CN103972174B - SiGe body longitudinal 1T-DRAM device and manufacturing method thereof - Google Patents
SiGe body longitudinal 1T-DRAM device and manufacturing method thereof Download PDFInfo
- Publication number
- CN103972174B CN103972174B CN201310035130.4A CN201310035130A CN103972174B CN 103972174 B CN103972174 B CN 103972174B CN 201310035130 A CN201310035130 A CN 201310035130A CN 103972174 B CN103972174 B CN 103972174B
- Authority
- CN
- China
- Prior art keywords
- layer
- sige
- transistor
- interlayer dielectric
- dram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000577 Silicon-germanium Inorganic materials 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000407 epitaxy Methods 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 130
- 239000011229 interlayer Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 22
- 239000004065 semiconductor Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 239000003989 dielectric material Substances 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 239000002073 nanorod Substances 0.000 abstract 2
- 238000003475 lamination Methods 0.000 abstract 1
- 210000000746 body region Anatomy 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/20—DRAM devices comprising floating-body transistors, e.g. floating-body cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件及其制造方法领域,尤其涉及一种基于SiGe能带工程的纵向高集成度晶体管结构以及其制造方法。The invention relates to the field of semiconductor devices and manufacturing methods thereof, in particular to a vertical high-integration transistor structure based on SiGe energy band engineering and a manufacturing method thereof.
背景技术Background technique
随着半导体集成电路器件特征尺寸的不断缩小,传统1T/1C嵌入式DRAM单元尺寸在缩小,其电容的面积随着按比例缩小(scaling down)变得越来越困难,制备工艺也越来越复杂,与逻辑器件工艺的兼容性越来越差。因此,与逻辑器件兼容性良好的无电容式DRAM(Capacitorless DRAM)将在VLSI的高性能嵌入式DRAM领域具有良好发展前景。其中利用浮体效应(floating body effect)的1T-DRAM(One Transistor Dynamic Random AccessMemory)为1T-DRAM的主要实现方式。With the continuous shrinking of the feature size of semiconductor integrated circuit devices, the size of the traditional 1T/1C embedded DRAM unit is shrinking, and the area of its capacitor is becoming more and more difficult as scaling down, and the manufacturing process is also becoming more and more difficult. Complicated, and the compatibility with the logic device process is getting worse. Therefore, capacitorless DRAM (Capacitorless DRAM) with good compatibility with logic devices will have a good development prospect in the field of high-performance embedded DRAM of VLSI. Among them, 1T-DRAM (One Transistor Dynamic Random Access Memory) utilizing floating body effect is the main implementation method of 1T-DRAM.
1T-DRAM一般为一个SOI浮体(floating body)晶体管,当对其体区充电,即体区空穴的积累来完成写“1”,这时由于体区孔穴积累而造成衬底效应,导致晶体管的阈值电压降低。当对其体区放电,即通过体漏PN结正偏将其体区积累的孔穴放掉来完成写“0”,这时衬底效应消失,阈值电压恢复正常,开启电流增大。而读操作是读取该晶体管开启状态时的源漏电流,由于“1”和“0”状态的阈值电压不同,两者源漏电流也不一样,当较大时即表示读出的是“1”,而较小时即表示读出的是“0”。1T-DRAM is generally a SOI floating body (floating body) transistor. When charging its body region, that is, the accumulation of holes in the body region to complete writing "1", at this time, the substrate effect is caused by the accumulation of holes in the body region, resulting in the transistor the threshold voltage decreases. When the body region is discharged, that is, through the positive bias of the body drain PN junction, the holes accumulated in the body region are discharged to complete writing "0". At this time, the substrate effect disappears, the threshold voltage returns to normal, and the turn-on current increases. The read operation is to read the source-leakage current when the transistor is on. Since the threshold voltages of the "1" and "0" states are different, the source-leakage currents of the two are also different. When it is larger, it means that the read is " 1", and when it is small, it means that the read is "0".
目前,向体区充电的机制主要分为:利用在饱和区的碰撞电离激发寄生BJT效应来在体区积累空穴和采用GIDL效应使体区积累空穴。相比较而言,利用碰撞电离效应的1T-DRAM,由于具有更高的速度和良好的可靠性而成为研究热点。At present, the mechanism of charging the body region is mainly divided into: using the impact ionization in the saturation region to excite the parasitic BJT effect to accumulate holes in the body region and using the GIDL effect to accumulate holes in the body region. In comparison, 1T-DRAM utilizing the impact ionization effect has become a research hotspot due to its higher speed and good reliability.
目前实现IT-DRAM的结构一般是基于SOI的平面结构,而SOI平面结构的1T-DRAM存在的主要问题是:体区电势受到体区与源和漏的孔穴势垒限制。由于常规硅半导体禁带宽度有限,体区电势的变化受到限制,阈值电压的变化较小,这使得读出的信号电流较小。此外SOI的衬底与目前广泛应用的体硅工艺不兼容,并且存在不易散热的问题。At present, the structure of IT-DRAM is generally based on SOI planar structure, and the main problem of 1T-DRAM with SOI planar structure is that the potential of the body region is limited by the hole barrier between the body region and the source and drain. Due to the limited band gap of the conventional silicon semiconductor, the change of the body potential is limited, and the change of the threshold voltage is small, which makes the readout signal current smaller. In addition, the SOI substrate is not compatible with the bulk silicon process widely used at present, and there is a problem that it is not easy to dissipate heat.
发明内容Contents of the invention
本发明针对现有VLSI技术中嵌入式DRAM领域具有良好发展前景的无电容式1T-DRAM单元结构,提出一种基于SiGe能带工程的高集成度的纵向纳米柱1T-DRAM器件和阵列及其制造方法。本发明对1T-DRAM进行优化,利用纵向纳米柱晶体管实现浮体效应,并采用易集成的外延SiGe体区,因此在缩小单元面积、提高集成度的同时,能够增大信号裕度。The present invention aims at the non-capacitive 1T-DRAM cell structure with good development prospects in the field of embedded DRAM in the existing VLSI technology, and proposes a highly integrated vertical nanocolumn 1T-DRAM device and array based on SiGe energy band engineering and its Manufacturing method. The invention optimizes the 1T-DRAM, utilizes the vertical nano-column transistor to realize the floating body effect, and adopts the epitaxial SiGe body region which is easy to integrate, so the signal margin can be increased while reducing the unit area and improving the integration degree.
根据本发明的一个方面,本发明提供一种半导体器件制造方法,其中,包括如下步骤:According to one aspect of the present invention, the present invention provides a semiconductor device manufacturing method, which includes the following steps:
步骤1,在衬底上形成N+掺杂层作为晶体管的源极区域;Step 1, forming an N+ doped layer on the substrate as the source region of the transistor;
步骤2,在所述衬底上外延形成SiGe层;Step 2, epitaxially forming a SiGe layer on the substrate;
步骤3,使用第一层掩膜版,刻蚀所述SiGe层,形成SiGe纳米柱作为晶体管的沟道区域;Step 3, using the first mask plate to etch the SiGe layer to form a SiGe nano-column as a channel region of the transistor;
步骤4,沉积Si帽层;Step 4, depositing a Si cap layer;
步骤5,沉积第一层间介质层;Step 5, depositing the first interlayer dielectric layer;
步骤6,使用第二层掩膜版,对所述第一层间介质层进行刻蚀;Step 6, using a second layer mask to etch the first interlayer dielectric layer;
步骤7,依次沉积高K栅介质材料层和金属栅极材料层;Step 7, sequentially depositing a high-K gate dielectric material layer and a metal gate material layer;
步骤8,采用CMP工艺,除去部分所述第一层间介质层、所述高K栅介质材料层和所述金属栅极材料层,直至暴露出所述Si帽层的上表面,剩余的所述金属栅极材料层形成为金属栅极也即字线;Step 8, using a CMP process to remove part of the first interlayer dielectric layer, the high-K gate dielectric material layer and the metal gate material layer until the upper surface of the Si cap layer is exposed, and the remaining The metal gate material layer is formed into a metal gate, that is, a word line;
步骤9,在暴露的所述Si帽层的上表面进行选择性外延,形成Si外延层;Step 9, performing selective epitaxy on the exposed upper surface of the Si cap layer to form an Si epitaxial layer;
步骤10,对部分所述Si外延层进行热氧化处理;Step 10, performing thermal oxidation treatment on part of the Si epitaxial layer;
步骤11,淀积第二层间介质层;Step 11, depositing a second interlayer dielectric layer;
步骤12,采用CMP工艺,除去部分所述第二层间介质层,直至暴露出所述Si外延层的上表面;Step 12, using a CMP process to remove part of the second interlayer dielectric layer until the upper surface of the Si epitaxial layer is exposed;
步骤13,沉积第一金属布线层,使用第三层掩膜版进行图案化,从而形成位线。Step 13, depositing the first metal wiring layer, and patterning using the third layer mask to form bit lines.
根据本发明的另一个方面,本发明提供一种半导体器件,其包括:According to another aspect of the present invention, the present invention provides a semiconductor device, which includes:
半导体衬底;位于所述半导体衬底之上的N+掺杂层,为晶体管的源极区域;位于所述N+掺杂层之上的SiGe纳米柱,为晶体管的沟道区域;位于所述SiGe纳米柱之上的Si外延层,为晶体管的漏极区域;高K栅介质材料层和字线,包围了所述SiGe纳米柱,为晶体管的环形栅极;位于所述Si外延层之上的位线。The semiconductor substrate; the N+ doped layer on the semiconductor substrate is the source region of the transistor; the SiGe nanocolumn on the N+ doped layer is the channel region of the transistor; the SiGe The Si epitaxial layer on the nanocolumn is the drain region of the transistor; the high-K gate dielectric material layer and the word line surround the SiGe nanocolumn and are the annular gate of the transistor; the Si epitaxial layer on the bit line.
在本发明中,所述SiGe纳米柱中Ge的原子百分比含量在20%~30%之间;所述N+掺杂层的杂质为砷,掺杂浓度为1*1020cm-3;所述字线连接一行1T-DRAM单元,相邻单元间的所述字线由所述第一层间介质层隔离;所述位线连接一列1T-DRAM单元;在所形成的单元中,所述Si外延层的直径小于所述SiGe纳米柱的直径。In the present invention, the atomic percentage content of Ge in the SiGe nanocolumn is between 20% and 30%; the impurity of the N+ doped layer is arsenic, and the doping concentration is 1*10 20 cm -3 ; the The word lines are connected to a row of 1T-DRAM cells, and the word lines between adjacent cells are isolated by the first interlayer dielectric layer; the bit lines are connected to a column of 1T-DRAM cells; in the formed cells, the Si The diameter of the epitaxial layer is smaller than that of the SiGe nanopillars.
附图说明Description of drawings
图1-20本发明的半导体器件制造方法流程及其结构示意图Fig. 1-20 The flow chart of the manufacturing method of the semiconductor device of the present invention and its structure diagram
具体实施方式Detailed ways
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Hereinafter, the present invention is described by means of specific embodiments shown in the drawings. It should be understood, however, that these descriptions are exemplary only and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
首先,本发明提供一种半导体器件制造方法,其制造流程参见附图1-20。First, the present invention provides a method for manufacturing a semiconductor device, the manufacturing process of which is shown in Figures 1-20.
首先,参见附图1,为本发明实施例中的1T-DRAM器件结构和阵列的一个版图,包含三层。图1虚线方框内为一个1T-DRAM单元。横虚线Aa表示沿位线延伸方向,纵虚线Bb表示沿字线延伸方向,图5~图19为Aa方向的横截面图,图20为Bb方向的横截面图。另外,图2是本发明实施例的1T-DRAM器件结构和阵列的第一层掩模版的图形,为纳米柱图形的掩模版;图3是本发明实施例的1T-DRAM器件结构和阵列的第二层掩模版的图形,为字线的掩模版;图4是是本发明实施例的1T-DRAM器件结构和阵列的第三层掩模版的图形,为位线的掩模版。Firstly, referring to FIG. 1 , it is a layout of a 1T-DRAM device structure and array in an embodiment of the present invention, including three layers. Figure 1 shows a 1T-DRAM unit inside the dotted line box. The horizontal dotted line Aa indicates the direction along which the bit line extends, and the vertical dotted line Bb indicates the direction along which the word line extends. FIGS. 5 to 19 are cross-sectional views in the direction of Aa, and FIG. In addition, Fig. 2 is the pattern of the first layer mask of the 1T-DRAM device structure and array of the embodiment of the present invention, which is the mask of the nano-column pattern; Fig. 3 is the 1T-DRAM device structure and array of the embodiment of the present invention The pattern of the second reticle is the reticle of the word line; FIG. 4 is the pattern of the third reticle of the 1T-DRAM device structure and array according to the embodiment of the present invention, which is the reticle of the bit line.
首先,参见附图5,提供衬底1。本实施例中的衬底1为半导体衬底,例如单晶硅衬底,具有P-掺杂类型。可选地,衬底1为锗硅、氮化镓等半导体材料。First, referring to FIG. 5 , a substrate 1 is provided. The substrate 1 in this embodiment is a semiconductor substrate, such as a single crystal silicon substrate, with P- doping type. Optionally, the substrate 1 is made of semiconductor materials such as silicon germanium and gallium nitride.
接着,参见附图6,在衬底1上进行杂质注入,形成N+掺杂层2。其中,掺杂类型为砷,掺杂浓度为1*1020cm-3,峰值掺杂分布在5nm~30nm之间。可选地,在注入后进行退火工艺。N+掺杂层2作为晶体管的源极区域,因此,图1阵列中所有的1T-DRAM源端在一个等电位上。Next, referring to FIG. 6 , impurity implantation is performed on the substrate 1 to form an N+ doped layer 2 . Wherein, the doping type is arsenic, the doping concentration is 1*10 20 cm -3 , and the peak doping distribution is between 5nm and 30nm. Optionally, an annealing process is performed after implantation. The N+ doped layer 2 serves as the source region of the transistor, therefore, the source terminals of all 1T-DRAMs in the array shown in FIG. 1 are at an equipotential.
接着,参见附图7,外延形成SiGe层3。其中,SiGe层3中Ge的原子百分比含量在20%~30%之间。另外,在外延时,可以同时进行现场掺杂(in-situ doping),例如硼掺杂,浓度为1*1015cm-3。SiGe层3的厚度优选为10~50nm。Next, referring to FIG. 7 , the SiGe layer 3 is epitaxially formed. Wherein, the atomic percent content of Ge in the SiGe layer 3 is between 20% and 30%. In addition, during epitaxy, in-situ doping (in-situ doping), such as boron doping, can be performed at the same time, with a concentration of 1*10 15 cm -3 . The thickness of SiGe layer 3 is preferably 10 to 50 nm.
接着,参见附图8,使用第一层掩膜版,进行纳米柱图形光刻,刻蚀SiGe层3,从而形成SiGe纳米柱31。SiGe纳米柱31用作晶体管体区也即晶体管的沟道区域。该步骤具体包括:光刻胶的涂覆,以第一层掩膜版进行曝光,之后对暴露出的SiGe层3进行各向异性刻蚀,直至N+掺杂层2。SiGe纳米柱31的高度与SiGe层3的厚度相等,其直径优选地为10~40nm。同时,SiGe纳米柱31的高度也决定了纵向晶体管的沟道长度。Next, referring to FIG. 8 , the SiGe layer 3 is etched to form SiGe nano-columns 31 by photolithography of the nano-column pattern using the first layer mask. The SiGe nanocolumns 31 serve as the body region of the transistor, that is, the channel region of the transistor. This step specifically includes: coating of photoresist, exposing with the first mask, and then performing anisotropic etching on the exposed SiGe layer 3 until the N+ doped layer 2 . The height of the SiGe nanocolumn 31 is equal to the thickness of the SiGe layer 3 , and its diameter is preferably 10-40 nm. At the same time, the height of the SiGe nanocolumn 31 also determines the channel length of the vertical transistor.
接着,参见附图9,全面性沉积Si帽层4。沉积工艺包括CVD,厚度为5nm,Si帽层4完全覆盖和包围了SiGe纳米柱31。Si帽层4具有1*1015cm-3的砷掺杂,可以用来提高界面特性。Next, referring to FIG. 9 , the Si cap layer 4 is deposited on the entire surface. The deposition process includes CVD with a thickness of 5 nm, and the Si cap layer 4 completely covers and surrounds the SiGe nanocolumn 31 . The Si cap layer 4 has an arsenic doping of 1*10 15 cm −3 , which can be used to improve interface properties.
接着,参见附图10,淀积第一层间介质层5。第一层间介质层5的材料可选地为二氧化硅,其全面覆盖了SiGe纳米柱31和Si帽层4。在沉积第一层间介质层5之后,通常需要进行CMP工艺,以获得平坦的第一层间介质层5的表面。Next, referring to FIG. 10 , a first interlayer dielectric layer 5 is deposited. The material of the first interlayer dielectric layer 5 may optionally be silicon dioxide, which completely covers the SiGe nanocolumns 31 and the Si cap layer 4 . After depositing the first interlayer dielectric layer 5 , a CMP process is generally required to obtain a flat surface of the first interlayer dielectric layer 5 .
接着,参见附图11,涂覆光刻胶,使用第二层掩膜版进行曝光,形成图案化光刻胶层6。之后,参见附图12,以图案化光刻胶层6为掩模,对第一层间介质层5进行各向异性刻蚀,直至暴露出第一层间介质层5下方的Si帽层4。刻蚀完成后,除去图案化光刻胶层6。Next, referring to FIG. 11 , a photoresist is coated, and a second layer mask is used for exposure to form a patterned photoresist layer 6 . Afterwards, referring to FIG. 12 , using the patterned photoresist layer 6 as a mask, the first interlayer dielectric layer 5 is anisotropically etched until the Si cap layer 4 under the first interlayer dielectric layer 5 is exposed. . After the etching is completed, the patterned photoresist layer 6 is removed.
接着,参见附图13,依次沉积高K栅介质材料层7和金属栅极材料层8。其中,沉积工艺包括CVD、ALD等。高K栅介质材料层7的材料选包括HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx以及HfLaSiOx至少之一在内的铪基高K介质材料,金属栅极材料层8的材料为金属、合金或金属化合物,例如TiN,TaN,W等。其中,高K栅介质材料层7的EOT为1~2nm。Next, referring to FIG. 13 , a high-K gate dielectric material layer 7 and a metal gate material layer 8 are deposited in sequence. Wherein, the deposition process includes CVD, ALD and the like. The material of the high-K gate dielectric material layer 7 is a hafnium-based high-K dielectric material including at least one of HfSiOx , HfSiON, HfAlOx , HfTaOx , HfLaOx , HfAlSiOx , and HfLaSiOx , and the metal gate material layer 8 The material is metal, alloy or metal compound, such as TiN, TaN, W, etc. Wherein, the EOT of the high-K gate dielectric material layer 7 is 1-2 nm.
接着,参见附图14,采用CMP工艺,以Si帽层4为终点,除去部分第一层间介质层5、高K栅介质材料层7和金属栅极材料层8,暴露出Si帽层4的上表面。剩余的金属栅极材料层8形成为金属栅极也即字线9。Next, referring to FIG. 14 , the CMP process is adopted, with the Si cap layer 4 as the end point, part of the first interlayer dielectric layer 5 , the high-K gate dielectric material layer 7 and the metal gate material layer 8 are removed, and the Si cap layer 4 is exposed. of the upper surface. The remaining metal gate material layer 8 is formed into metal gates, ie, word lines 9 .
接着,参见附图15,在暴露的Si帽层4的上表面进行选择性外延,形成Si外延层10。Si外延层10用作晶体管的漏极区域,其高度为10~50nm。在外延过程中,可以采用现场掺杂(in-situ doping),例如掺杂砷,形成掺杂浓度为1*1020cm-3的Si外延层10。这样,就形成了自下而上的层状掺杂结构:先是1*1015cm-3硼掺杂的SiGe层3,接着过渡到1*1015cm-3砷掺杂的Si帽层4,最后渐渐过渡到最上层的1*1020cm^-3砷掺杂的Si外延层10。这样的结构有利于形成漏栅不重叠延伸(drain to gate underlap)的结构,有利于提高1T-DRAM的保持时间。Next, referring to FIG. 15 , selective epitaxy is performed on the exposed upper surface of the Si cap layer 4 to form a Si epitaxial layer 10 . The Si epitaxial layer 10 is used as the drain region of the transistor, and its height is 10 to 50 nm. During the epitaxial process, in-situ doping, such as arsenic doping, can be used to form the Si epitaxial layer 10 with a doping concentration of 1*10 20 cm −3 . In this way, a bottom-up layered doping structure is formed: first 1*10 15 cm -3 boron-doped SiGe layer 3, and then transitions to 1*10 15 cm -3 arsenic-doped Si cap layer 4 , and finally transition to the uppermost 1*10 20 cm^ -3 arsenic-doped Si epitaxial layer 10 gradually. Such a structure is beneficial to form a structure in which the drain gate does not overlap and extend (drain to gate underlap), and is beneficial to improving the retention time of the 1T-DRAM.
接着,参见附图16,对Si外延层10进行热氧化,形成包围Si外延层10的氧化硅层11。由于热氧化工艺会消耗部分Si外延层10,因此,在此步骤之后,Si外延层10的尺寸将缩小,这样,Si外延层10的直径小于SiGe纳米柱31的直径,这也避免了作为漏极区域的Si外延层10与字线9(也即金属栅极)短路。Next, referring to FIG. 16 , the Si epitaxial layer 10 is thermally oxidized to form a silicon oxide layer 11 surrounding the Si epitaxial layer 10 . Because the thermal oxidation process can consume part of the Si epitaxial layer 10, therefore, after this step, the size of the Si epitaxial layer 10 will shrink, like this, the diameter of the Si epitaxial layer 10 is smaller than the diameter of the SiGe nano-column 31, which also avoids being a leak. The Si epitaxial layer 10 in the pole region is short-circuited with the word line 9 (ie, the metal gate).
接着,参见附图17,形成第二层间介质层12。第二层间介质层12为氧化硅,因此,与氧化硅层11结合为一整个氧化硅层,并采用附图标记12。Next, referring to FIG. 17 , the second interlayer dielectric layer 12 is formed. The second interlayer dielectric layer 12 is made of silicon oxide, therefore, it is combined with the silicon oxide layer 11 to form a whole silicon oxide layer, which is designated by reference numeral 12 .
接着,参见附图18,采用CMP工艺,去除部分第二层间介质层12,直至暴露出Si外延层10的上表面。Next, referring to FIG. 18 , a part of the second interlayer dielectric layer 12 is removed by a CMP process until the upper surface of the Si epitaxial layer 10 is exposed.
接着,附图19和20,全面性沉积第一金属布线层,采用第三层掩膜版进行图案化,从而形成位线13。位线13的材料例如是铝。在形成位线13之前,在Si外延层10上形成漏极接触,例如金属硅化物,使得位线13与作为漏极区域的Si外延层10电连接。Next, as shown in FIGS. 19 and 20 , the first metal wiring layer is deposited on the entire surface, and the third layer mask is used for patterning, thereby forming the bit line 13 . The material of the bit line 13 is aluminum, for example. Before forming the bit line 13, a drain contact, such as metal silicide, is formed on the Si epitaxial layer 10, so that the bit line 13 is electrically connected to the Si epitaxial layer 10 as a drain region.
至此,根据本发明的一个实施例,详细描述了本发明的方法。接下来,根据本发明的另一个方面,提供一种半导体器件。So far, according to an embodiment of the present invention, the method of the present invention has been described in detail. Next, according to another aspect of the present invention, a semiconductor device is provided.
参见附图19和20,本发明的半导体器件包括1T-DRAM单元阵列,其中每个单元具体包括:半导体衬底1;位于半导体衬底1之上的N+掺杂层3,为晶体管的源极区域;位于N+掺杂层3之上的SiGe纳米柱31,为晶体管的沟道区域;位于SiGe纳米柱31之上的Si外延层10,为晶体管的漏极区域;高K栅介质材料层7和字线9,包围了SiGe纳米柱31,为晶体管的环形栅极;位于Si外延层之上的位线13。本发明中的单元阵列为均匀分布的纳米柱,字线9由连接一起的金属栅极组成,由于本发明中的金属栅极构成了字线9,可以连接一行的1T-DRAM单元。另外,本发明中的位线13是由第一金属布线层经刻蚀形成,连接晶体管漏极区域,位线13能够连接一列的1T-DRAM单元。Referring to accompanying drawings 19 and 20, the semiconductor device of the present invention includes a 1T-DRAM cell array, wherein each cell specifically includes: a semiconductor substrate 1; an N+ doped layer 3 located on the semiconductor substrate 1, which is the source of the transistor Region; the SiGe nanocolumn 31 on the N+ doped layer 3 is the channel region of the transistor; the Si epitaxial layer 10 on the SiGe nanocolumn 31 is the drain region of the transistor; the high K gate dielectric material layer 7 And the word line 9 surrounds the SiGe nanocolumn 31, which is the annular gate of the transistor; the bit line 13 is located on the Si epitaxial layer. The cell array in the present invention is uniformly distributed nanocolumns, and the word line 9 is composed of connected metal gates. Since the metal gates in the present invention form the word line 9, a row of 1T-DRAM cells can be connected. In addition, the bit line 13 in the present invention is formed by etching the first metal wiring layer, connected to the drain region of the transistor, and the bit line 13 can be connected to a column of 1T-DRAM cells.
根据本发明提出的,沟道区和漏区也可以由另外多种的材料外延的组合形成,以达到提升DRAM性能的目的。本发明中使用了SiGe做为沟道区,Si做为漏区,是利用SiGe材料的价带与Si材料价带差来形成空穴的势垒。同样,设计者还可以使用Si材料做为沟道区,宽禁带的SiC做为外延漏区。According to the present invention, the channel region and the drain region can also be formed by epitaxy combinations of other kinds of materials, so as to achieve the purpose of improving the performance of the DRAM. In the present invention, SiGe is used as the channel region, and Si is used as the drain region, which utilizes the difference between the valence band of the SiGe material and the valence band of the Si material to form a potential barrier of holes. Similarly, designers can also use Si material as the channel region, and SiC with a wide bandgap as the epitaxial drain region.
至此,已经详细描述了本发明的方法和器件。在本发明中,利用源端连接体硅衬底的纵向纳米柱晶体管实现浮体效应,将晶体管的制作基于体硅衬底上,避免使用昂贵的SOI衬底,同时缩小了阵列面积,能实现高集成度;采用了纵向的纳米柱晶体管,使用外延形成的叠层分别为沟道区和漏区,对沟道区和漏区的设计提供了大的空间,这对于1T-DRAM性能的提升提供很多实施方案;同时,纵向晶体管的结构有利于SiGe沟道区的集成,采用外延SiGe做为沟道区,利用SiGe与Si价带的差,在沟道区制造了空穴的势阱,能有效提高1T-DRAM的读取1状态与读取0状态间的电流差。So far, the method and device of the present invention have been described in detail. In the present invention, the floating body effect is realized by using the vertical nanocolumn transistor whose source end is connected to the bulk silicon substrate, and the fabrication of the transistor is based on the bulk silicon substrate, avoiding the use of expensive SOI substrates, reducing the array area, and achieving high Integration level; vertical nano-column transistors are adopted, and the stacked layers formed by epitaxy are channel region and drain region respectively, which provides a large space for the design of channel region and drain region, which provides a great guarantee for the improvement of 1T-DRAM performance Many implementations; at the same time, the structure of the vertical transistor is conducive to the integration of the SiGe channel region. Epitaxial SiGe is used as the channel region, and the potential well of holes is created in the channel region by using the difference between SiGe and Si valence bands, which can Effectively increase the current difference between the read 1 state and the read 0 state of 1T-DRAM.
以上参照本发明的实施例对本发明予以了说明。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。本发明的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替换和修改,这些替换和修改都应落在本发明的范围之内。The present invention has been described above with reference to the embodiments of the present invention. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. The scope of the invention is defined by the appended claims and their equivalents. Those skilled in the art can make various substitutions and modifications without departing from the scope of the present invention, and these substitutions and modifications should all fall within the scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310035130.4A CN103972174B (en) | 2013-01-29 | 2013-01-29 | SiGe body longitudinal 1T-DRAM device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310035130.4A CN103972174B (en) | 2013-01-29 | 2013-01-29 | SiGe body longitudinal 1T-DRAM device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103972174A CN103972174A (en) | 2014-08-06 |
CN103972174B true CN103972174B (en) | 2018-11-06 |
Family
ID=51241521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310035130.4A Active CN103972174B (en) | 2013-01-29 | 2013-01-29 | SiGe body longitudinal 1T-DRAM device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103972174B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106960683B (en) * | 2017-03-31 | 2020-05-05 | 深圳市华星光电技术有限公司 | Dynamic random access memory applied to liquid crystal display and access method thereof |
US11031402B1 (en) | 2019-12-05 | 2021-06-08 | International Business Machines Corporation | Capacitorless dram cell |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437126A (en) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | Single-transistor DRAM (dynamic random access memory) unit based on source heterojunction and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8064239B2 (en) * | 2008-11-12 | 2011-11-22 | The Board Of Trustees Of The Leland Stanford Junior University | Memory circuit with quantum well-type carrier storage |
US8441053B2 (en) * | 2010-10-15 | 2013-05-14 | Powerchip Technology Corporation | Vertical capacitor-less DRAM cell, DRAM array and operation of the same |
-
2013
- 2013-01-29 CN CN201310035130.4A patent/CN103972174B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437126A (en) * | 2011-11-30 | 2012-05-02 | 上海华力微电子有限公司 | Single-transistor DRAM (dynamic random access memory) unit based on source heterojunction and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
A New Capacitorless 1T DRAM Cell: Surrounding;Hoon Jeong;《IEEE TRANSACTIONS ON NANOTECHNOLOGY》;20070531;第6卷(第3期);第352-355页 * |
Investigation of Capacitorless Double-Gate;M. Günhan Ertosun;《IEEE TRANSACTIONS ON ELECTRON DEVICES》;20100331;第57卷(第3期);第608-612页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103972174A (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12136628B2 (en) | High voltage three-dimensional devices having dielectric liners | |
US20220130962A1 (en) | Non-planar semiconductor device having omega-fin with doped sub-fin region and method to fabricate same | |
US11581406B2 (en) | Method of fabricating CMOS FinFETs by selectively etching a strained SiGe layer | |
US10177143B2 (en) | FinFET device and method for fabricating the same | |
CN103730363B (en) | Semiconductor structure and manufacturing method thereof | |
WO2014204477A1 (en) | Non-planar semiconductor device having doped sub-fin region and method to fabricate same | |
TW201929225A (en) | Field effect transistor, system on chip, and method of manufacturing the same | |
CN110416311B (en) | An Asymmetric Channel Dielectric Ring Field Effect Transistor | |
CN102468303A (en) | Semiconductor memory cell, device and preparation method thereof | |
US10026821B2 (en) | All-around gate field-effect transistor | |
CN102157556A (en) | Oxidizing-dephlegmation-based silicon-based wrap gate transistor with buried-channel structure and preparation method thereof | |
CN103972174B (en) | SiGe body longitudinal 1T-DRAM device and manufacturing method thereof | |
CN104425606B (en) | Tunneling field-effect transistor and forming method thereof | |
CN106558489A (en) | Nanowire structure, fence nanowire device and manufacturing method thereof | |
CN111081776B (en) | Field effect transistor, method of manufacturing the same, and system on chip including the same | |
CN104282752A (en) | High-performance and high-integration-level drain electrode auxiliary control L-shaped gate type junction-free transistor | |
KR101120174B1 (en) | Method for Manufacturing Semiconductor Device | |
CN114792728A (en) | Semiconductor structure and forming method thereof | |
CN102723339A (en) | SOI (Silicon On Insulator)-BJT (Bipolar Junction Transistor) Bi CMOS (Complementary Metal-Oxide-Semiconductor) integrated device with strain SiGe clip-shaped channel and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |