CN107937437B - Light-operated expression vector of insect cell and application - Google Patents
Light-operated expression vector of insect cell and application Download PDFInfo
- Publication number
- CN107937437B CN107937437B CN201711177112.4A CN201711177112A CN107937437B CN 107937437 B CN107937437 B CN 107937437B CN 201711177112 A CN201711177112 A CN 201711177112A CN 107937437 B CN107937437 B CN 107937437B
- Authority
- CN
- China
- Prior art keywords
- plasmid
- light
- vector
- pmib
- fluorescent protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000238631 Hexapoda Species 0.000 title claims abstract description 36
- 239000013604 expression vector Substances 0.000 title claims abstract description 27
- 239000013612 plasmid Substances 0.000 claims abstract description 59
- 230000014509 gene expression Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 41
- 239000013598 vector Substances 0.000 claims description 31
- 102000004169 proteins and genes Human genes 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 15
- 108090000790 Enzymes Proteins 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 8
- 108700008625 Reporter Genes Proteins 0.000 claims description 8
- 239000002773 nucleotide Substances 0.000 claims description 5
- 125000003729 nucleotide group Chemical group 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 108091006047 fluorescent proteins Proteins 0.000 claims description 4
- 102000034287 fluorescent proteins Human genes 0.000 claims description 4
- 101150014742 AGE1 gene Proteins 0.000 claims description 3
- 238000010367 cloning Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 239000005090 green fluorescent protein Substances 0.000 abstract description 22
- 238000001890 transfection Methods 0.000 abstract description 13
- 108010054624 red fluorescent protein Proteins 0.000 abstract description 8
- 108010043121 Green Fluorescent Proteins Proteins 0.000 abstract description 6
- 102000004144 Green Fluorescent Proteins Human genes 0.000 abstract description 5
- 108091023040 Transcription factor Proteins 0.000 abstract description 5
- 102000040945 Transcription factor Human genes 0.000 abstract description 5
- 230000004913 activation Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012795 verification Methods 0.000 abstract description 3
- 230000000638 stimulation Effects 0.000 abstract description 2
- 238000013518 transcription Methods 0.000 abstract 1
- 230000035897 transcription Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 56
- 239000002609 medium Substances 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 241000252212 Danio rerio Species 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000012096 transfection reagent Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 101150052859 Slc9a1 gene Proteins 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 102000003983 Flavoproteins Human genes 0.000 description 1
- 108010057573 Flavoproteins Proteins 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 229930189065 blasticidin Natural products 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
- C12N2015/8518—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物工程领域,具体涉及一种昆虫细胞的光控表达载体及应用。The invention belongs to the field of biological engineering, and particularly relates to a light-controlled expression vector of insect cells and its application.
背景技术Background technique
随着转基因技术的发展,可控的基因表达调控系统成为生物医学研究及生物技术中不可或缺的工具。过去的几十年,化学调控的基因表达系统被广泛用于从时间上调控基因的表达。但是,由于这些小分子诱导物可以自由地扩散,难以消除以及对细胞功能潜在的脱靶效应,所以很难在空间和时间上精确地控制基因的表达。然而,光是一种理想的基因表达诱导物,可控强,没有毒性,并且可以实现对目的基因表达的时间、空间双重精确控制。因此,光控基因表达系统成为了精确控制基因表达的前途光明的工具。尽管如此,当前主要的光控表达系统仍有很多弱点限制着它的应用,比如:蛋白本身的毒性、狭窄的调控范围以及反应缓慢的激活和去激活作用。在我们这里将展示一个新的光控表达系统,它没有前述的缺点,且已在哺乳动物细胞及模式动物斑马鱼中被证明广泛的适用性。该系统不仅将可为对细胞生物学、发育生物学、神经生物学等生命科学基础研究提供创新性的工具,还可广泛用于生物工程、人类疾病的诊疗等应用领域。With the development of transgenic technology, controllable gene expression regulation system has become an indispensable tool in biomedical research and biotechnology. In the past few decades, chemically regulated gene expression systems have been widely used to temporally regulate gene expression. However, precise spatial and temporal control of gene expression is difficult due to the free diffusion of these small-molecule inducers, their intractable elimination, and their potential off-target effects on cellular function. However, light is an ideal inducer of gene expression, which is highly controllable, non-toxic, and can achieve precise temporal and spatial control of target gene expression. Thus, light-controlled gene expression systems represent a promising tool for precise control of gene expression. Nevertheless, the current major light-controlled expression systems still have many weaknesses that limit their application, such as: the toxicity of the protein itself, the narrow regulatory range, and the slow-response activation and deactivation. Here we present a new light-controlled expression system that does not have the aforementioned drawbacks and has demonstrated broad applicability in mammalian cells and the model animal zebrafish. The system will not only provide innovative tools for basic research on life sciences such as cell biology, developmental biology, and neurobiology, but also be widely used in bioengineering, diagnosis and treatment of human diseases and other applications.
该光控系统是以C120DNA结合序列与EL222转录因子为基础的光调控基因表达系统(Motta-Mena et al.,2014;Rivera-Cancel,G et al.,2012)。EL222转录因子,最初源于一个细菌的光-氧-压蛋白,被蓝光照射时就会二聚化结合到C120DNA上。这个系统的光依赖转录激活作用只需少量元件,一个光敏结构域LOV,一个螺旋-转角-螺旋(H-T-H)DNA结合结构域。黑暗时LOV结构域结合着HTH结构域,覆盖了对于成为二聚体而结合到DNA所必需的HTH4α位点。蓝光照射会触发光化学反应:LOV结构域中的黄素蛋白复合物打断了LOV和HTH的相互作用,使EL222二聚化,从而发挥DNA结合蛋白活性。这些反应在黑暗中又会反过来进行,其逆反应在停止蓝光照射后将很快发生,这是快速去激活作用的基础。这个系统对控制表达的目标蛋白很大的可调表达范围,敏捷的激活和去激活作用,以及与光强度有足够高的线性相关性。总之,各项研究表明C120-EL222系统宽广的通用性以及它作为光遗传学工具的优势。The light control system is a light-regulated gene expression system based on the C120 DNA binding sequence and the EL222 transcription factor (Motta-Mena et al., 2014; Rivera-Cancel, G et al., 2012). The EL222 transcription factor, originally derived from a bacterial photo-oxygen-pressure protein, dimerizes and binds to C120 DNA when exposed to blue light. The light-dependent transcriptional activation of this system requires only a few components, a light-sensitive domain LOV, and a helix-turn-helix (H-T-H) DNA binding domain. The LOV domain binds the HTH domain in the dark, covering the HTH4α site necessary for binding to DNA for dimerization. Blue light irradiation triggers a photochemical reaction: the flavoprotein complex in the LOV domain disrupts the interaction between LOV and HTH, dimerizes EL222, and exerts DNA-binding protein activity. These reactions are reversed in the dark, and the reverse reaction will occur soon after the blue light irradiation is stopped, which is the basis of the rapid deactivation. This system has a large tunable expression range, agile activation and deactivation, and a sufficiently high linear correlation with light intensity for controlled expression of target proteins. Taken together, the studies demonstrate the broad versatility of the C120-EL222 system and its advantages as an optogenetic tool.
目前,以C120-EL222为基础的光控系统在哺乳动物细胞中得到了广泛的应用,在时间和空间的操控方面表现出光控系统明显的优势(Nash et al.,2011;Motta-Mena etal.,2014)。进一步,科学家尝试在斑马鱼中验证了该光控系统的可行性,虽然可以实现光控表达,但是由于表现出一定的毒性,限制了该系统在斑马鱼中的应用。接下来,通过基因工程改造,科学家优化出了更加适用于斑马鱼的光控系统,即TAEL(TA4-EL222)系统(Reade,A.et al.,2017)。C120-EL222系统从哺乳动物细胞到斑马鱼的跨越,扩展了该光控系统的应用范围,同时也为鱼类的研究提供了一个有力的工具。At present, light control systems based on C120-EL222 have been widely used in mammalian cells, showing obvious advantages of light control systems in terms of time and space manipulation (Nash et al., 2011; Motta-Mena et al. ., 2014). Further, scientists tried to verify the feasibility of the light-controlled system in zebrafish. Although light-controlled expression can be achieved, the application of this system in zebrafish is limited due to its toxicity. Next, through genetic engineering, scientists optimized a more suitable light control system for zebrafish, namely the TAEL (TA4-EL222) system (Reade, A. et al., 2017). The span of the C120-EL222 system from mammalian cells to zebrafish expands the application range of this light-controlled system, and also provides a powerful tool for fish research.
基于此,申请人在Sf9昆虫细胞中建立了一个以VP-EL222为基础的光控基因表达系统,将C120-EL222光控系统的元件和荧光蛋白报告基因巧妙地整合到一个昆虫细胞表达载体上,从而使光控系统效能的测试更加快速而稳定,使昆虫细胞中外源蛋白表达的调控更加灵活。我们首次在昆虫细胞中成功实现了C120-EL222系统的光控表达,扩展了该光控系统适用范围。Based on this, the applicant established a light-controlled gene expression system based on VP-EL222 in Sf9 insect cells, and skillfully integrated the elements of the C120-EL222 light-controlled system and the fluorescent protein reporter gene into an insect cell expression vector , so that the test of the efficacy of the light control system is more rapid and stable, and the regulation of exogenous protein expression in insect cells is more flexible. For the first time, we successfully realized the light-controlled expression of the C120-EL222 system in insect cells, which expanded the scope of application of this light-controlled system.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供了一种应用于昆虫细胞的光控表达载体pMIB-C120-MCS-GFP-EL222,所述载体的核苷酸序列为SEQ ID NO.1所示,该载体巧妙地整合了C120-EL222光控系统的调控元件和荧光蛋白报告基因,利用opIE1组成性启动子调控GFP报告基因串联EL222转录因子的表达;利用光控调节启动子C120DNA序列调控外源基因的表达,提高了这种光控系统的灵活性和易操作性。同时,该载体还保留了杀稻瘟菌素抗性基因,可用于筛选光控表达的稳定细胞系,新引入了GFP报告基因,便于实时监控载体的转染效率,以及通过基于绿色荧光标记的流式细胞仪快速高效分选光控表达的稳定细胞系。The purpose of the present invention is to provide a light-controlled expression vector pMIB-C120-MCS-GFP-EL222 applied to insect cells, the nucleotide sequence of the vector is shown in SEQ ID NO. 1, and the vector is skillfully integrated The regulatory elements and fluorescent protein reporter genes of the C120-EL222 light control system were used, and the opIE1 constitutive promoter was used to regulate the expression of the GFP reporter gene tandem EL222 transcription factor; the light control promoter C120 DNA sequence was used to regulate the expression of exogenous genes, which improved the The flexibility and ease of operation of this light control system. At the same time, the vector also retains the blasticidin resistance gene, which can be used to screen stable cell lines with light-controlled expression. A GFP reporter gene is newly introduced to facilitate real-time monitoring of the transfection efficiency of the vector. Fast and efficient sorting of light-controlled expressing stable cell lines by flow cytometry.
本发明的另一个目的在于提供了一种昆虫细胞的光控表达载体的应用,将外源蛋白插入pMIB-C120-MCS-GFP-EL222中后,转染至昆虫细胞Sf9,可实现功能蛋白的光控表达。Another object of the present invention is to provide an application of a light-controlled expression vector for insect cells. After inserting exogenous protein into pMIB-C120-MCS-GFP-EL222, it is transfected into insect cell Sf9, which can realize the expression of functional protein. Light-controlled expression.
为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:
一种带有外源蛋白的昆虫细胞的光控表达载体的制备方法,包括:A method for preparing a light-controlled expression vector of insect cells with exogenous proteins, comprising:
1)外源基因通过EcoR1和Xba1酶切位点置换pC120-Luc质粒中的Luc基因,得到pC120-外源基因质粒;1) The exogenous gene replaces the Luc gene in the pC120-Luc plasmid through the EcoR1 and Xba1 restriction sites to obtain the pC120-exogenous gene plasmid;
2)以pC120-外源基因质粒为模板,扩增C120-外源基因片段,插入pMIB/V5-his载体的BspH1和Age1酶切位点中,得到pMIB-C120-外源基因质粒;2) using the pC120-foreign gene plasmid as a template, amplify the C120-foreign gene fragment, and insert it into the BspH1 and Age1 restriction sites of the pMIB/V5-his vector to obtain the pMIB-C120-foreign gene plasmid;
3)人工合成SEQ ID NO.2所示核苷酸片段,克隆置于psimple-T载体中,得到psimple-T/PFT2AN载体,通过psimple-T/PFT2AN中的Nhe1酶切位点引入荧光蛋白报告基因,再通过psimple-T/PFT2AN中的BsiwI酶切位点引入EL222基因,得到psimple-T/荧光蛋白-EL222质粒;3) The nucleotide fragment shown in SEQ ID NO.2 was artificially synthesized, cloned and placed in the psimple-T vector to obtain the psimple-T/PFT2AN vector, and the fluorescent protein reporter was introduced through the Nhe1 restriction site in psimple-T/PFT2AN gene, and then introduced the EL222 gene through the BsiwI restriction site in psimple-T/PFT2AN to obtain the psimple-T/fluorescent protein-EL222 plasmid;
4)将psimple-T/荧光蛋白-EL222质粒中的荧光蛋白-EL222片段,通过PvuII和BglII酶切位点插入到pMIB-C120-外源基因质粒中,得到pMIB-C120-外源基因-荧光蛋白-EL222质粒载体;4) Insert the fluorescent protein-EL222 fragment in the psimple-T/fluorescent protein-EL222 plasmid into the pMIB-C120-exogenous gene plasmid through the PvuII and BglII restriction sites to obtain pMIB-C120-exogenous gene-fluorescence Protein-EL222 plasmid vector;
所述的pMIB/V5-his载体为pMIB/V5-his A或pMIB/V5-his B或pMIB/V5-his C。The pMIB/V5-his vector is pMIB/V5-his A or pMIB/V5-his B or pMIB/V5-his C.
本领域技术人员可根据实际情况,根据上述的方法,制备表达不同外源蛋白的昆虫细胞光控表达载体;或是直接将外源蛋白插入光控表达载体pMIB-C120-MCS-GFP-EL222中(C120后的MCS携带多种酶切位点,供外源基因的插入)中,来制备携带外源蛋白的昆虫细胞光控表达载体。Those skilled in the art can prepare insect cell light-controlled expression vectors expressing different exogenous proteins according to the actual situation and the above-mentioned methods; or directly insert the exogenous proteins into the light-controlled expression vector pMIB-C120-MCS-GFP-EL222 (MCS after C120 carries a variety of enzyme cleavage sites for the insertion of exogenous genes) to prepare insect cell light-controlled expression vectors carrying exogenous proteins.
一种昆虫细胞的光控表达载体的应用,包括利用该光控表达载体构建昆虫细胞的光控表达平台,或是利用该载体控制蛋白的表达。The application of a light-controlled expression vector for insect cells includes using the light-controlled expression vector to construct a light-controlled expression platform for insect cells, or using the vector to control the expression of proteins.
以上所述的方案中,具体的,是将pMIB-C120-外源基因-GFP-EL222质粒载体转染至昆虫细胞中,然后按照需要进行蓝光照射或是黑暗处理,来控制外源蛋白的表达。In the above-mentioned scheme, specifically, the pMIB-C120-exogenous gene-GFP-EL222 plasmid vector is transfected into insect cells, and then subjected to blue light irradiation or dark treatment as required to control the expression of exogenous proteins .
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.将C120-EL222光控系统的元件巧妙地整合到一个昆虫细胞表达载体,提供了一种质粒构建的范式。1. The components of the C120-EL222 light control system are cleverly integrated into an insect cell expression vector, providing a paradigm for plasmid construction.
2首次在昆虫细胞中实现了该C120-EL222光控系统的光控表达应用,扩展了该光控系统新的适用范围。2 The light-controlled expression application of the C120-EL222 light-control system was realized in insect cells for the first time, which expanded the new application scope of the light-control system.
3.将原C120-EL222光控系统的元件由多质粒携载简化为单质粒携载,极大提高了转染后效应细胞的阳性比率,也使得该光控系统的测试更加快速而稳定。本光控系统工作的测试指标为:蓝光诱导后,在有绿色荧光蛋白GFP表达的Sf9细胞中,可通过检测红色荧光蛋白mCherry的表达来反映光控元件的工作效能。3. The components of the original C120-EL222 light control system are simplified from multi-plasmid carrying to single-plasmid carrying, which greatly improves the positive ratio of effector cells after transfection, and also makes the test of the light control system more rapid and stable. The test index of this light control system is: after blue light induction, in Sf9 cells expressing green fluorescent protein GFP, the expression of red fluorescent protein mCherry can be detected to reflect the working efficiency of light control elements.
4.在光控质粒中引入组成型表达GFP报告基因,便于通过绿色荧光标签的流式细胞仪进行阳性细胞筛选,大大提高了筛选稳定光控细胞系的效率。4. The constitutive expression of GFP reporter gene is introduced into the light-controlled plasmid, which facilitates the screening of positive cells by a flow cytometer with a green fluorescent label, and greatly improves the efficiency of screening stable light-controlled cell lines.
附图说明Description of drawings
图1昆虫细胞表达载体pMIB/V5-His图谱。Fig. 1 Map of insect cell expression vector pMIB/V5-His.
图2为基于C120-EL222的光控表达系统原理图。Figure 2 is a schematic diagram of a light-controlled expression system based on C120-EL222.
图3为昆虫细胞光控表达载体pMIB-C120-mCherry-GFP-EL222构建基本流程图。Figure 3 is the basic flow chart of the construction of the light-controlled expression vector pMIB-C120-mCherry-GFP-EL222 in insect cells.
图4构建载体的酶切鉴定电泳谱图。Figure 4. The electrophoresis chromatogram of the restriction enzyme digestion identification of the constructed vector.
图5昆虫细胞光控表达载体在sf9昆虫细胞中的功能验证示意图。Figure 5. Schematic diagram of functional verification of insect cell light-controlled expression vector in sf9 insect cells.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
实施例1:Example 1:
昆虫细胞表达载体pMIB-C120-mCherry-GFP-EL222的构建Construction of Insect Cell Expression Vector pMIB-C120-mCherry-GFP-EL222
1.实验材料1. Experimental materials
质粒克隆使用的引物列表:List of primers used for plasmid cloning:
2.实验方法2. Experimental method
1)以pLV-mCherry(购买于Addgene)载体为模板,利用引物E-mch-F和X-mch-R扩增mcherry基因片段,通过EcoR1和Xba1酶切位点置换pC120-Luc质粒中的Luc基因,得到pC120-mcherry质粒。1) Using the pLV-mCherry (purchased from Addgene) vector as a template, use primers E-mch-F and X-mch-R to amplify the mcherry gene fragment, and replace the Luc in the pC120-Luc plasmid through the EcoR1 and Xba1 restriction sites gene to obtain the pC120-mcherry plasmid.
2)以pC120-mcherry质粒为模板,利用引物BspH-C120-F和Age-Mch-R扩增C120-mcherry片段,插入pMIB/V5-hisA载体的BspH1和Age1酶切位点中,得到pMIB-C120-mcherry质粒。2) Using the pC120-mcherry plasmid as a template, the C120-mcherry fragment was amplified using primers BspH-C120-F and Age-Mch-R, and inserted into the BspH1 and Age1 restriction sites of the pMIB/V5-hisA vector to obtain pMIB- C120-mcherry plasmid.
3)为了便于多元件整合载体质粒的构建,人工合成一段DNA片段PFT2AN,该片段由457个碱基对组成(SEQ ID NO.2所示),克隆置于psimple-T载体中,获得质粒psimple-T/PFT2AN。利用引物Nhe-GFP-F和GFP-Nhe-R,以pEGFP-N1(购买于Clontech)载体为模板,扩增GFP基因,通过psimple-T/PFT2AN中的Nhe1酶切位点引入GFP报告基因,利用引物Bsiw-EL-F和EL-Bsiw-R扩增EL222基因,通过psimple-T/PFT2AN中的BsiwI酶切位点引入EL222基因,得到psimple-T/GFP-EL222质粒。3) In order to facilitate the construction of the multi-element integration vector plasmid, a DNA fragment PFT2AN was artificially synthesized, and the fragment was composed of 457 base pairs (shown in SEQ ID NO. 2), cloned and placed in the psimple-T vector to obtain the plasmid psimple -T/PFT2AN. Using primers Nhe-GFP-F and GFP-Nhe-R, the pEGFP-N1 (purchased from Clontech) vector was used as a template to amplify the GFP gene, and the GFP reporter gene was introduced through the Nhe1 restriction site in psimple-T/PFT2AN, The EL222 gene was amplified with primers Bsiw-EL-F and EL-Bsiw-R, and the EL222 gene was introduced through the BsiwI restriction site in psimple-T/PFT2AN to obtain the psimple-T/GFP-EL222 plasmid.
4)将psimple-T/GFP-EL222质粒中的GFP-EL222片段,通过PvuII和BglII酶切位点插入到pMIB-C120-mcherry质粒中,得到pMIB-C120-mCherry-GFP-EL222质粒载体4) Insert the GFP-EL222 fragment in the psimple-T/GFP-EL222 plasmid into the pMIB-C120-mcherry plasmid through the PvuII and BglII restriction sites to obtain the pMIB-C120-mCherry-GFP-EL222 plasmid vector
5)直接使用BsiwI酶对载体pMIB-C120-mCherry-GFP-EL222进行单酶切。纯化后经连接转化获得pMIB-C120-mCherry-GFP质粒,作为EL222功能缺失的阴性对照质粒;5) The vector pMIB-C120-mCherry-GFP-EL222 was directly digested with BsiwI enzyme. After purification, the pMIB-C120-mCherry-GFP plasmid was obtained by ligation and transformation as a negative control plasmid for EL222 function loss;
按照图3的载体构建策略,构建阳性质粒pMIB-C120-mCherry-GFP-EL222和阴性对照质粒pMIB-C120-mCherry-GFP,经酶切验证完全正确(如图4)。pMIB-C120-mCherry-GFP-EL222功能载体的EcoRI/XbaI酶切放出750bp左右条带为mCherry带,BsiwI的酶切放出放出900bp左右EL222条带,;pMIB-C120-mCherry-GFP对照载体的EcoRI/XbaI放出750bp左右条带为mCherry带,BsiwI的酶切无条带。鉴定结果符合预期,所有克隆质粒都测序验证,序列正确。According to the vector construction strategy in Figure 3, the positive plasmid pMIB-C120-mCherry-GFP-EL222 and the negative control plasmid pMIB-C120-mCherry-GFP were constructed, which were verified to be correct by enzyme digestion (Figure 4). The EcoRI/XbaI digestion of the pMIB-C120-mCherry-GFP-EL222 functional vector releases a band of about 750bp, which is the mCherry band, and the digestion of BsiwI releases the EL222 band of about 900bp; EcoRI of the pMIB-C120-mCherry-GFP control vector The band of about 750bp released by /XbaI is the mCherry band, and there is no band in the enzyme digestion of BsiwI. The identification results were in line with expectations, and all cloned plasmids were sequenced and verified, and the sequences were correct.
以上载体构建的每一步均采用常规的分子克隆方法:Each step of the above vector construction adopts the conventional molecular cloning method:
1)设计特异引物通过PCR扩增获得末端含有特定酶切位点的片段;同时对载体和片段分别酶切,并纯化酶切产物;使用T4连接酶,16℃连接载体片段过夜;1) Design specific primers to obtain fragments with specific restriction sites at the ends by PCR amplification; at the same time, digest the vector and fragments separately, and purify the digested products; use T4 ligase, and connect the vector fragments at 16°C overnight;
2)转化、摇菌、涂平板(实验中使用的都是氨苄抗性平板),平板于37℃烘箱中过夜;挑斑摇菌,菌体浓度增大后用相应引物菌液PCR鉴定,扩大培养鉴定为阳性的菌;保存菌种(菌种保存在10%-15%甘油溶液中,-20℃)。2) Transform, shake, and plate (all ampicillin-resistant plates used in the experiment), place the plate in a 37°C oven overnight; pick and shake the bacteria. Cultivate the bacteria identified as positive; save the bacterial species (the bacterial species are stored in a 10%-15% glycerol solution, -20°C).
3)用质粒小提试剂盒抽提质粒,并测定浓度;利用合理的限制酶对所提质粒进行酶切鉴定;挑取阳性质粒测序,测序正确后将质粒用于下一步使用。质粒需保存在-20℃。3) Extract the plasmid with a plasmid mini-extraction kit, and determine the concentration; use a reasonable restriction enzyme to digest the extracted plasmid for identification; pick the positive plasmid for sequencing, and use the plasmid for the next step after the sequencing is correct. Plasmids should be stored at -20°C.
本实施例是以报告基因mCherry作为外源基因为例,对本发明提供的光控表达载体进行说明,本领域技术人员可根据实际情况,根据上述的方法,制备表达不同外源蛋白的昆虫细胞光控表达载体;或是直接将外源蛋白插入光控表达载体pMIB-C120-MCS-GFP-EL222中(C120后的MCS携带多种酶切位点,供外源基因的插入),来制备携带外源蛋白的昆虫细胞光控表达载体。In this example, the reporter gene mCherry is used as an exogenous gene to illustrate the light-controlled expression vector provided by the present invention. Those skilled in the art can prepare insect cell light expressing different exogenous proteins according to the actual situation and the above-mentioned method. control expression vector; or directly insert the exogenous protein into the light-controlled expression vector pMIB-C120-MCS-GFP-EL222 (MCS after C120 carries a variety of enzyme cleavage sites for the insertion of exogenous genes), to prepare carrying Insect cell light-controlled expression vector for exogenous protein.
实施例2:Example 2:
昆虫细胞光控表达载体pMIB-C120-mCherry-GFP-EL222在Sf9昆虫细胞中的功能验证:1.实验材料Functional verification of insect cell light-controlled expression vector pMIB-C120-mCherry-GFP-EL222 in Sf9 insect cells: 1. Experimental materials
2.实验方法与结果2. Experimental methods and results
2.1Sf9细胞的传代培养:使用Grace’s Insect Cell Medium加血清及双抗的培养基,在28℃细胞培养箱中贴壁培养Sf9细胞,当细胞生长至90%左右,直接将细胞轻轻吹起进行传代。2.1 Subculture of Sf9 cells: Use Grace's Insect Cell Medium plus serum and double antibody medium to culture Sf9 cells adherently in a cell incubator at 28°C. When the cells grow to about 90%, directly blow the cells up gently. pass on.
2.2昆虫细胞光控表达载体转染Sf9昆虫细胞。本次实验需要转染的质粒有两个:pMIB-C120-mCherry-GFP-EL222(功能质粒)和pMIB-C120-mCherry-GFP(阴性对照质粒)。2.2 Sf9 insect cells were transfected with light-controlled expression vector in insect cells. There are two plasmids to be transfected in this experiment: pMIB-C120-mCherry-GFP-EL222 (functional plasmid) and pMIB-C120-mCherry-GFP (negative control plasmid).
1)提前24小时将Sf9细胞按8×105个细胞/孔接种于6孔板中,当细胞汇合度达到70~80%时,进行转染。转染前准备10ml平板培养基:1.5ml Grace细胞培养液(含10%FBS)+8.5ml Grace细胞培养液(不含FBS)。平板培养基中不可有抗生素。1) Sf9 cells were seeded in a 6-well plate at 8×10 5 cells/well 24 hours in advance, and transfection was carried out when the cell confluence reached 70-80%. Prepare 10ml plate medium before transfection: 1.5ml Grace cell culture medium (containing 10% FBS)+8.5ml Grace cell culture medium (without FBS). Antibiotics should not be present in the plate medium.
2)放置待转染的6孔板中Sf9细胞于超净台上,吸除6孔板细胞中的培养基,加入2ml上述新鲜的平板培养基。2) Place the Sf9 cells in the 6-well plate to be transfected on the ultra-clean table, remove the medium in the cells in the 6-well plate, and add 2 ml of the above fresh plate medium.
3)稀释2~6μl转染试剂(II Reagent)于100μl Grace’s培养基。稀释1~3μg目标质粒于100μl Grace’s培养基。3) Dilute 2-6 μl of transfection reagent ( II Reagent) in 100 μl Grace's medium. Dilute 1-3 μg of the target plasmid in 100 μl Grace's medium.
4)将稀释后的DNA和转染试剂混合均匀,室温孵育15-30min。4) Mix the diluted DNA and transfection reagent evenly and incubate at room temperature for 15-30min.
5)加210μl质粒和转染试剂的混合液于待转染细胞中,28℃孵育4~6h。5) Add 210 μl of the mixture of plasmid and transfection reagent to the cells to be transfected, and incubate at 28°C for 4-6 hours.
6)吸除转染试剂混合液,加入2ml Sf9细胞完全培养液(含双抗及10%FBS),28℃培养箱继续培养,24h后跟踪细胞状态。根据不同需求,给予培养细胞不同的光照条件。6) Aspirate off the transfection reagent mixture, add 2ml of Sf9 cell complete culture medium (containing double antibody and 10% FBS), continue to culture in a 28°C incubator, and track the cell state after 24h. According to different needs, the cultured cells were given different light conditions.
本次一共设计了四组转染实验,转染阳性质粒pMIB-C120-mCherry-GFP-EL222的光照与黑暗两组,转染阴性对照质粒pMIB-C120-mCherry-GFP的光照与黑暗两组。蓝光照射条件为:照射20s、黑暗60s为一个循环。A total of four groups of transfection experiments were designed. The positive plasmid pMIB-C120-mCherry-GFP-EL222 was transfected in two groups of light and dark, and the negative control plasmid pMIB-C120-mCherry-GFP was transfected in two groups of light and dark. The blue light irradiation conditions were: irradiation for 20s and dark for 60s as a cycle.
2.3质粒pMIB-C120-mCherry-GFP-EL222和pMIB-C120-mCherry-GFP转染Sf9细胞后,28℃培养箱中培养,转染后24h再施以蓝光照射与黑暗两种条件,分别在蓝光照射刺激24h和48h后在荧光显微镜下观察红色荧光表达情况(图5)。2.3 After transfection of Sf9 cells with plasmids pMIB-C120-mCherry-GFP-EL222 and pMIB-C120-mCherry-GFP, they were cultured in a 28°C incubator, and 24 hours after transfection, blue light irradiation and dark conditions were applied, respectively. The expression of red fluorescence was observed under a fluorescence microscope after 24h and 48h of irradiation stimulation (Fig. 5).
1)功能质粒pMIB-C120-mCherry-GFP-EL222转染sf9后,设置蓝光照射与黑暗条件培养两组,转染24小时后施与光照(蓝光照射20s停60s为一个循环)与黑暗两种条件,光照24小时后于荧光显微镜下观察,得到结果(图5中A)。结果显示转染后绿色荧光蛋白GFP有持续性表达,经过蓝光照射后GFP阳性细胞中有较强红色荧光蛋白mCherry的表达。上述结果证明该C120-EL222光控系统能够在Sf9细胞中具有特异性的高效功能活性。1) After the functional plasmid pMIB-C120-mCherry-GFP-EL222 was transfected into sf9, two groups were cultured under blue light irradiation and dark conditions. 24 hours after transfection, light was applied (blue light irradiation for 20s and then 60s for a cycle) and dark. conditions, observed under a fluorescence microscope after 24 hours of illumination, and obtained the results (A in Figure 5). The results showed that the green fluorescent protein GFP was continuously expressed after transfection, and the red fluorescent protein mCherry was strongly expressed in GFP-positive cells after blue light irradiation. The above results demonstrate that the C120-EL222 light control system can have specific and efficient functional activity in Sf9 cells.
2)阴性对照质粒pMIB-C120-mCherry-GFP转染Sf9后,同样设置蓝光照射与黑暗条件培养两组,转染24小时后给予光照(蓝光照射20s停60s为一个循环)与黑暗两种条件,光照24小时后于荧光显微镜下观察,得到结果(图5中B)。结果显示:转染后绿色荧光蛋白GFP有持续性表达,但在无EL222光控转录因子存在时,蓝光照射和黑暗条件下都没有红色荧光蛋白mCherry的表达。上述结果证明该C120-EL222光控系统在Sf9细胞中具有高度的转录激活特异性和严谨性,基本无泄漏表达。2) After the negative control plasmid pMIB-C120-mCherry-GFP was transfected into Sf9, the two groups were also cultured under blue light irradiation and dark conditions. 24 hours after transfection, they were given light (blue light irradiation for 20s and then 60s for a cycle) and dark conditions. , and observed under a fluorescence microscope after 24 hours of illumination to obtain the results (B in Figure 5). The results showed that the green fluorescent protein GFP was continuously expressed after transfection, but in the absence of EL222 light-controlled transcription factor, there was no red fluorescent protein mCherry expression under blue light irradiation and dark conditions. The above results prove that the C120-EL222 light control system has a high degree of specificity and rigor of transcriptional activation in Sf9 cells, and there is basically no leakage expression.
3)质粒pMIB-C120-mCherry-GFP-EL222转染Sf9后,设置蓝光照射与黑暗条件培养两组,转染24小时后施与光照(蓝光照射20s停60s为一个循环)与黑暗两种条件,光照48小时后于荧光显微镜下观察,得到结果(图5中C)。蓝光额外照射24h会略微增加红色荧光细胞的数量,但增加不是很明显。上述结果证明在Sf9细胞中,C120-EL222光控系统在蓝光照射24h后,红色荧光蛋白mCherry的表达就达到了较高水平,继续光照诱导后红色荧光蛋白mCherry表达有所增加,并能维持较高水平。3) After the plasmid pMIB-C120-mCherry-GFP-EL222 was transfected into Sf9, two groups were cultured under blue light irradiation and dark conditions. 24 hours after transfection, light (blue light irradiation for 20s and 60s for a cycle) and dark conditions were applied. , and observed under a fluorescence microscope after 48 hours of illumination to obtain the results (C in Figure 5). An additional 24 h of blue light exposure slightly increased the number of red fluorescent cells, but the increase was not obvious. The above results proved that in Sf9 cells, the expression of red fluorescent protein mCherry reached a high level after 24 hours of blue light irradiation in the C120-EL222 light control system. high level.
综上所述,该C120-EL222光控系统能够在Sf9细胞中具有特异性的高效功能活性和高度的严谨性,能够持续激活表达外源目的蛋白。In summary, the C120-EL222 light control system can have specific high-efficiency functional activity and high rigor in Sf9 cells, and can continuously activate the expression of exogenous target proteins.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
序列表sequence listing
<110> 中国科学院武汉物理与数学研究所<110> Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
<120> 一种昆虫细胞的光控表达载体及应用<120> A light-controlled expression vector for insect cells and its application
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 5000<211> 5000
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
catgatcgct agcctcgagt aggtagcctt tagtccatgc gttataggta gcctttagtc 60catgatcgct agcctcgagt aggtagcctt tagtccatgc gttataggta gcctttagtc 60
catgcgttat aggtagcctt tagtccatgc gttataggta gcctttagtc catgcgttat 120catgcgttat aggtagcctt tagtccatgc gttataggta gcctttagtc catgcgttat 120
aggtagcctt tagtccatga agcttagaca ctagagggta tataatggaa gctcgacttc 180aggtagcctt tagtccatga agcttagaca ctagagggta tataatggaa gctcgacttc 180
cagcttggca atccggtact gttggtaaag gatccactag tccagtgtgg tggaattctg 240cagcttggca atccggtact gttggtaaag gatccactag tccagtgtgg tggaattctg 240
cagatatcca gcacagtggc ggccgctcga gtctagaggg cccgcggttc gaaggtaagc 300cagatatcca gcacagtggc ggccgctcga gtctagaggg cccgcggttc gaaggtaagc 300
ctatccctaa ccctctcctc ggtctcgatt ctacgcgtac cggtcatcat caccatcacc 360ctatccctaa ccctctcctc ggtctcgatt ctacgcgtac cggtcatcat caccatcacc 360
attgagttta tctgactaaa tcttagtttg tattgtcatg ttttaataca atatgttatg 420attgagttta tctgactaaa tcttagtttg tattgtcatg ttttaataca atatgttatg 420
tttaaatatg tttttaataa attttataaa ataatttcaa cttttattgt aacaacattg 480tttaaatatg ttttttaataa attttataaa ataatttcaa cttttattgt aacaacattg 480
tccatttaca cactcctttc aagcgcgtgg gatcgatgct cactcaaagg cggtaatacg 540tccatttaca cactcctttc aagcgcgtgg gatcgatgct cactcaaagg cggtaatacg 540
gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa 600gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa 600
ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gcccccctga 660ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gcccccctga 660
cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag 720cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag 720
ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct 780ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct 780
taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc atagctcacg 840taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc atagctcacg 840
ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc 900ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc 900
ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt 960ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt 960
aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta 1020aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta 1020
tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaagaac 1080tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaagaac 1080
agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc 1140agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc 1140
ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat 1200ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat 1200
tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc 1260tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc 1260
tcagtggaac gaaaactcac gttaagggat tttggtcatg cgaaacacgc acggcgcgcg 1320tcagtggaac gaaaactcac gttaagggat tttggtcatg cgaaacacgc acggcgcgcg 1320
cacgcagctt agcacaaacg cgtcgttgca cgcgcccacc gctaaccgca ggccaatcgg 1380cacgcagctt agcacaaacg cgtcgttgca cgcgcccacc gctaaccgca ggccaatcgg 1380
tcggccggcc tcatatccgc tcaccagccg cgtcctatcg ggcgcggctt ccgcgcccat 1440tcggccggcc tcatatccgc tcaccagccg cgtcctatcg ggcgcggctt ccgcgcccat 1440
tttgaataaa taaacgataa cgccgttggt ggcgtgaggc atgtaaaagg ttacatcatt 1500tttgaataaa taaacgataa cgccgttggt ggcgtgaggc atgtaaaagg ttacatcatt 1500
atcttgttcg ccatccggtt ggtataaata gacgttcatg ttggtttttg tttcagttgc 1560atcttgttcg ccatccggtt ggtataaata gacgttcatg ttggtttttg tttcagttgc 1560
aagttggctg cggcgcgcgc agcacctttg ccgggatctg ccgggctgca gcacgtgttg 1620aagttggctg cggcgcgcgc agcacctttg ccgggatctg ccgggctgca gcacgtgttg 1620
acaattaatc atcggcatag tatatcggca tagtataata cgacaaggtg aggaactaaa 1680acaattaatc atcggcatag tatatcggca tagtataata cgacaaggtg aggaactaaa 1680
ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca acggctacaa 1740ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca acggctacaa 1740
tcaacagcat ccccatctct gaagactaca gcgtcgccag cgcagctctc tctagcgacg 1800tcaacagcat ccccatctct gaagactaca gcgtcgccag cgcagctctc tctagcgacg 1800
gccgcatctt cactggtgtc aatgtatatc attttactgg gggaccttgc gcagaactcg 1860gccgcatctt cactggtgtc aatgtatatc attttactgg gggaccttgc gcagaactcg 1860
tggtgctggg cactgctgct gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg 1920tggtgctggg cactgctgct gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg 1920
gaaatgagaa caggggcatc ttgagcccct gcggacggtg ccgacaggtt cttctcgatc 1980gaaatgagaa caggggcatc ttgagcccct gcggacggtg ccgacaggtt cttctcgatc 1980
tgcatcctgg gatcaaagcc atagtgaagg acagtgatgg acagccgacg gcagttggga 2040tgcatcctgg gatcaaagcc atagtgaagg acagtgatgg acagccgacg gcagttggga 2040
ttcgtgaatt gctgccctct ggttatgtgt gggagggcca gactttgaat tttgaccttc 2100ttcgtgaatt gctgccctct ggttatgtgt gggagggcca gactttgaat tttgaccttc 2100
tcaagttggc gggagacgtg gagtccaacc cagggcccgc tagcatggtg agcaagggcg 2160tcaagttggc gggagacgtg gagtccaacc cagggcccgc tagcatggtg agcaagggcg 2160
aggagctgtt caccggggtg gtgcccatcc tggtcgagct ggacggcgac gtaaacggcc 2220aggagctgtt caccggggtg gtgcccatcc tggtcgagct ggacggcgac gtaaacggcc 2220
acaagttcag cgtgtccggc gagggcgagg gcgatgccac ctacggcaag ctgaccctga 2280acaagttcag cgtgtccggc gagggcgagg gcgatgccac ctacggcaag ctgaccctga 2280
agttcatctg caccaccggc aagctgcccg tgccctggcc caccctcgtg accaccctga 2340agttcatctg caccaccggc aagctgcccg tgccctggcc caccctcgtg accaccctga 2340
cctacggcgt gcagtgcttc agccgctacc ccgaccacat gaagcagcac gacttcttca 2400cctacggcgt gcagtgcttc agccgctacc ccgaccacat gaagcagcac gacttcttca 2400
agtccgccat gcccgaaggc tacgtccagg agcgcaccat cttcttcaag gacgacggca 2460agtccgccat gcccgaaggc tacgtccagg agcgcaccat cttcttcaag gacgacggca 2460
actacaagac ccgcgccgag gtgaagttcg agggcgacac cctggtgaac cgcatcgagc 2520actacaagac ccgcgccgag gtgaagttcg agggcgacac cctggtgaac cgcatcgagc 2520
tgaagggcat cgacttcaag gaggacggca acatcctggg gcacaagctg gagtacaact 2580tgaagggcat cgacttcaag gaggacggca acatcctggg gcacaagctg gagtacaact 2580
acaacagcca caacgtctat atcatggccg acaagcagaa gaacggcatc aaggtgaact 2640acaacagcca caacgtctat atcatggccg acaagcagaa gaacggcatc aaggtgaact 2640
tcaagatccg ccacaacatc gaggacggca gcgtgcagct cgccgaccac taccagcaga 2700tcaagatccg ccacaacatc gaggacggca gcgtgcagct cgccgaccac taccagcaga 2700
acacccccat cggcgacggc cccgtgctgc tgcccgacaa ccactacctg agcacccagt 2760acacccccat cggcgacggc cccgtgctgc tgcccgacaa ccactacctg agcacccagt 2760
ccgccctgag caaagacccc aacgagaagc gcgatcacat ggtcctgctg gagttcgtga 2820ccgccctgag caaagacccc aacgagaagc gcgatcacat ggtcctgctg gagttcgtga 2820
ccgccgccgg gatcactctc ggcatggacg agctgtacaa ggctagcgag ggcagaggaa 2880ccgccgccgg gatcactctc ggcatggacg agctgtacaa ggctagcgag ggcagaggaa 2880
gtctgctaac atgcggtgac gtcgaggaga atcctggccc acgtacgatg ggccctaaaa 2940gtctgctaac atgcggtgac gtcgaggaga atcctggccc acgtacgatg ggccctaaaa 2940
agaagcgtaa agtcgccccc ccgaccgatg tcagcctggg ggacgagctc cacttagacg 3000agaagcgtaa agtcgccccc ccgaccgatg tcagcctggg ggacgagctc cacttagacg 3000
gcgaggacgt ggcgatggcg catgccgacg cgctagacga tttcgatctg gacatgttgg 3060gcgaggacgt ggcgatggcg catgccgacg cgctagacga tttcgatctg gacatgttgg 3060
gggacgggga ttccccgggg ccgggattta ccccccacga ctccgccccc tacggcgctc 3120gggacgggga ttccccgggg ccgggattta ccccccacga ctccgccccc tacggcgctc 3120
tggatatggc cgacttcgag tttgagcaga tgtttaccga tgcccttgga attgacgagt 3180tggatatggc cgacttcgag tttgagcaga tgtttaccga tgcccttgga attgacgagt 3180
acggtgggga attcggggca gacgacacac gcgttgaggt gcaaccgccg gcgcagtggg 3240acggtgggga attcggggca gacgacacac gcgttgaggt gcaaccgccg gcgcagtggg 3240
tcctcgacct gatcgaggcc agcccgatcg catcggtcgt gtccgatccg cgtctcgccg 3300tcctcgacct gatcgaggcc agcccgatcg catcggtcgt gtccgatccg cgtctcgccg 3300
acaatccgct gatcgccatc aaccaggcct tcaccgacct gaccggctat tccgaagaag 3360acaatccgct gatcgccatc aaccaggcct tcaccgacct gaccggctat tccgaagaag 3360
aatgcgtcgg ccgcaattgc cgattcctgg caggttccgg caccgagccg tggctgaccg 3420aatgcgtcgg ccgcaattgc cgattcctgg caggttccgg caccgagccg tggctgaccg 3420
acaagatccg ccaaggcgtg cgcgagcaca agccggtgct ggtcgagatc ctgaactaca 3480acaagatccg ccaaggcgtg cgcgagcaca agccggtgct ggtcgagatc ctgaactaca 3480
agaaggacgg cacgccgttc cgcaatgccg tgctcgttgc accgatctac gatgacgacg 3540agaaggacgg cacgccgttc cgcaatgccg tgctcgttgc accgatctac gatgacgacg 3540
acgagcttct ctatttcctc ggcagccagg tcgaagtcga cgacgaccag cccaacatgg 3600acgagcttct ctatttcctc ggcagccagg tcgaagtcga cgacgaccag cccaacatgg 3600
gcatggcgcg ccgcgaacgc gccgcggaaa tgctcaggac gctgtcgccg cgccagctcg 3660gcatggcgcg ccgcgaacgc gccgcggaaa tgctcaggac gctgtcgccg cgccagctcg 3660
aggttacgac gctggtggca tcgggcttgc gcaacaagga agtggcggcc cggctcggcc 3720aggttacgac gctggtggca tcgggcttgc gcaacaagga agtggcggcc cggctcggcc 3720
tgtcggagaa aaccgtcaag atgcaccgcg ggctggtgat ggaaaagctc aacctgaaga 3780tgtcggagaa aaccgtcaag atgcaccgcg ggctggtgat ggaaaagctc aacctgaaga 3780
ccagtgccga tctggtgcgc attgccgtcg aagccggaat ctaacgtacg cgaaacttgt 3840ccagtgccga tctggtgcgc attgccgtcg aagccggaat ctaacgtacg cgaaacttgt 3840
ttattgcagc ttataatggt tacaaataaa gcaatagcat cacaaatttc acaaataaag 3900ttattgcagc ttataatggt tacaaataaa gcaatagcat cacaaatttc acaaataaag 3900
catttttttc actgcattct agttgtggtt tgtccaaact catcaatgta tcttatcatg 3960catttttttc actgcattct agttgtggtt tgtccaaact catcaatgta tcttatcatg 3960
tctgagatct gcatgtctac taaactcaca aattagagct tcaatttaat tatatcagtt 4020tctgagatct gcatgtctac taaactcaca aattagagct tcaatttaat tatatcagtt 4020
attacccatt gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ccttattccc 4080attacccatt gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ccttattccc 4080
ttttttgcgg cattttgcct tcctgttttt gctcacccag aaacgctggt gaaagtaaaa 4140ttttttgcgg cattttgcct tcctgttttt gctcacccag aaacgctggt gaaagtaaaa 4140
gatgctgaag atcagttggg tgcacgagtg ggttacatcg aactggatct caacagcggt 4200gatgctgaag atcagttggg tgcacgagtg ggttacatcg aactggatct caacagcggt 4200
aagatccttg agagttttcg ccccgaagaa cgttttccaa tgatgagcac ttttaaagtt 4260aagatccttg agagttttcg ccccgaagaa cgttttccaa tgatgagcac ttttaaagtt 4260
ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc aagagcaact cggtcgccgc 4320ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc aagagcaact cggtcgccgc 4320
atacactatt ctcagaatga cttggttgag tactcaccag tcacagaaaa gcatcttacg 4380atacactatt ctcagaatga cttggttgag tactcaccag tcacagaaaa gcatcttacg 4380
gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg 4440gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg 4440
gccaacttac ttctgacaac gatcggagga ccgaaggagc taaccgcttt tttgcacaac 4500gccaacttac ttctgacaac gatcggagga ccgaaggagc taaccgcttt tttgcacaac 4500
atgggggatc atgtaactcg ccttgatcgt tgggaaccgg agctgaatga agccatacca 4560atgggggatc atgtaactcg ccttgatcgt tgggaaccgg agctgaatga agccatacca 4560
aacgacgagc gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta 4620aacgacgagc gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta 4620
actggcgaac tacttactct agcttcccgg caacaattaa tagactggat ggaggcggat 4680actggcgaac tacttactct agcttcccgg caacaattaa tagactggat ggaggcggat 4680
aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa 4740aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa 4740
tctggagccg gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag 4800tctggagccg gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag 4800
ccctcccgta tcgtagttat ctacacgacg gggagtcagg caactatgga tgaacgaaat 4860ccctcccgta tcgtagttat ctacacgacg gggagtcagg caactatgga tgaacgaaat 4860
agacagatcg ctgagatagg tgcctcactg attaagcatt ggtaactgtc agaccaagtt 4920agacagatcg ctgagatagg tgcctcactg attaagcatt ggtaactgtc agaccaagtt 4920
tactcatata tactttagat tgatttaaaa cttcattttt aatttaaaag gatctaggtg 4980tactcatata tactttagat tgatttaaaa cttcattttt aatttaaaag gatctaggtg 4980
aagatccttt ttgataatct 5000aagatccttt ttgataatct 5000
<210> 2<210> 2
<211> 457<211> 457
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
cagctggcaa cctgacttgt atcgtcgcga tcggaaatga gaacaggggc atcttgagcc 60cagctggcaa cctgacttgt atcgtcgcga tcggaaatga gaacaggggc atcttgagcc 60
cctgcggacg gtgccgacag gttcttctcg atctgcatcc tgggatcaaa gccatagtga 120cctgcggacg gtgccgacag gttcttctcg atctgcatcc tgggatcaaa gccatagtga 120
aggacagtga tggacagccg acggcagttg ggattcgtga attgctgccc tctggttatg 180aggacagtga tggacagccg acggcagttg ggattcgtga attgctgccc tctggttatg 180
tgtgggaggg ccagactttg aattttgacc ttctcaagtt ggcgggagac gtggagtcca 240tgtgggaggg ccagactttg aattttgacc ttctcaagtt ggcgggagac gtggagtcca 240
acccagggcc cgctagcgag ggcagaggaa gtctgctaac atgcggtgac gtcgaggaga 300acccagggcc cgctagcgag ggcagaggaa gtctgctaac atgcggtgac gtcgaggaga 300
atcctggccc acgtacgcga aacttgttta ttgcagctta taatggttac aaataaagca 360atcctggccc acgtacgcga aacttgttta ttgcagctta taatggttac aaataaagca 360
atagcatcac aaatttcaca aataaagcat ttttttcact gcattctagt tgtggtttgt 420atagcatcac aaatttcaca aataaagcat ttttttcact gcattctagt tgtggtttgt 420
ccaaactcat caatgtatct tatcatgtct gacatct 457ccaaactcat caatgtatct tatcatgtct gacatct 457
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711177112.4A CN107937437B (en) | 2017-11-22 | 2017-11-22 | Light-operated expression vector of insect cell and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711177112.4A CN107937437B (en) | 2017-11-22 | 2017-11-22 | Light-operated expression vector of insect cell and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107937437A CN107937437A (en) | 2018-04-20 |
CN107937437B true CN107937437B (en) | 2020-10-27 |
Family
ID=61929914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711177112.4A Active CN107937437B (en) | 2017-11-22 | 2017-11-22 | Light-operated expression vector of insect cell and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107937437B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110241019B (en) * | 2019-05-17 | 2020-08-04 | 华中农业大学 | Light-operated steady gene oscillation system |
CN110438057B (en) * | 2019-08-21 | 2021-10-29 | 江南大学 | A dynamic control system for blue light control and its application |
CN111534531A (en) * | 2020-04-28 | 2020-08-14 | 天津大学 | A design method for blue light-induced pyroptosis |
CN113186190B (en) * | 2021-05-25 | 2022-05-03 | 华中科技大学 | A blue light-mediated regulation plasmid and its construction method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101270366A (en) * | 2008-04-30 | 2008-09-24 | 苏州大学 | Method for Improving the Level of Exogenous Gene Expression in Transgenic Insect Cells |
CN101688246A (en) * | 2007-04-26 | 2010-03-31 | 夏威夷生物技术公司 | Synthetic expression vectors for insect cells |
WO2013074911A1 (en) * | 2011-11-18 | 2013-05-23 | Board Of Regents, The University Of Texas System | Blue-light inducible system for gene expression |
CN104745632A (en) * | 2013-12-31 | 2015-07-01 | 苏州杰诺曼博生物科技有限公司 | Method for expressing hABCG2 in insect cell sf9 |
-
2017
- 2017-11-22 CN CN201711177112.4A patent/CN107937437B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101688246A (en) * | 2007-04-26 | 2010-03-31 | 夏威夷生物技术公司 | Synthetic expression vectors for insect cells |
CN101270366A (en) * | 2008-04-30 | 2008-09-24 | 苏州大学 | Method for Improving the Level of Exogenous Gene Expression in Transgenic Insect Cells |
WO2013074911A1 (en) * | 2011-11-18 | 2013-05-23 | Board Of Regents, The University Of Texas System | Blue-light inducible system for gene expression |
CN104745632A (en) * | 2013-12-31 | 2015-07-01 | 苏州杰诺曼博生物科技有限公司 | Method for expressing hABCG2 in insect cell sf9 |
Non-Patent Citations (5)
Title |
---|
An optogenetic gene expression system with rapid activation and deactivation kinetics;Motta-Mena et al.;《nature chemical biology》;20140331;第10卷;第196-202页和ONLINE METHODS * |
Identification of Natural and Artificial DNA Substrates for Light-Activated LOV-HTH Transcription Factor EL222;Rivera-Cancel et al.;《biochemistry》;20121203;第51卷;第10024-10034页 * |
Photoactivatable mCherry for high-resolution two-color fluorescence microscopy;Fedor V Subach et al.;《Nat Methods》;20100709;第6卷(第2期);第153-159页 * |
Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain;Akira Takakado et al.;《Phys. Chem. Chem. Phys.》;20170818;第19卷;第24855-24865页 * |
昆虫细胞培养及其应用进展;张佑红等;《武汉化工学院学报》;20060531;第28卷(第3期);第20-24页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107937437A (en) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107937437B (en) | Light-operated expression vector of insect cell and application | |
CN108486146A (en) | LbCpf1-RR mutant is used for application of the CRISPR/Cpf1 systems in plant gene editor | |
CN111004814A (en) | Construction method of sensitive arsenic ion whole-cell biosensor and arsenic ion concentration detection method | |
WO2018081789A1 (en) | Engineered artificial antigen presenting cells for tumor infiltrating lymphocyte expansion | |
JP2024073654A (en) | Methods and compositions for inducible expression of neurotrophic factors - Patents.com | |
CN109679965B (en) | Gene for regulating and controlling leaf type development of poplar and application thereof | |
JP7576806B2 (en) | Tetracycline and Cumate-based coregulatory sequence | |
CN110684738A (en) | Method for obtaining immortalized cell strain by lentivirus vector mediated SV40T antigen transfection | |
CN106916828A (en) | A kind of growth regulator gene of poplar adjusted and controlled leaf development and its application | |
JP2024096300A (en) | Enhanced expression systems and methods of use thereof | |
CN109022285A (en) | A kind of method and application improving DNC wireless ammonium salt tolerance | |
WO2020034986A1 (en) | Transcriptional regulatory element and its use in enhancing the expression of heterologous protein | |
CN109207432B (en) | Application of NW_006883358-1 stably expressing protein in CHO cell genome | |
WO2013084157A1 (en) | Expression cassette | |
CN112553246A (en) | Efficient genome editing vector based on CRISPR-SaCas9 system and application thereof | |
CN109456990B (en) | Method for improving chloroplast genetic transformation efficiency by using genome editing technology | |
CN101709300B (en) | Method for quickly constructing artificial mi RNA gene interference vector of paddy | |
JP5554907B2 (en) | Novel expression vector with enhanced gene expression capability and method for using the same | |
AU2018356538B2 (en) | Eukaryotic cell line | |
CN113174400B (en) | Transgenic method for automatically deleting selection markers | |
JP2022515545A (en) | Cell selection method based on CRISPR / Cas controlled integration of detectable tags into target proteins | |
US9080177B2 (en) | pAVEC | |
CN112725373A (en) | Construction method for amplifying cadmium ion whole-cell biosensor circuit | |
RU2715314C1 (en) | VTvaf17-Act1-Cas9 GENE-THERAPEUTIC DNA VECTOR BASED ON VTvaf17 GENE-THERAPEUTIC DNA VECTOR CARRYING TARGET Cas9 GENE FOR HETEROLOGOUS EXPRESSION OF THIS TARGET GENE IN PLANT CELLS DURING GENOME EDITING OF PLANTS, METHOD OF PRODUCING AND USING GENE-THERAPEUTIC DNA VECTOR, STRAIN OF ESCHERICHIA COLI SCS110-AF/VTvaf17-Act1-Cas9 CARRYING GENE-THERAPEUTIC DNA VECTOR, METHOD FOR PREPARING THEREOF, METHOD FOR INDUSTRIAL PRODUCTION OF GENE-THERAPEUTIC DNA VECTOR | |
CN113817766A (en) | Gene expression cassette, recombinant expression vector, preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211124 Address after: 518107 floor 17, building 4, Weiguang Life Science Park, Zhenmei community, Xinhu street, Guangming District, Shenzhen, Guangdong Patentee after: Brincase (Shenzhen) Biotechnology Co.,Ltd. Address before: 430071 Xiao Hong, Wuchang District, Wuhan District, Hubei, Shanxi, 30 Patentee before: Institute of precision measurement science and technology innovation, Chinese Academy of Sciences Effective date of registration: 20211124 Address after: 430071 Xiao Hong, Wuchang District, Wuhan District, Hubei, Shanxi, 30 Patentee after: Institute of precision measurement science and technology innovation, Chinese Academy of Sciences Address before: 430071 Xiao Hong, Wuchang District, Wuhan District, Hubei, Shanxi, 30 Patentee before: WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCIENCES |
|
TR01 | Transfer of patent right |