[go: up one dir, main page]

CN108109917B - Isolation structure of field effect transistor and manufacturing method thereof - Google Patents

Isolation structure of field effect transistor and manufacturing method thereof Download PDF

Info

Publication number
CN108109917B
CN108109917B CN201711273144.4A CN201711273144A CN108109917B CN 108109917 B CN108109917 B CN 108109917B CN 201711273144 A CN201711273144 A CN 201711273144A CN 108109917 B CN108109917 B CN 108109917B
Authority
CN
China
Prior art keywords
field effect
effect transistor
annular groove
layer
isolation structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711273144.4A
Other languages
Chinese (zh)
Other versions
CN108109917A (en
Inventor
请求不公布姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin Memory Technologies Inc
Original Assignee
Changxin Memory Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changxin Memory Technologies Inc filed Critical Changxin Memory Technologies Inc
Priority to CN201711273144.4A priority Critical patent/CN108109917B/en
Publication of CN108109917A publication Critical patent/CN108109917A/en
Application granted granted Critical
Publication of CN108109917B publication Critical patent/CN108109917B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

本发明提供一种场效应晶体管的隔离结构及其制作方法,包括:半导体衬底、介质层、金属层、绝缘层、接触窗以及接触电极。半导体衬底中具有场效应晶体管区域以及环绕所场效应晶体管区域的环形沟槽。介质层形成于环形沟槽侧壁及底部。金属层填充于环形沟槽,其上层部分被去除,以形成环形凹槽。绝缘层填充于环形凹槽,以掩埋金属层。接触窗显露环形沟槽中的金属层。接触电极填充于接触窗并与金属层接触。本发明采用新型的隔离结构,场效应晶体管之间无需传统的浅沟槽隔离结构也能防止各个晶体管之间的漏电,并可有效提高防漏电性能。相比于传统的浅沟槽隔离结构,本发明所占面积大大减小,可有效提高场效应晶体管的集成密度。

The invention provides an isolation structure of a field effect transistor and a manufacturing method thereof, including: a semiconductor substrate, a dielectric layer, a metal layer, an insulating layer, a contact window and a contact electrode. The semiconductor substrate has a field effect transistor region and an annular trench surrounding the field effect transistor region. The dielectric layer is formed on the sidewalls and bottom of the annular trench. The metal layer is filled in the annular groove, and the upper part of the metal layer is removed to form the annular groove. The insulating layer fills the annular groove to bury the metal layer. The contact window exposes the metal layer in the annular trench. The contact electrode fills the contact window and contacts the metal layer. The present invention adopts a new isolation structure, which can prevent leakage between each transistor without the traditional shallow trench isolation structure, and can effectively improve the anti-leakage performance. Compared with the traditional shallow trench isolation structure, the present invention occupies a greatly reduced area and can effectively increase the integration density of field effect transistors.

Description

场效应晶体管的隔离结构及其制作方法Isolation structure of field effect transistor and manufacturing method thereof

技术领域Technical field

本发明属于半导体设计及制造领域,特别是涉及一种场效应晶体管的隔离结构及其制作方法。The invention belongs to the field of semiconductor design and manufacturing, and in particular relates to an isolation structure of a field effect transistor and a manufacturing method thereof.

背景技术Background technique

目前,半导体集成电路通常包含有源区和位于有源区之间的隔离区,这些隔离区在制造有源器件之前形成。伴随着半导体工艺进入深亚微米时代,半导体器件的有源区隔离层已大多采用浅沟槽隔离工艺(Shallow Trench Isolation,STI)来制作。Currently, semiconductor integrated circuits typically include active regions and isolation regions between the active regions, and these isolation regions are formed before active devices are manufactured. As the semiconductor process enters the deep sub-micron era, the active area isolation layer of semiconductor devices has mostly been produced using the shallow trench isolation process (Shallow Trench Isolation, STI).

现有技术中制造浅沟槽隔离结构(STI)的工艺步骤一般包括:The process steps for manufacturing a shallow trench isolation structure (STI) in the prior art generally include:

1)在半导体衬底上依次形成硬掩模和光刻胶;1) Form a hard mask and photoresist on the semiconductor substrate in sequence;

2)以高选择比刻蚀将图罩图形转移到硬掩模图形,再转印至半导体衬底上,在半导体衬底上形成沟槽;2) Use high selectivity etching to transfer the mask pattern to the hard mask pattern, and then transfer it to the semiconductor substrate to form trenches on the semiconductor substrate;

3)在沟槽的侧壁及底部形成SiO2氧化物层;3) Form a SiO 2 oxide layer on the sidewalls and bottom of the trench;

4)于氧化物层上形成SiN内衬层;4) Form a SiN lining layer on the oxide layer;

5)在沟槽中填充介电材料,以形成浅沟槽隔离结构,以防止场效应晶体管之间的漏电。5) Fill the trench with dielectric material to form a shallow trench isolation structure to prevent leakage between field effect transistors.

然而,现有的浅沟槽隔离结构(STI)的制作流程较为复杂,隔离效果也并不理想,具有浅沟槽隔离结构的场效应晶体管之间依然会存在一定的漏电,并且,为了保证隔离效果,通常浅沟槽隔离结构(STI)所占用的面积过大,会严重降低场效应晶体管的集成密度。However, the manufacturing process of the existing shallow trench isolation structure (STI) is relatively complex, and the isolation effect is not ideal. There will still be a certain amount of leakage between field effect transistors with shallow trench isolation structures, and in order to ensure isolation As a result, usually the area occupied by the shallow trench isolation structure (STI) is too large, which will seriously reduce the integration density of field effect transistors.

基于以上所述,本发明提供一种可有效提高防漏电性能,且能提高场效应晶体管的集成密度的新型隔离结构及其制作方法实属必要。Based on the above, it is necessary for the present invention to provide a new isolation structure and a manufacturing method thereof that can effectively improve the anti-leakage performance and increase the integration density of field effect transistors.

发明内容Contents of the invention

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种场效应晶体管的隔离结构及其制作方法,用于解决现有技术中采用的浅沟槽隔离结构(STI)制作流程复杂、防漏电性能不佳以及占用面积过大的问题。In view of the above shortcomings of the prior art, the purpose of the present invention is to provide an isolation structure of a field effect transistor and a manufacturing method thereof, which are used to solve the complex manufacturing process of the shallow trench isolation structure (STI) used in the prior art. Problems with poor anti-leakage performance and excessive area occupied.

为实现上述目的及其他相关目的,本发明提供一种场效应晶体管的隔离结构的制作方法,所述制作方法包括:1)提供一半导体衬底,于所述半导体衬底中定义出场效应晶体管区域,并于所述半导体衬底中形成环绕所场效应晶体管区域的环形沟槽;2)于所述环形沟槽侧壁及底部形成介质层;3)于所述环形沟槽中填充金属层;4)去除所述金属层的上层部分,以形成环形凹槽;5)于所述环形凹槽中填充绝缘层,以掩埋所述金属层;以及6)去除部分的所述绝缘层以形成接触窗,所述接触窗显露所述环形沟槽中的所述金属层,并于所述接触窗中填充接触电极,以形成场效应晶体管的隔离结构的控制端。In order to achieve the above objects and other related objects, the present invention provides a method for manufacturing an isolation structure of a field effect transistor. The manufacturing method includes: 1) providing a semiconductor substrate and defining a field effect transistor region in the semiconductor substrate. , and form an annular trench surrounding the field effect transistor area in the semiconductor substrate; 2) form a dielectric layer on the sidewalls and bottom of the annular trench; 3) fill the annular trench with a metal layer; 4) remove the upper part of the metal layer to form an annular groove; 5) fill the annular groove with an insulating layer to bury the metal layer; and 6) remove part of the insulating layer to form a contact Window, the contact window exposes the metal layer in the annular trench, and a contact electrode is filled in the contact window to form a control end of the isolation structure of the field effect transistor.

优选地,步骤1)包括:1-1)提供所述半导体衬底,于所述半导体衬底中定义出场效应晶体管区域,于所述半导体衬底表面形成覆盖所述场效应晶体管区域的图形光阻;1-2)于所述图形光阻的侧壁形成环形的牺牲掩膜层,基于所述牺牲掩膜层的宽度定义所述环形沟槽的宽度;1-3)去除所述图形光阻,以显露所述半导体衬底,并保留所述牺牲掩膜层;1-4)于所述半导体衬底的表面形成硬掩膜层;1-5)去除所述牺牲掩膜层,并保留所述硬掩膜层,以形成具有环形窗口的硬掩膜层,所述环形窗口显露所述半导体衬底;以及1-6)基于所述具有环形窗口的硬掩膜层刻蚀所述半导体衬底,以形成所述环形沟槽。Preferably, step 1) includes: 1-1) providing the semiconductor substrate, defining a field effect transistor region in the semiconductor substrate, and forming a patterned light covering the field effect transistor region on the surface of the semiconductor substrate. Resistor; 1-2) Form an annular sacrificial mask layer on the sidewall of the patterned photoresist, and define the width of the annular trench based on the width of the sacrificial mask layer; 1-3) Remove the patterned light resist to expose the semiconductor substrate and retain the sacrificial mask layer; 1-4) form a hard mask layer on the surface of the semiconductor substrate; 1-5) remove the sacrificial mask layer, and retaining the hard mask layer to form a hard mask layer having an annular window, the annular window exposing the semiconductor substrate; and 1-6) etching the hard mask layer based on the annular window semiconductor substrate to form the annular trench.

进一步地,步骤1-4)包括:先以沉积方式形成于所述半导体衬底及所述牺牲掩膜层上的硬掩膜层,所述硬掩膜层完全覆盖所述牺牲掩膜层,然后采用研磨工艺去除部分的所述硬掩膜层,使得所述牺牲掩膜层的顶面显露地齐平于所述硬掩膜层的顶面。Further, steps 1-4) include: first forming a hard mask layer on the semiconductor substrate and the sacrificial mask layer by deposition, and the hard mask layer completely covers the sacrificial mask layer, A grinding process is then used to remove part of the hard mask layer, so that the top surface of the sacrificial mask layer is exposed flush with the top surface of the hard mask layer.

进一步地,步骤1-5)中,所述硬掩膜层的去除速率小于所述牺牲掩膜层的去除速率的二分之一,以保证所述硬掩膜层在所述半导体衬底上的保留厚度。Further, in steps 1-5), the removal rate of the hard mask layer is less than half of the removal rate of the sacrificial mask layer to ensure that the hard mask layer is on the semiconductor substrate retained thickness.

优选地,步骤2)通过低压退火工艺(ISSG)对所述环形沟槽侧壁及底部进行氧化,以形成所述介质层,所述介质层包含二氧化硅层(SiO2)。Preferably, step 2) oxidizes the sidewalls and bottom of the annular trench through a low-pressure annealing process (ISSG) to form the dielectric layer, and the dielectric layer includes a silicon dioxide layer (SiO 2 ).

优选地,步骤3)于所述环形沟槽中填充金属层包括:3-1)于所述环形沟槽的底部及侧壁形成氮化钛层(TiN);以及3-2)于所述环形沟槽内填充钨层(W)。Preferably, step 3) filling the annular trench with a metal layer includes: 3-1) forming a titanium nitride layer (TiN) on the bottom and side walls of the annular trench; and 3-2) forming a titanium nitride layer (TiN) on the bottom and side walls of the annular trench; The annular trench is filled with a tungsten layer (W).

优选地,步骤6)后形成的场效应晶体管位于所述半导体衬底的周边区,所述半导体衬底的数组区设有多个字线结构,步骤1)至步骤3)包含在所述字线结构的形成过程。Preferably, the field effect transistor formed after step 6) is located in the peripheral area of the semiconductor substrate, and the array area of the semiconductor substrate is provided with multiple word line structures. Steps 1) to 3) are included in the word line structure. The formation process of line structure.

优选地,步骤6)中,于所述接触窗中填充接触电极的方法包含原子层沉积工艺(ALD)及等离子增强化学气相沉积工艺(PECVD)所组成群组中的一种。Preferably, in step 6), the method of filling the contact electrode in the contact window includes one of the group consisting of atomic layer deposition (ALD) and plasma enhanced chemical vapor deposition (PECVD).

优选地,所述接触电极的电阻率介于2×10-8欧姆米(Ωm)到1×102欧姆米(Ωm)之间,其材质包含由钨(W),钛(Ti),镍(Ni),铝(Al),铂(Pt),N型多晶硅、P型多晶硅、金属氮化物及金属硅化物所组成群组中的一种或多种组成的复合薄膜。Preferably, the resistivity of the contact electrode is between 2×10 -8 ohm meters (Ωm) and 1×10 2 ohm meters (Ωm), and its material includes tungsten (W), titanium (Ti), nickel A composite film composed of one or more of the group consisting of (Ni), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide.

优选地,还包括步骤7),于所述场效应晶体管区域制作场效应晶体管,所述场效应晶体管包含形成于所述半导体衬底上的栅结构以及形成于所述半导体衬底中的有源区。Preferably, the method further includes step 7) of fabricating a field effect transistor in the field effect transistor region. The field effect transistor includes a gate structure formed on the semiconductor substrate and an active layer formed in the semiconductor substrate. district.

进一步地,所述环形沟槽具有与所述场效应晶体管的栅结构及有源区所围成区域相对应的轮廓。Further, the annular trench has an outline corresponding to the area surrounded by the gate structure and the active area of the field effect transistor.

优选地,所述环形沟槽包含具有封闭形态的环形沟槽。Preferably, the annular groove includes an annular groove having a closed shape.

优选地,所述环形沟槽的深度介于50nm(纳米)~200nm(纳米)之间。Preferably, the depth of the annular groove is between 50nm (nanometer) and 200nm (nanometer).

优选地,所述环形沟槽的宽度介于10nm(纳米)~50nm(纳米)之间。Preferably, the width of the annular groove is between 10nm (nanometer) and 50nm (nanometer).

本发明还提供一种场效应晶体管的隔离结构,包括:半导体衬底,所述半导体衬底中具有场效应晶体管区域以及环绕所场效应晶体管区域的环形沟槽;介质层,形成于所述环形沟槽侧壁及底部;金属层,填充于所述环形沟槽,且所述金属层的上层部分被去除,以形成环形凹槽;绝缘层,填充于所述环形凹槽,以掩埋所述金属层;部分的所述绝缘层去除而成接触窗,所述接触窗显露所述环形沟槽中的所述金属层;以及接触电极,填充于所述接触窗并与所述金属层接触,以形成场效应晶体管的隔离结构的控制端。The invention also provides an isolation structure of a field effect transistor, including: a semiconductor substrate having a field effect transistor region and an annular trench surrounding the field effect transistor region; a dielectric layer formed in the annular The side walls and bottom of the trench; a metal layer, filled in the annular trench, and the upper part of the metal layer is removed to form an annular groove; an insulating layer, filled in the annular groove to bury the a metal layer; a part of the insulating layer is removed to form a contact window, the contact window exposes the metal layer in the annular trench; and a contact electrode is filled in the contact window and in contact with the metal layer, to form the control terminal of the isolation structure of the field effect transistor.

优选地,所述介质层包含二氧化硅层(SiO2)。Preferably, the dielectric layer includes a silicon dioxide layer (SiO 2 ).

优选地,所述金属层包括形成于所述环形沟槽的底部及侧壁的氮化钛层(TiN)以及填充于所述环形沟槽内的钨层(W)。Preferably, the metal layer includes a titanium nitride layer (TiN) formed on the bottom and sidewalls of the annular trench and a tungsten layer (W) filled in the annular trench.

优选地,所述接触电极的电阻率介于2×10-8欧姆米(Ωm)到1×102欧姆米(Ωm)之间,其材质包含由钨(W),钛(Ti),镍(Ni),铝(Al),铂(Pt),N型多晶硅、P型多晶硅、金属氮化物及金属硅化物所组成群组中的一种或多种组成的复合薄膜。Preferably, the resistivity of the contact electrode is between 2×10 -8 ohm meters (Ωm) and 1×10 2 ohm meters (Ωm), and its material includes tungsten (W), titanium (Ti), nickel A composite film composed of one or more of the group consisting of (Ni), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide.

优选地,所述场效应晶体管区域具有场效应晶体管,所述场效应晶体管包含形成于所述半导体衬底上的栅结构以及形成于所述半导体衬底中的有源区。Preferably, the field effect transistor region has a field effect transistor including a gate structure formed on the semiconductor substrate and an active region formed in the semiconductor substrate.

进一步地,所述环形沟槽具有与所述场效应晶体管的栅结构及有源区所围成区域相对应的轮廓。Further, the annular trench has an outline corresponding to the area surrounded by the gate structure and the active area of the field effect transistor.

优选地,所述环形沟槽包含具有封闭形态的环形沟槽。Preferably, the annular groove includes an annular groove having a closed shape.

优选地,所述环形沟槽的深度介于50nm(纳米)~200nm(纳米)之间。Preferably, the depth of the annular groove is between 50nm (nanometer) and 200nm (nanometer).

优选地,所述环形沟槽的宽度介于10nm(纳米)~50nm(纳米)之间。Preferably, the width of the annular groove is between 10nm (nanometer) and 50nm (nanometer).

如上所述,本发明的场效应晶体管的隔离结构及其制作方法,具有以下有益效果:As mentioned above, the isolation structure of the field effect transistor and its manufacturing method of the present invention have the following beneficial effects:

本发明采用新型的隔离结构对场效应晶体管进行隔离,各个场效应晶体管之间无需传统的浅沟槽隔离结构(STI)也能防止在各个晶体管之间的漏电,并可有效提高防漏电性能。The present invention uses a new isolation structure to isolate field effect transistors. It can prevent leakage between each field effect transistor without the traditional shallow trench isolation structure (STI), and can effectively improve the anti-leakage performance.

本发明的场效应晶体管的隔离结构相比于传统的浅沟槽隔离结构(STI),所占面积大大减小,可有效提高场效应晶体管的集成密度。Compared with the traditional shallow trench isolation structure (STI), the isolation structure of the field effect transistor of the present invention occupies a greatly reduced area, and can effectively increase the integration density of the field effect transistor.

本发明工艺及结构简单,具有良好的防漏电性能,在半导体设计及制造领域具有广泛的应用前景。The invention has simple process and structure, good anti-leakage performance, and broad application prospects in the field of semiconductor design and manufacturing.

附图说明Description of the drawings

图1a~图12b显示为本发明的场效应晶体管的隔离结构的制作方法各步骤所呈现的结构示意图,其中,图1b为图1a中A-A’处的截面结构示意图,图11b为图11a中B-B’处的截面结构示意图,图11d为图11c中B-B’处的截面结构示意图,图12b为图12a中A-A’处的截面结构示意图。Figures 1a to 12b show schematic structural diagrams of each step of the method for manufacturing an isolation structure of a field effect transistor of the present invention, wherein Figure 1b is a schematic cross-sectional structure diagram at AA' in Figure 1a, and Figure 11b is a schematic diagram of the cross-sectional structure of Figure 11a Figure 11d is a schematic cross-sectional structural diagram at B-B' in Figure 11c, and Figure 12b is a schematic cross-sectional structural diagram at A-A' in Figure 12a.

元件标号说明Component label description

101 半导体衬底101 Semiconductor substrate

102 场效应晶体管区域102 Field Effect Transistor Area

103 图形光阻103 Graphic photoresist

104 牺牲掩膜层104 sacrificial mask layer

105 硬掩膜层105 hard mask layer

106 环形窗口106 ring window

107 环形沟槽107 Annular Groove

108 介质层108 dielectric layer

109 氮化钛层(TiN)109 Titanium nitride layer (TiN)

110 钨层(W)110 Tungsten layer(W)

111 环形凹槽111 annular groove

112 绝缘层112 insulation layer

113 接触电极113 Contact electrode

114 栅结构114 gate structure

115 源区115 source area

116 漏区116 drain area

117 源电极117 source electrode

118 漏电极118 drain electrode

119 栅电极119 gate electrode

120 接触窗120 contact window

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The following describes the embodiments of the present invention through specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments. Various details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.

请参阅图1a~图12b。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figure 1a ~ Figure 12b. It should be noted that the illustrations provided in this embodiment only illustrate the basic concept of the present invention in a schematic manner, so the illustrations only show the components related to the present invention and are not based on the number, shape and number of components during actual implementation. Dimension drawing, in actual implementation, the type, quantity and proportion of each component can be arbitrarily changed, and the component layout type may also be more complex.

如图1a~图12b所示,本实施例提供一种场效应晶体管的隔离结构的制作方法,所述制作方法包括:As shown in Figures 1a to 12b, this embodiment provides a method for manufacturing an isolation structure of a field effect transistor. The manufacturing method includes:

如图1a~图6所示,首先进行步骤1),提供一半导体衬底101,于所述半导体衬底101中定义出场效应晶体管区域102,并于所述半导体衬底101中形成环绕所场效应晶体管区域102的环形沟槽107。As shown in Figures 1a to 6, step 1) is first performed to provide a semiconductor substrate 101, define a field effect transistor region 102 in the semiconductor substrate 101, and form a surrounding field in the semiconductor substrate 101 Annular trench 107 of effect transistor region 102 .

所述半导体衬底101,可以包含如硅衬底、锗衬底、锗硅衬底、碳化硅衬底、Ⅲ-Ⅴ族衬底等,本实施例可以选用硅衬底为例。The semiconductor substrate 101 may include, for example, a silicon substrate, a germanium substrate, a silicon germanium substrate, a silicon carbide substrate, a III-V group substrate, etc. In this embodiment, a silicon substrate may be used as an example.

所述场效应晶体管区域102至少包含场效应晶体管的实质区域以及该实质区域与隔离结构之间的必要间隔,该必要间隔可以依据实际需求进行设定,所述场效应晶体管的实质区域包含有源区及栅结构114、所述有源区包含源区115、漏区116以及沟道区。The field effect transistor region 102 at least includes a substantial region of the field effect transistor and a necessary interval between the substantial region and the isolation structure. The necessary interval can be set according to actual needs. The substantial region of the field effect transistor includes an active Region and gate structure 114, the active region includes a source region 115, a drain region 116 and a channel region.

具体地,步骤1)包括:Specifically, step 1) includes:

如图1a~图1b所示,其中,图1b为图1a中A-A’处的截面结构示意图,首先进行步骤1-1),提供一半导体衬底101,于所述半导体衬底101中定义出场效应晶体管区域102,于所述半导体衬底101表面形成覆盖所述场效应晶体管区域102的图形光阻103。As shown in Figures 1a to 1b, Figure 1b is a schematic cross-sectional structural diagram at AA' in Figure 1a. First, step 1-1) is performed to provide a semiconductor substrate 101. In the semiconductor substrate 101 A field effect transistor region 102 is defined, and a patterned photoresist 103 covering the field effect transistor region 102 is formed on the surface of the semiconductor substrate 101 .

所述图形光阻103包含通过曝光工艺及显影工艺的图形光刻胶。The pattern photoresist 103 includes pattern photoresist that has passed an exposure process and a development process.

如图1a~图1b所示,然后进行步骤1-2),于所述图形光阻103的侧壁形成环形的牺牲掩膜层104,基于所述牺牲掩膜层104的宽度定义所述环形沟槽107的宽度。As shown in Figures 1a-1b, step 1-2) is then performed to form an annular sacrificial mask layer 104 on the sidewall of the patterned photoresist 103. The annular shape is defined based on the width of the sacrificial mask layer 104. The width of trench 107.

作为示例,可以采用如化学气相沉积工艺等方法于所述图形光阻103表面及侧壁覆盖牺牲掩膜材料,然后通过干法刻蚀去除所述图形光阻103表面的牺牲掩膜材料,保留位于所述图形光阻103的侧壁的环形的牺牲掩膜层104。As an example, a method such as a chemical vapor deposition process can be used to cover the surface and sidewalls of the patterned photoresist 103 with a sacrificial mask material, and then dry etching is used to remove the sacrificial mask material from the surface of the patterned photoresist 103, leaving the An annular sacrificial mask layer 104 is located on the sidewall of the patterned photoresist 103 .

本发明可以基于所述牺牲掩膜层104的宽度定义所述环形沟槽107的宽度,不需要进一步采用光刻-刻蚀工艺,即可以省略一次的光刻-刻蚀工艺,可大大节省工艺成本。并且通过环形的牺牲掩膜层104定义的环形沟槽107宽度,不会受到光刻-刻蚀工艺的尺寸限制,其尺寸可以做得很小,并且具有较好的可控性。The present invention can define the width of the annular trench 107 based on the width of the sacrificial mask layer 104, without the need for further photolithography-etching process, that is, one photolithography-etching process can be omitted, which can greatly save processes. cost. Moreover, the width of the annular trench 107 defined by the annular sacrificial mask layer 104 will not be limited by the size of the photolithography-etching process, and its size can be made very small and has good controllability.

作为示例,所述牺牲掩膜层104的宽度介于10nm(纳米)~50nm(纳米)之间。As an example, the width of the sacrificial mask layer 104 is between 10 nm (nanometer) and 50 nm (nanometer).

如图2所示,接着进行步骤1-3),去除所述图形光阻103,以显露所述半导体衬底101,并保留所述牺牲掩膜层104。As shown in FIG. 2 , steps 1-3) are then performed to remove the patterned photoresist 103 to expose the semiconductor substrate 101 and retain the sacrificial mask layer 104 .

如图3~图4所示,接着进行步骤1-4),于所述半导体衬底101的表面形成硬掩膜层105。As shown in FIGS. 3 and 4 , steps 1-4) are then performed to form a hard mask layer 105 on the surface of the semiconductor substrate 101 .

具体地,步骤1-4)包括:先以沉积方式形成于所述半导体衬底101及所述牺牲掩膜层104上的硬掩膜层105,所述硬掩膜层105完全覆盖所述牺牲掩膜层104,然后采用研磨工艺去除部分的所述硬掩膜层105,使得所述牺牲掩膜层104的顶面显露地齐平于所述硬掩膜层105的顶面,以保证后续选择性去除所述牺牲掩膜层104后,所述硬掩膜层105可以保留足够的厚度。Specifically, steps 1-4) include: first forming a hard mask layer 105 on the semiconductor substrate 101 and the sacrificial mask layer 104 by deposition, and the hard mask layer 105 completely covers the sacrificial mask layer 105 . Mask layer 104, and then use a grinding process to remove part of the hard mask layer 105, so that the top surface of the sacrificial mask layer 104 is exposed flush with the top surface of the hard mask layer 105 to ensure subsequent After the sacrificial mask layer 104 is selectively removed, the hard mask layer 105 can retain sufficient thickness.

如图5所示,然后进行步骤1-5),去除所述牺牲掩膜层104,并保留所述硬掩膜层105,以形成具有环形窗口106的硬掩膜层105,所述环形窗口106显露所述半导体衬底101。As shown in Figure 5, steps 1-5) are then performed to remove the sacrificial mask layer 104 and retain the hard mask layer 105 to form a hard mask layer 105 with an annular window 106. 106 reveals the semiconductor substrate 101 .

作为示例,步骤1-5)中,所述硬掩膜层105的去除速率小于所述牺牲掩膜层104的去除速率的二分之一,以保证所述硬掩膜层105在所述半导体衬底101上的保留厚度。更优地,所述硬掩膜层105的去除速率小于所述牺牲掩膜层104的去除速率的五分之一,可以保证所述硬掩膜层105保留更多的厚度,以便于后续环形沟槽107的刻蚀。As an example, in step 1-5), the removal rate of the hard mask layer 105 is less than half of the removal rate of the sacrificial mask layer 104 to ensure that the hard mask layer 105 is on the semiconductor The remaining thickness on the substrate 101. More preferably, the removal rate of the hard mask layer 105 is less than one-fifth of the removal rate of the sacrificial mask layer 104, which can ensure that the hard mask layer 105 retains more thickness to facilitate subsequent annular formation. Etching of trench 107.

作为示例,所述硬掩膜层105可包含二氧化硅层。As an example, the hard mask layer 105 may include a silicon dioxide layer.

如图6所示,最后进行步骤1-6),基于所述具有环形窗口106的硬掩膜层105刻蚀所述半导体衬底101,以形成所述环形沟槽107。As shown in FIG. 6 , steps 1-6) are finally performed to etch the semiconductor substrate 101 based on the hard mask layer 105 with the annular window 106 to form the annular trench 107 .

作为示例,采用等离子体干法刻蚀方法刻蚀所述半导体衬底101,以形成所述环形沟槽107。所述环形沟槽107的深度Z1介于50nm(纳米)~200nm(纳米)之间。As an example, a plasma dry etching method is used to etch the semiconductor substrate 101 to form the annular trench 107 . The depth Z1 of the annular groove 107 is between 50nm (nanometer) and 200nm (nanometer).

作为示例,所述环形沟槽107的宽度Z2介于10nm(纳米)~50nm(纳米)之间。本发明通过制作反向掩膜的方法,可以使得所述环形沟槽107的尺寸较小,大大降低了其所占用的面积,从而大大提高在所述半导体衬底101上的场效应晶体管的集成密度。As an example, the width Z2 of the annular trench 107 is between 10 nm (nanometer) and 50 nm (nanometer). Through the method of making a reverse mask, the present invention can make the size of the annular trench 107 smaller, greatly reducing the area it occupies, thereby greatly improving the integration of field effect transistors on the semiconductor substrate 101 density.

作为示例,所述环形沟槽107包含具有封闭形态的环形沟槽107,以进一步保证所述隔离结构的防漏电性能。As an example, the annular trench 107 includes an annular trench 107 with a closed shape to further ensure the anti-leakage performance of the isolation structure.

如图7所示,然后进行步骤2),于所述环形沟槽107侧壁及底部形成介质层108。As shown in FIG. 7 , step 2) is then performed to form a dielectric layer 108 on the sidewalls and bottom of the annular trench 107 .

作为示例,步骤2)通过低压退火工艺(ISSG)对所述环形沟槽107侧壁及底部进行氧化,以形成所述介质层108,所述介质层108包含二氧化硅层(SiO2)。采用低压退火工艺(ISSG),可提高所述介质层108的致密度,以提高其介电性能。As an example, step 2) oxidizes the sidewalls and bottom of the annular trench 107 through a low-pressure annealing process (ISSG) to form the dielectric layer 108. The dielectric layer 108 includes a silicon dioxide layer (SiO 2 ). Using a low pressure annealing process (ISSG), the density of the dielectric layer 108 can be increased to improve its dielectric properties.

如图8所示,接着进行步骤3),于所述环形沟槽107中填充金属层。As shown in FIG. 8 , step 3) is then performed to fill the annular trench 107 with a metal layer.

具体地,步骤3)于所述环形沟槽107中填充金属层包括:Specifically, step 3) filling the annular trench 107 with a metal layer includes:

3-1)于所述环形沟槽107的底部及侧壁形成氮化钛层(TiN)109。3-1) Form a titanium nitride layer (TiN) 109 on the bottom and side walls of the annular trench 107.

3-2)于所述环形沟槽107内填充钨层(W)110,所述氮化钛层(TiN)109可大大提高所述钨层(W)110与所述环形沟槽107的结合强度,提高其机械性能。3-2) Fill the annular trench 107 with the tungsten layer (W) 110. The titanium nitride layer (TiN) 109 can greatly improve the bonding between the tungsten layer (W) 110 and the annular trench 107. strength and improve its mechanical properties.

3-3)对所述钨层(W)110进行平坦化处理,直至所述钨层(W)110与所述半导体衬底101的表面齐平。3-3) Planarize the tungsten layer (W) 110 until the tungsten layer (W) 110 is flush with the surface of the semiconductor substrate 101 .

如图9所示,然后进行步骤4),去除所述金属层的上层部分,以形成环形凹槽111。As shown in FIG. 9 , step 4) is then performed to remove the upper part of the metal layer to form an annular groove 111 .

采用等离子干法刻蚀去除所述金属层的上层部分,以形成环形凹槽111,所述环形凹槽111与所述环形沟槽107具有相同的轮廓。Plasma dry etching is used to remove the upper portion of the metal layer to form an annular groove 111 , and the annular groove 111 has the same profile as the annular trench 107 .

如图10所示,接着进行步骤5),于所述环形凹槽111中填充绝缘层112,以掩埋所述金属层。As shown in FIG. 10 , step 5) is then performed to fill the annular groove 111 with an insulating layer 112 to bury the metal layer.

作为示例,采用如原子层沉积工艺或等离子体增强化学气相沉积工艺于所述环形凹槽111中填充绝缘层112,所述绝缘层112包含氮化硅层(SiN)。As an example, an atomic layer deposition process or a plasma enhanced chemical vapor deposition process is used to fill the annular groove 111 with an insulating layer 112 , where the insulating layer 112 includes a silicon nitride layer (SiN).

如图11a~图11d所示,其中,图11b为图11a中B-B’处的截面结构示意图,图11d为图11c中B-B’处的截面结构示意图,然后进行步骤6),去除部分的所述绝缘层112以形成接触窗120,所述接触窗显露所述环形沟槽107中的所述金属层,如图11a~图11b所示,并于所述接触窗中填充接触电极113,,以形成场效应晶体管的隔离结构的控制端,如图11c~图11d所示。As shown in Figures 11a to 11d, Figure 11b is a schematic cross-sectional structural view at B-B' in Figure 11a, and Figure 11d is a schematic cross-sectional structural view at B-B' in Figure 11c. Then proceed to step 6) to remove Part of the insulating layer 112 is used to form a contact window 120, which exposes the metal layer in the annular trench 107, as shown in FIGS. 11a-11b, and is filled with contact electrodes in the contact window. 113, to form the control end of the isolation structure of the field effect transistor, as shown in Figures 11c to 11d.

作为示例,于所述接触窗中填充接触电极113的方法包含原子层沉积工艺(ALD)及等离子增强化学气相沉积工艺(PECVD)所组成群组中的一种。所述接触电极113的电阻率介于2×10-8欧姆米(Ωm)到1×102欧姆米(Ωm)之间,其材质包含由钨(W),钛(Ti),镍(Ni),铝(Al),铂(Pt),N型多晶硅、P型多晶硅、金属氮化物及金属硅化物所组成群组中的一种或多种组成的复合薄膜。所述金属氮化物包含氮化钛(TiN),所述金属硅化物包含硅化钛(TiSi),硅化镍(NiSi)及硅氮化钛(TiSiN)所组成群组中的一种。例如,所述接触电极113可以包含位于所述接触窗底部及侧壁的氮化钛层(TiN)以及填充于所述接触窗内的钨层(W)。As an example, the method of filling the contact electrode 113 in the contact window includes one of the group consisting of atomic layer deposition (ALD) and plasma enhanced chemical vapor deposition (PECVD). The resistivity of the contact electrode 113 is between 2×10 -8 ohm meters (Ωm) and 1×10 2 ohm meters (Ωm), and its material includes tungsten (W), titanium (Ti), nickel (Ni) ), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide are composed of one or more composite films in the group. The metal nitride includes titanium nitride (TiN), and the metal silicide includes one of the group consisting of titanium silicide (TiSi), nickel silicide (NiSi), and titanium silicon nitride (TiSiN). For example, the contact electrode 113 may include a titanium nitride layer (TiN) located at the bottom and sidewalls of the contact window and a tungsten layer (W) filled in the contact window.

所述接触窗及接触电极113优选设置于所述环形沟槽107的任一拐角处,以提高接触电极113与所述金属层的接触面积。The contact window and contact electrode 113 are preferably disposed at any corner of the annular trench 107 to increase the contact area between the contact electrode 113 and the metal layer.

如图12a~图12b所示,其中,图12b为图12a中A-A’处的截面结构示意图,最后进行步骤7),于所述场效应晶体管区域102制作场效应晶体管,所述场效应晶体管包含形成于所述半导体衬底101上的栅结构114以及形成于所述半导体衬底101中的有源区,所述有源区包含源区115、漏区116及沟道区。另外,还包括于所述源区115、漏区116及栅结构114上分别制作源电极117、漏电极118以及栅电极119的步骤。As shown in Figures 12a and 12b, Figure 12b is a schematic cross-sectional structural diagram at AA' in Figure 12a. Finally, step 7) is performed to fabricate a field effect transistor in the field effect transistor region 102. The field effect transistor is The transistor includes a gate structure 114 formed on the semiconductor substrate 101 and an active region formed in the semiconductor substrate 101. The active region includes a source region 115, a drain region 116 and a channel region. In addition, the step of forming a source electrode 117, a drain electrode 118 and a gate electrode 119 on the source region 115, the drain region 116 and the gate structure 114 is also included.

作为示例,所述环形沟槽107具有与所述场效应晶体管的栅结构114及有源区所围成区域相对应的轮廓,以进一步节省所述隔离结构所占用的面积,从而进一步提高场效应晶体管的集成密度。As an example, the annular trench 107 has an outline corresponding to the area enclosed by the gate structure 114 and the active area of the field effect transistor to further save the area occupied by the isolation structure, thereby further improving the field effect. Transistor integration density.

本发明只需要对所述接触电极113施加合适的电压,便可产生与其相邻的有源区区域之间的能障,从而以防止场效应晶体管之间的漏电。The present invention only needs to apply an appropriate voltage to the contact electrode 113 to create an energy barrier between the adjacent active area regions, thereby preventing leakage between field effect transistors.

需要说明的是,所述半导体衬底101包含周边区以及数组区,步骤6)后形成的场效应晶体管位于所述半导体衬底101的周边区,所述半导体衬底101的数组区设有多个字线结构,上述步骤1)至步骤3)包含在所述字线结构的形成过程。It should be noted that the semiconductor substrate 101 includes a peripheral area and an array area. The field effect transistor formed after step 6) is located in the peripheral area of the semiconductor substrate 101. The array area of the semiconductor substrate 101 is provided with a plurality of A word line structure, the above steps 1) to 3) are included in the formation process of the word line structure.

如图11b、图12a及图12b所示,其中,图11b显示为图12a中的B-B’处的截面结构示意图,图12b显示为图12a中的A-A’处的截面结构示意图。本实施例还提供一种场效应晶体管的隔离结构,包括:半导体衬底101、环形沟槽107、介质层108、金属层、绝缘层112、接触窗及接触电极113。As shown in Figures 11b, 12a and 12b, Figure 11b shows a schematic cross-sectional structure diagram at B-B' in Figure 12a, and Figure 12b shows a schematic cross-sectional structure diagram at A-A' in Figure 12a. This embodiment also provides an isolation structure of a field effect transistor, including: a semiconductor substrate 101, an annular trench 107, a dielectric layer 108, a metal layer, an insulating layer 112, a contact window and a contact electrode 113.

所述半导体衬底101可以包含如硅衬底、锗衬底、锗硅衬底、碳化硅衬底、Ⅲ-Ⅴ族衬底等,本实施例可以选用硅衬底为例。The semiconductor substrate 101 may include, for example, a silicon substrate, a germanium substrate, a silicon germanium substrate, a silicon carbide substrate, a III-V group substrate, etc. In this embodiment, a silicon substrate may be used as an example.

所述半导体衬底101中具有场效应晶体管区域102。所述场效应晶体管区域102至少包含场效应晶体管的实质区域以及该实质区域与隔离结构之间的必要间隔,该必要间隔可以依据实际需求进行设定。所述场效应晶体管区域102具有场效应晶体管,所述场效应晶体管包含形成于所述半导体衬底101上的栅结构114以及形成于所述半导体衬底101中的有源区,所述有源区包含源区115、漏区116及沟道区。另外,所述场效应晶体管还包括分别位于所述源区115、漏区116及栅结构114上的源电极117、漏电极118以及栅电极119。The semiconductor substrate 101 has a field effect transistor region 102 therein. The field effect transistor region 102 at least includes a substantial region of the field effect transistor and a necessary interval between the substantial region and the isolation structure. The necessary interval can be set according to actual requirements. The field effect transistor region 102 has a field effect transistor including a gate structure 114 formed on the semiconductor substrate 101 and an active region formed in the semiconductor substrate 101. The region includes a source region 115, a drain region 116 and a channel region. In addition, the field effect transistor further includes a source electrode 117, a drain electrode 118 and a gate electrode 119 respectively located on the source region 115, the drain region 116 and the gate structure 114.

需要说明的是,所述半导体衬底包含周边区以及数组区,所述场效应晶体管位于所述半导体衬底的周边区,所述半导体衬底的数组区设有多个字线结构。It should be noted that the semiconductor substrate includes a peripheral area and an array area, the field effect transistor is located in the peripheral area of the semiconductor substrate, and the array area of the semiconductor substrate is provided with a plurality of word line structures.

所述环形沟槽107环绕所场效应晶体管区域102,所述环形沟槽107具有与所述场效应晶体管的栅结构114及有源区所围成区域相对应的轮廓,如图12a所示,所述环形沟槽107的表面轮廓即是所述绝缘层112的形成区域,对应到所述栅结构114和包含源区115、漏区116的有源区所围成区域,以进一步节省所述隔离结构所占用的面积,从而进一步提高场效应晶体管的集成密度。The annular trench 107 surrounds the field effect transistor area 102, and the annular trench 107 has an outline corresponding to the area enclosed by the gate structure 114 and the active area of the field effect transistor, as shown in Figure 12a. The surface profile of the annular trench 107 is the formation area of the insulating layer 112, corresponding to the area surrounded by the gate structure 114 and the active area including the source region 115 and the drain region 116, to further save the The area occupied by the isolation structure further increases the integration density of field effect transistors.

所述环形沟槽107的深度Z1介于50nm(纳米)~200nm(纳米)之间。所述环形沟槽107的宽度Z2介于10nm(纳米)~50nm(纳米)之间。相比于传统的浅沟槽隔离结构(STI)来说,本发明的所述环形沟槽107的尺寸较小,可以大大降低其所占用的面积,从而大大提高在所述半导体衬底101上的场效应晶体管的集成密度。The depth Z1 of the annular groove 107 is between 50nm (nanometer) and 200nm (nanometer). The width Z2 of the annular trench 107 is between 10 nm (nanometer) and 50 nm (nanometer). Compared with the traditional shallow trench isolation structure (STI), the size of the annular trench 107 of the present invention is smaller, which can greatly reduce the area it occupies, thereby greatly improving the efficiency on the semiconductor substrate 101 The integration density of field effect transistors.

作为示例,所述环形沟槽107包含具有封闭形态的环形沟槽107,可进一步保证所述隔离结构的防漏电性能。As an example, the annular trench 107 includes an annular trench 107 with a closed shape, which can further ensure the anti-leakage performance of the isolation structure.

所述介质层108形成于所述环形沟槽107侧壁及底部,所述介质层108包含二氧化硅层(SiO2)。The dielectric layer 108 is formed on the sidewall and bottom of the annular trench 107, and the dielectric layer 108 includes a silicon dioxide layer (SiO 2 ).

所述金属层填充于所述环形沟槽107,且所述金属层的上层部分被去除,以形成环形凹槽111,所述环形凹槽111与所述环形沟槽107具有相同的轮廓。The metal layer is filled in the annular groove 107, and an upper portion of the metal layer is removed to form an annular groove 111. The annular groove 111 has the same profile as the annular groove 107.

所述金属层包括形成于所述环形沟槽107的底部及侧壁的氮化钛层(TiN)109以及填充于所述环形沟槽107内的钨层(W)110,所述氮化钛层(TiN)109可大大提高所述钨层(W)110与所述环形沟槽107的结合强度,提高其机械性能。The metal layer includes a titanium nitride layer (TiN) 109 formed on the bottom and side walls of the annular trench 107 and a tungsten layer (W) 110 filled in the annular trench 107. The titanium nitride layer The layer (TiN) 109 can greatly improve the bonding strength between the tungsten layer (W) 110 and the annular groove 107 and improve its mechanical properties.

所述绝缘层112填充于所述环形凹槽111,以掩埋所述金属层,所述绝缘层112包含氮化硅层(SiN)。The insulating layer 112 is filled in the annular groove 111 to bury the metal layer. The insulating layer 112 includes a silicon nitride layer (SiN).

部分的所述绝缘层112去除而成接触窗120,所述接触窗显露所述环形沟槽107中的所述金属层。所述接触窗及接触电极113优选设置于所述环形沟槽107的任一拐角处,以提高接触电极113与所述金属层的接触面积。A portion of the insulating layer 112 is removed to form a contact window 120 , which exposes the metal layer in the annular trench 107 . The contact window and contact electrode 113 are preferably disposed at any corner of the annular trench 107 to increase the contact area between the contact electrode 113 and the metal layer.

所述接触电极113填充于所述接触窗并与所述金属层接触,以形成场效应晶体管的隔离结构的控制端。所述接触窗及接触电极113优选设置于所述环形沟槽107的任一拐角处,以提高接触电极113与所述金属层的接触面积。The contact electrode 113 is filled in the contact window and contacts the metal layer to form a control end of the isolation structure of the field effect transistor. The contact window and contact electrode 113 are preferably disposed at any corner of the annular trench 107 to increase the contact area between the contact electrode 113 and the metal layer.

所述接触电极113的电阻率介于2×10-8欧姆米(Ωm)到1×102欧姆米(Ωm)之间,其材质包含由钨(W),钛(Ti),镍(Ni),铝(Al),铂(Pt),N型多晶硅、P型多晶硅、金属氮化物及金属硅化物所组成群组中的一种或多种组成的复合薄膜。所述金属氮化物包含氮化钛(TiN),所述金属硅化物包含硅化钛(TiSi),硅化镍(NiSi)及硅氮化钛(TiSiN)所组成群组中的一种。例如,所述接触电极113可以包含位于所述接触窗底部及侧壁的氮化钛层(TiN)以及填充于所述接触窗内的钨层(W)。The resistivity of the contact electrode 113 is between 2×10 -8 ohm meters (Ωm) and 1×10 2 ohm meters (Ωm), and its material includes tungsten (W), titanium (Ti), nickel (Ni) ), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide are composed of one or more composite films in the group. The metal nitride includes titanium nitride (TiN), and the metal silicide includes one of the group consisting of titanium silicide (TiSi), nickel silicide (NiSi), and titanium silicon nitride (TiSiN). For example, the contact electrode 113 may include a titanium nitride layer (TiN) located at the bottom and sidewalls of the contact window and a tungsten layer (W) filled in the contact window.

本发明只需要对所述接触电极113施加合适的电压,便可产生与其相邻的有源区区域之间的能障,从而以防止场效应晶体管之间的漏电。The present invention only needs to apply an appropriate voltage to the contact electrode 113 to create an energy barrier between the adjacent active area regions, thereby preventing leakage between field effect transistors.

如上所述,本发明的场效应晶体管的隔离结构及其制作方法,具有以下有益效果:As mentioned above, the isolation structure of the field effect transistor and its manufacturing method of the present invention have the following beneficial effects:

本发明采用新型的隔离结构对场效应晶体管进行隔离,各个场效应晶体管之间无需传统的浅沟槽隔离结构(STI)也能防止在各个晶体管之间的漏电,并可有效提高防漏电性能。The present invention uses a new isolation structure to isolate field effect transistors. It can prevent leakage between each field effect transistor without the traditional shallow trench isolation structure (STI), and can effectively improve the anti-leakage performance.

本发明的场效应晶体管的隔离结构相比于传统的浅沟槽隔离结构(STI),所占面积大大减小,可有效提高场效应晶体管的集成密度。Compared with the traditional shallow trench isolation structure (STI), the isolation structure of the field effect transistor of the present invention occupies a greatly reduced area, and can effectively increase the integration density of the field effect transistor.

本发明工艺及结构简单,具有良好的防漏电性能,在半导体设计及制造领域具有广泛的应用前景。The invention has simple process and structure, good anti-leakage performance, and broad application prospects in the field of semiconductor design and manufacturing.

所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone familiar with this technology can modify or change the above embodiments without departing from the spirit and scope of the invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical ideas disclosed in the present invention shall still be covered by the claims of the present invention.

Claims (20)

1. A method for fabricating an isolation structure of a field effect transistor, the method comprising:
1) Providing a semiconductor substrate, defining a field effect transistor region in the semiconductor substrate, and forming an annular groove surrounding the field effect transistor region in the semiconductor substrate;
2) Forming a dielectric layer on the side wall and the bottom of the annular groove;
3) Filling a metal layer in the annular groove;
4) Removing the upper layer part of the metal layer to form an annular groove;
5) Filling an insulating layer in the annular groove to bury the metal layer; and
6) And removing part of the insulating layer to form a contact window, exposing the metal layer in the annular groove, and filling a contact electrode in the contact window to form a control end of an isolation structure of the field effect transistor.
2. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: step 1) comprises:
1-1) providing the semiconductor substrate, and forming a pattern photoresist covering the field effect transistor region on the surface of the semiconductor substrate;
1-2) forming a ring-shaped sacrificial mask layer on the side wall of the pattern photoresist, and defining the width of the ring-shaped groove based on the width of the sacrificial mask layer;
1-3) removing the patterned photoresist to expose the semiconductor substrate and leave the sacrificial mask layer;
1-4) forming a hard mask layer on the surface of the semiconductor substrate;
1-5) removing the sacrificial mask layer and reserving the hard mask layer to form a hard mask layer with a ring-shaped window, wherein the ring-shaped window exposes the semiconductor substrate; and
1-6) etching the semiconductor substrate based on the hard mask layer with the annular window to form the annular groove.
3. The method for manufacturing the isolation structure of the field effect transistor according to claim 2, wherein: the steps 1-4) comprise: and removing part of the hard mask layer by adopting a grinding process, so that the top surface of the sacrificial mask layer is exposed and flush with the top surface of the hard mask layer.
4. The method for manufacturing the isolation structure of the field effect transistor according to claim 2, wherein: in step 1-5), the removal rate of the hard mask layer is less than one half of the removal rate of the sacrificial mask layer to ensure a remaining thickness of the hard mask layer on the semiconductor substrate.
5. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: step 2) oxidizing the sidewall and bottom of the annular trench by a low-pressure annealing process (ISSG) to form the dielectric layer comprising a silicon dioxide layer (SiO 2 )。
6. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: step 3) filling a metal layer in the annular groove comprises the following steps:
3-1) forming a titanium nitride layer (TiN) on the bottom and the side wall of the annular groove; and
3-2) filling a tungsten layer (W) in the annular groove.
7. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: the field effect transistor formed after the step 6) is located in the peripheral area of the semiconductor substrate, the array area of the semiconductor substrate is provided with a plurality of word line structures, and the step 1) to the step 3) comprise the forming process of the word line structures.
8. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: in step 6), the method for filling the contact electrode in the contact window comprises one of Atomic Layer Deposition (ALD) and Plasma Enhanced Chemical Vapor Deposition (PECVD).
9. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: the resistivity of the contact electrode is 2×10 -8 Ohm-meters (OMEGA.m) to 1X 10 2 The ohmic meter (OMEGA m) is made of a composite film consisting of one or more of tungsten (W), titanium (Ti), nickel (Ni), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide.
10. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: and 7) manufacturing a field effect transistor in the field effect transistor region, wherein the field effect transistor comprises a gate structure formed on the semiconductor substrate and an active region formed in the semiconductor substrate.
11. The method for manufacturing the isolation structure of the field effect transistor according to claim 10, wherein: the annular groove is provided with a contour corresponding to a region surrounded by the gate structure and the active region of the field effect transistor.
12. The method for manufacturing the isolation structure of the field effect transistor according to claim 1, wherein: the annular groove includes an annular groove having a closed configuration.
13. The method for manufacturing the isolation structure of the field effect transistor according to any one of claims 1 to 12, wherein: the depth of the annular groove is between 50 and nm nanometers and 200 nanometers, and the width of the annular groove is between 10 and nm nanometers and 50 and nm nanometers.
14. An isolation structure of a field effect transistor, comprising:
the semiconductor substrate comprises a peripheral area and an array area, the field effect transistor is positioned in the peripheral area of the semiconductor substrate, the array area of the semiconductor substrate is provided with a plurality of word line structures, and the semiconductor substrate is provided with a field effect transistor area and an annular groove surrounding the field effect transistor area;
the dielectric layer is formed on the side wall and the bottom of the annular groove;
a metal layer filled in the annular groove, and the upper layer part of the metal layer is removed to form an annular groove;
an insulating layer filled in the annular groove to bury the metal layer; removing part of the insulating layer to form a contact window, wherein the contact window exposes the metal layer in the annular groove; and
and the contact electrode is filled in the contact window and is contacted with the metal layer to form a control end of the isolation structure of the field effect transistor.
15. The isolation structure of a field effect transistor of claim 14, wherein: the metal layer comprises a titanium nitride layer (TiN) formed at the bottom and the side wall of the annular groove and a tungsten layer (W) filled in the annular groove.
16. The isolation structure of a field effect transistor of claim 14, wherein: the resistivity of the contact electrode is 2×10 -8 Ohm-meters (OMEGA.m) to 1X 10 2 The ohmic meter (OMEGA m) is made of a composite film consisting of one or more of tungsten (W), titanium (Ti), nickel (Ni), aluminum (Al), platinum (Pt), N-type polysilicon, P-type polysilicon, metal nitride and metal silicide.
17. The isolation structure of a field effect transistor of claim 14, wherein: the field effect transistor region has a field effect transistor including a gate structure formed on the semiconductor substrate and an active region formed in the semiconductor substrate.
18. The isolation structure of a field effect transistor of claim 17, wherein: the annular groove is provided with a contour corresponding to a region surrounded by the gate structure and the active region of the field effect transistor.
19. The isolation structure of a field effect transistor of claim 14, wherein: the annular groove includes an annular groove having a closed configuration.
20. The isolation structure of a field effect transistor according to any one of claims 14 to 19, wherein: the depth of the annular groove is between 50 and nm nanometers and 200 nanometers, and the width of the annular groove is between 10 and nm nanometers and 50 and nm nanometers.
CN201711273144.4A 2017-12-06 2017-12-06 Isolation structure of field effect transistor and manufacturing method thereof Active CN108109917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711273144.4A CN108109917B (en) 2017-12-06 2017-12-06 Isolation structure of field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711273144.4A CN108109917B (en) 2017-12-06 2017-12-06 Isolation structure of field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN108109917A CN108109917A (en) 2018-06-01
CN108109917B true CN108109917B (en) 2023-09-29

Family

ID=62208083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711273144.4A Active CN108109917B (en) 2017-12-06 2017-12-06 Isolation structure of field effect transistor and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN108109917B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326478A (en) * 2018-12-13 2020-06-23 夏泰鑫半导体(青岛)有限公司 Semiconductor component and method of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145761A (en) * 1989-11-01 1991-06-20 Toshiba Corp Semiconductor device
US5914523A (en) * 1998-02-17 1999-06-22 National Semiconductor Corp. Semiconductor device trench isolation structure with polysilicon bias voltage contact
US6303969B1 (en) * 1998-05-01 2001-10-16 Allen Tan Schottky diode with dielectric trench
JP2009088241A (en) * 2007-09-28 2009-04-23 Renesas Technology Corp Semiconductor device and manufacturing method thereof
CN103050535A (en) * 2012-08-22 2013-04-17 上海华虹Nec电子有限公司 Super junction MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) structure having groove type terminal structure and preparation method thereof
JP2014192242A (en) * 2013-03-26 2014-10-06 Toshiba Corp Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394702B2 (en) * 2010-03-24 2013-03-12 Alpha And Omega Semiconductor Incorporated Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process
JP6037499B2 (en) * 2011-06-08 2016-12-07 ローム株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145761A (en) * 1989-11-01 1991-06-20 Toshiba Corp Semiconductor device
US5914523A (en) * 1998-02-17 1999-06-22 National Semiconductor Corp. Semiconductor device trench isolation structure with polysilicon bias voltage contact
US6303969B1 (en) * 1998-05-01 2001-10-16 Allen Tan Schottky diode with dielectric trench
JP2009088241A (en) * 2007-09-28 2009-04-23 Renesas Technology Corp Semiconductor device and manufacturing method thereof
CN103050535A (en) * 2012-08-22 2013-04-17 上海华虹Nec电子有限公司 Super junction MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) structure having groove type terminal structure and preparation method thereof
JP2014192242A (en) * 2013-03-26 2014-10-06 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
CN108109917A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
CN101490821B (en) Subresolution silicon features and methods for forming the same
CN108962825B (en) Semiconductor element and manufacturing method thereof
CN107134486B (en) Memory
US8507349B2 (en) Semiconductor device employing fin-type gate and method for manufacturing the same
CN209087842U (en) a semiconductor structure
CN106158751B (en) The manufacturing method of dynamic random access memory device
CN105097641B (en) Manufacturing method of embedded word line and isolation structure thereof
CN110211921B (en) How to make a contact hole
CN111200011B (en) Semiconductor device and method of forming the same
CN111435644B (en) Gate-all-around transistor and method of making the same
CN103681283B (en) Method of fabricating a recessed channel memory transistor device
CN103022036B (en) single edge access device
CN112652664B (en) Semiconductor device and manufacturing method thereof, integrated circuit and electronic equipment
CN108109917B (en) Isolation structure of field effect transistor and manufacturing method thereof
CN111435678A (en) Manufacturing method of gate-all-around transistor
CN113903808B (en) Semiconductor structure and forming method thereof
CN111710713B (en) Fin type field effect transistor, manufacturing method thereof and electronic equipment
CN110867377B (en) Planarization method of virtual gate
CN110085555A (en) Semiconductor structure and forming method thereof
CN113497042B (en) Semiconductor structure and forming method thereof
CN103972174B (en) SiGe body longitudinal 1T-DRAM device and manufacturing method thereof
KR100753125B1 (en) Saddle Pin Transistor Manufacturing Method
CN207587695U (en) The isolation structure of field-effect transistor
CN113097137B (en) Semiconductor structures and methods of forming them
CN111627992B (en) Grid structure and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181009

Address after: 230601 room 630, Hai Heng mansion 6, Cui Wei Road, Hefei economic and Technological Development Zone, Anhui

Applicant after: CHANGXIN MEMORY TECHNOLOGIES, Inc.

Address before: 230000 room 526, Hai Heng mansion 6, Cui Wei Road, Hefei economic and Technological Development Zone, Anhui

Applicant before: INNOTRON MEMORY CO.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant