实施例中,透明导电层90的形成,一方面,可配合辅助电极53使顶栅电极60和底栅电极20电连接;另一方面,可作为遮光层,起到遮挡环境光的效果;再一方面,在刻蚀形成底栅电极20时,可无需考虑对透明导电层90的影响。In the embodiment of the present invention, the formation of the transparent conductive layer 90, on the one hand, can cooperate with the auxiliary electrode 53 to electrically connect the top gate electrode 60 and the bottom gate electrode 20; on the other hand, it can be used as a light shielding layer to block the effect of ambient light On the other hand, when forming the bottom gate electrode 20 by etching, it is not necessary to consider the influence on the transparent conductive layer 90 .
可选的,如图6和图7所示,所述薄膜晶体管还包括在有机绝缘层81靠近源电极51和漏电极52一侧形成无机绝缘层82;源电极51通过贯穿有机绝缘层81和无机绝缘层82的过孔与源极区42接触,漏电极52通过贯穿有机绝缘层81和无机绝缘层82的过孔与漏极区43接触。Optionally, as shown in FIG. 6 and FIG. 7, the thin film transistor further includes forming an inorganic insulating layer 82 on the side of the organic insulating layer 81 close to the source electrode 51 and the drain electrode 52; the source electrode 51 passes through the organic insulating layer 81 and The via hole of the inorganic insulating layer 82 is in contact with the source region 42 , and the drain electrode 52 is in contact with the drain region 43 through the via hole penetrating through the organic insulating layer 81 and the inorganic insulating layer 82 .
其中,无机绝缘层82的材料例如可以为SiOx(氧化硅)和/或SiNx(氮化硅)。Wherein, the material of the inorganic insulating layer 82 may be, for example, SiO x (silicon oxide) and/or SiN x (silicon nitride).
考虑到有机绝缘材料的绝缘性较无机绝缘的绝缘性差,因此,为降低源电极51和漏电极52与顶栅电极60的短路风险,在有机绝缘层81与源电极51和漏电极52之间形成无机绝缘层82。Considering that the insulation of organic insulating materials is worse than that of inorganic insulation, in order to reduce the risk of short circuit between source electrode 51 and drain electrode 52 and top gate electrode 60, between organic insulating layer 81 and source electrode 51 and drain electrode 52 The inorganic insulating layer 82 is formed.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810380871.9A CN108538921B (en) | 2018-04-25 | 2018-04-25 | Thin film transistor, preparation method thereof and array substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810380871.9A CN108538921B (en) | 2018-04-25 | 2018-04-25 | Thin film transistor, preparation method thereof and array substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108538921A true CN108538921A (en) | 2018-09-14 |
CN108538921B CN108538921B (en) | 2021-04-13 |
Family
ID=63479179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810380871.9A Active CN108538921B (en) | 2018-04-25 | 2018-04-25 | Thin film transistor, preparation method thereof and array substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108538921B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020154983A1 (en) * | 2019-01-30 | 2020-08-06 | 深圳市柔宇科技有限公司 | Thin film transistor and fabrication method therefor, display panel and display device |
CN113451332A (en) * | 2021-06-21 | 2021-09-28 | 昆山国显光电有限公司 | Array substrate and display panel |
CN113629072A (en) * | 2021-07-26 | 2021-11-09 | 深圳市华星光电半导体显示技术有限公司 | Array substrate, preparation method thereof and display panel |
CN115132758A (en) * | 2022-06-30 | 2022-09-30 | Tcl华星光电技术有限公司 | A display panel and a method for manufacturing the same |
US12074221B2 (en) | 2021-07-26 | 2024-08-27 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Array substrate and manufacturing method thereof, display panel |
WO2025123252A1 (en) * | 2023-12-13 | 2025-06-19 | 京东方科技集团股份有限公司 | Array substrate and display apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273921A (en) * | 1991-12-27 | 1993-12-28 | Purdue Research Foundation | Methods for fabricating a dual-gated semiconductor-on-insulator field effect transistor |
US6214693B1 (en) * | 1998-09-29 | 2001-04-10 | Sony Corporation | Process for the production of semiconductor device |
US20010030323A1 (en) * | 2000-03-29 | 2001-10-18 | Sony Corporation | Thin film semiconductor apparatus and method for driving the same |
US20040246765A1 (en) * | 2003-03-11 | 2004-12-09 | Kiyoshi Kato | Integrated circuit, semiconductor device comprising the same, electronic device having the same, and driving method of the same |
-
2018
- 2018-04-25 CN CN201810380871.9A patent/CN108538921B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273921A (en) * | 1991-12-27 | 1993-12-28 | Purdue Research Foundation | Methods for fabricating a dual-gated semiconductor-on-insulator field effect transistor |
US6214693B1 (en) * | 1998-09-29 | 2001-04-10 | Sony Corporation | Process for the production of semiconductor device |
US20010030323A1 (en) * | 2000-03-29 | 2001-10-18 | Sony Corporation | Thin film semiconductor apparatus and method for driving the same |
US20040246765A1 (en) * | 2003-03-11 | 2004-12-09 | Kiyoshi Kato | Integrated circuit, semiconductor device comprising the same, electronic device having the same, and driving method of the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020154983A1 (en) * | 2019-01-30 | 2020-08-06 | 深圳市柔宇科技有限公司 | Thin film transistor and fabrication method therefor, display panel and display device |
CN113261114A (en) * | 2019-01-30 | 2021-08-13 | 深圳市柔宇科技股份有限公司 | Thin film transistor, manufacturing method thereof, display panel and display device |
CN113451332A (en) * | 2021-06-21 | 2021-09-28 | 昆山国显光电有限公司 | Array substrate and display panel |
CN113451332B (en) * | 2021-06-21 | 2023-10-27 | 昆山国显光电有限公司 | Array substrate and display panel |
CN113629072A (en) * | 2021-07-26 | 2021-11-09 | 深圳市华星光电半导体显示技术有限公司 | Array substrate, preparation method thereof and display panel |
US12074221B2 (en) | 2021-07-26 | 2024-08-27 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Array substrate and manufacturing method thereof, display panel |
CN115132758A (en) * | 2022-06-30 | 2022-09-30 | Tcl华星光电技术有限公司 | A display panel and a method for manufacturing the same |
WO2025123252A1 (en) * | 2023-12-13 | 2025-06-19 | 京东方科技集团股份有限公司 | Array substrate and display apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN108538921B (en) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200105789A1 (en) | Array substrate, method of manufacturing the same, and display panel | |
CN101894760B (en) | Thin film transistor and manufacturing method thereof | |
CN108538921A (en) | A kind of thin film transistor (TFT) and preparation method thereof, array substrate | |
WO2019071725A1 (en) | Top gate self-alignment metal oxide semiconductor tft and manufacturing method therefor | |
CN107331669B (en) | TFT drive backplane fabrication method | |
CN110071225A (en) | Display panel and production method | |
CN108288621A (en) | Manufacturing method, array substrate and the display panel of array substrate | |
CN108878449A (en) | Production method, array substrate and the display device of array substrate | |
TWI473273B (en) | Thin film transistor, pixel structure and manufacturing method thereof | |
CN103219391A (en) | Thin film transistor, manufacturing method thereof, array substrate and display device | |
CN109920856B (en) | Thin film transistor and its manufacturing method, array substrate and display device | |
CN103094205B (en) | A kind of thin-film transistor, thin-film transistor drive the preparation method of backboard and thin-film transistor to drive backboard | |
CN103325792A (en) | Array substrate, preparation method and display device | |
TWI569421B (en) | Pixel structure and method of making the same | |
CN105140271A (en) | Thin-film transistor, manufacturing method of thin-film transistor and display device | |
CN107658345A (en) | Oxide thin film transistor and preparation method thereof, array base palte and display device | |
TWI497689B (en) | Semiconductor component and method of manufacturing same | |
WO2016123974A1 (en) | Thin-film transistor, pixel structure, manufacturing methods therefor, array substrate and display device | |
KR20130098709A (en) | Thin film transistor array substrate and method for fabricating the same | |
JP2018510490A (en) | THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME, ARRAY SUBSTRATE, AND DISPLAY DEVICE | |
KR102318054B1 (en) | TFT substrate and manufacturing method thereof | |
CN108550625A (en) | A kind of thin film transistor and its manufacturing method | |
CN107808826A (en) | A kind of preparation method of bottom emitting top-gated self-aligned thin film transistor | |
CN111682034A (en) | Array substrate and preparation method thereof, and display device | |
KR102689232B1 (en) | Transistor substrate, method of manufacturing the same, and display device including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |