CN108443631A - A kind of asymmetric acoustic propagation triangle superstructure - Google Patents
A kind of asymmetric acoustic propagation triangle superstructure Download PDFInfo
- Publication number
- CN108443631A CN108443631A CN201810328533.0A CN201810328533A CN108443631A CN 108443631 A CN108443631 A CN 108443631A CN 201810328533 A CN201810328533 A CN 201810328533A CN 108443631 A CN108443631 A CN 108443631A
- Authority
- CN
- China
- Prior art keywords
- triangle
- superstructure
- acoustic propagation
- asymmetric
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 230000000737 periodic effect Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/02—Energy absorbers; Noise absorbers
- F16L55/033—Noise absorbers
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
技术领域technical field
本发明涉及声学亥姆霍兹共振、声传播控制技术、声散射块偏置结构和声学超结构,尤其涉及一种非对称声传播三角形超结构。The invention relates to acoustic Helmholtz resonance, sound propagation control technology, sound scattering block offset structure and acoustic superstructure, in particular to an asymmetrical sound propagation triangular superstructure.
背景技术Background technique
管路系统中声波控制是目前管道声学的所面临的重要挑战。管道本身并不产生噪声,而是由所连接的通风机、鼓风机、压缩机、水泵、油泵及汽轮机等设备所产生的噪声,通过管道中的介质和管道本身传递。此外,流体在管道中由于湍流而产生流动噪声,流动噪声将随流动速度增大而增大。对管道声波进行控制,能有效的阻断噪声的传播,降低管道噪声对周边环境的影响。另外,对管道噪声的传播路径进行控制,使得声波按照预先设定的路径传播,到达预的区域,能极大拓展现有声传播控制技术。目前通过旋转空气能有效地实现管道声波沿任意路径传播,但因其稳定性及内在噪声,严重影响其声波控制的鲁棒性和可靠性,难以实现其工程应用。Acoustic wave control in pipeline systems is an important challenge in pipeline acoustics. The pipeline itself does not generate noise, but the noise generated by the connected fans, blowers, compressors, water pumps, oil pumps and steam turbines is transmitted through the medium in the pipeline and the pipeline itself. In addition, the fluid in the pipeline produces flow noise due to turbulent flow, and the flow noise will increase with the increase of the flow velocity. Controlling the sound wave of the pipeline can effectively block the transmission of noise and reduce the impact of pipeline noise on the surrounding environment. In addition, the control of the transmission path of the pipeline noise makes the sound wave propagate according to the preset path and reach the predetermined area, which can greatly expand the existing sound propagation control technology. At present, the sound wave of the pipeline can be effectively transmitted along any path by rotating the air, but its stability and inherent noise seriously affect the robustness and reliability of its sound wave control, making it difficult to realize its engineering application.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种非对称声传播三角形超结构,在管道内控制声音传播,实现声音的定向定点传播。The technical problem to be solved by the present invention is to provide an asymmetric sound propagation triangular superstructure, which can control the sound propagation in the pipeline and realize the directional and fixed-point propagation of the sound.
为解决上述技术问题,本发明提供了一种非对称声传播三角形超结构。非对称声传播三角形超结构:包括一个偏置的正三棱柱,二十一个正三角形共振腔,一个三条边分别接有三个矩形波导的正三角形空腔。每一个正三角形共振腔由六个相同的直角三角形亥姆霍兹共振腔构成。亥姆霍兹共振腔的细管与正三角形空腔连通。In order to solve the above technical problems, the present invention provides an asymmetric sound propagation triangular superstructure. Asymmetrical sound propagation triangular superstructure: including an offset regular triangular prism, 21 regular triangular resonant cavities, and a regular triangular cavity with three rectangular waveguides connected to each of its three sides. Each equilateral triangular resonator consists of six identical right-angled triangular Helmholtz resonators. The thin tube of the Helmholtz resonance cavity communicates with the equilateral triangular cavity.
作为本发明的非对称声传播三角形超结构的改进:非对称声传播三角形超结构采用正三角形空腔。As an improvement of the asymmetric sound propagation triangular superstructure of the present invention: the asymmetric sound propagation triangular superstructure adopts a regular triangular cavity.
作为本发明的非对称声传播三角形超结构的进一步改进:正三角形空腔的三条边分别接有一矩形波导。As a further improvement of the asymmetric sound propagation triangular superstructure of the present invention: the three sides of the equilateral triangular cavity are respectively connected with a rectangular waveguide.
作为本发明的非对称声传播三角形超结构的进一步改进:正三角形空腔的内部有偏置正三棱柱。As a further improvement of the asymmetric sound propagation triangular superstructure of the present invention: there is an offset regular triangular prism inside the regular triangular cavity.
作为本发明的非对称声传播三角形超结构的进一步改进:偏置的正三棱柱的外围为二十一个正三角形共振腔。As a further improvement of the asymmetric sound propagation triangular superstructure of the present invention: the periphery of the offset regular triangular prism is twenty-one regular triangular resonant cavities.
作为本发明的非对称声传播三角形超结构的进一步改进:正三角形共振腔由六个相同的直角三角形亥姆霍兹共振腔组成。As a further improvement of the asymmetric sound propagation triangular superstructure of the present invention: the regular triangular resonant cavity is composed of six identical right-angled triangular Helmholtz resonant cavities.
本发明与背景技术相比,具有益的效果是:Compared with the background technology, the present invention has beneficial effects as follows:
该非对称声传播三角形超结构可采用刚度较大的材料(如钢铁和铝合金等)加工而成,生产成本较低。本发明的非对称声传播三角形超结构使得声波在正三角形声腔内可通过正三棱柱偏置而挤压的空间。本发明的非对称声传播三角形超结构使得声波可在正三棱柱偏置方向的两个矩形波导间传播。本发明的非对称声传播三角形超结构可组装成二维声传播网络,并通过调节非对称声传播三角形超结构内部正三棱柱的偏置方向,控制声传播方向,实现声音沿任意路径传播。The asymmetrical sound propagation triangular superstructure can be processed by materials with high rigidity (such as steel and aluminum alloy, etc.), and the production cost is relatively low. The asymmetric acoustic propagating triangular superstructure of the present invention enables sound waves to squeeze space through the offset of the regular triangular prism in the regular triangular acoustic cavity. The asymmetric acoustic propagating triangular superstructure of the present invention enables acoustic waves to propagate between two rectangular waveguides in the offset direction of the regular triangular prism. The asymmetric sound propagation triangular superstructure of the present invention can be assembled into a two-dimensional sound propagation network, and by adjusting the offset direction of the regular triangular prism inside the asymmetric sound propagation triangular superstructure, the sound propagation direction can be controlled to realize sound propagation along any path.
下面结合附图和具体实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1是本发明的一种非对称声传播三角形超结构;Fig. 1 is a kind of asymmetric sound propagation triangular superstructure of the present invention;
图2是本发明的一种非对称声传播三角形超结构Bravais正方形点阵的正格子和倒格子图;Fig. 2 is a kind of asymmetrical acoustic propagating triangular superstructure Bravais square lattice of the present invention and the positive grid and inverted lattice figure;
图3是本发明的一种非对称声传播三角形超结构的能带结构;Fig. 3 is the energy band structure of a kind of asymmetric sound propagation triangular superstructure of the present invention;
图4是本发明的一种非对称声传播三角形超结构的声压模态图;Fig. 4 is the sound pressure modal diagram of a kind of asymmetric sound propagation triangular superstructure of the present invention;
图5是本发明的一种非对称声传播三角形超结构的传递函数及声压场分布图。Fig. 5 is a transfer function and sound pressure field distribution diagram of an asymmetric sound propagation triangular superstructure of the present invention.
图6是本发明的非对称声传播三角形超结构组装成的二维声传播网络,并标出其中一种声传播路径。Fig. 6 is a two-dimensional sound propagation network assembled by the asymmetric sound propagation triangular superstructure of the present invention, and one of the sound propagation paths is marked.
具体实施方式Detailed ways
图1给出了一种非对称声传播三角形超结构。非对称声传播三角形超结构为正三角形。1为一个偏置的正三棱柱。柱体外围为二十一个正三角形共振腔(2-22)。二十一个正三角形共振腔(2-22)的外部为一个正三角形空腔23。一个正三角形空腔23的三条边分别接有矩形波导24、25和26。每个正三角形共振腔包含六个相同的直角三角形亥姆霍兹共振腔(27-32)。Figure 1 shows an asymmetric acoustic propagation triangular superstructure. The asymmetric sound propagation triangular superstructure is a regular triangle. 1 is an offset regular triangular prism. Twenty-one equilateral triangular resonant cavities (2-22) are arranged on the periphery of the cylinder. The outside of the twenty-one equilateral triangular resonance cavities (2-22) is an equilateral triangular cavity 23. The three sides of an equilateral triangle cavity 23 are respectively connected with rectangular waveguides 24 , 25 and 26 . Each equilateral triangle resonator contains six identical right triangle Helmholtz resonators (27-32).
本发明的分形吸声超结构工作原理如下:The working principle of the fractal sound-absorbing superstructure of the present invention is as follows:
(1)该非对称声传播三角形超结构的几何参数为L1=43.301mm,L2=214.77mm,L3=77.942mm,X=43.301mm,a=34.641mm,b=1mm,c=1mm,t=1mm。(1) The geometric parameters of the asymmetric sound propagation triangular superstructure are L 1 =43.301mm, L 2 =214.77mm, L 3 =77.942mm, X=43.301mm, a=34.641mm, b=1mm, c=1mm , t=1mm.
(2)如图2所示,取两个非对称声传播三角形超结构为一个单胞,将单胞置于晶格常数为664.77mm的Bravais六角点阵中。Bravais六角点阵的基失为e=(e1,e2)。任何其他原胞都可以定义为一组整数对(n1,n2)。当n1=0和n2=0时,表示初始原胞。其他任何原胞都可以沿e1方向平移n1步,沿e2方向平移n2步而获得。(2) As shown in Fig. 2, two asymmetric acoustic propagation triangular superstructures are taken as a unit cell, and the unit cell is placed in a Bravais hexagonal lattice with a lattice constant of 664.77 mm. The basis of the Bravais hexagonal lattice is e=(e 1 , e 2 ). Any other primitive cell can be defined as a set of integer pairs (n 1 ,n 2 ). When n 1 =0 and n 2 =0, it represents the initial primitive cell. Any other primitive cell can be obtained by translating n 1 steps along e 1 direction and n 2 steps along e 2 direction.
初始原胞中格点r的响应可表示为u(r)。由于Bravais六角形点阵是周期性的,因此原胞(n1,n2)的声压也是周期性的:The response of the lattice point r in the initial primitive cell can be expressed as u(r). Since the Bravais hexagonal lattice is periodic, the sound pressure of the primitive cell (n 1 ,n 2 ) is also periodic:
u(r)=u(r+Rn) (1)u(r)=u(r+R n ) (1)
其中Rn=n1e1+n2e2为正格失。Wherein R n =n 1 e 1 +n 2 e 2 is positive lattice loss.
周期性函数u(r)的Fourier级数形式可表示为:The Fourier series form of the periodic function u(r) can be expressed as:
将公式(2)代入公式(1)可得:Substitute formula (2) into formula (1) to get:
Gj·Rn=2πk (3)G j R n =2πk (3)
其中Gj为倒格失,其基失可表示为 where G j is the reciprocal lattice loss, and its base loss can be expressed as
(3)采用有限元法计算该结构的能带结构图。具有线性弹性、各向异性且非均匀介质的弹性波动方程可表示为:(3) Calculate the band structure diagram of the structure by using the finite element method. The elastic wave equation with linear elasticity, anisotropy and inhomogeneous media can be expressed as:
其中r=(x,y,z)表示位失;u=(ux,uy,uz)表示位移向量;表示梯度算子;C(r)表示弹性张量;ρ(r)表示密度张量。Where r=(x, y, z) represents the position loss; u=(u x , u y , u z ) represents the displacement vector; Represents the gradient operator; C(r) represents the elasticity tensor; ρ(r) represents the density tensor.
当弹性波为简谐波时,位移向量u(r,t)可表示为:When the elastic wave is a simple harmonic, the displacement vector u(r,t) can be expressed as:
u(r,t)=u(r)eiωt (5)u(r,t)=u(r)e iωt (5)
其中ω表示角频率。将公式(5)代入公式(4),弹性波动方程可简化为:in ω represents the angular frequency. Substituting formula (5) into formula (4), the elastic wave equation can be simplified as:
▽[C(r):▽·u(r,t)]+ω2ρ(r)u(r)=0 (6)▽[C(r):▽·u(r,t)]+ω 2 ρ(r)u(r)=0 (6)
由于在流体中仅存在纵波,因此流体的简谐声波方程可表示为:Since there are only longitudinal waves in the fluid, the simple harmonic acoustic wave equation of the fluid can be expressed as:
其中cl(r)为纵波的波速;p(r)表示流场压力。Where c l (r) is the wave speed of longitudinal wave; p (r) is the flow field pressure.
流固耦合界面需满足法向质点加速度和法向压力连续性条件:The fluid-solid coupling interface needs to meet the normal particle acceleration and normal pressure continuity conditions:
其中nf和ns表示流固耦合表面流体和固体的法向向量;v表示质点振动速度;pf表示流场压力;σij表示固体的应力分量。where n f and n s represent the normal vectors of the fluid and solid on the fluid-solid coupling surface; v represents the particle vibration velocity; p f represents the flow field pressure; σ ij represents the stress component of the solid.
在空间上,Bravais点阵是无限周期性的。采用Bloch理论,位移向量u(r)和流场压力p(r)可分别表示为In space, the Bravais lattice is infinitely periodic. Using Bloch theory, the displacement vector u(r) and flow field pressure p(r) can be expressed as
其中k=(kx,ky,kz)表示波失;uk(r)和pk(r)表示晶格点阵的周期性位移向量和周期性流场向量。在周期性边界上应用Bloch-Floquet条件,可采用有限元法在初始原胞中计算出该周期性结构的能带结构图。初始原胞的离散有限元特征值方程为:Where k=(k x , ky , k z ) represents the wave loss; u k (r) and p k (r) represent the periodic displacement vector and the periodic flow field vector of the lattice lattice. Applying the Bloch-Floquet condition on the periodic boundary, the band structure diagram of the periodic structure can be calculated in the initial primitive cell by using the finite element method. The discrete finite element eigenvalue equation of the initial primitive cell is:
其中Ks和Kf为固体和流体的刚度矩阵;Ms和Mf为固体和流体的质量矩阵;Q为流固耦合矩阵。Among them, K s and K f are the stiffness matrix of solid and fluid; M s and M f are mass matrix of solid and fluid; Q is the fluid-solid coupling matrix.
为获得完整的能带结构,若结构单胞具有足够的对称性,理论上应计算所有波失k所对应的模态频率。在Bloch理论中,倒格失中的波失k是对称且周期性的。因此,波失k可限定到倒格失的第一不可约Brillouin区。此外,由于带隙的极值总出现在第一不可约Brillouin区的边界处,因此波失k可进一步限定到第一不可约Brillouin区的边界X→Γ,Γ→M和M→X。In order to obtain a complete band structure, if the structural unit cell has sufficient symmetry, the modal frequencies corresponding to all wave losses k should be calculated theoretically. In Bloch's theory, the wave loss k in reciprocal lattice loss is symmetrical and periodic. Therefore, the wave loss k can be limited to the first irreducible Brillouin region of the reciprocal lattice loss. In addition, since the extremum of the band gap always appears at the boundary of the first irreducible Brillouin region, the wave loss k can be further restricted to the boundaries X→Γ, Γ→M and M→X of the first irreducible Brillouin region.
(4)如图3所示,图a为非对称声传播三角形超结构中心正三棱柱不发生偏置时的能带结构图,图b为非对称声传播三角形超结构中心正三棱柱发生偏置时的能带结构图。通过对比,可明显地观察到正三棱柱不偏置时,该结构具有频率范围为[2310Hz,2390Hz]的带隙。该频段内,声波无法通过声腔在矩形波导间传播。当正三棱柱柱体偏置时,该结构的带隙发生变化。原带隙[2310Hz,2390Hz]分成两个新带隙[2310Hz,2370Hz]和[2373Hz,2393Hz]。在两个新带隙中间,产生一个新的通带[2370Hz,2373Hz]。在通带[2370Hz,2373Hz]内,声音可通过声腔在矩形波导间传播。(4) As shown in Figure 3, Figure a is the energy band structure diagram when the central regular triangular prism of the asymmetric sound propagation triangular superstructure is not biased, and Figure b is when the central regular triangular prism of the asymmetric sound propagation triangular superstructure is biased energy band structure diagram. By comparison, it can be clearly observed that when the regular triangular prism is not biased, the structure has a band gap in the frequency range of [2310Hz, 2390Hz]. In this frequency band, the acoustic wave cannot propagate between the rectangular waveguides through the acoustic cavity. When the regular triangular prism cylinders are biased, the bandgap of the structure changes. The original band gap [2310Hz, 2390Hz] is split into two new band gaps [2310Hz, 2370Hz] and [2373Hz, 2393Hz]. Between the two new bandgaps, a new passband [2370Hz, 2373Hz] is created. In the passband [2370Hz, 2373Hz], the sound can propagate between the rectangular waveguides through the acoustic cavity.
(5)非对称声传播三角形超结构的声压分布模态如图4所示。非对称声传播三角形超结构模态分布显示正三棱柱偏置方向的两个矩形波导是互相连通的,可实现声传播。(5) The sound pressure distribution mode of the triangular superstructure with asymmetric sound propagation is shown in Fig. 4. The modal distribution of the asymmetric sound propagation triangular superstructure shows that the two rectangular waveguides in the bias direction of the regular triangular prism are connected to each other, and the sound propagation can be realized.
(6)非对称声传播三角形超结构的传递函数如图5所示。在频率为2371Hz时,声波从超结构的上矩形波导进入,可经过正三棱柱挤压的空腔,进入右矩形波导。声波从上矩形波导到右矩形波导的传递效率为99.6%,而到左矩形波导的传递效率接近零。图(5b)显示当声波从左矩形波导入射时,声波无法传播到其他两个声矩形波导,即声传播被截止。非对称声传播三角形超结构可通过调节中心正三角形柱的偏置改变声传播的方向和传递效率。(6) The transfer function of the asymmetric sound propagation triangular superstructure is shown in Fig. 5. When the frequency is 2371Hz, the sound wave enters from the upper rectangular waveguide of the superstructure, passes through the cavity squeezed by the regular triangular prism, and enters the right rectangular waveguide. The transmission efficiency of sound waves from the upper rectangular waveguide to the right rectangular waveguide is 99.6%, while the transmission efficiency to the left rectangular waveguide is close to zero. Figure (5b) shows that when the sound wave is incident from the left rectangular waveguide, the sound wave cannot propagate to the other two acoustic rectangular waveguides, that is, the sound propagation is cut off. The asymmetric sound propagation triangular superstructure can change the direction of sound propagation and transfer efficiency by adjusting the offset of the central regular triangular column.
(6)利用非对称声传播三角形超结构构成的网格(图6),调节中心正三角形柱的偏置方向,可实现声波沿着预先设定的路径传播,并到达预定的目标区域。(6) Using the grid composed of asymmetric sound propagation triangular superstructure (Figure 6), adjusting the offset direction of the central equilateral triangular column can realize the sound wave propagating along the preset path and reaching the predetermined target area.
最后,还需要注意的是,以上列举的仅是本发明的一个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形,如正方形、等边六角形等。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。Finally, it should also be noted that what is listed above is only a specific embodiment of the present invention. Apparently, the present invention is not limited to the above embodiments, and many variations are possible, such as square, equilateral hexagon, and the like. All deformations that can be directly derived or associated by those skilled in the art from the content disclosed in the present invention should be considered as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810328533.0A CN108443631A (en) | 2018-04-12 | 2018-04-12 | A kind of asymmetric acoustic propagation triangle superstructure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810328533.0A CN108443631A (en) | 2018-04-12 | 2018-04-12 | A kind of asymmetric acoustic propagation triangle superstructure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108443631A true CN108443631A (en) | 2018-08-24 |
Family
ID=63199822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810328533.0A Pending CN108443631A (en) | 2018-04-12 | 2018-04-12 | A kind of asymmetric acoustic propagation triangle superstructure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108443631A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880311A (en) * | 2018-09-05 | 2020-03-13 | 湖南大学 | An underwater subwavelength space-coiled acoustic metamaterial |
CN110880312A (en) * | 2018-09-05 | 2020-03-13 | 湖南大学 | Underwater sub-wavelength local resonance type acoustic metamaterial |
CN110946580A (en) * | 2019-11-06 | 2020-04-03 | 中国人民解放军陆军军医大学第一附属医院 | NMR detection system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4555433A (en) * | 1982-09-10 | 1985-11-26 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Sound-absorbing element |
CN106205590A (en) * | 2016-06-30 | 2016-12-07 | 湖南大学 | A kind of fractal sound absorption superstructure |
CN106228969A (en) * | 2016-09-19 | 2016-12-14 | 四川大学 | A kind of three-dimensional locally resonant photonic crystal structure and preparation method |
CN106652991A (en) * | 2016-10-27 | 2017-05-10 | 湖南大学 | Sound absorption superstructure |
CN108615521A (en) * | 2018-04-12 | 2018-10-02 | 湖南大学 | A kind of sound topological insulator |
-
2018
- 2018-04-12 CN CN201810328533.0A patent/CN108443631A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4555433A (en) * | 1982-09-10 | 1985-11-26 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Sound-absorbing element |
CN106205590A (en) * | 2016-06-30 | 2016-12-07 | 湖南大学 | A kind of fractal sound absorption superstructure |
CN106228969A (en) * | 2016-09-19 | 2016-12-14 | 四川大学 | A kind of three-dimensional locally resonant photonic crystal structure and preparation method |
CN106652991A (en) * | 2016-10-27 | 2017-05-10 | 湖南大学 | Sound absorption superstructure |
CN108615521A (en) * | 2018-04-12 | 2018-10-02 | 湖南大学 | A kind of sound topological insulator |
Non-Patent Citations (1)
Title |
---|
HONGQING DAI,ETC.: ""Quasilossless acoustic transmission in an arbitrary pathway of a network",Hongqing Dai,etc., 054109-1至054109-6页,2017年2月10日", 《PHYSICAL REVIEW B》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880311A (en) * | 2018-09-05 | 2020-03-13 | 湖南大学 | An underwater subwavelength space-coiled acoustic metamaterial |
CN110880312A (en) * | 2018-09-05 | 2020-03-13 | 湖南大学 | Underwater sub-wavelength local resonance type acoustic metamaterial |
CN110880311B (en) * | 2018-09-05 | 2023-08-15 | 湖南大学 | An underwater subwavelength space coiled acoustic metamaterial |
CN110880312B (en) * | 2018-09-05 | 2023-10-27 | 湖南大学 | Underwater sub-wavelength local resonance type acoustic metamaterial |
CN110946580A (en) * | 2019-11-06 | 2020-04-03 | 中国人民解放军陆军军医大学第一附属医院 | NMR detection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Acoustic metamaterials for noise reduction: a review | |
CN109555805B (en) | A box vibration damping structure based on acoustic black hole effect | |
CN106205590B (en) | Fractal sound absorption superstructure | |
CN106023974B (en) | Section structure of imperfect acoustic black hole | |
CN106023979B (en) | Locally resonant acoustic black hole structure | |
CN108443631A (en) | A kind of asymmetric acoustic propagation triangle superstructure | |
CN103196438B (en) | A kind of surface acoustic wave gyroscope based on row wave mode | |
CN110795827A (en) | Vortex-induced vibration simulation method of elastically supported rigid cylindrical structures under the action of nonlinear energy wells | |
CN110880312B (en) | Underwater sub-wavelength local resonance type acoustic metamaterial | |
CN108615521A (en) | A kind of sound topological insulator | |
Liu et al. | Numerical investigation of Rayleigh waves in layered composite piezoelectric structures using the SIGA-PML approach | |
CN107589178A (en) | Method for realizing wave front regulation and control of sound waves by utilizing super-structure surface formed by Helmholtz resonators | |
CN116259381A (en) | A Calculation Method for Insertion Loss of Multilayer Coupled Plate Acoustic Metamaterials | |
Ertekin et al. | Hydroelastic response of a floating runway to cnoidal waves | |
CN108763628A (en) | The design method and device of multispan functionally gradient fluid conveying pipe | |
CN110083937A (en) | A kind of breakwater blade modal analysis method based on Navier-Stokes equation | |
Cheng et al. | Analysis of the band gap characteristics of a new type of three-dimensional single phase phononic crystal | |
CN111400945A (en) | Lightweight design method of local resonance type photonic crystal | |
CN107422406A (en) | A kind of uni-directional light flow device and design method based on double dirac points | |
CN106446386B (en) | In mode energy method between mode stiffness of coupling a kind of confining method | |
CN116011122B (en) | Calculation method for calculating metamaterial sound transmission of periodic special-shaped pipeline | |
CN115083385B (en) | A metal-water metamaterial with broadband sound insulation | |
CN111709168A (en) | A low-frequency acoustic radiation prediction method for shell structures based on sound-structure coupling | |
CN110880311B (en) | An underwater subwavelength space coiled acoustic metamaterial | |
Shu et al. | Numerical research on dynamic stress of phononic crystal ROD in longitudinal wave band gap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180824 |