CN113186190B - A blue light-mediated regulation plasmid and its construction method and application - Google Patents
A blue light-mediated regulation plasmid and its construction method and application Download PDFInfo
- Publication number
- CN113186190B CN113186190B CN202110571089.7A CN202110571089A CN113186190B CN 113186190 B CN113186190 B CN 113186190B CN 202110571089 A CN202110571089 A CN 202110571089A CN 113186190 B CN113186190 B CN 113186190B
- Authority
- CN
- China
- Prior art keywords
- blue light
- plasmid
- regulation
- promoter
- pichia pastoris
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/102—Plasmid DNA for yeast
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
技术领域technical field
本发明涉及微生物技术领域,具体涉及一种蓝光介导调节质粒及其构建方法和应用。The invention relates to the technical field of microorganisms, in particular to a blue light-mediated regulation plasmid and a construction method and application thereof.
背景技术Background technique
基因表达过程的传统调节方法多为外源性的化学诱导剂结合可溶性转录因子来实现对基因表达的人工控制,该方式是上个世纪推动生物技术、合成生物学及医学研究快速发展的主要动力之一。虽然这些传统调控方式可以初步实现基因表达的时间和表达量控制,但是其有限的可逆性及其以诱导剂为基础的运输调节机制使得其存在着种种局限性和缺陷,例如:其潜在的脱靶效应、转运过程延迟及毒性。在理想情况下,能够快速、精确地随意“开启”或“关闭”的生物调控元件,将有效提高分析和调控复杂生物基因网络的能力,光调节方式的时间调节精度可达到毫秒的范围。The traditional regulation methods of gene expression process are mostly exogenous chemical inducers combined with soluble transcription factors to achieve artificial control of gene expression. This method is the main driving force for the rapid development of biotechnology, synthetic biology and medical research in the last century. one. Although these traditional regulatory methods can initially control the time and amount of gene expression, their limited reversibility and their inducer-based transport regulation mechanism make them have various limitations and defects, such as their potential off-target Effects, delays in transport and toxicity. Ideally, biological regulatory elements that can be quickly and accurately turned on or off at will will effectively improve the ability to analyze and regulate complex biological gene networks. The time regulation accuracy of light regulation methods can reach the millisecond range.
来源于山葡萄红杆菌(Erythrobacter litoralis)的EL222光敏蛋白可有效实现光调控操作,EL222由222个氨基酸组成,N端为光氧化调控域(Light-Oxygen-Voltage,LOV),C端为螺旋-转角-螺旋(helix-turn-helix,HTH)DNA结合域,LOV的C末端是连接LOV和HTH的Jα螺旋。LOV的核心是Per-Arnt-SIM(PAS)结构域,可以与黄素单核苷酸(FMN)结合。属于光诱导同源二聚化的系统。在蓝光照射下,FMN和LOV的结合导致Jα螺旋从PAS摇摆,从而释放HTH,使EL222二聚并与DNA结合。在黑暗中,N端LOV结构域抑制DNA结合的C端HTH结构域时,EL222自发地逆转,从而迅速使EL222失活。目前,EL222蛋白已初步在大肠杆菌及酿酒酵母中得到验证,但尚未在毕赤酵母中报道其适用性。The EL222 light-sensitive protein derived from Erythrobacter litoralis can effectively realize the light regulation operation. EL222 consists of 222 amino acids, and the N-terminal is Light-Oxygen-Voltage (LOV), and the C-terminal is helix-turn. - Helix-turn-helix (HTH) DNA binding domain, the C-terminus of LOV is a Jα helix connecting LOV and HTH. The core of LOV is the Per-Arnt-SIM (PAS) domain, which can bind to flavin mononucleotide (FMN). Belongs to the light-induced homodimerization system. Upon blue light irradiation, the binding of FMN and LOV causes the Jα helix to wobble from PAS, thereby releasing HTH, allowing EL222 to dimerize and bind to DNA. In the dark, when the N-terminal LOV domain inhibits the DNA-bound C-terminal HTH domain, EL222 spontaneously reverses, thereby rapidly inactivating EL222. At present, the EL222 protein has been preliminarily validated in Escherichia coli and Saccharomyces cerevisiae, but its applicability has not been reported in Pichia pastoris.
毕赤酵母作为真核生物,具有真核表达系统的许多优点,如蛋白质加工、折叠、翻译后修饰等,而且更容易操作。与哺乳动物细胞培养和杆状病毒等真核表达系统相比,毕赤酵母表达系统具有更快捷、更简单、更廉价、表达水平更高等优点。毕赤酵母作为一种酵母,具有与酿酒酵母相似的分子和遗传操作优势,其外源蛋白表达量是酿酒酵母的十倍甚至上百倍。上述诸多优势使得毕赤酵母成为真核蛋白表达系统的首选。然而毕赤酵母的诱导调节方式仍处于外源性化学诱导剂的阶段,其最常使用的诱导剂甲醇毒性强且易燃,不利于毕赤酵母在食品、医药、农产品加工等领域的应用。因此,开发一种新型的毕赤酵母的光调节方式,可有效解决传统化学诱导剂的毒性、不稳定性及转运延迟性等缺陷,拓展毕赤酵母表达调控的方式方法,成为本领域迫切需要解决的一个技术问题。As a eukaryotic organism, Pichia pastoris has many advantages of eukaryotic expression systems, such as protein processing, folding, post-translational modification, etc., and is easier to operate. Compared with eukaryotic expression systems such as mammalian cell culture and baculovirus, the Pichia pastoris expression system has the advantages of being faster, simpler, cheaper, and having higher expression levels. As a yeast, Pichia has similar molecular and genetic manipulation advantages as Saccharomyces cerevisiae, and its exogenous protein expression is ten times or even hundreds of times that of Saccharomyces cerevisiae. These many advantages make Pichia pastoris the first choice for eukaryotic protein expression systems. However, the induction and regulation of Pichia pastoris is still in the stage of exogenous chemical inducers. The most commonly used inducer, methanol, is highly toxic and flammable, which is not conducive to the application of Pichia pastoris in the fields of food, medicine, and agricultural product processing. Therefore, the development of a new light regulation method of Pichia pastoris can effectively solve the defects of traditional chemical inducers such as toxicity, instability and transport delay, and expand the methods and methods of Pichia pastoris expression regulation, which has become an urgent need in the field. solved a technical problem.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的问题,本发明的目的在于提供一种蓝光调节启动子PC120,可以快速、精准的实现对目的基因的蓝光诱导表达。In order to solve the problems existing in the prior art, the purpose of the present invention is to provide a blue light regulated promoter PC120, which can quickly and accurately realize the blue light-induced expression of the target gene.
本发明的目的还在于提供一种蓝光介导调节质粒及其构建方法和应用,可用于毕赤酵母蓝光诱导表达,该调节方式无毒无害、响应快速、操作简便、可逆性好、时空分辨率高。The purpose of the present invention is also to provide a blue light-mediated regulation plasmid and its construction method and application, which can be used for blue light-induced expression of Pichia pastoris. high rate.
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
本发明提供了一种蓝光调节启动子PC120,所述启动子的核酸序列如SEQ ID NO.1所示。The present invention provides a blue light regulated promoter PC120, and the nucleic acid sequence of the promoter is shown in SEQ ID NO.1.
优选的,所述启动子可被蓝光蛋白SV40-VP-EL识别并结合。Preferably, the promoter can be recognized and bound by the blue light protein SV40-VP-EL.
优选的,所述蓝光蛋白SV40-VP-EL的氨基酸序列如SEQ ID NO.2所示。Preferably, the amino acid sequence of the blue light protein SV40-VP-EL is shown in SEQ ID NO.2.
优选的,所述蓝光蛋白SV40-VP-EL的核酸序列如SEQ ID NO.3所示。Preferably, the nucleic acid sequence of the blue light protein SV40-VP-EL is shown in SEQ ID NO.3.
本发明还提供了一种蓝光介导调节质粒,所述质粒包括上述的蓝光调节启动子PC120和转录翻译蓝光蛋白的融合基因PGAP-SV40-VP-EL。The present invention also provides a blue light-mediated regulation plasmid, which comprises the above-mentioned blue light regulation promoter PC120 and a fusion gene PGAP-SV40-VP-EL that transcribes and translates blue light protein.
优选的,所述融合基因PGAP-SV40-VP-EL的核酸序列如SEQ ID NO.4所示。Preferably, the nucleic acid sequence of the fusion gene PGAP-SV40-VP-EL is shown in SEQ ID NO.4.
本发明还提供了上述蓝光介导调节质粒的构建方法,所述构建步骤包括:The present invention also provides the construction method of the above-mentioned blue light-mediated regulation plasmid, and the construction step comprises:
以pAO815质粒为骨架,将融合基因PGAP-SV40-VP-EL替换pAO815质粒AOX1promoter以及AOX1 promoter和AOX1 terminator之间的序列,得到质粒pGSVEA;再将包含启动子PC120的另一融合基因替换质粒pGSVEA的CGTTCGTTTGTGC序列即可。Taking the pAO815 plasmid as the backbone, the fusion gene PGAP-SV40-VP-EL was used to replace the sequence between the pAO815 plasmid AOX1 promoter and AOX1 promoter and AOX1 terminator to obtain the plasmid pGSVEA; then another fusion gene containing the promoter PC120 was used to replace the plasmid pGSVEA. The CGTTCGTTTGTGC sequence is sufficient.
优选的,所述包含启动子PC120的融合基因还包括报道基因和/或目的基因。Preferably, the fusion gene comprising the promoter PC120 also includes a reporter gene and/or a target gene.
优选的,所述融合基因通过GibsonAssembly的方式定点组装到pAO815质粒上。Preferably, the fusion gene is site-specifically assembled into the pAO815 plasmid by means of GibsonAssembly.
本发明还提供了上述蓝光介导调节质粒和/或上述蓝光介导调节质粒的构建方法在毕赤酵母诱导表达中的应用。The present invention also provides the application of the above blue light mediated regulation plasmid and/or the construction method of the above blue light mediated regulation plasmid in the induced expression of Pichia pastoris.
与现有技术相比,本发明的技术方案的有益效果如下:Compared with the prior art, the beneficial effects of the technical solution of the present invention are as follows:
本发明为毕赤酵母的诱导表达方法提供了一个新型的蓝光诱导调节方式。本发明采用光调节方式对毕赤酵母进行诱导表达,无毒无害、响应快速、操作简便、可逆性好、时空分辨率高,推动了毕赤酵母在食品、医药、农产品加工等领域的广泛应用。The invention provides a novel blue light-induced regulation mode for the inducible expression method of Pichia pastoris. The invention adopts the light regulation method to induce expression of Pichia pastoris, is non-toxic and harmless, has quick response, simple operation, good reversibility, and high spatial and temporal resolution, and promotes the wide application of Pichia pastoris in the fields of food, medicine, agricultural product processing and the like. application.
本发明仅需一个质粒即可实现对目的基因的蓝光诱导表达,拓展了毕赤酵母表达调控的方式方法。The invention only needs one plasmid to realize blue light-induced expression of the target gene, and expands the methods and methods of Pichia pastoris expression regulation.
附图说明Description of drawings
图1为蓝光调节质粒的机制示意图。Figure 1 is a schematic diagram of the mechanism of blue light regulating plasmids.
图2为pGSVEACA载体图,图中PpHIS4是毕赤酵母整合位点及筛选标记,AmpR是抗生素抗性,ori是复制起始位点,GAP promoter是毕赤酵母GAP启动子,SV40是核定位信号,VP16是转录激活域,EL222是蓝光响应蛋白,AOX1 terminator是酵母AOX1终止子,PC120是蓝光调节启动子,GFP是绿色荧光蛋白,ADH1 terminator是酿酒酵母ADH1终止子。Figure 2 is a diagram of the pGSVEACA vector, in which PpHIS4 is the Pichia integration site and selection marker, AmpR is the antibiotic resistance, ori is the origin of replication, GAP promoter is the Pichia GAP promoter, and SV40 is the nuclear localization signal , VP16 is the transcriptional activation domain, EL222 is the blue light responsive protein, AOX1 terminator is the yeast AOX1 terminator, PC120 is the blue light regulated promoter, GFP is the green fluorescent protein, and ADH1 terminator is the Saccharomyces cerevisiae ADH1 terminator.
图3为pGSVEACA载体转化毕赤酵母在MD平板上的克隆。Figure 3 is the clone of Pichia pastoris transformed with pGSVEACA vector on MD plate.
图4为蓝光调节工程菌基因组PCR验证阳性克隆。Figure 4 is a blue light-regulated engineering bacteria genome PCR-verified positive clone.
图5为蓝光调节工程菌分别在蓝光条件和黑暗条件下诱导12h的MD平板,左为黑暗条件,右为蓝光条件。Figure 5 shows the MD plates of blue light-regulated engineering bacteria induced under blue light conditions and dark conditions for 12 h, respectively. The left is the dark condition and the right is the blue light condition.
图6为蓝光调节工程菌分别在蓝光条件和黑暗条件下诱导的MD摇瓶培养,(A)为蓝光诱导1h后实验组Full Light与对照组Full Dark的荧光强度;(B)为蓝光诱导4h后实验组Full Light与对照组Full Dark的荧光强度;(C)为蓝光诱导7h后实验组Full Light与对照组Full Dark的荧光强度;(D)为蓝光诱导10h后实验组Full Light与对照组Full Dark的荧光强度;(E)为实验组Full Light与对照组Full Dark在蓝光诱导期间每小时所取样品的荧光强度平均值的趋势图。Figure 6 shows the MD shake flask culture induced by blue light-regulated engineering bacteria under blue light conditions and dark conditions, respectively, (A) is the fluorescence intensity of the experimental group Full Light and the control group Full Dark after 1 hour of blue light induction; (B) is blue light induced for 4 hours. The fluorescence intensity of Full Light in the experimental group and Full Dark in the control group; (C) is the fluorescence intensity of Full Light in the experimental group and Full Dark in the control group after 7 hours of blue light induction; (D) is the Full Light in the experimental group and the control group after 10 hours of blue light induction Fluorescence intensity of Full Dark; (E) is the trend graph of the average fluorescence intensity of samples taken every hour during the blue light induction period between the experimental group Full Light and the control group Full Dark.
具体实施方式Detailed ways
本发明提供了一种蓝光调节启动子PC120,所述启动子的核酸序列如SEQ ID NO.1所示。本发明启动子PC120可被蓝光蛋白SV40-VP-EL识别并结合,从而快速、精准的实现对目的基因的蓝光诱导表达。The present invention provides a blue light regulated promoter PC120, and the nucleic acid sequence of the promoter is shown in SEQ ID NO.1. The promoter PC120 of the present invention can be recognized and combined by the blue light protein SV40-VP-EL, thereby realizing the blue light-induced expression of the target gene quickly and accurately.
本发明蓝光蛋白SV40-VP-EL的氨基酸序列如SEQ ID NO.2所示,核酸序列如SEQID NO.3所示。本发明中蓝光蛋白SV40-VP-EL的核酸序列也可以为编码蛋白SV40-VP-EL的其余核酸序列变种。The amino acid sequence of the blue light protein SV40-VP-EL of the present invention is shown in SEQ ID NO.2, and the nucleic acid sequence is shown in SEQ ID NO.3. The nucleic acid sequence of the blue light protein SV40-VP-EL in the present invention can also be the other nucleic acid sequence variants encoding the protein SV40-VP-EL.
本发明提供了一种蓝光介导调节质粒,包括上述蓝光调节启动子PC120和转录翻译蓝光蛋白的融合基因PGAP-SV40-VP-EL。本发明融合基因PGAP-SV40-VP-EL中的PGAP表示毕赤酵母GAP启动子GAP promoter,SV40表示核定位信号SV40,VP表示转录激活域VP16、EL表示蓝光响应蛋白EL222。The present invention provides a blue light mediated regulation plasmid, comprising the above blue light regulation promoter PC120 and a fusion gene PGAP-SV40-VP-EL for transcription and translation of blue light protein. PGAP in the fusion gene PGAP-SV40-VP-EL of the present invention represents Pichia pastoris GAP promoter GAP promoter, SV40 represents nuclear localization signal SV40, VP represents transcription activation domain VP16, and EL represents blue light response protein EL222.
在本发明中,PGAP的核酸序列为毕赤酵母GS115 ATCC:20864的GAP1启动子序列(GenBankAccessionNo:CP014716REGION:809514..809990)。In the present invention, the nucleic acid sequence of PGAP is the GAP1 promoter sequence of Pichia GS115 ATCC:20864 (GenBankAccessionNo:CP014716REGION:809514..809990).
本发明融合基因PGAP-SV40-VP-EL的核酸序列如SEQ ID NO.4所示。The nucleic acid sequence of the fusion gene PGAP-SV40-VP-EL of the present invention is shown in SEQ ID NO.4.
本发明还提供了上述蓝光介导调节质粒的构建方法,包括:以pAO815质粒为骨架,将融合基因PGAP-SV40-VP-EL替换pAO815质粒AOX1promoter以及AOX1 promoter和AOX1terminator之间的序列,得到质粒pGSVEA;再将包含启动子PC120的另一融合基因替换质粒pGSVEA的CGTTCGTTTGTGC序列,得到蓝光调节质粒pGSVEACA。本发明构建得到的pGSVEACA质粒,见图2。The present invention also provides a method for constructing the above blue light-mediated regulating plasmid, comprising: using the pAO815 plasmid as the backbone, replacing the fusion gene PGAP-SV40-VP-EL with the sequence between the pAO815 plasmid AOX1promoter and AOX1 promoter and AOX1terminator to obtain the plasmid pGSVEA ; Replace the CGTTCGTTTGTGC sequence of the plasmid pGSVEA with another fusion gene containing the promoter PC120 to obtain the blue light regulating plasmid pGSVEACA. The pGSVEACA plasmid constructed by the present invention is shown in Figure 2.
本发明得到的质粒pGSVEA导入毕赤酵母后可以转录翻译得到蓝光蛋白SV40-VP-EL,优选的,所述毕赤酵母为毕赤酵母GS115。After the plasmid pGSVEA obtained in the present invention is introduced into Pichia pastoris, it can be transcribed and translated to obtain blue light protein SV40-VP-EL. Preferably, the Pichia pastoris is Pichia pastoris GS115.
本发明得到的蓝光调节质粒pGSVEACA可以转录翻译得到蓝光蛋白SV40-VP-EL,在蓝光照射下,蓝光蛋白SV40-VP-EL中的光敏蛋白EL222的N端(光氧化调控域)与C端(螺旋-转角-螺旋DNA结合域)相互作用,使EL222二聚并与启动子PC120结合,开启含启动子PC120的另一融合基因的转录。The blue light regulating plasmid pGSVEACA obtained by the present invention can be transcribed and translated to obtain blue light protein SV40-VP-EL. Under blue light irradiation, the N-terminus (photo-oxidation control domain) and C-terminus ( Helix-turn-helix DNA binding domain) interacts to dimerize EL222 and bind to the promoter PC120, turning on transcription of another fusion gene containing the promoter PC120.
在本发明中,包含启动子PC120的另一融合基因为PC120-GFP-TADH1,其中PC120表示蓝光调节启动子PC120,GFP表示绿色荧光蛋白GFP,TADH1表示酵母ADH1终止子ADH1terminator,TADH1的核酸序列为酿酒酵母Y169的ADH1终止子序列(GenBank AccessionNo:CP033484REGION:156786..157080)。本发明中绿色荧光蛋白GFP可以替换为其他报告基因,也可以替换为其他目的基因。In the present invention, another fusion gene comprising the promoter PC120 is PC120-GFP-TADH1, wherein PC120 represents the blue light regulated promoter PC120, GFP represents the green fluorescent protein GFP, TADH1 represents the yeast ADH1 terminator ADH1terminator, and the nucleic acid sequence of TADH1 is ADH1 terminator sequence of Saccharomyces cerevisiae Y169 (GenBank Accession No: CP033484REGION: 156786..157080). In the present invention, the green fluorescent protein GFP can be replaced with other reporter genes, and can also be replaced with other target genes.
本发明融合基因PC120-GFP-TADH1的核酸序列如SEQ ID NO.5所示。The nucleic acid sequence of the fusion gene PC120-GFP-TADH1 of the present invention is shown in SEQ ID NO.5.
本发明中,两段融合基因可以通过GibsonAssembly的方式定点组装到pAO815质粒上。本发明对具体的组装方式不作限定。In the present invention, the two fusion genes can be assembled on the pAO815 plasmid by means of GibsonAssembly. The present invention does not limit the specific assembling manner.
本发明还提供了上述蓝光介导调节质粒和/或蓝光介导调节质粒的构建方法在毕赤酵母诱导表达中的应用。本发明将蓝光调节质粒pGSVEACA转化导入毕赤酵母中,即可实现对目的基因的蓝光诱导表达,拓展了毕赤酵母表达调控的方式方法,推动了毕赤酵母在食品、医药、农产品加工等领域的广泛应用。The present invention also provides the application of the blue light-mediated regulation plasmid and/or the construction method of the blue-light-mediated regulation plasmid in the induced expression of Pichia pastoris. In the present invention, the blue light regulating plasmid pGSVEACA is transformed into Pichia pastoris, so that the blue light-induced expression of the target gene can be realized, the methods and methods of Pichia pastoris expression regulation are expanded, and the application of Pichia pastoris in the fields of food, medicine, agricultural product processing and the like is promoted. wide application.
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
本实施例对基因序列进行了优化。In this example, the gene sequence is optimized.
将NCBI中检索到的VP16及EL222基因序列和蛋白序列,按照毕赤酵母密码子偏好性进行优化,重新合成DNA序列。The gene sequences and protein sequences of VP16 and EL222 retrieved from NCBI were optimized according to the codon preference of Pichia pastoris, and the DNA sequences were re-synthesized.
具体的优化方法为:根据基因合成公司金斯瑞密码子优化软件OptimumGeneTM对基因进行优化,主要参考毕赤酵母的密码子偏好性,再结合过滤元件及平衡基因GC含量最终完成对基因密码子的优化,得到SV40-VP-EL核酸序列,如SEQ ID NO.3所示;PGAP-SV40-VP-EL核酸序列,如SEQ ID NO.4所示;PC120-GFP-TADH1核酸序列,如SEQ ID NO.5所示。The specific optimization method is: optimize the gene according to the gene synthesis company GenScript codon optimization software OptimumGene TM , mainly refer to the codon preference of Pichia pastoris, and then combine the filter element and balance the GC content of the gene to finally complete the gene codon optimization. The optimization of SV40-VP-EL nucleic acid sequence, as shown in SEQ ID NO.3; PGAP-SV40-VP-EL nucleic acid sequence, as shown in SEQ ID NO.4; PC120-GFP-TADH1 nucleic acid sequence, as shown in SEQ ID NO.4 ID NO.5.
实施例2Example 2
本实施例以毕赤酵母的常用质粒pAO815为骨架设计并构建了蓝光调节质粒pGSVEACA。In this example, the blue light regulating plasmid pGSVEACA was designed and constructed using the commonly used plasmid pAO815 of Pichia pastoris as the backbone.
具体的构建方法为:The specific construction method is:
将实施例1中优化获得的PGAP-SV40-VP-EL基因序列进行全合成,然后使用Gibsonassembly技术替换pAO815质粒AOX1 promoter以及AOX1 promoter和AOX1 terminator之间的序列,得到质粒pGSVEA;The PGAP-SV40-VP-EL gene sequence optimized in Example 1 was fully synthesized, and then Gibsonassembly technology was used to replace the pAO815 plasmid AOX1 promoter and the sequence between AOX1 promoter and AOX1 terminator to obtain plasmid pGSVEA;
将实施例1中优化获得的PC120-GFP-TADH1基因序列进行全合成,然后使用Gibsonassembly技术替换质粒pGSVEA的CGTTCGTTTGTGC序列,得到蓝光调节质粒pGSVEACA。The PC120-GFP-TADH1 gene sequence optimized in Example 1 was fully synthesized, and then the CGTTCGTTTGTGC sequence of the plasmid pGSVEA was replaced by Gibsonassembly technology to obtain the blue light regulating plasmid pGSVEACA.
本实施例中,PGAP-SV40-VP-EL基因序列中并未包含终止子序列,所以需要借用pAO815质粒骨架上的AOX1 terminator,从而构建完整的SV40-VP-EL开放阅读框,实现SV40-VP-EL的组成型表达。In this example, the PGAP-SV40-VP-EL gene sequence does not contain a terminator sequence, so it is necessary to borrow the AOX1 terminator on the pAO815 plasmid backbone to construct a complete SV40-VP-EL open reading frame to realize SV40-VP - Constitutive expression of EL.
本实施例中,为了让单个质粒实现蓝光诱导的效果,需要在构建生成的质粒pGSVEA基础上,将PC120-GFP-TADH1基因序列插入到PGAP-SV40-VP-EL的下游,故采用PC120-GFP-TADH1基因序列替换质粒pGSVEA的CGTTCGTTTGTGC序列。In this example, in order to make a single plasmid achieve the effect of blue light induction, it is necessary to insert the PC120-GFP-TADH1 gene sequence into the downstream of PGAP-SV40-VP-EL on the basis of the generated plasmid pGSVEA, so PC120-GFP is used. - The TADH1 gene sequence replaces the CGTTCGTTTGTGC sequence of the plasmid pGSVEA.
实施例3Example 3
本实施例对蓝光调节质粒pGSVEACA进行转化、诱导表达与分析。In this example, the blue light regulating plasmid pGSVEACA was transformed, induced to express and analyzed.
(1)质粒的提取与定量检测(1) Plasmid extraction and quantitative detection
1)取10mL菌体过夜培养物,13400g离心1min弃上清液收沉淀。1) Take 10 mL of the overnight bacterial culture, centrifuge at 13,400 g for 1 min, discard the supernatant and collect the precipitate.
2)依次加入500μL溶液Ⅰ,溶液Ⅱ及溶液Ⅲ,立即温和地上下翻转6~8次后静置5min,13400g离心10min。2) Add 500 μL of solution I, solution II and solution III in sequence, immediately and gently turn up and down 6 to 8 times, then let stand for 5 minutes, and centrifuge at 13400g for 10 minutes.
其中溶液Ⅰ的组成为25mM Tris-HCl(pH=8.0),10mM EDTA,50mM葡萄糖;Wherein the composition of solution I is 25mM Tris-HCl (pH=8.0), 10mM EDTA, 50mM glucose;
溶液Ⅱ的组成为250mM NaOH,1%(W/V)SDS;The composition of solution II is 250 mM NaOH, 1% (W/V) SDS;
溶液Ⅲ的组成为3M醋酸钾,5M醋酸。The composition of solution III was 3M potassium acetate, 5M acetic acid.
3)将上一步收集的上清液加入过滤柱中,13400g离心1min后加入450μL异丙醇混合均匀。而后加入吸附柱中,13400g离心1min后弃去废液。3) Add the supernatant collected in the previous step to the filter column, centrifuge at 13400g for 1 min, add 450 μL of isopropanol and mix evenly. Then add it to the adsorption column, centrifuge at 13400g for 1 min and discard the waste liquid.
4)将700μL漂洗液加入吸附柱中,13400g离心1min后弃去废液。4) Add 700 μL of rinsing solution to the adsorption column, centrifuge at 13400 g for 1 min and discard the waste solution.
5)吸附柱除净漂洗液后,向吸附膜中央滴加150μL的去离子水,静置2min后13400g离心2min。5) After the rinsing solution was removed from the adsorption column, 150 μL of deionized water was added dropwise to the center of the adsorption membrane, and then centrifuged at 13400g for 2 minutes after standing for 2 minutes.
6)收集管内液体并测定质粒pGSVEACA浓度,-20℃保存备用。6) Collect the liquid in the tube and measure the concentration of plasmid pGSVEACA, and store at -20°C for later use.
(2)质粒pGSVEACA的线性化和回收(2) Linearization and recovery of plasmid pGSVEACA
1)向样品中加入1/10体积的3M乙酸钠溶液和2.5倍体积的无水乙醇混匀,于-20℃放置1h。而后12000rpm离心10min,弃上清。1) Add 1/10 volume of 3M sodium acetate solution and 2.5 times volume of absolute ethanol to the sample, mix well, and place at -20°C for 1 hour. Then, centrifuge at 12,000 rpm for 10 min, and discard the supernatant.
2)2.5倍体积的预冷75%乙醇重悬沉淀,12000rpm离心10min,弃上清。并置于超净工作台吹15min。2) Resuspend the pellet with 2.5 times the volume of pre-cooled 75% ethanol, centrifuge at 12000 rpm for 10 min, and discard the supernatant. And placed on the ultra-clean workbench to blow for 15min.
3)向管底滴加25μL的去离子水重悬,并测定质粒浓度,-20℃保存备用。3) Add 25 μL of deionized water to the bottom of the tube to resuspend, measure the plasmid concentration, and store at -20°C for later use.
(3)毕赤酵母GS115的电转化(3) Electrotransformation of Pichia pastoris GS115
1)在制备好的毕赤酵母GS115感受态细胞中加入5~10μg线性化质粒pGSVEACA并混匀,转移到预冷的新电转杯(0.2cm规格)中,冰浴5min。1) Add 5-10 μg of the linearized plasmid pGSVEACA to the prepared Pichia GS115 competent cells, mix well, transfer to a new pre-cooled electroporation cup (0.2cm size), and bath in ice for 5 minutes.
2)快速取出电转杯并擦干,在电压为1.5kV、电容为25μF、电阻为200Ω的参数下电击,立即加入1mL预冷的1M山梨醇,吸取液体并转移至新的1.5mL无菌离心管,于30℃静置孵育1.5h。2) Quickly take out the electric rotor cup and wipe it dry, conduct electric shock under the parameters of voltage of 1.5kV, capacitance of 25μF and resistance of 200Ω, immediately add 1mL of pre-cooled 1M sorbitol, absorb the liquid and transfer it to a new 1.5mL sterile centrifuge tube and incubate at 30°C for 1.5h.
3)12000rpm离心20s后弃去大部分上清,重悬菌体后涂布到MD筛选平板,28℃恒温培养2d至出现肉眼可见的单菌落。酵母转化结果见图3。3) After centrifugation at 12,000 rpm for 20s, most of the supernatant was discarded, and the cells were resuspended and coated on an MD screening plate, and incubated at 28°C for 2 days until a single colony visible to the naked eye appeared. The yeast transformation results are shown in Figure 3.
(4)毕赤酵母转化子的诱导表达与荧光强度定性分析(4) Qualitative analysis of induced expression and fluorescence intensity of Pichia pastoris transformants
随机挑取转化出的酵母转化子至接种于5mL MD液体培养基中28℃摇床培养19h。保菌并抽取基因组DNA,设计基因阳性检测引物进行PCR扩增,获得阳性菌株。本发明PCR所用引物见表1。The transformed yeast transformants were randomly selected and inoculated into 5 mL of MD liquid medium for 19 h at 28°C on a shaker. Bacteria were preserved and genomic DNA was extracted, and gene positive detection primers were designed for PCR amplification to obtain positive strains. The primers used in PCR of the present invention are shown in Table 1.
表1 PCR引物Table 1 PCR primers
表1中GAP-F序列如SEQ ID NO.6所示,ADH-R序列如SEQ ID NO.7所示,AOX-R序列如SEQ ID NO.8所示,AOX-F序列如SEQ ID NO.9所示。In Table 1, the GAP-F sequence is shown in SEQ ID NO.6, the ADH-R sequence is shown in SEQ ID NO.7, the AOX-R sequence is shown in SEQ ID NO.8, and the AOX-F sequence is shown in SEQ ID NO. .9 shown.
PCR扩增结果见图4,表明挑取培养的酵母转化子中含有目的质粒。The results of PCR amplification are shown in Figure 4, indicating that the yeast transformants picked and cultured contain the target plasmid.
根据PCR检测结果,选取3~5个阳性克隆划线于MD培养基上,先于28℃黑暗环境下培养24h后对实验组进行蓝光诱导孵育。According to the PCR detection results, 3-5 positive clones were selected and streaked on the MD medium, firstly cultured in the dark environment at 28°C for 24h, and then the experimental group was induced and incubated with blue light.
蓝光诱导24h后,将实验组与对照组置于475nm的激发光下进行荧光强度的定性比较,对比效果见图5,可见,蓝光诱导后的菌株在475nm的激发光下发绿色荧光,表明通过蓝光诱导后的毕赤酵母细胞内转录翻译得到了绿色荧光蛋白,PC120启动子可以成功识别并结合蓝光蛋白SV40-VP-EL,精准开启报道基因的转录翻译。After being induced by blue light for 24 hours, the experimental group and the control group were placed under the excitation light of 475nm for qualitative comparison of the fluorescence intensity. The green fluorescent protein was obtained by the intracellular transcription and translation of Pichia pastoris induced by blue light, and the PC120 promoter could successfully recognize and bind to the blue light protein SV40-VP-EL to precisely turn on the transcription and translation of the reporter gene.
(5)毕赤酵母转化子的流式细胞术分析(5) Flow cytometry analysis of Pichia pastoris transformants
根据PCR检测结果,选取3~4个阳性克隆,各取50-100μL培养液转接至50mLMD液体培养基中,28℃黑暗环境下,摇床培养至菌体OD 600nm达到0.8~1.2后进行蓝光诱导表达。蓝光诱导每隔1h对实验组和对照组进行取样,共诱导10h。According to the PCR detection results, select 3 to 4 positive clones, and transfer 50-100 μL of culture solution to 50 mL of MD liquid medium. Induced expression. The experimental group and the control group were sampled every 1 h after blue light induction for 10 h in total.
对所取样品进行预处理以便进行流式细胞术分析,具体操作为:样品菌液在4℃下以5000rpm离心1min,弃上清后用PBS重悬并稀释至肉眼不可见的状态,取适当体积的样品稀释液通过300目的滤网过滤后存于流式分析管中以备进行流式细胞术分析。The samples were pretreated for flow cytometry analysis. The specific operations were: centrifuge the sample bacterial solution at 5000 rpm for 1 min at 4 °C, discard the supernatant, resuspend it with PBS, and dilute it to a state that is invisible to the naked eye. Volumes of sample dilutions were filtered through a 300-mesh filter and stored in flow analysis tubes for flow cytometry analysis.
对实验组及对照组的样品进行流式细胞术分析后所得出的荧光强度与诱导时间的关系见表2和图6。The relationship between the fluorescence intensity and the induction time obtained after the samples of the experimental group and the control group were analyzed by flow cytometry are shown in Table 2 and FIG. 6 .
表2菌体在蓝光诱导和黑暗环境下不同时间的荧光强度Table 2 Fluorescence intensity of bacteria at different times under blue light induction and dark environment
由表2和图6可知,蓝光持续照射诱导8小时后GFP的荧光强度达到最高,其强度是同时期对照组的16.4倍。直方图中呈现出单一且均匀的峰,说明蓝光可对携带有pGSVEACA质粒的GS115细胞实现均匀的诱导效应。并且实验组和对照组直方图的交叉重叠部分并不多,说明诱导强度较为良好。整体而言,该流式细胞术结果说明pGSVEACA质粒可有效实现GS115细胞对蓝光高效均一的响应。It can be seen from Table 2 and Figure 6 that the fluorescence intensity of GFP reached the highest after 8 hours of continuous irradiation with blue light, and its intensity was 16.4 times that of the control group at the same period. There is a single and uniform peak in the histogram, indicating that blue light can achieve a uniform induction effect on GS115 cells carrying the pGSVEACA plasmid. And there are not many overlapping parts of the histograms of the experimental group and the control group, indicating that the induction intensity is relatively good. Overall, the flow cytometry results indicate that the pGSVEACA plasmid can effectively achieve an efficient and uniform response of GS115 cells to blue light.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
序列表sequence listing
<110> 华中科技大学<110> Huazhong University of Science and Technology
<120> 一种蓝光介导调节质粒及其构建方法和应用<120> A blue light-mediated regulation plasmid and its construction method and application
<140> 2021105710897<140> 2021105710897
<141> 2021-05-25<141> 2021-05-25
<160> 9<160> 9
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 190<211> 190
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
taggtagcct ttagtccatg cgttataggt agcctttagt ccatgcgtta taggtagcct 60taggtagcct ttagtccatg cgttataggt agcctttagt ccatgcgtta taggtagcct 60
ttagtccatg cgttataggt agcctttagt ccatgcgtta taggtagcct ttagtccatg 120ttagtccatg cgttataggt agcctttagt ccatgcgtta taggtagcct ttagtccatg 120
aagcttagac actagagggt atataatgga agctcgactt ccagcttggc aatccggtac 180aagcttagac actagagggt atataatgga agctcgactt ccagcttggc aatccggtac 180
tgttggtaaa 190tgttggtaaa 190
<210> 2<210> 2
<211> 294<211> 294
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
Pro Lys Lys Lys Arg Lys Val Ala Pro Pro Thr Asp Val Ser Leu GlyPro Lys Lys Lys Arg Lys Val Ala Pro Pro Thr Asp Val Ser Leu Gly
1 5 10 151 5 10 15
Asp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala His Ala AspAsp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala His Ala Asp
20 25 30 20 25 30
Ala Leu Asp Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp Ser ProAla Leu Asp Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp Ser Pro
35 40 45 35 40 45
Gly Pro Gly Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala Leu AspGly Pro Gly Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala Leu Asp
50 55 60 50 55 60
Met Ala Asp Phe Glu Phe Glu Gln Met Phe Thr Asp Ala Leu Gly IleMet Ala Asp Phe Glu Phe Glu Gln Met Phe Thr Asp Ala Leu Gly Ile
65 70 75 8065 70 75 80
Asp Glu Tyr Gly Gly Gly Ala Asp Asp Thr Arg Val Glu Val Gln ProAsp Glu Tyr Gly Gly Gly Ala Asp Asp Thr Arg Val Glu Val Gln Pro
85 90 95 85 90 95
Pro Ala Gln Trp Val Leu Asp Leu Ile Glu Ala Ser Pro Ile Ala SerPro Ala Gln Trp Val Leu Asp Leu Ile Glu Ala Ser Pro Ile Ala Ser
100 105 110 100 105 110
Val Val Ser Asp Pro Arg Leu Ala Asp Asn Pro Leu Ile Ala Ile AsnVal Val Ser Asp Pro Arg Leu Ala Asp Asn Pro Leu Ile Ala Ile Asn
115 120 125 115 120 125
Gln Ala Phe Thr Asp Leu Thr Gly Tyr Ser Glu Glu Glu Cys Val GlyGln Ala Phe Thr Asp Leu Thr Gly Tyr Ser Glu Glu Glu Cys Val Gly
130 135 140 130 135 140
Arg Asn Cys Arg Phe Leu Ala Gly Ser Gly Thr Glu Pro Trp Leu ThrArg Asn Cys Arg Phe Leu Ala Gly Ser Gly Thr Glu Pro Trp Leu Thr
145 150 155 160145 150 155 160
Asp Lys Ile Arg Gln Gly Val Arg Glu His Lys Pro Val Leu Val GluAsp Lys Ile Arg Gln Gly Val Arg Glu His Lys Pro Val Leu Val Glu
165 170 175 165 170 175
Ile Leu Asn Tyr Lys Lys Asp Gly Thr Pro Phe Arg Asn Ala Val LeuIle Leu Asn Tyr Lys Lys Asp Gly Thr Pro Phe Arg Asn Ala Val Leu
180 185 190 180 185 190
Val Ala Pro Ile Tyr Asp Asp Asp Asp Glu Leu Leu Tyr Phe Leu GlyVal Ala Pro Ile Tyr Asp Asp Asp Asp Glu Leu Leu Tyr Phe Leu Gly
195 200 205 195 200 205
Ser Gln Val Glu Val Asp Asp Asp Gln Pro Asn Met Gly Met Ala ArgSer Gln Val Glu Val Asp Asp Asp Gln Pro Asn Met Gly Met Ala Arg
210 215 220 210 215 220
Arg Glu Arg Ala Ala Glu Met Leu Arg Thr Leu Ser Pro Arg Gln LeuArg Glu Arg Ala Ala Glu Met Leu Arg Thr Leu Ser Pro Arg Gln Leu
225 230 235 240225 230 235 240
Glu Val Thr Thr Leu Val Ala Ser Gly Leu Arg Asn Lys Glu Val AlaGlu Val Thr Thr Leu Val Ala Ser Gly Leu Arg Asn Lys Glu Val Ala
245 250 255 245 250 255
Ala Arg Leu Gly Leu Ser Glu Lys Thr Val Lys Met His Arg Gly LeuAla Arg Leu Gly Leu Ser Glu Lys Thr Val Lys Met His Arg Gly Leu
260 265 270 260 265 270
Val Met Glu Lys Leu Asn Leu Lys Thr Ser Ala Asp Leu Val Arg IleVal Met Glu Lys Leu Asn Leu Lys Thr Ser Ala Asp Leu Val Arg Ile
275 280 285 275 280 285
Ala Val Glu Ala Gly IleAla Val Glu Ala Gly Ile
290 290
<210> 3<210> 3
<211> 882<211> 882
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ccaaagaaaa agagaaaagt tgctccacct actgatgttt ctttgggaga tgagttgcat 60ccaaagaaaa agagaaaagt tgctccacct actgatgttt ctttgggaga tgagttgcat 60
ttggatggtg aagatgttgc tatggctcac gctgatgctt tggatgattt tgatttggat 120ttggatggtg aagatgttgc tatggctcac gctgatgctt tggatgattt tgatttggat 120
atgttgggag atggagattc tccaggtcct ggtttcactc cacatgattc tgctccttac 180atgttgggag atggagattc tccaggtcct ggtttcactc cacatgattc tgctccttac 180
ggtgctttgg atatggctga ttttgagttc gaacaaatgt ttactgatgc tttgggtatt 240ggtgctttgg atatggctga ttttgagttc gaacaaatgt ttactgatgc tttgggtatt 240
gatgagtatg gtggtggtgc tgatgatact agagttgaag ttcaaccacc tgctcaatgg 300gatgagtatg gtggtggtgc tgatgatact agagttgaag ttcaaccacc tgctcaatgg 300
gttttggatt tgattgaggc ttctcctatt gcttctgttg tttctgatcc aagattggct 360gttttggatt tgattgaggc ttctcctatt gcttctgttg tttctgatcc aagattggct 360
gataaccctt tgatcgctat taatcaagct tttactgatt tgactggtta ctctgaagag 420gataaccctt tgatcgctat taatcaagct tttactgatt tgactggtta ctctgaagag 420
gaatgtgttg gtagaaactg tagattcttg gctggttctg gtactgaacc atggttgact 480gaatgtgttg gtagaaactg tagattcttg gctggttctg gtactgaacc atggttgact 480
gataaaatta gacaaggtgt tagagagcat aagcctgttt tggttgaaat cttgaactac 540gataaaatta gacaaggtgt tagagagcat aagcctgttt tggttgaaat cttgaactac 540
aaaaaggatg gtactccatt cagaaatgct gttttggttg ctcctatcta cgatgatgat 600aaaaaggatg gtactccatt cagaaatgct gttttggttg ctcctatcta cgatgatgat 600
gatgagttgt tgtatttctt gggttctcaa gttgaagttg atgatgatca accaaatatg 660gatgagttgt tgtatttctt gggttctcaa gttgaagttg atgatgatca accaaatatg 660
ggtatggcta gaagagagag agctgctgaa atgttgagaa ctttgtctcc tagacaattg 720ggtatggcta gaagagagag agctgctgaa atgttgagaa ctttgtctcc tagacaattg 720
gaagttacta ctttggttgc ttctggtttg agaaacaagg aggttgctgc tagattgggt 780gaagttacta ctttggttgc ttctggtttg agaaacaagg aggttgctgc tagattgggt 780
ttgtctgaaa agactgttaa gatgcacaga ggtttggtta tggagaaatt gaatttgaag 840ttgtctgaaa agactgttaa gatgcacaga ggtttggtta tggagaaatt gaatttgaag 840
acttctgctg atttggttag aattgctgtt gaagctggta tc 882acttctgctg atttggttag aattgctgtt gaagctggta tc 882
<210> 4<210> 4
<211> 1754<211> 1754
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
tttttgtaga aatgtcttgg tgtcctcgtc caatcaggta gccatctctg aaatatctgg 60ttttttgtaga aatgtcttgg tgtcctcgtc caatcaggta gccatctctg aaatatctgg 60
ctccgttgca actccgaacg acctgctggc aacgtaaaat tctccggggt aaaacttaaa 120ctccgttgca actccgaacg acctgctggc aacgtaaaat tctccggggt aaaacttaaa 120
tgtggagtaa tggaaccaga aacgtctctt cccttctctc tccttccacc gcccgttacc 180tgtggagtaa tggaaccaga aacgtctctt cccttctctc tccttccacc gcccgttacc 180
gtccctagga aattttactc tgctggagag cttcttctac ggcccccttg cagcaatgct 240gtccctagga aattttactc tgctggagag cttcttctac ggcccccttg cagcaatgct 240
cttcccagca ttacgttgcg ggtaaaacgg aggtcgtgta cccgacctag cagcccaggg 300cttcccagca ttacgttgcg ggtaaaacgg aggtcgtgta cccgacctag cagcccaggg 300
atggaaaagt cccggccgtc gctggcaata atagcgggcg gacgcatgtc atgagattat 360atggaaaagt cccggccgtc gctggcaata atagcgggcg gacgcatgtc atgagattat 360
tggaaaccac cagaatcgaa tataaaaggc gaacaccttt cccaattttg gtttctcctg 420tggaaaccac cagaatcgaa tataaaaggc gaacaccttt cccaattttg gtttctcctg 420
acccaaagac tttaaattta atttatttgt ccctatttca atcaattgaa caactatagg 480acccaaagac tttaaattta atttatttgt ccctatttca atcaattgaa caactatagg 480
aattcgcctt agacagactg ttcctcagtt caagttgggc acttacgaga agaccggtat 540aattcgcctt agacagactg ttcctcagtt caagttgggc acttacgaga agaccggtat 540
gccaaagaaa aagagaaaag ttgctccacc tactgatgtt tctttgggag atgagttgca 600gccaaagaaa aagagaaaag ttgctccacc tactgatgtt tctttgggag atgagttgca 600
tttggatggt gaagatgttg ctatggctca cgctgatgct ttggatgatt ttgatttgga 660tttggatggt gaagatgttg ctatggctca cgctgatgct ttggatgatt ttgatttgga 660
tatgttggga gatggagatt ctccaggtcc tggtttcact ccacatgatt ctgctcctta 720tatgttggga gatggagatt ctccaggtcc tggtttcact ccacatgatt ctgctcctta 720
cggtgctttg gatatggctg attttgagtt cgaacaaatg tttactgatg ctttgggtat 780cggtgctttg gatatggctg attttgagtt cgaacaaatg tttactgatg ctttgggtat 780
tgatgagtat ggtggtggtg ctgatgatac tagagttgaa gttcaaccac ctgctcaatg 840tgatgagtat ggtggtggtg ctgatgatac tagagttgaa gttcaaccac ctgctcaatg 840
ggttttggat ttgattgagg cttctcctat tgcttctgtt gtttctgatc caagattggc 900ggttttggat ttgattgagg cttctcctat tgcttctgtt gtttctgatc caagattggc 900
tgataaccct ttgatcgcta ttaatcaagc ttttactgat ttgactggtt actctgaaga 960tgataaccct ttgatcgcta ttaatcaagc ttttactgat ttgactggtt actctgaaga 960
ggaatgtgtt ggtagaaact gtagattctt ggctggttct ggtactgaac catggttgac 1020ggaatgtgtt ggtagaaact gtagattctt ggctggttct ggtactgaac catggttgac 1020
tgataaaatt agacaaggtg ttagagagca taagcctgtt ttggttgaaa tcttgaacta 1080tgataaaatt agacaaggtg ttagagagca taagcctgtt ttggttgaaa tcttgaacta 1080
caaaaaggat ggtactccat tcagaaatgc tgttttggtt gctcctatct acgatgatga 1140caaaaaggat ggtactccat tcagaaatgc tgttttggtt gctcctatct acgatgatga 1140
tgatgagttg ttgtatttct tgggttctca agttgaagtt gatgatgatc aaccaaatat 1200tgatgagttg ttgtatttct tgggttctca agttgaagtt gatgatgatc aaccaaatat 1200
gggtatggct agaagagaga gagctgctga aatgttgaga actttgtctc ctagacaatt 1260gggtatggct agaagagaga gagctgctga aatgttgaga actttgtctc ctagacaatt 1260
ggaagttact actttggttg cttctggttt gagaaacaag gaggttgctg ctagattggg 1320ggaagttact actttggttg cttctggttt gagaaacaag gaggttgctg ctagattggg 1320
tttgtctgaa aagactgtta agatgcacag aggtttggtt atggagaaat tgaatttgaa 1380tttgtctgaa aagactgtta agatgcacag aggtttggtt atggagaaat tgaatttgaa 1380
gacttctgct gatttggtta gaattgctgt tgaagctggt atctaagagc ttgggcccgt 1440gacttctgct gatttggtta gaattgctgt tgaagctggt atctaagagc ttgggcccgt 1440
tttagcctta gacatgactg ttcctcagtt caagttgggc acttacgaga agcttgctag 1500tttagcctta gacatgactg ttcctcagtt caagttgggc acttacgaga agcttgctag 1500
attctaatca agaggatgtc agaatgccat ttgcctgaga gatgcaggct tcatttttga 1560attctaatca agaggatgtc agaatgccat ttgcctgaga gatgcaggct tcatttttga 1560
tactttttta tttgtaacct atatagtata ggattttttt tgtcattttg tttcttctcg 1620tactttttta tttgtaacct atatagtata ggatttttttt tgtcattttg tttcttctcg 1620
tacgagcttg ctcctgatca gcctatctcg cagctgatga atatcttgtg gtaggggttt 1680tacgagcttg ctcctgatca gcctatctcg cagctgatga atatcttgtg gtaggggttt 1680
gggaaaatca ttcgagtttg atgtttttct tggtatttcc cactcctctt cagagtacag 1740gggaaaatca ttcgagtttg atgtttttct tggtatttcc cactcctctt cagagtacag 1740
aagattaagt gaga 1754
<210> 5<210> 5
<211> 1367<211> 1367
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
cgggagatct tcgctagcct cgagtaggta gcctttagtc catgcgttat aggtagcctt 60cgggagatct tcgctagcct cgagtaggta gcctttagtc catgcgttat aggtagcctt 60
tagtccatgc gttataggta gcctttagtc catgcgttat aggtagcctt tagtccatgc 120tagtccatgc gttataggta gcctttagtc catgcgttat aggtagcctt tagtccatgc 120
gttataggta gcctttagtc catgaagctt agacactaga gggtatataa tggaagctcg 180gttataggta gcctttagtc catgaagctt agacactaga gggtatataa tggaagctcg 180
acttccagct tggcaatccg gtactgttgg taaattcagt gtggtggact taaggagatg 240acttccagct tggcaatccg gtactgttgg taaattcagt gtggtggact taaggagatg 240
agaaaaggtg aagagttgtt tactggtgtt gttcctattt tggttgaatt ggatggagat 300agaaaaggtg aagagttgtt tactggtgtt gttcctattt tggttgaatt ggatggagat 300
gttaatggtc ataagttctc tgtttctggt gaaggagagg gagatgctac ttacggtaaa 360gttaatggtc ataagttctc tgtttctggt gaaggagagg gagatgctac ttacggtaaa 360
ttgactttga agtttatttg tactactggt aaattgccag ttccttggcc aactttggtt 420ttgactttga agtttatttg tactactggt aaattgccag ttccttggcc aactttggtt 420
actacttttg gttacggtgt tcaatgtttc gctagatatc ctgatcatat gaagcaacac 480actacttttg gttacggtgt tcaatgtttc gctagatatc ctgatcatat gaagcaacac 480
gatttcttta agtctgctat gccagaaggt tacgttcaag agagaactat tttctttaag 540gatttcttta agtctgctat gccagaaggt tacgttcaag agagaactat tttctttaag 540
gatgatggta actacaagac tagagctgag gttaagtttg agggagatac tttggttaac 600gatgatggta actacaagac tagagctgag gttaagtttg aggagatac tttggttaac 600
agaatcgaat tgaagggtat tgatttcaag gaggatggta acatcttggg tcataagttg 660agaatcgaat tgaagggtat tgatttcaag gaggatggta acatcttggg tcataagttg 660
gaatacaact acaactctca caacgtttac attatggctg ataagcaaaa gaacggtatt 720gaatacaact acaactctca caacgtttac attatggctg ataagcaaaa gaacggtatt 720
aaggttaact tcaagatcag acataacatc gaggatggtt ctgttcaatt ggctgatcac 780aaggttaact tcaagatcag acataacatc gaggatggtt ctgttcaatt ggctgatcac 780
taccaacaaa acactcctat tggagatggt cctgttttgt tgccagataa tcactatttg 840taccaacaaa acactcctat tggagatggt cctgttttgt tgccagataa tcactatttg 840
tctactcaat ctgctttgtc taaagatcca aacgaaaaga gagatcatat ggttttgttg 900tctactcaat ctgctttgtc taaagatcca aacgaaaaga gagatcatat ggttttgttg 900
gagtttgtta ctgctgctgg tattactcac ggtatggatg aattgtataa ataaggtacc 960gagtttgtta ctgctgctgg tattactcac ggtatggatg aattgtataa ataaggtacc 960
gaacaaaaac tcatctcaga agaggatctg aatagcggcg gccgccatca tcatcatcat 1020gaacaaaaac tcatctcaga agaggatctg aatagcggcg gccgccatca tcatcatcat 1020
cattgagttt tagccttaga catgactgtt caagttgggc acttacgaga agtaaataag 1080cattgagttt tagccttaga catgactgtt caagttgggc acttacgaga agtaaataag 1080
ttataaaaaa aataagtgta tacaaatttt aaagtgactc ttaggtttta aaacgaaaat 1140ttataaaaaa aataagtgta tacaaatttt aaagtgactc ttaggtttta aaacgaaaat 1140
tcttgttctt gagtaactct ttcctgtagg tcaggttgct ttctcaggta tagcatgagg 1200tcttgttctt gagtaactct ttcctgtagg tcaggttgct ttctcaggta tagcatgagg 1200
tcgctcttat tgaccacacc tctaccggca tgccgagcaa atgcctgcaa atcgctcccc 1260tcgctcttat tgaccacacc tctaccggca tgccgagcaa atgcctgcaa atcgctcccc 1260
atttcaccca attgtagata tgctaactcc agcaatgagt tgatgaatct cggtgtgtat 1320atttcaccca attgtagata tgctaactcc agcaatgagt tgatgaatct cggtgtgtat 1320
tttatgtcct cagaggacaa cacctgttgt aatcgttctt ccacacg 1367tttatgtcct cagaggacaa cacctgttgt aatcgttctt ccacacg 1367
<210> 6<210> 6
<211> 29<211> 29
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
gatttttgta gaaatgtctt ggtgtcctc 29gattttttgta gaaatgtctt ggtgtcctc 29
<210> 7<210> 7
<211> 24<211> 24
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
cgtgtggaag aacgattaca acag 24cgtgtggaag aacgattaca acag 24
<210> 8<210> 8
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ggctagcgaa gatctcccg 19ggctagcgaa gatctcccg 19
<210> 9<210> 9
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
cgggagatct tcgctagcc 19cgggagatct tcgctagcc 19
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110571089.7A CN113186190B (en) | 2021-05-25 | 2021-05-25 | A blue light-mediated regulation plasmid and its construction method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110571089.7A CN113186190B (en) | 2021-05-25 | 2021-05-25 | A blue light-mediated regulation plasmid and its construction method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113186190A CN113186190A (en) | 2021-07-30 |
CN113186190B true CN113186190B (en) | 2022-05-03 |
Family
ID=76985270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110571089.7A Active CN113186190B (en) | 2021-05-25 | 2021-05-25 | A blue light-mediated regulation plasmid and its construction method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113186190B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114891824B (en) * | 2022-04-28 | 2023-09-29 | 华东理工大学 | A light-induced tRNA-Ile element in Pichia pastoris and its construction method and application |
CN115960945B (en) * | 2022-12-05 | 2024-11-08 | 天津科技大学 | Construction of blue light-induced saccharomyces cerevisiae fixed-point DSB system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013074911A1 (en) * | 2011-11-18 | 2013-05-23 | Board Of Regents, The University Of Texas System | Blue-light inducible system for gene expression |
US11325952B2 (en) * | 2016-02-24 | 2022-05-10 | Korea University Research And Business Foundation | Light-gated signaling modulation |
CN107937437B (en) * | 2017-11-22 | 2020-10-27 | 中国科学院武汉物理与数学研究所 | Light-operated expression vector of insect cell and application |
-
2021
- 2021-05-25 CN CN202110571089.7A patent/CN113186190B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113186190A (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113186190B (en) | A blue light-mediated regulation plasmid and its construction method and application | |
CN104630258B (en) | A kind of genes of brewing yeast expression system and its structure and application | |
WO2018045855A1 (en) | Method for using single-stranded ribonucleic acid to convert penicillium amagasakiense spores and manufacture protein | |
CN113265344B (en) | Genetic engineering bacterium for selectively producing retinol and construction method and application thereof | |
CN103911371B (en) | The integrated expression vector of a kind of saccharomyces cerevisiae | |
CN113462688B (en) | A blue light regulated promoter, fusion gene of blue light regulated promoter, blue light mediated regulation plasmid and construction method and application | |
CN112063646B (en) | Method for integrating multiple copies of target gene, recombinant bacterium and preparation method of recombinant human serum albumin | |
CN104593407B (en) | Pichia stipitis gene expression system and its structure and application | |
CN118580980A (en) | A recombinant engineering bacterium for preparing recombinant human albumin and its application | |
CN106701787A (en) | Pichia pastoris for expressing foreign proteins, construction method of pichia pastoris and induced expression method of pichia pastoris | |
CN109266566A (en) | A method of it adjusting torulopsis glabrata and permeates pressure stress | |
CN103173483B (en) | Using Candida glycerolgenesis feature 5.8S sequences as the pURGAP vector constructions of integration site and its application | |
CN103031328B (en) | A kind of fusion tag is utilized to improve the expression amount of exogenous protein | |
CN117229934A (en) | Genetically engineered bacterium for synthesizing carotenoid, construction method and application thereof | |
CN110951760B (en) | Protein time-delay expression switch and application thereof in production of glucaric acid | |
CN110592081B (en) | Xylose-inducible promoter and its plasmid vector and application | |
CN106636174A (en) | Pichia pastoris for expressing exogenous protein as well as construction method and induced expression method of pichia pastoris | |
CN114752619B (en) | Saccharomyces cerevisiae rDNA site-based multi-copy integrated plasmid kit | |
CN117487835A (en) | A method for constructing polyploid E. coli using regulated division genes | |
CN114574378B (en) | A genetically engineered bacterium that produces retinoic acid and its construction method and application | |
CN114231429B (en) | Recombinant bacterium for expressing candida glycerinogenes RNA helicase and application thereof | |
CN103224901B (en) | ptsG gene knocked out recombination bacterial efficiently expressing human-like collagen protein, construction method thereof, and protein expression | |
WO2021114029A1 (en) | Method for increasing yield of metabolic products of saccharomyces cerevisiae | |
CN108441501A (en) | Alternanthera philoxeroides effector Na2-g9900 and protein and application thereof | |
CN106811477B (en) | A method for improving the enzyme activity of Trichoderma reesei cellulase by expressing multiple copies of glucosidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |