CN107528557A - A kind of operational amplifier of data-driven - Google Patents
A kind of operational amplifier of data-driven Download PDFInfo
- Publication number
- CN107528557A CN107528557A CN201710801461.2A CN201710801461A CN107528557A CN 107528557 A CN107528557 A CN 107528557A CN 201710801461 A CN201710801461 A CN 201710801461A CN 107528557 A CN107528557 A CN 107528557A
- Authority
- CN
- China
- Prior art keywords
- transistor
- nmos transistor
- drain
- nmos
- pmos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45031—Indexing scheme relating to differential amplifiers the differential amplifier amplifying transistors are compositions of multiple transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45051—Two or more differential amplifiers cascade coupled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45074—A comparator circuit compares the common mode signal to a reference before controlling the differential amplifier or related stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45424—Indexing scheme relating to differential amplifiers the CMCL comprising a comparator circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
本发明实施例公开了一种数据驱动的运算放大器,该运算放大器包括:相互连接的N型和P型互补输入的循环折叠跨导运算放大器电路以及数据驱动的运算放大器偏置电路;该数据驱动的运算放大器偏置电路包括输入差分信号比较器;输入差分信号比较器用于检测输入差分信号,并当输入差分信号大于或等于输入差分信号比较器的打开阈值时增大电路的偏置电流,当输入差分信号小于输入差分信号比较器的打开阈值时,保持电路的偏置电流不会变。并且可根据应用需求动态调整放大器电流大小,以及比较器打开阈值和比较器速度,控制大电流的工作窗口。通过该实施例方案,提高了高性能开关电容电路的速度,并降低了功耗、提高了良率。
The embodiment of the present invention discloses a data-driven operational amplifier, which includes: a loop-folded transconductance operational amplifier circuit connected to each other with N-type and P-type complementary inputs and a data-driven operational amplifier bias circuit; the data-driven The operational amplifier bias circuit includes an input differential signal comparator; the input differential signal comparator is used to detect the input differential signal, and increases the bias current of the circuit when the input differential signal is greater than or equal to the opening threshold of the input differential signal comparator, when When the input differential signal is less than the turn-on threshold of the input differential signal comparator, the bias current of the holding circuit does not change. And it can dynamically adjust the amplifier current, comparator opening threshold and comparator speed according to application requirements, and control the working window of high current. Through the solution of this embodiment, the speed of the high-performance switched capacitor circuit is improved, the power consumption is reduced, and the yield rate is improved.
Description
技术领域technical field
本发明实施例涉及微电子学与固体电子学领域的超大规模集成电路设计技术,尤指一种数据驱动的运算放大器。The embodiment of the present invention relates to the VLSI design technology in the field of microelectronics and solid state electronics, especially to a data-driven operational amplifier.
背景技术Background technique
运算放大器是很多模拟电路最重要的模块之一,广泛应用于模数转换电路,滤波器等模拟信号处理电路中,通常决定了高性能开关电容电路能够达到的精度、速度和功耗等指标。在开关电容电路中,负载通常为纯电容性质,此时单级运算跨导放大器OTA优于多级的运算放大器。因此,传统的折叠式运算跨导放大器获得广泛的应用。但是,传统的折叠式OTA具有速度慢、功耗大等缺点,特别是在负载电容较大的时候运算放大器的速度成为制约开关电容电路速度的主要瓶颈。Operational amplifier is one of the most important modules of many analog circuits. It is widely used in analog signal processing circuits such as analog-to-digital conversion circuits and filters. It usually determines the accuracy, speed and power consumption that high-performance switched capacitor circuits can achieve. In a switched capacitor circuit, the load is usually purely capacitive. At this time, a single-stage operational transconductance amplifier OTA is superior to a multi-stage operational amplifier. Therefore, the traditional folded operational transconductance amplifier has been widely used. However, the traditional folding OTA has disadvantages such as slow speed and high power consumption, especially when the load capacitance is large, the speed of the operational amplifier becomes the main bottleneck restricting the speed of the switched capacitor circuit.
发明内容Contents of the invention
为了解决上述技术问题,本发明实施例提供了一种数据驱动的运算放大器,能够提高高性能开关电容电路的速度,并降低功耗、提高良率。In order to solve the above technical problems, an embodiment of the present invention provides a data-driven operational amplifier, which can increase the speed of a high-performance switched capacitor circuit, reduce power consumption, and improve yield.
为了达到本发明实施例目的,本发明实施例提供了一种数据驱动的运算放大器,该运算放大器包括:相互连接的N型和P型互补输入的循环折叠跨导运算放大器电路以及数据驱动的运算放大器偏置电路;所述数据驱动的运算放大器偏置电路包括输入差分信号比较器;In order to achieve the purpose of the embodiment of the present invention, the embodiment of the present invention provides a data-driven operational amplifier, which includes: a loop-folded transconductance operational amplifier circuit connected to each other with N-type and P-type complementary inputs and a data-driven operational amplifier an amplifier bias circuit; the data-driven operational amplifier bias circuit includes an input differential signal comparator;
所述输入差分信号比较器,用于检测输入差分信号,并当所述输入差分信号大于或等于所述输入差分信号比较器的打开阈值时增大电路的偏置电流,当所述输入差分信号小于所述输入差分信号比较器的打开阈值时,保持电路的偏置电流不会变。The input differential signal comparator is used to detect the input differential signal, and increase the bias current of the circuit when the input differential signal is greater than or equal to the opening threshold of the input differential signal comparator, when the input differential signal When it is less than the opening threshold of the input differential signal comparator, the bias current of the holding circuit will not change.
可选地,所述N型和P型互补输入的循环折叠跨导运算放大器电路包括:Optionally, the loop-folded transconductance operational amplifier circuit of the N-type and P-type complementary inputs includes:
N型互补输入差分对单元以及与所述N型互补输入差分对单元连接的N型偏置电压晶体管单元、N型偏置尾电流晶体管单元和N型共源共栅晶体管对单元;以及,An N-type complementary input differential pair unit and an N-type bias voltage transistor unit, an N-type bias tail current transistor unit, and an N-type cascode transistor pair unit connected to the N-type complementary input differential pair unit; and,
P型互补输入差分对单元以及与所述P型互补输入差分对单元连接的P型偏置电压晶体管单元、P型偏置尾电流晶体管单元和P型共源共栅晶体管对单元。A P-type complementary input differential pair unit and a P-type bias voltage transistor unit, a P-type bias tail current transistor unit, and a P-type cascode transistor pair unit connected to the P-type complementary input differential pair unit.
可选地,Optionally,
所述N型互补输入差分对单元包括:第一NMOS管、第二NMOS管、第三NMOS管和第四NMOS管;其中,所述第一NMOS管和所述第二NMOS管的栅极均接所述输入差分信号中的第一差分信号VINN;所述第三NMOS管和所述第四NMOS管的栅极均接所述输入差分信号中的第二差分信号VINP;The N-type complementary input differential pair unit includes: a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, and a fourth NMOS transistor; wherein, the gates of the first NMOS transistor and the second NMOS transistor are both connected to the first differential signal VINN in the input differential signal; the gates of the third NMOS transistor and the fourth NMOS transistor are both connected to the second differential signal VINP in the input differential signal;
所述N型偏置电压晶体管单元包括:第五NMOS管;所述第五NMOS管的栅极与第一偏置电压相连,源极接地,漏极与所述第一NMOS管、第二NMOS管、第三NMOS管和第四NMOS管的源极相连。The N-type bias voltage transistor unit includes: a fifth NMOS transistor; the gate of the fifth NMOS transistor is connected to the first bias voltage, the source is grounded, and the drain is connected to the first NMOS transistor and the second NMOS transistor. The sources of the transistor, the third NMOS transistor and the fourth NMOS transistor are connected.
可选地,Optionally,
所述P型互补输入差分对单元包括:第九PMOS管、第十PMOS管、第十一PMOS管和第十二PMOS管;其中,所述第九PMOS管和所述第十PMOS管的栅极均接所述第一差分信号VINN;所述第十一PMOS管和所述第十二PMOS管的栅极均接所述第二差分信号VINP;The P-type complementary input differential pair unit includes: a ninth PMOS transistor, a tenth PMOS transistor, an eleventh PMOS transistor, and a twelfth PMOS transistor; wherein, the gates of the ninth PMOS transistor and the tenth PMOS transistor Both poles are connected to the first differential signal VINN; the gates of the eleventh PMOS transistor and the gates of the twelfth PMOS transistor are both connected to the second differential signal VINP;
所述P型偏置尾电流晶体管单元包括:第一PMOS管、第二PMOS管、第三PMOS管和第四PMOS管;其中,所述第一PMOS管的栅极与所述第二PMOS管的栅极相连后再与所述第四NMOS管的漏极相连,所述第三PMOS管的栅极与所述第四PMOS管的栅极相连后再与所述第二NMOS管的漏极相连,所述第一PMOS管、所述第二PMOS管、所述第三PMOS管和所述第四PMOS管的源极与电源电压相连;The P-type bias tail current transistor unit includes: a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, and a fourth PMOS transistor; wherein, the gate of the first PMOS transistor is connected to the second PMOS transistor connected to the gate of the fourth NMOS transistor and then connected to the drain of the fourth NMOS transistor; the gate of the third PMOS transistor is connected to the gate of the fourth PMOS transistor and then connected to the drain of the second NMOS transistor connected, the sources of the first PMOS transistor, the second PMOS transistor, the third PMOS transistor and the fourth PMOS transistor are connected to a power supply voltage;
所述P型共源共栅晶体管对单元包括:第五PMOS管、第六PMOS管、第七PMOS管和第八PMOS管;其中,所述第五PMOS管的栅极与所述第六PMOS管的栅极相连后与第二偏置电压相连;所述第七PMOS管的栅极与所述第八PMOS管的栅极相连后也与所述第二偏置电压相连;所述第五PMOS管的源极与所述第二PMOS管的漏极相连,所述第六PMOS管的源极与所述第三PMOS管的漏极相连,所述第五PMOS管的漏极与所述第四NMOS管的漏极相连,所述第六PMOS管的漏极与所述第二NMOS管的漏极相连,所述第七PMOS管的源极与所述第一NMOS管的漏极相连后再与所述第一PMOS管的漏极相连,所述第八PMOS管的源极与所述第三NMOS管的漏极相连后再与所述第四PMOS管的漏极相连;The P-type cascode transistor pair unit includes: a fifth PMOS transistor, a sixth PMOS transistor, a seventh PMOS transistor, and an eighth PMOS transistor; wherein, the gate of the fifth PMOS transistor is connected to the sixth PMOS transistor The gate of the transistor is connected to the second bias voltage after being connected; the gate of the seventh PMOS transistor is also connected to the second bias voltage after being connected to the gate of the eighth PMOS transistor; The source of the PMOS transistor is connected to the drain of the second PMOS transistor, the source of the sixth PMOS transistor is connected to the drain of the third PMOS transistor, and the drain of the fifth PMOS transistor is connected to the drain of the fifth PMOS transistor. The drain of the fourth NMOS transistor is connected, the drain of the sixth PMOS transistor is connected to the drain of the second NMOS transistor, and the source of the seventh PMOS transistor is connected to the drain of the first NMOS transistor and then connected to the drain of the first PMOS transistor, the source of the eighth PMOS transistor is connected to the drain of the third NMOS transistor and then connected to the drain of the fourth PMOS transistor;
所述P型偏置电压晶体管单元包括:第十三PMOS管;所述第十三PMOS管的栅极与共模控制信号相连,源极与所述电源电压相连,漏极与所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管和所述第十二PMOS管的源极相连。The P-type bias voltage transistor unit includes: a thirteenth PMOS transistor; the gate of the thirteenth PMOS transistor is connected to the common mode control signal, the source is connected to the power supply voltage, and the drain is connected to the ninth PMOS transistor. tube, the tenth PMOS tube, the eleventh PMOS tube and the sources of the twelfth PMOS tube are connected.
可选地,Optionally,
所述N型偏置尾电流晶体管单元包括:第六NMOS管、第七NMOS管、第八NMOS管和第九NMOS管;其中所述第六NMOS管的栅极与所述第七NMOS管的栅极相连后再与所述第十二PMOS管的漏极相连,所述第八NMOS管的栅极与所述第九NMOS管的栅极相连后再与所述第十PMOS管的漏极相连,所述第六NMOS管、所述第七NMOS管、所述第八NMOS管和所述第九NMOS管的源极接地;The N-type bias tail current transistor unit includes: a sixth NMOS transistor, a seventh NMOS transistor, an eighth NMOS transistor, and a ninth NMOS transistor; wherein the gate of the sixth NMOS transistor is connected to the gate of the seventh NMOS transistor The gate is connected to the drain of the twelfth PMOS transistor, and the gate of the eighth NMOS transistor is connected to the gate of the ninth NMOS transistor and then connected to the drain of the tenth PMOS transistor. connected, the sources of the sixth NMOS transistor, the seventh NMOS transistor, the eighth NMOS transistor, and the ninth NMOS transistor are grounded;
所述N型共源共栅晶体管对单元包括:第十NMOS管、第十一NMOS管、第十二NMOS管和第十三NMOS管;其中,所述第十NMOS管的栅极与所述第十一NMOS管的栅极相连后与第三偏置电压相连,所述第十二NMOS管的栅极与所述第十三NMOS管的栅极相连后也与所述第三偏置电压相连,所述第十NMOS管的源极与所述第七NMOS管的漏极相连,所述第十一NMOS管的源极与所述第八NMOS管的漏极相连,所述第十NMOS管的漏极与所述第十二PMOS管的漏极相连,所述第十一NMOS管的漏极与所述第十PMOS管的漏极相连,所述第十二NMOS管的源极与所述第九PMOS管的漏极相连后再与所述第六NMOS管的漏极相连,所述第十三NMOS管的源极与所述第十一PMOS管的漏极相连后再与所述第九NMOS管的漏极相连。The N-type cascode transistor pair unit includes: a tenth NMOS transistor, an eleventh NMOS transistor, a twelfth NMOS transistor, and a thirteenth NMOS transistor; wherein, the gate of the tenth NMOS transistor is connected to the The gate of the eleventh NMOS transistor is connected to the third bias voltage, and the gate of the twelfth NMOS transistor is connected to the gate of the thirteenth NMOS transistor and then connected to the third bias voltage. The source of the tenth NMOS transistor is connected to the drain of the seventh NMOS transistor, the source of the eleventh NMOS transistor is connected to the drain of the eighth NMOS transistor, and the tenth NMOS transistor The drain of the transistor is connected to the drain of the twelfth PMOS transistor, the drain of the eleventh NMOS transistor is connected to the drain of the tenth PMOS transistor, and the source of the twelfth NMOS transistor is connected to the drain of the tenth PMOS transistor. The drain of the ninth PMOS transistor is connected to the drain of the sixth NMOS transistor, and the source of the thirteenth NMOS transistor is connected to the drain of the eleventh PMOS transistor and then connected to the drain of the eleventh PMOS transistor. connected to the drain of the ninth NMOS transistor.
可选地,Optionally,
所述第七PMOS管的漏极和所述第十二NMOS管的漏极相连输出第一输出差分信号VOUTP,所述第八PMOS管的漏极和所述第十三NMOS管的漏极相连输出第二输出差分信号VOUTN,所述第一输出差分信号VOUTP和所述第二输出差分信号VOUTN共同构成全差分输出信号。The drain of the seventh PMOS transistor is connected to the drain of the twelfth NMOS transistor to output a first output differential signal VOUTP, and the drain of the eighth PMOS transistor is connected to the drain of the thirteenth NMOS transistor A second output differential signal VOUTN is output, and the first output differential signal VOUTP and the second output differential signal VOUTN together constitute a fully differential output signal.
可选地,所述数据驱动的运算放大器偏置电路包括:偏置电压产生电路、输入差分信号比较器和数据驱动电流支路。Optionally, the data-driven operational amplifier bias circuit includes: a bias voltage generation circuit, an input differential signal comparator, and a data-driven current branch.
可选地,Optionally,
所述偏置电压产生电路包括:第一偏置电流源、第十四NMOS管、第十五NMOS管、第十六NMOS管、第十七NMOS管、第十八NMOS管、第十九NMOS管、第二十NMOS管、第二十一NMOS管、第二十二NMOS管、第二十三NMOS管、第二十四NMOS管、第二十五NMOS管、第二十六NMOS管、第二十七NMOS管、第二十八NMOS管、第二十九NMOS管、第十四PMOS管、第十五PMOS管、第十六PMOS管、第十七PMOS管、第十八PMOS管、第十九PMOS管、第二十PMOS管、第二十一PMOS管、第二十二PMOS管、第二十三PMOS管、第二十四PMOS管、第二十五PMOS管、第二十六PMOS管和第二十七PMOS管;The bias voltage generation circuit includes: a first bias current source, a fourteenth NMOS transistor, a fifteenth NMOS transistor, a sixteenth NMOS transistor, a seventeenth NMOS transistor, an eighteenth NMOS transistor, a nineteenth NMOS transistor tube, the twenty-first NMOS tube, the twenty-first NMOS tube, the twenty-second NMOS tube, the twenty-third NMOS tube, the twenty-fourth NMOS tube, the twenty-fifth NMOS tube, the twenty-sixth NMOS tube, Twenty-seventh NMOS tube, twenty-eighth NMOS tube, twenty-ninth NMOS tube, fourteenth PMOS tube, fifteenth PMOS tube, sixteenth PMOS tube, seventeenth PMOS tube, eighteenth PMOS tube , the nineteenth PMOS tube, the twentieth PMOS tube, the twenty-first PMOS tube, the twenty-second PMOS tube, the twenty-third PMOS tube, the twenty-fourth PMOS tube, the twenty-fifth PMOS tube, the second Sixteen PMOS tubes and twenty-seventh PMOS tubes;
其中,所述第一偏置电流源负极与所述电源电压相连,所述第一偏置电流源正极与所述第十四NMOS管的漏极相连后再与所述第十四NMOS管、第十五NMOS管、第十六NMOS管、第十七NMOS管、第十八NMOS管、第十九NMOS管、第二十NMOS管和第二十一NMOS管的栅极相连,所述第十四NMOS管的源极与所述第十五NMOS管的漏极相连,所述第十六NMOS管的源极与所述第十七NMOS管的漏极相连,所述第十八NMOS管的源极与所述第十九NMOS管的漏极相连,所述第二十NMOS管的源极与所述第二十一NMOS管的漏极相连,所述第二十二NMOS管的漏极和栅极相连后再与所述第二十三NMOS管和所述第二十四NMOS管的栅极相连,所述第二十二NMOS管的源极与所述第二十三NMOS管和所述第二十四NMOS管的漏极相连后再与所述第二十五NMOS管的源极相连,所述第二十三NMOS管的源极与所述第二十八NMOS管的漏极相连,所述第二十四NMOS管的源极与所述第二十九NMOS管的漏极相连,所述第二十八NMOS管的栅极接第一控制字,所述第二十九NMOS管的栅极接第二控制字,所述第二十五NMOS管的栅极与漏极相连后再与第二十六NMOS管的栅极相连作为所述第三偏置电压,所述第二十六NMOS管的漏极与所述第二十七NMOS管的栅极相连作为所述第一偏置电压,所述第二十六NMOS管的源极与所述第二十七NMOS管的漏极相连,所述第十五NMOS管、第十七NMOS管、第十九NMOS管、第二十一NMOS管、第二十七NMOS管、第二十八NMOS管和第二十九NMOS管的源极接地,所述第十四PMOS管的栅极和漏极与所述第十五PMOS管的栅极和所述第十六PMOS管的栅极相连后再与所述第十六NMOS管的漏极相连,所述第十四PMOS管的源极与所述第十五PMOS管的漏极和所述第十六PMOS管的漏极相连后再与所述第十七PMOS管的源极相连,所述第十五PMOS管的源极与第二十六PMOS管的漏极相连,第十六PMOS管的源极与所述第二十七PMOS管的漏极相连,所述第二十六PMOS管的栅极接第三控制字,所述第二十七PMOS管的栅极接第四控制字,所述第十七PMOS管的栅极和漏极相连后再与所述第十八NMOS管的漏极相连作为所述第二偏置电压,所述第二偏置电压与所述第十八PMOS管、第二十PMOS管、第二十二PMOS管和第二十四PMOS管的栅极相连,所述第十八PMOS管的漏极与所述第二十NMOS管的漏极相连,所述第十八PMOS管的源极与所述第十九PMOS管的漏极相连,所述第十九PMOS管的栅极与所述第二十一PMOS管的栅极相连后再与所述第十八PMOS管的漏极相连作为第四偏置电压,所述第四偏置电压与所述第二十三PMOS管和第二十五PMOS管的栅极相连,所述第二十PMOS管的源极与所述第二十一PMOS管的漏极相连,所述第二十PMOS管的漏极与所述第二十二NMOS管的漏极相连,所述第二十二PMOS管的源极与所述第二十三PMOS管的漏极相连,所述第二十二PMOS管的漏极与所述第二十五NMOS管的漏极相连,所述第二十四PMOS管的源极与所述第二十五PMOS管的漏极相连,所述第二十四PMOS管的漏极与所述第二十六NMOS管的漏极相连,所述第十九PMOS管、第二十一PMOS管、第二十三PMOS管、第二十五PMOS管、第二十六PMOS管、第二十七PMOS管的源极接所述电源电压;Wherein, the negative electrode of the first bias current source is connected to the power supply voltage, the positive electrode of the first bias current source is connected to the drain of the fourteenth NMOS transistor, and then connected to the fourteenth NMOS transistor, Gates of the fifteenth NMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor, the eighteenth NMOS transistor, the nineteenth NMOS transistor, the twentieth NMOS transistor, and the twenty-first NMOS transistor are connected, and the gates of the first NMOS transistor The source of the fourteenth NMOS transistor is connected to the drain of the fifteenth NMOS transistor, the source of the sixteenth NMOS transistor is connected to the drain of the seventeenth NMOS transistor, and the eighteenth NMOS transistor The source of the twentieth NMOS transistor is connected to the drain of the nineteenth NMOS transistor, the source of the twentieth NMOS transistor is connected to the drain of the twenty-first NMOS transistor, and the drain of the twenty-second NMOS transistor and then connected to the gate of the twenty-third NMOS transistor and the twenty-fourth NMOS transistor, the source of the twenty-second NMOS transistor is connected to the gate of the twenty-third NMOS transistor connected to the drain of the twenty-fourth NMOS transistor and then connected to the source of the twenty-fifth NMOS transistor; the source of the twenty-third NMOS transistor is connected to the source of the twenty-eighth NMOS transistor connected to the drain, the source of the twenty-fourth NMOS transistor is connected to the drain of the twenty-ninth NMOS transistor, the gate of the twenty-eighth NMOS transistor is connected to the first control word, and the second The gate of the nineteenth NMOS transistor is connected to the second control word, the gate of the twenty-fifth NMOS transistor is connected to the drain and then connected to the gate of the twenty-sixth NMOS transistor as the third bias voltage, The drain of the twenty-sixth NMOS transistor is connected to the gate of the twenty-seventh NMOS transistor as the first bias voltage, and the source of the twenty-sixth NMOS transistor is connected to the gate of the twenty-seventh NMOS transistor. The drains of the seven NMOS transistors are connected, and the fifteenth NMOS transistor, the seventeenth NMOS transistor, the nineteenth NMOS transistor, the twenty-first NMOS transistor, the twenty-seventh NMOS transistor, the twenty-eighth NMOS transistor and the The source of the twenty-ninth NMOS transistor is grounded, the gate and drain of the fourteenth PMOS transistor are connected to the gate of the fifteenth PMOS transistor and the gate of the sixteenth PMOS transistor, and then connected to the gate of the sixteenth PMOS transistor. The drain of the sixteenth NMOS transistor is connected, the source of the fourteenth PMOS transistor is connected to the drain of the fifteenth PMOS transistor and the drain of the sixteenth PMOS transistor, and then connected to the drain of the sixteenth PMOS transistor. The source of the seventeenth PMOS transistor is connected, the source of the fifteenth PMOS transistor is connected to the drain of the twenty-sixth PMOS transistor, the source of the sixteenth PMOS transistor is connected to the drain of the twenty-seventh PMOS transistor The gate of the twenty-sixth PMOS transistor is connected to the third control word, the gate of the twenty-seventh PMOS transistor is connected to the fourth control word, and the gate and drain of the seventeenth PMOS transistor After being connected, it is connected to the drain of the eighteenth NMOS transistor as the second bias voltage, and the second bias voltage is connected to the eighteenth PMOS transistor, the twenty-second PMOS transistor, the twenty-second The PMOS transistor is connected to the gate of the twenty-fourth PMOS transistor, and the The drain of the eighteenth PMOS transistor is connected to the drain of the twentieth NMOS transistor, the source of the eighteenth PMOS transistor is connected to the drain of the nineteenth PMOS transistor, and the nineteenth PMOS transistor The gate of the transistor is connected to the gate of the twenty-first PMOS transistor and then connected to the drain of the eighteenth PMOS transistor as a fourth bias voltage, and the fourth bias voltage is connected to the second The thirteenth PMOS transistor is connected to the gate of the twenty-fifth PMOS transistor, the source of the twenty-first PMOS transistor is connected to the drain of the twenty-first PMOS transistor, and the drain of the twenty-first PMOS transistor connected to the drain of the twenty-second NMOS transistor, the source of the twenty-second PMOS transistor is connected to the drain of the twenty-third PMOS transistor, and the drain of the twenty-second PMOS transistor connected to the drain of the twenty-fifth NMOS transistor, the source of the twenty-fourth PMOS transistor is connected to the drain of the twenty-fifth PMOS transistor, and the drain of the twenty-fourth PMOS transistor connected to the drain of the twenty-sixth NMOS transistor, the nineteenth PMOS transistor, the twenty-first PMOS transistor, the twenty-third PMOS transistor, the twenty-fifth PMOS transistor, the twenty-sixth PMOS transistor, The source of the twenty-seventh PMOS tube is connected to the power supply voltage;
所述输入差分信号比较器包括:第一比较器和第二比较器;其中,所述第一比较器的负输入端和所述第二比较器的正输入端接所述第一差分信号VINN,所述第一比较器的正输入端和所述第二比较器的负输入端接所述第二差分信号VINP,所述第一比较器输出第一控制信号VC1,所述第二比较器输出第二控制信号VC2;The input differential signal comparator includes: a first comparator and a second comparator; wherein, the negative input terminal of the first comparator and the positive input terminal of the second comparator are connected to the first differential signal VINN , the positive input terminal of the first comparator and the negative input terminal of the second comparator are connected to the second differential signal VINP, the first comparator outputs a first control signal VC1, and the second comparator Outputting the second control signal VC2;
所述数据驱动电流支路包括:第二偏置电流源、第三偏置电流源、第三十NMOS管、第三十一NMOS管,第三十二NMOS管、第三十三NMOS管、第三十四NMOS管和第三十五NMOS管;The data driving current branch includes: a second bias current source, a third bias current source, a 30th NMOS transistor, a 31st NMOS transistor, a 32nd NMOS transistor, a 33rd NMOS transistor, Thirty-fourth NMOS tube and thirty-fifth NMOS tube;
其中,所述第二偏置电流源负极和所述第三偏置电流源负极与所述电源电压相连,所述第三十NMOS管的源极与所述第三十一NMOS管的源极相连后再与所述第二偏置电流源正极相连,所述第三十NMOS管的栅极接所述第一控制信号VC1,所述第三十一NMOS管的栅极接所述第二控制信号VC2,所述第三十NMOS管的漏极与所述第三十一NMOS管的漏极相连后再与所述第三十四NMOS管的漏极相连,所述第三十四NMOS管的栅极接所述第五控制字,所述第三十二NMOS管的源极与所述第三十三NMOS管的源极相连后再与所述第三偏置电流源正极相连,所述第三十二NMOS管的栅极接所述第一控制信号VC1,所述第三十三NMOS管的栅极接所述第二控制信号VC2,所述第三十二NMOS管的漏极与所述第三十三NMOS管的漏极相连后再与所述第三十五NMOS管的漏极相连,所述第三十五NMOS管的栅极接第六控制字,所述第三十四NMOS管的源极和所述第三十五NMOS管的源极与所述第十四NMOS管的漏极相连。Wherein, the negative electrode of the second bias current source and the negative electrode of the third bias current source are connected to the power supply voltage, the source of the 30th NMOS transistor is connected to the source of the 31st NMOS transistor After being connected, it is connected to the anode of the second bias current source, the grid of the 30th NMOS transistor is connected to the first control signal VC1, and the grid of the 31st NMOS transistor is connected to the second Control signal VC2, the drain of the 30th NMOS transistor is connected to the drain of the 31st NMOS transistor and then connected to the drain of the 34th NMOS transistor, the 34th NMOS transistor The gate of the transistor is connected to the fifth control word, the source of the thirty-second NMOS transistor is connected to the source of the thirty-third NMOS transistor and then connected to the anode of the third bias current source, The gate of the thirty-second NMOS transistor is connected to the first control signal VC1, the gate of the thirty-third NMOS transistor is connected to the second control signal VC2, and the drain of the thirty-second NMOS transistor connected to the drain of the thirty-third NMOS transistor and then connected to the drain of the thirty-fifth NMOS transistor; the gate of the thirty-fifth NMOS transistor is connected to the sixth control word; The source of the thirty-fourth NMOS transistor and the source of the thirty-fifth NMOS transistor are connected to the drain of the fourteenth NMOS transistor.
可选地,所述第一比较器和第二比较器均包括:比较器主电路和偏置电流可调的偏置电路;Optionally, both the first comparator and the second comparator include: a comparator main circuit and a bias circuit with adjustable bias current;
所述比较器主电路包括:第三十六NMOS管、第三十七NMOS管、第三十八NMOS管、第三十九NMOS管、第四十NMOS管、第四十一NMOS管、第四十二NMOS管、第四十三NMOS管、第四十四NMOS管、第四十五NMOS管、第四十六NMOS管、第四十七NMOS管、第四十八NMOS管、第二十八PMOS管、第二十九PMOS管、第三十PMOS管、第三十一PMOS管、第三十二PMOS管、第三十三PMOS管、第三十四PMOS管、第三十五PMOS管、第三十六PMOS管、第三十七PMOS管、第三十八PMOS管、第三十九PMOS管、第四十PMOS管、第四十一PMOS管、第四十二PMOS管和第四十三PMOS管;The comparator main circuit includes: a thirty-sixth NMOS transistor, a thirty-seventh NMOS transistor, a thirty-eighth NMOS transistor, a thirty-ninth NMOS transistor, a fortieth NMOS transistor, a forty-first NMOS transistor, a Forty-two NMOS tubes, forty-third NMOS tubes, forty-fourth NMOS tubes, forty-fifth NMOS tubes, forty-sixth NMOS tubes, forty-seventh NMOS tubes, forty-eighth NMOS tubes, and second The eighteenth PMOS tube, the twenty-ninth PMOS tube, the thirty-first PMOS tube, the thirty-first PMOS tube, the thirty-second PMOS tube, the thirty-third PMOS tube, the thirty-fourth PMOS tube, the thirty-fifth PMOS tube, thirty-sixth PMOS tube, thirty-seventh PMOS tube, thirty-eighth PMOS tube, thirty-ninth PMOS tube, fortieth PMOS tube, forty-first PMOS tube, forty-second PMOS tube and the forty-third PMOS tube;
其中,所述第三十六NMOS管、第三十七NMOS管的栅极均与所述输入差分信号中的第三差分信号VCN相连,所述第三十八NMOS管、第三十九NMOS管的栅极均与所述输入差分信号中的第四差分信号VCP相连,所述第四十NMOS管栅极接第五偏置电压,源极接地,漏极接所述第三十六NMOS管、第三十七NMOS管、第三十八NMOS管和第三十九NMOS管的源极,所述第二十八PMOS管的栅极与所述第二十九PMOS管的栅极相连后再与所述第三十九NMOS管的漏极相连,所述第二十八PMOS管、第二十九PMOS管、第三十PMOS管和第三十一PMOS管的源极接电源电压,所述第三十二PMOS管的栅极与所述第三十三PMOS管的栅极相连后接第六偏置电压,所述第三十四PMOS管的栅极与所述第三十五PMOS管的栅极相连后也接所述第六偏置电压,所述第三十二PMOS管的源极与所述第二十九PMOS管的漏极相连,所述第三十三PMOS管的源极与所述第三十PMOS管的漏极相连,所述第三十二PMOS管的漏极与所述第三十九NMOS管的漏极相连,所述第三十三PMOS管的漏极与所述第三十七NMOS管的漏极相连,所述第三十四PMOS管的源极与所述第三十六NMOS管的漏极相连后再与所述第二十八PMOS管的漏极相连,所述第三十五PMOS管的源极与所述第三十八NMOS管的漏极相连后再与所述第三十一PMOS管的漏极相连,所述第三十六PMOS管和第三十七PMOS管的栅极都与所述第三差分信号VCN相连,所述第三十八PMOS管和第三十九PMOS管的栅极均与所述第四差分信号VCP相连,所述第四十PMOS管和第四十一PMOS管的栅极接第七偏置电压,所述第四十PMOS管的源极接所述第四十二PMOS管的漏极,所述第四十一PMOS管的源极接所述第四十三PMOS管的漏极,所述第四十二PMOS管的栅极接第七控制字,所述第四十三PMOS管的栅极接第八控制字,所述第四十二PMOS管和第四十三PMOS管的源极接所述电源电压,所述第四十PMOS管和第四十一PMOS管的漏极接所述第三十六PMOS管、第三十七PMOS管、第三十八PMOS管和第三十九PMOS管的源极,所述第四十一NMOS管的栅极与所述第四十二NMOS管的栅极相连后再与所述第三十九PMOS管的漏极相连,所述第四十三NMOS管的栅极与所述第四十四NMOS管的栅极相连后再与所述第三十七PMOS管的漏极相连,所述第四十一NMOS管、第四十二NMOS管、第四十三NMOS管和第四十四NMOS管的源极接地,所述第四十五NMOS管的栅极与所述第四十六NMOS管的栅极相连后接第八偏置电压,所述第四十七NMOS管的栅极与所述第四十八NMOS管的栅极相连后也接所述第八偏置电压,所述第四十五NMOS管的源极与所述第四十二NMOS管的漏极相连,所述第四十六NMOS管的源极与所述第四十三NMOS管的漏极相连,所述第四十五NMOS管的漏极与所述第三十九PMOS管的漏极相连,所述第四十六NMOS管的漏极与所述第三十七PMOS管的漏极相连,所述第四十七NMOS管的源极与所述第三十六PMOS管的漏极相连后再与所述第四十一NMOS管的漏极相连,所述第四十八NMOS管的源极与所述第三十八PMOS管的漏极相连后再与所述第四十四NMOS管的漏极相连,所述第四十八NMOS管的漏极和所述第三十五PMOS管的漏极相连后再与所述第三十PMOS管的栅极和所述第三十一PMOS管的栅极相连,所述第四十七NMOS管与所述第三十四PMOS管相连作为比较器输出VCOUT;Wherein, the gates of the thirty-sixth NMOS transistor and the thirty-seventh NMOS transistor are connected to the third differential signal VCN in the input differential signal, and the thirty-eighth NMOS transistor and the thirty-ninth NMOS transistor The gates of the transistors are all connected to the fourth differential signal VCP in the input differential signal, the grid of the fortieth NMOS transistor is connected to the fifth bias voltage, the source is grounded, and the drain is connected to the thirty-sixth NMOS transistor. tube, the sources of the thirty-seventh NMOS tube, the thirty-eighth NMOS tube, and the thirty-ninth NMOS tube, and the gate of the twenty-eighth PMOS tube is connected to the gate of the twenty-ninth PMOS tube Then it is connected to the drain of the thirty-ninth NMOS transistor, and the sources of the twenty-eighth PMOS transistor, the twenty-ninth PMOS transistor, the thirty-first PMOS transistor and the thirty-first PMOS transistor are connected to the power supply voltage , the gate of the thirty-second PMOS transistor is connected to the gate of the thirty-third PMOS transistor and then connected to the sixth bias voltage, and the gate of the thirty-fourth PMOS transistor is connected to the gate of the thirty-third PMOS transistor. The gates of the five PMOS transistors are connected to the sixth bias voltage, the source of the thirty-second PMOS transistor is connected to the drain of the twenty-ninth PMOS transistor, and the thirty-third PMOS transistor is connected to the drain of the twenty-ninth PMOS transistor. The source of the transistor is connected to the drain of the thirtieth PMOS transistor, the drain of the thirty-second PMOS transistor is connected to the drain of the thirty-ninth NMOS transistor, and the thirty-third PMOS transistor The drain of the thirty-seventh NMOS transistor is connected to the drain, the source of the thirty-fourth PMOS transistor is connected to the drain of the thirty-sixth NMOS transistor, and then connected to the twenty-eighth NMOS transistor. The drain of the PMOS transistor is connected, the source of the thirty-fifth PMOS transistor is connected to the drain of the thirty-eighth NMOS transistor and then connected to the drain of the thirty-first PMOS transistor, and the source of the thirty-eighth PMOS transistor is connected to the drain of the thirty-first PMOS transistor. The gates of the thirty-sixth PMOS transistor and the thirty-seventh PMOS transistor are connected to the third differential signal VCN, and the gates of the thirty-eighth PMOS transistor and the thirty-ninth PMOS transistor are connected to the fourth differential signal VCN. The differential signal VCP is connected, the gates of the fortieth PMOS transistor and the forty-first PMOS transistor are connected to the seventh bias voltage, and the source of the fortieth PMOS transistor is connected to the drain of the forty-second PMOS transistor pole, the source of the forty-first PMOS transistor is connected to the drain of the forty-third PMOS transistor, the gate of the forty-second PMOS transistor is connected to the seventh control word, and the forty-third PMOS transistor The gate of the transistor is connected to the eighth control word, the sources of the forty-second PMOS transistor and the forty-third PMOS transistor are connected to the power supply voltage, and the drains of the fortieth PMOS transistor and the forty-first PMOS transistor are connected to the sources of the thirty-sixth PMOS transistor, the thirty-seventh PMOS transistor, the thirty-eighth PMOS transistor, and the thirty-ninth PMOS transistor, and the gate of the forty-first NMOS transistor is connected to the first The gate of the forty-second NMOS transistor is connected to the drain of the thirty-ninth PMOS transistor, and the gate of the forty-third NMOS transistor is connected to the gate of the forty-fourth NMOS transistor. It is then connected to the drain of the thirty-seventh PMOS transistor, so The sources of the forty-first NMOS transistor, the forty-second NMOS transistor, the forty-third NMOS transistor, and the forty-fourth NMOS transistor are grounded, and the gate of the forty-fifth NMOS transistor is connected to the forty-fifth NMOS transistor. The gates of the six NMOS transistors are connected to the eighth bias voltage, and the gates of the forty-seventh NMOS transistor are connected to the gates of the forty-eighth NMOS transistors and then connected to the eighth bias voltage, The source of the forty-fifth NMOS transistor is connected to the drain of the forty-second NMOS transistor, the source of the forty-sixth NMOS transistor is connected to the drain of the forty-third NMOS transistor, The drain of the forty-fifth NMOS transistor is connected to the drain of the thirty-ninth PMOS transistor, the drain of the forty-sixth NMOS transistor is connected to the drain of the thirty-seventh PMOS transistor, The source of the forty-seventh NMOS transistor is connected to the drain of the thirty-sixth PMOS transistor and then connected to the drain of the forty-first NMOS transistor, and the source of the forty-eighth NMOS transistor The electrode is connected to the drain of the thirty-eighth PMOS transistor and then connected to the drain of the forty-fourth NMOS transistor, and the drain of the forty-eighth NMOS transistor is connected to the drain of the thirty-fifth PMOS transistor connected to the drain of the thirtieth PMOS transistor and the gate of the thirty-first PMOS transistor, and the forty-seventh NMOS transistor is connected to the thirty-fourth PMOS transistor as Comparator output VCOUT;
所述偏置电流可调的偏置电路包括:第四偏置电流源、第五偏置电流源、第四十九NMOS管、第五十NMOS管、第五十一NMOS管、第五十二NMOS管、第五十三NMOS管、第五十四NMOS管、第五十五NMOS管、第五十六NMOS管、第五十七NMOS管、第五十八NMOS管、第五十九NMOS管、第六十NMOS管、第六十一NMOS管、第六十二NMOS管、第六十三NMOS管、第四十四PMOS管、第四十五PMOS管、第四十六PMOS管、第四十七PMOS管、第四十八PMOS管、第四十九PMOS管、第五十PMOS管、第五十一PMOS管、第五十二PMOS管、第五十三PMOS管和第五十四PMOS管;The bias circuit with adjustable bias current includes: a fourth bias current source, a fifth bias current source, a forty-ninth NMOS transistor, a fiftieth NMOS transistor, a fifty-first NMOS transistor, a fiftieth NMOS transistor Two NMOS tubes, fifty-third NMOS tubes, fifty-fourth NMOS tubes, fifty-fifth NMOS tubes, fifty-sixth NMOS tubes, fifty-seventh NMOS tubes, fifty-eighth NMOS tubes, fifty-ninth NMOS tubes NMOS tube, sixtieth NMOS tube, sixty-first NMOS tube, sixty-second NMOS tube, sixty-third NMOS tube, forty-fourth PMOS tube, forty-fifth PMOS tube, forty-sixth PMOS tube , the forty-seventh PMOS transistor, the forty-eighth PMOS transistor, the forty-ninth PMOS transistor, the fiftieth PMOS transistor, the fifty-first PMOS transistor, the fifty-second PMOS transistor, the fifty-third PMOS transistor, and the fifty-third PMOS transistor Fifty-four PMOS tubes;
其中,所述第四偏置电流源负极和所述第五偏置电流源负极与所述电源电压相连,所述第四十九NMOS管的漏极与所述第四十九NMOS管、第五十NMOS管、第五十一NMOS管、第五十二NMOS管、第五十三NMOS管、第五十四NMOS管、第五十五NMOS管和第五十六NMOS管的栅极相连,所述第四十九NMOS管的源极与所述第五十NMOS管的漏极相连,所述第五十一NMOS管的源极与所述第五十二NMOS管的漏极相连,所述第五十三NMOS管的源极与所述第五十四NMOS管的漏极相连,所述第五十五NMOS管的源极与所述第五十六NMOS管的漏极相连,所述第五十七NMOS管的漏极和栅极相连后再与所述第五十八NMOS管的栅极相连,所述第五十七NMOS管的源极和所述第五十八NMOS管的漏极相连后再与所述第五十九NMOS管的源极相连,所述第五十九NMOS管的栅极与漏极相连后再与所述第六十NMOS管的栅极相连作为所述第八偏置电压,所述第六十NMOS管的漏极与所述第六十一NMOS管的栅极相连作为所述第五偏置电压,所述第六十NMOS管的源极与所述第六十一NMOS管的漏极相连,所述第五十NMOS管、第五十二NMOS管、第五十四NMOS管、第五十六NMOS管、第五十八NMOS管、第六十一NMOS管的源极接地,所述第四十四PMOS管的栅极与所述第四十五PMOS管的栅极和漏极相连后再与所述第五十一NMOS管的漏极相连,所述第四十四PMOS管的源极与所述第四十五PMOS管的漏极相连后再与所述第四十六PMOS管的源极相连,所述第四十六PMOS管的栅极和漏极相连后再与所述第五十三NMOS管的漏极相连作为所述第六偏置电压,所述第二偏置电压与所述第四十七PMOS管、第四十九PMOS管、第五十一PMOS管和第五十三PMOS管的栅极相连,所述第四十七PMOS管的漏极与所述第五十五NMOS管的漏极相连,所述第四十七PMOS管的源极与所述第四十八PMOS管的漏极相连,所述第四十八PMOS管的栅极与所述第五十PMOS管的栅极相连后再与所述第四十七PMOS管的漏极相连作为所述第七偏置电压,所述第四偏置电压与所述第五十二PMOS管和第五十四PMOS管的栅极相连,所述第四十九PMOS管的源极与所述第五十PMOS管的漏极相连,所述第四十九PMOS管的漏极与所述第五十七NMOS管的漏极相连,所述第五十一PMOS管的源极与所述第五十二PMOS管的漏极相连,所述第五十一PMOS管的漏极与所述第五十九NMOS管的漏极相连,所述第五十三PMOS管的源极与所述第五十四PMOS管的漏极相连,所述第五十三PMOS管的漏极与所述第六十NMOS管的漏极相连,所述第四十五PMOS管、第四十八PMOS管、第五十PMOS管、第五十二PMOS管、第五十四PMOS管的源极接所述电源电压,所述第四偏置电流源的正极与所述第六十二NMOS管的漏极相连,所述第六十二NMOS管的栅极接第九控制字,所述第五偏置电流源的正极与所述第六十三NMOS管的漏极相连,所述第六十三NMOS管的栅极接所述第十控制字,所述第六十二NMOS管的源极和所述第六十三NMOS管的源极与所述第四十九NMOS管的漏极相连。Wherein, the negative electrode of the fourth bias current source and the negative electrode of the fifth bias current source are connected to the power supply voltage, and the drain of the forty-ninth NMOS transistor is connected to the forty-ninth NMOS transistor, the first The gates of the fifty NMOS transistors, the fifty-first NMOS transistors, the fifty-second NMOS transistors, the fifty-third NMOS transistors, the fifty-fourth NMOS transistors, the fifty-fifth NMOS transistors, and the fifty-sixth NMOS transistors are connected to each other. , the source of the forty-ninth NMOS transistor is connected to the drain of the fiftieth NMOS transistor, the source of the fifty-first NMOS transistor is connected to the drain of the fifty-second NMOS transistor, The source of the fifty-third NMOS transistor is connected to the drain of the fifty-fourth NMOS transistor, the source of the fifty-fifth NMOS transistor is connected to the drain of the fifty-sixth NMOS transistor, The drain of the fifty-seventh NMOS transistor is connected to the gate and then connected to the gate of the fifty-eighth NMOS transistor, and the source of the fifty-seventh NMOS transistor is connected to the gate of the fifty-eighth NMOS transistor. The drain of the transistor is connected to the source of the fifty-ninth NMOS transistor, and the gate of the fifty-ninth NMOS transistor is connected to the drain and then connected to the gate of the sixtieth NMOS transistor. As the eighth bias voltage, the drain of the sixtieth NMOS transistor is connected to the gate of the sixty-first NMOS transistor as the fifth bias voltage, and the source of the sixtieth NMOS transistor The pole is connected to the drain of the sixty-first NMOS transistor, and the fifty-second NMOS transistor, the fifty-second NMOS transistor, the fifty-fourth NMOS transistor, the fifty-sixth NMOS transistor, and the fifty-eighth NMOS transistor , the source of the sixty-first NMOS transistor is grounded, the gate of the forty-fourth PMOS transistor is connected to the gate and drain of the forty-fifth PMOS transistor and then connected to the fifty-first NMOS transistor connected to the drain of the forty-fourth PMOS transistor, the source of the forty-fourth PMOS transistor is connected to the drain of the forty-fifth PMOS transistor and then connected to the source of the forty-sixth PMOS transistor, and the fortieth The gates and drains of the six PMOS transistors are connected and then connected to the drain of the fifty-third NMOS transistor as the sixth bias voltage, and the second bias voltage is the same as that of the forty-seventh PMOS transistor , the gates of the forty-ninth PMOS transistor, the fifty-first PMOS transistor and the fifty-third PMOS transistor are connected, and the drain of the forty-seventh PMOS transistor is connected with the drain of the fifty-fifth NMOS transistor , the source of the forty-seventh PMOS transistor is connected to the drain of the forty-eighth PMOS transistor, and the gate of the forty-eighth PMOS transistor is connected to the gate of the fiftieth PMOS transistor connected to the drain of the forty-seventh PMOS transistor as the seventh bias voltage, and the fourth bias voltage is connected to the gates of the fifty-second PMOS transistor and the fifty-fourth PMOS transistor , the source of the forty-ninth PMOS transistor is connected to the drain of the fiftieth PMOS transistor, and the drain of the forty-ninth PMOS transistor is connected to the drain of the fifty-seventh NMOS transistor, The source of the fifty-first PMOS transistor and the source of the fifty-second PMOS transistor The drain of the fifty-first PMOS transistor is connected to the drain of the fifty-ninth NMOS transistor, and the source of the fifty-third PMOS transistor is connected to the drain of the fifty-fourth PMOS transistor. The drains of the fifty-third PMOS transistors are connected to the drains of the sixtieth NMOS transistors, the forty-fifth PMOS transistors, the forty-eighth PMOS transistors, the fiftieth PMOS transistors, The sources of the fifty-second PMOS transistor and the fifty-fourth PMOS transistor are connected to the power supply voltage, the anode of the fourth bias current source is connected to the drain of the sixty-second NMOS transistor, and the sixth The gate of the twelve NMOS transistors is connected to the ninth control word, the anode of the fifth bias current source is connected to the drain of the sixty-third NMOS transistor, and the gate of the sixty-third NMOS transistor is connected to the In the tenth control word, the sources of the sixty-second NMOS transistor and the sixty-third NMOS transistor are connected to the drain of the forty-ninth NMOS transistor.
可选地,所述N型和P型互补输入的循环折叠跨导运算放大器电路还包括:共模反馈电路;所述共模反馈电路包括:全差分信号与共模信号输入晶体管单元、偏置电压晶体管单元和共模反馈控制信号产生单元;Optionally, the loop-folded transconductance operational amplifier circuit with N-type and P-type complementary inputs also includes: a common-mode feedback circuit; the common-mode feedback circuit includes: a fully differential signal and a common-mode signal input transistor unit, a bias voltage a transistor unit and a common-mode feedback control signal generating unit;
所述全差分信号与共模信号输入晶体管单元包括:第六十四NMOS管、第六十五NMOS管、第六十六NMOS管、第六十七NMOS管;The fully differential signal and common mode signal input transistor unit includes: a sixty-fourth NMOS transistor, a sixty-fifth NMOS transistor, a sixty-sixth NMOS transistor, and a sixty-seventh NMOS transistor;
其中,所述第六十四NMOS管的栅极接所述第二输出差分信号VOUTN,所述第六十七NMOS管的栅极接所述第一输出差分信号VOUTP,所述第六十五NMOS管的栅极与所述第六十六NMOS管的栅极相连后接共模输入电压VCM;Wherein, the gate of the sixty-fourth NMOS transistor is connected to the second output differential signal VOUTN, the gate of the sixty-seventh NMOS transistor is connected to the first output differential signal VOUTP, and the sixty-fifth The gate of the NMOS transistor is connected to the gate of the sixty-sixth NMOS transistor and then connected to the common mode input voltage VCM;
所述偏置电压晶体管单元包括:第六十八NMOS管和第六十九NMOS管;The bias voltage transistor unit includes: a sixty-eighth NMOS transistor and a sixty-ninth NMOS transistor;
其中,所述第六十八NMOS管的漏极与所述第六十四NMOS管的源极和所述第六十五NMOS管的源极相连,所述第六十九NMOS管的漏极与所述第六十六NMOS管的源极和所述第六十七NMOS管的源极相连,所述第六十八NMOS管的栅极与所述第六十九NMOS管的栅极相连后与所述第一偏置电压相连,所述第六十八NMOS管的源极和所述第六十九NMOS管的源极接地;Wherein, the drain of the sixty-eighth NMOS transistor is connected to the source of the sixty-fourth NMOS transistor and the source of the sixty-fifth NMOS transistor, and the drain of the sixty-ninth NMOS transistor The source of the sixty-sixth NMOS transistor is connected to the source of the sixty-seventh NMOS transistor, and the gate of the sixty-eighth NMOS transistor is connected to the gate of the sixty-ninth NMOS transistor connected to the first bias voltage, the source of the sixty-eighth NMOS transistor and the source of the sixty-ninth NMOS transistor are grounded;
所述共模反馈控制信号产生单元包括:第五十五PMOS管、第五十六PMOS管以及相互串接的第一电阻R1和第二电阻R2;The common-mode feedback control signal generation unit includes: a fifty-fifth PMOS transistor, a fifty-sixth PMOS transistor, and a first resistor R1 and a second resistor R2 connected in series;
其中,所述第五十五PMOS管的栅极与所述第五十六PMOS管的栅极相连后与所述第一电阻R1和第二电阻R2的串接端相连,所述第五十五PMOS管的漏极与所述第一电阻R1的非串接端相连后再与所述第六十四NMOS管的漏极和所述第六十七NMOS管的漏极相连,并在相连后接共模控制信号VCMFB,所述第五十六PMOS管的漏极与所述第二电阻R2的非串接端相连后再与所述第六十五NMOS管的漏极和第六十六NMOS管的漏极相连,所述第五十五PMOS管的源极与所述第五十六PMOS管的源极接所述电源电压。Wherein, the gate of the fifty-fifth PMOS transistor is connected to the gate of the fifty-sixth PMOS transistor and then connected to the serial terminal of the first resistor R1 and the second resistor R2, and the fifty-fifth The drain of the fifth PMOS transistor is connected to the non-serial connection end of the first resistor R1 and then connected to the drain of the sixty-fourth NMOS transistor and the drain of the sixty-seventh NMOS transistor, and connected to It is followed by a common mode control signal VCMFB, and the drain of the fifty-sixth PMOS transistor is connected to the non-serial end of the second resistor R2, and then connected to the drain of the sixty-fifth NMOS transistor and the sixtieth The drains of the six NMOS transistors are connected, and the sources of the fifty-fifth PMOS transistor and the fifty-sixth PMOS transistor are connected to the power supply voltage.
本发明实施例包括:相互连接的N型和P型互补输入的循环折叠跨导运算放大器电路以及数据驱动的运算放大器偏置电路;所述数据驱动的运算放大器偏置电路包括输入差分信号比较器;所述输入差分信号比较器,用于检测输入差分信号,并当所述输入差分信号大于或等于所述输入差分信号比较器的打开阈值时增大电路的偏置电流,当所述输入差分信号小于所述输入差分信号比较器的打开阈值时,保持电路的偏置电流不会变。并且可根据应用需求动态调整放大器电流大小,以及比较器打开阈值和比较器速度,控制大电流的工作窗口。通过该实施例方案,提高了高性能开关电容电路的速度,并降低了功耗、提高了良率。Embodiments of the present invention include: a loop-folded transconductance operational amplifier circuit with complementary input of N-type and P-type connected to each other and a data-driven operational amplifier bias circuit; the data-driven operational amplifier bias circuit includes an input differential signal comparator ; The input differential signal comparator is used to detect the input differential signal, and increase the bias current of the circuit when the input differential signal is greater than or equal to the opening threshold of the input differential signal comparator, when the input differential signal When the signal is smaller than the opening threshold of the input differential signal comparator, the bias current of the holding circuit does not change. And it can dynamically adjust the amplifier current, comparator opening threshold and comparator speed according to application requirements, and control the working window of high current. Through the solution of this embodiment, the speed of the high-performance switched capacitor circuit is improved, the power consumption is reduced, and the yield rate is improved.
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the embodiments of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the embodiments of the invention. The objectives and other advantages of the embodiments of the present invention can be realized and obtained by the structures particularly pointed out in the description, claims and accompanying drawings.
附图说明Description of drawings
附图用来提供对本发明实施例技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明实施例的技术方案,并不构成对本发明实施例技术方案的限制。The accompanying drawings are used to provide a further understanding of the technical solutions of the embodiments of the present invention, and constitute a part of the description, and are used together with the embodiments of the application to explain the technical solutions of the embodiments of the present invention, and do not constitute limitations to the technical solutions of the embodiments of the present invention .
图1为本发明实施例的数据驱动的运算放大器的原理图;FIG. 1 is a schematic diagram of a data-driven operational amplifier according to an embodiment of the present invention;
图2为本发明实施例的第一比较器和第二比较器的电路示意图;2 is a schematic circuit diagram of a first comparator and a second comparator according to an embodiment of the present invention;
图3为本发明实施例的共模反馈电路的电路示意图。FIG. 3 is a schematic circuit diagram of a common-mode feedback circuit according to an embodiment of the present invention.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined arbitrarily with each other.
为了达到本发明实施例目的,本发明实施例提供了一种数据驱动的运算放大器,该运算放大器包括:相互连接的N型和P型互补输入的循环折叠跨导运算放大器电路以及数据驱动的运算放大器偏置电路;所述数据驱动的运算放大器偏置电路包括输入差分信号比较器;In order to achieve the purpose of the embodiment of the present invention, the embodiment of the present invention provides a data-driven operational amplifier, which includes: a loop-folded transconductance operational amplifier circuit connected to each other with N-type and P-type complementary inputs and a data-driven operational amplifier an amplifier bias circuit; the data-driven operational amplifier bias circuit includes an input differential signal comparator;
所述输入差分信号比较器,用于检测输入差分信号,并当所述输入差分信号大于或等于所述输入差分信号比较器的打开阈值时增大电路的偏置电流,当所述输入差分信号小于所述输入差分信号比较器的打开阈值时,保持电路的偏置电流不会变。The input differential signal comparator is used to detect the input differential signal, and increase the bias current of the circuit when the input differential signal is greater than or equal to the opening threshold of the input differential signal comparator, when the input differential signal When it is less than the opening threshold of the input differential signal comparator, the bias current of the holding circuit will not change.
在本发明实施例中,为了克服当前折叠式OTA(单级运算跨导放大器)速度慢、功耗大的不足,本发明实施例设计了数据驱动的运算放大器。本发明实施例通过比较器检测输入差分信号,当输入差分信号大于比较器打开阈值时增大电路的偏置电流以提高放大器的速度,当输入差分信号小于比较器打开阈值时,电路的偏置电流不会增大,从而节省功耗,此外根据不同的应用需求,可以调整数据驱动支路的偏置电流或比较器打开阈值或比较器速度。通过本发明实施例方案,可以提高诸如高性能模数转换器、滤波器等高性能开关电容电路的速度,避免了传统AB类放大器静态功耗与最大输出电流和交越失真之间的折中关系,与传统A类放大器相比,既具有高速、高线性度的优点,又克服了静态偏置电流大的缺点。In the embodiment of the present invention, in order to overcome the disadvantages of slow speed and high power consumption of the current folding OTA (single-stage operational transconductance amplifier), the embodiment of the present invention designs a data-driven operational amplifier. In the embodiment of the present invention, the input differential signal is detected by the comparator. When the input differential signal is greater than the comparator open threshold, the bias current of the circuit is increased to increase the speed of the amplifier. When the input differential signal is smaller than the comparator open threshold, the bias current of the circuit is The current does not increase, thereby saving power consumption. In addition, according to different application requirements, the bias current of the data driving branch or the opening threshold of the comparator or the speed of the comparator can be adjusted. Through the solution of the embodiment of the present invention, the speed of high-performance switched capacitor circuits such as high-performance analog-to-digital converters and filters can be increased, and the compromise between static power consumption, maximum output current and crossover distortion of traditional class AB amplifiers can be avoided Compared with the traditional class A amplifier, it not only has the advantages of high speed and high linearity, but also overcomes the disadvantage of large static bias current.
可选地,所述N型和P型互补输入的循环折叠跨导运算放大器电路包括:Optionally, the loop-folded transconductance operational amplifier circuit of the N-type and P-type complementary inputs includes:
N型互补输入差分对单元以及与所述N型互补输入差分对单元连接的N型偏置电压晶体管单元、N型偏置尾电流晶体管单元和N型共源共栅晶体管对单元;以及,An N-type complementary input differential pair unit and an N-type bias voltage transistor unit, an N-type bias tail current transistor unit, and an N-type cascode transistor pair unit connected to the N-type complementary input differential pair unit; and,
P型互补输入差分对单元以及与所述P型互补输入差分对单元连接的P型偏置电压晶体管单元、P型偏置尾电流晶体管单元和P型共源共栅晶体管对单元。A P-type complementary input differential pair unit and a P-type bias voltage transistor unit, a P-type bias tail current transistor unit, and a P-type cascode transistor pair unit connected to the P-type complementary input differential pair unit.
在本发明实施例中,图1为一个互补输入循环折叠跨导运算放大器与带有数据驱动支路的偏置电路。该互补输入循环折叠OTA与常规OTA不同,其采用了NMOS(N-channelMetal-Oxide-Semiconductor,N沟道金属-氧化物-半导体)管与PMOS(P-channelMetal-Oxide-Semiconductor,P沟道金属-氧化物-半导体)管支路互补输入。In an embodiment of the present invention, FIG. 1 is a complementary-input loop-folded transconductance operational amplifier and a bias circuit with a data-driven branch. The complementary input loop folding OTA is different from the conventional OTA, which uses NMOS (N-channelMetal-Oxide-Semiconductor, N-channel metal-oxide-semiconductor) tube and PMOS (P-channelMetal-Oxide-Semiconductor, P-channel metal -oxide-semiconductor) tube branch complementary input.
在本发明实施例中,图1中晶体管P1a、P1b、P2a、P2b为P型输入器件,N1a、N1b、N2a、N2b为N型输入器件。VINN和VINP为输入差分信号,VINN加到P1a、P1b、N1a、N1b的栅极,VINP加到P2a、P2b、N2a、N2b的栅极。晶体管P0为P型输入支路P1a、P1b、P2a、P2b提供偏置电流,晶体管N0为N型输入支路N1a、N1b、N2a、N2b提供偏置电流。晶体管N5、N6、N7、N8为P型输入支路的偏置尾电流晶体管,晶体管P5、P6、P7、P8为N型输入支路的偏置尾电流晶体管。晶体管N3、N4、N9、N10为P型输入支路的共源共栅晶体管对,晶体管P3、P4、P9、P10为N型输入支路的共源共栅晶体管对。晶体管P9的漏极和晶体管N9的漏极相连提供一个差分输出VOUTP,晶体管P10的漏极和晶体管N10的漏极相连提供另一个差分输出VOUTN。VOUTP和VOUTN构成全差分输出。晶体管N0的偏置电压为Vb1,晶体管N3、N4、N9、N10的偏置电压为Vb2,晶体管P3、P4、P9、P10的偏置电压为Vb3,晶体管P0的偏置电压则是共模反馈电路中产生的共模控制信号VCMFB。本发明采用的互补循环折叠OTA,P型输入支路的共源共栅晶体管N9、N10和N型输入支路的共源共栅晶体管P9、P10共用了相同的电流,因而更充分地利用了各个支路的电流,提高了运放的单位增益带宽GBW。下面将对图1中各个单元的连接关系进行详细描述。In the embodiment of the present invention, transistors P1a, P1b, P2a, and P2b in FIG. 1 are P-type input devices, and N1a, N1b, N2a, and N2b are N-type input devices. VINN and VINP are input differential signals, VINN is added to the gates of P1a, P1b, N1a, and N1b, and VINP is added to the gates of P2a, P2b, N2a, and N2b. Transistor P0 provides bias current for P-type input branches P1a, P1b, P2a, P2b, and transistor N0 provides bias current for N-type input branches N1a, N1b, N2a, N2b. Transistors N5, N6, N7 and N8 are bias tail current transistors of the P-type input branch, and transistors P5, P6, P7 and P8 are bias tail current transistors of the N-type input branch. Transistors N3, N4, N9, and N10 are cascode transistor pairs of the P-type input branch, and transistors P3, P4, P9, and P10 are cascode transistor pairs of the N-type input branch. The drain of the transistor P9 is connected to the drain of the transistor N9 to provide a differential output VOUTP, and the drain of the transistor P10 is connected to the drain of the transistor N10 to provide another differential output VOUTN. VOUTP and VOUTN form a fully differential output. The bias voltage of transistor N0 is Vb1, the bias voltage of transistors N3, N4, N9, and N10 is Vb2, the bias voltage of transistors P3, P4, P9, and P10 is Vb3, and the bias voltage of transistor P0 is common mode feedback Common-mode control signal VCMFB generated in the circuit. In the complementary circular folding OTA adopted by the present invention, the cascode transistors N9 and N10 of the P-type input branch and the cascode transistors P9 and P10 of the N-type input branch share the same current, thereby more fully utilizing The current of each branch increases the unity gain bandwidth GBW of the op amp. The connection relationship of each unit in FIG. 1 will be described in detail below.
所述N型互补输入差分对单元包括:第一NMOS管(N1a)、第二NMOS管(N1b)、第三NMOS管(N2a)、第四NMOS管(N2b),其中第一NMOS管(N1a)、第二NMOS管(N1b)的栅极都与输入全差分信号中的其中一个差分信号VINN(即第一差分信号VINN)相连,第三NMOS管(N2a)、第四NMOS管(N2b)的栅极都与前述输入全差分信号中的另一个差分信号VINP(第二差分信号VINP)相连;The N-type complementary input differential pair unit includes: a first NMOS transistor (N1a), a second NMOS transistor (N1b), a third NMOS transistor (N2a), and a fourth NMOS transistor (N2b), wherein the first NMOS transistor (N1a ), the gates of the second NMOS transistor (N1b) are connected to one of the differential signals VINN (that is, the first differential signal VINN) in the input full differential signal, the third NMOS transistor (N2a), the fourth NMOS transistor (N2b) The gates of the gates are all connected to another differential signal VINP (second differential signal VINP) in the aforementioned input fully differential signal;
所述N型偏置电压晶体管单元包括:第五NMOS管(N0),该第五NMOS管(N0)栅极接第一偏置电压(Vb1),源极接地(GND),漏极接第一NMOS管(N1a)、第二NMOS管(N1b)、第三NMOS管(N2a)和第四NMOS管(N2b)的源极。The N-type bias voltage transistor unit includes: a fifth NMOS transistor (N0), the gate of the fifth NMOS transistor (N0) is connected to the first bias voltage (Vb1), the source is grounded (GND), and the drain is connected to the first bias voltage (Vb1). The sources of the first NMOS transistor (N1a), the second NMOS transistor (N1b), the third NMOS transistor (N2a) and the fourth NMOS transistor (N2b).
所述P型互补输入差分对单元包括:第九PMOS管(P1a)、第十PMOS管(P1b)、第十一PMOS管(P2a)和第十二PMOS管(P2b);其中,第九PMOS管(P1a)、第十PMOS管(P1b)的栅极都与输入全差分信号中的其中一个差分信号VINN相连,第十一PMOS管(P2a)、第十二PMOS管(P2b)的栅极都与前述输入全差分信号中的另一个差分信号VINP相连。The P-type complementary input differential pair unit includes: a ninth PMOS transistor (P1a), a tenth PMOS transistor (P1b), an eleventh PMOS transistor (P2a) and a twelfth PMOS transistor (P2b); wherein, the ninth PMOS The gates of the transistor (P1a) and the tenth PMOS transistor (P1b) are connected to one of the differential signals VINN in the input full differential signal, and the gates of the eleventh PMOS transistor (P2a) and the twelfth PMOS transistor (P2b) Both are connected to another differential signal VINP among the aforementioned input fully differential signals.
所述P型偏置尾电流晶体管单元包括:第一PMOS管(P5)、第二PMOS管(P6)、第三PMOS管(P7)和第四PMOS管(P8);其中,第一PMOS管(P5)的栅极与第二PMOS管(P6)的栅极相连后再与所述第四NMOS管(N2b)的漏极相连,第三PMOS管(P7)的栅极与第四PMOS管(P8)的栅极相连后再与所述第二NMOS管(N1b)的漏极相连,第一PMOS管(P5)、第二PMOS管(P6)、第三PMOS管(P7)和第四PMOS管(P8)的源极接电源电压(VDD)。The P-type bias tail current transistor unit includes: a first PMOS transistor (P5), a second PMOS transistor (P6), a third PMOS transistor (P7) and a fourth PMOS transistor (P8); wherein, the first PMOS transistor The grid of (P5) is connected with the grid of the second PMOS transistor (P6) and then connected with the drain of the fourth NMOS transistor (N2b), and the grid of the third PMOS transistor (P7) is connected with the drain of the fourth PMOS transistor The gate of (P8) is connected and then connected with the drain of the second NMOS transistor (N1b), the first PMOS transistor (P5), the second PMOS transistor (P6), the third PMOS transistor (P7) and the fourth PMOS transistor (P7) The source of the PMOS transistor (P8) is connected to the power supply voltage (VDD).
所述P型共源共栅晶体管对单元包括:第五PMOS管(P3)、第六PMOS管(P4)、第七PMOS管(P9)和第八PMOS管(P10);其中,第五PMOS管(P3)的栅极与第六PMOS管(P4)的栅极相连后接第二偏置电压(Vb3),第七PMOS管(P9)的栅极与第八PMOS管(P10)的栅极相连后也接第二偏置电压(Vb3),第五PMOS管(P3)的源极与所述第二PMOS管(P6)的漏极相连,第六PMOS管(P4)的源极与所述第三PMOS管(P7)的漏极相连,第五PMOS管(P3)的漏极与所述第四NMOS管(N2b)的漏极相连,第六PMOS管(P4)的漏极与所述第二NMOS管(N1b)的漏极相连,第七PMOS管(P9)的源极与所述第一NMOS管(N1a)的漏极相连后再与所述第一PMOS管(P5)的漏极相连,第八PMOS管(P10)的源极与所述第三NMOS管(N2a)的漏极相连后再与所述第四PMOS管(P8)的漏极相连。The P-type cascode transistor pair unit includes: a fifth PMOS transistor (P3), a sixth PMOS transistor (P4), a seventh PMOS transistor (P9) and an eighth PMOS transistor (P10); wherein, the fifth PMOS transistor (PMOS) The grid of the transistor (P3) is connected to the grid of the sixth PMOS transistor (P4) and then connected to the second bias voltage (Vb3), and the grid of the seventh PMOS transistor (P9) is connected to the grid of the eighth PMOS transistor (P10). After the electrodes are connected, the second bias voltage (Vb3) is also connected, the source of the fifth PMOS transistor (P3) is connected to the drain of the second PMOS transistor (P6), and the source of the sixth PMOS transistor (P4) is connected to the drain of the second PMOS transistor (P4). The drain of the third PMOS transistor (P7) is connected to each other, the drain of the fifth PMOS transistor (P3) is connected to the drain of the fourth NMOS transistor (N2b), and the drain of the sixth PMOS transistor (P4) is connected to the drain of the fourth NMOS transistor (P4). The drain of the second NMOS transistor (N1b) is connected, the source of the seventh PMOS transistor (P9) is connected to the drain of the first NMOS transistor (N1a) and then connected to the first PMOS transistor (P5) The drain of the eighth PMOS transistor (P10) is connected to the drain of the third NMOS transistor (N2a) and then connected to the drain of the fourth PMOS transistor (P8).
所述P型偏置电压晶体管单元包括:第十三PMOS管(P0);该第十三PMOS管(P0)栅极接共模控制信号(VCMFB),源极接电源电压(VDD),漏极接第九PMOS管(P1a)、第十PMOS管(P1b)、第十一PMOS管(P2a)和第十二PMOS管(P2b)的源极。The P-type bias voltage transistor unit includes: a thirteenth PMOS transistor (P0); the gate of the thirteenth PMOS transistor (P0) is connected to the common-mode control signal (VCMFB), the source is connected to the power supply voltage (VDD), and the drain The poles are connected to the sources of the ninth PMOS transistor (P1a), the tenth PMOS transistor (P1b), the eleventh PMOS transistor (P2a) and the twelfth PMOS transistor (P2b).
所述N型偏置尾电流晶体管单元包括:第六NMOS管(N5)、第七NMOS管(N6)、第八NMOS管(N7)和第九NMOS管(N8);其中,第六NMOS管(N5)的栅极与第七NMOS管(N6)的栅极相连后再与所述第十二PMOS管(P2b)的漏极相连,第八NMOS管(N7)的栅极与第九NMOS管(N8)的栅极相连后再与所述第十PMOS管(P1b)的漏极相连,第六NMOS管(N5)、第七NMOS管(N6),第八NMOS管(N7)和第九NMOS管(N8)的源极接地(GND)。The N-type bias tail current transistor unit includes: a sixth NMOS transistor (N5), a seventh NMOS transistor (N6), an eighth NMOS transistor (N7) and a ninth NMOS transistor (N8); wherein, the sixth NMOS transistor The gate of (N5) is connected with the gate of the seventh NMOS transistor (N6) and then connected with the drain of the twelfth PMOS transistor (P2b), and the gate of the eighth NMOS transistor (N7) is connected with the gate of the ninth NMOS The gate of the transistor (N8) is connected to the drain of the tenth PMOS transistor (P1b), and the sixth NMOS transistor (N5), the seventh NMOS transistor (N6), the eighth NMOS transistor (N7) and the The source of the nine NMOS transistors (N8) is grounded (GND).
所述N型共源共栅晶体管对单元包括:第十NMOS管(N3)、第十一NMOS管(N4)、第十二NMOS管(N9)和第十三NMOS管(N10);其中,第十NMOS管(N3)的栅极与第十一NMOS管(N4)的栅极相连后接第三偏置电压(Vb2),第十二NMOS管(N9)的栅极与第十三NMOS管(N10)的栅极相连后也接第三偏置电压(Vb2),第十NMOS管(N3)的源极与所述第七NMOS管(N6)的漏极相连,第十一NMOS管(N4)的源极与所述第八NMOS管(N7)的漏极相连,第十NMOS管(N3)的漏极与所述第十二PMOS管(P2b)的漏极相连,第十一NMOS管(N4)的漏极与所述第十PMOS管(P1b)的漏极相连,第十二NMOS管(N9)的源极与所述第九PMOS管(P1a)的漏极相连后再与所述第六NMOS管(N5)的漏极相连,第十三NMOS管(N10)的源极与所述第十一PMOS管(P2a)的漏极相连后再与所述第九NMOS管(N8)的漏极相连。The N-type cascode transistor pair unit includes: a tenth NMOS transistor (N3), an eleventh NMOS transistor (N4), a twelfth NMOS transistor (N9) and a thirteenth NMOS transistor (N10); wherein, The grid of the tenth NMOS transistor (N3) is connected to the grid of the eleventh NMOS transistor (N4) and then connected to the third bias voltage (Vb2), and the grid of the twelfth NMOS transistor (N9) is connected to the grid of the thirteenth NMOS transistor (N9). The gate of the tube (N10) is connected to the third bias voltage (Vb2), the source of the tenth NMOS tube (N3) is connected to the drain of the seventh NMOS tube (N6), and the eleventh NMOS tube The source of (N4) is connected to the drain of the eighth NMOS transistor (N7), the drain of the tenth NMOS transistor (N3) is connected to the drain of the twelfth PMOS transistor (P2b), and the eleventh NMOS transistor (P2b) is connected to the drain. The drain of the NMOS transistor (N4) is connected to the drain of the tenth PMOS transistor (P1b), and the source of the twelfth NMOS transistor (N9) is connected to the drain of the ninth PMOS transistor (P1a). Connected to the drain of the sixth NMOS transistor (N5), the source of the thirteenth NMOS transistor (N10) is connected to the drain of the eleventh PMOS transistor (P2a) and then connected to the ninth NMOS transistor The drain of (N8) is connected.
所述第七PMOS管(P9)的漏极和第十二NMOS管(N9)的漏极相连输出差分信号(VOUTP),即第一输出差分信号VOUTP;所述第八PMOS管(P10)的漏极和第十三NMOS管(N10)的漏极相连输出另一个差分信号(VOUTN),即第二输出差分信号VOUTN;所述差分信号VOUTP和VOUTN共同构成全差分输出信号。The drain of the seventh PMOS transistor (P9) is connected to the drain of the twelfth NMOS transistor (N9) to output a differential signal (VOUTP), that is, the first output differential signal VOUTP; the eighth PMOS transistor (P10) The drain is connected to the drain of the thirteenth NMOS transistor (N10) to output another differential signal (VOUTN), that is, the second output differential signal VOUTN; the differential signals VOUTP and VOUTN together constitute a fully differential output signal.
可选地,所述数据驱动的运算放大器偏置电路包括:偏置电压产生电路、输入差分信号比较器和数据驱动电流支路。Optionally, the data-driven operational amplifier bias circuit includes: a bias voltage generation circuit, an input differential signal comparator, and a data-driven current branch.
在本发明实施例中,该OTA的偏置电路与常规偏置电路不同,在通常的提供运算放大器偏置电压的电路之外,还增加了一个数据驱动支路和两个比较器。晶体管M1、M2、M3、M4、M5、M6a、M6b、M7、M8、M9、M10、M11、M12、M13、M14、M15、M16、M17a、M17b、M18、M19、M20、M21、M22、M23、M24、MK3、MK4、MK5、MK6构成运算放大器偏置主电路,晶体管M24的栅极接偏置电压Vb1,晶体管M18、M23的栅极接偏置电压Vb2,晶体管M7、M12、M14、M19、M21的栅极接偏置电压Vb3,晶体管M13、M15、M20、M22的栅极接偏置电压Vb4。通过控制字EN3、EN4控制晶体管MK3、MK4的通断,可以选择性地使相互并联的M6a、M6b接入电路,从而改变偏置电压Vb3的值。通过控制字EN5、EN6控制晶体管MK5、MK6的通断,可以选择性地使相互并联的M17a、M17b接入电路,从而改变偏置电压Vb2的值。电流源I1为偏置电路提供常规的偏置电流。比较器COMP1的负输入端和比较器COMP2的正输入端接差分输入信号VINN,比较器COMP1的正输入端和比较器COMP2的负输入端接差分输入信号VINP。数据驱动支路由晶体管MS1、MS2、MS3、MS4、MK1、MK2和电流源I2、I3构成,晶体管MS1、MS3的栅极接比较器COMP1的输出,晶体管MS2、MS4的栅极接比较器COMP2的输出。当输入差分信号较大时,比较器COMP1和比较器COMP2中的其中一个会被触发,输出高电平,从而晶体管MS1和晶体管MS2中的其中一个、晶体管MS3和晶体管MS4中的其中一个会相应导通,电流源I2或I3的电流被加入到偏置电路中,从而提高OTA的速度。控制字EN1、EN2可选择性地使晶体管MK1、MK2导通,从而控制数据驱动支路电流的大小。下面将分别对所述数据驱动的运算放大器偏置电路中的各个电路的连接关系做详细介绍。In the embodiment of the present invention, the bias circuit of the OTA is different from the conventional bias circuit. In addition to the usual circuit for providing the bias voltage of the operational amplifier, a data driving branch and two comparators are added. Transistors M1, M2, M3, M4, M5, M6a, M6b, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17a, M17b, M18, M19, M20, M21, M22, M23 , M24, MK3, MK4, MK5, MK6 constitute the operational amplifier bias main circuit, the gate of the transistor M24 is connected to the bias voltage Vb1, the gates of the transistors M18 and M23 are connected to the bias voltage Vb2, and the transistors M7, M12, M14, M19 The gate of M21 is connected to the bias voltage Vb3, and the gates of the transistors M13, M15, M20, and M22 are connected to the bias voltage Vb4. By controlling the on-off of the transistors MK3 and MK4 through the control words EN3 and EN4, the parallel-connected M6a and M6b can be selectively connected to the circuit, thereby changing the value of the bias voltage Vb3. By controlling the on-off of the transistors MK5 and MK6 through the control words EN5 and EN6, the parallel-connected M17a and M17b can be selectively connected to the circuit, thereby changing the value of the bias voltage Vb2. Current source I1 provides conventional bias current for the bias circuit. The negative input terminal of the comparator COMP1 and the positive input terminal of the comparator COMP2 are connected to the differential input signal VINN, and the positive input terminal of the comparator COMP1 and the negative input terminal of the comparator COMP2 are connected to the differential input signal VINP. The data drive branch is composed of transistors MS1, MS2, MS3, MS4, MK1, MK2 and current sources I2, I3. The gates of transistors MS1 and MS3 are connected to the output of comparator COMP1, and the gates of transistors MS2 and MS4 are connected to comparator COMP2. output. When the input differential signal is large, one of the comparator COMP1 and the comparator COMP2 will be triggered and output a high level, so that one of the transistor MS1 and the transistor MS2, one of the transistor MS3 and the transistor MS4 will respond accordingly Turning on, the current of the current source I2 or I3 is added to the bias circuit, thereby increasing the speed of the OTA. The control words EN1, EN2 can selectively turn on the transistors MK1, MK2, thereby controlling the magnitude of the current of the data driving branch. The connection relationship of each circuit in the data-driven operational amplifier bias circuit will be described in detail below.
所述偏置电压产生电路包括:第一偏置电流源(I1)、第十四NMOS管(M1)、第十五NMOS管(M2)、第十六NMOS管(M3)、第十七NMOS管(M4)、第十八NMOS管(M8)、第十九NMOS管(M9)、第二十NMOS管(M10)、第二十一NMOS管(M11)、第二十二NMOS管(M16)、第二十三NMOS管(M17a)、第二十四NMOS管(M17b)、第二十五NMOS管(M18)、第二十六NMOS管(M23)、第二十七NMOS管(M24)、第二十八NMOS管(MK5)、第二十九NMOS管(MK6)、第十四PMOS管(M5)、第十五PMOS管(M6a)、第十六PMOS管(M6b)、第十七PMOS管(M7)、第十八PMOS管(M12)、第十九PMOS管(M13)、第二十PMOS管(M14)、第二十一PMOS管(M15)、第二十二PMOS管(M19)、第二十三PMOS管(M20)、第二十四PMOS管(M21)、第二十五PMOS管(M22)、第二十六PMOS管(MK3)和第二十七PMOS管(MK4);The bias voltage generating circuit includes: a first bias current source (I1), a fourteenth NMOS transistor (M1), a fifteenth NMOS transistor (M2), a sixteenth NMOS transistor (M3), a seventeenth NMOS transistor tube (M4), eighteenth NMOS tube (M8), nineteenth NMOS tube (M9), twentieth NMOS tube (M10), twenty-first NMOS tube (M11), twenty-second NMOS tube (M16 ), the twenty-third NMOS tube (M17a), the twenty-fourth NMOS tube (M17b), the twenty-fifth NMOS tube (M18), the twenty-sixth NMOS tube (M23), the twenty-seventh NMOS tube (M24 ), the twenty-eighth NMOS transistor (MK5), the twenty-ninth NMOS transistor (MK6), the fourteenth PMOS transistor (M5), the fifteenth PMOS transistor (M6a), the sixteenth PMOS transistor (M6b), the Seventeenth PMOS tube (M7), eighteenth PMOS tube (M12), nineteenth PMOS tube (M13), twentieth PMOS tube (M14), twenty-first PMOS tube (M15), twenty-second PMOS tube Tube (M19), twenty-third PMOS tube (M20), twenty-fourth PMOS tube (M21), twenty-fifth PMOS tube (M22), twenty-sixth PMOS tube (MK3) and twenty-seventh PMOS tube Tube (MK4);
其中,第一偏置电流源(I1)负极与电源电压(VDD)相连,第一偏置电流源(I1)正极与第十四NMOS管(M1)的漏极相连后再与第十四NMOS管(M1)、第十五NMOS管(M2)、第十六NMOS管(M3)、第十七NMOS管(M4)、第十八NMOS管(M8)、第十九NMOS管(M9)、第二十NMOS管(M10)和第二十一NMOS管(M11)的栅极相连,第十四NMOS管(M1)的源极与第十五NMOS管(M2)的漏极相连,第十六NMOS管(M3)的源极与第十七NMOS管(M4)的漏极相连,第十八NMOS管(M8)的源极与第十九NMOS管(M9)的漏极相连,第二十NMOS管(M10)的源极与第二十一NMOS管(M11)的漏极相连,第二十二NMOS管(M16)的漏极和栅极相连后再与第二十三NMOS管(M17a)和第二十四NMOS管(M17b)的栅极相连,第二十二NMOS管(M16)的源极和第二十三NMOS管(M17a)和第二十四NMOS管(M17b)的漏极相连后再与第二十五NMOS管(M18)的源极相连,第二十三NMOS管(M17a)的源极与第二十八NMOS管(MK5)的漏极相连,第二十四NMOS管(M17b)的源极与第二十九NMOS管(MK6)的漏极相连,第二十八NMOS管(MK5)的栅极接第一控制字(EN5),第二十九NMOS管(MK6)的栅极接第二控制字(EN6),第二十五NMOS管(M18)的栅极与漏极相连后再与第二十六NMOS管(M23)的栅极相连作为第三偏置电压(Vb2),第二十六NMOS管(M23)的漏极与第二十七NMOS管(M24)的栅极相连作为第一偏置电压(Vb1),第二十六NMOS管(M23)的源极与第二十七NMOS管(M24)的漏极相连,第十五NMOS管(M2)、第十七NMOS管(M4)、第十九NMOS管(M9)、第二十一NMOS管(M11)、第二十七NMOS管(M24)、第二十八NMOS管(MK5)、第二十九NMOS管(MK6)的源极接地(GND),第十四PMOS管(M5)的栅极和漏极与第十五PMOS管(M6a)的栅极和第十六PMOS管(M6b)的栅极相连后再与前述第十六NMOS管(M3)的漏极相连,第十四PMOS管(M5)的源极与第十五PMOS管(M6a)的漏极和第十六PMOS管(M6b)的漏极相连后再与第十七PMOS管(M7)的源极相连,第十五PMOS管(M6a)的源极与第二十六PMOS管(MK3)的漏极相连,第十六PMOS管(M6b)的源极与第二十七PMOS管(MK4)的漏极相连,第二十六PMOS管(MK3)的栅极接第三控制字(EN3),第二十七PMOS管(MK4)栅极接第四控制字(EN4),第十七PMOS管(M7)的栅极和漏极相连后再与前述第十八NMOS管(M8)的漏极相连作为第二偏置电压(Vb3),该第二偏置电压(Vb3)与第十八PMOS管(M12)、第二十PMOS管(M14)、第二十二PMOS管(M19)和第二十四PMOS管(M21)的栅极相连,第十八PMOS管(M12)的漏极与前述第二十NMOS管(M10)的漏极相连,第十八PMOS管(M12)的源极与第十九PMOS管(M13)的漏极相连,第十九PMOS管(M13)的栅极与第二十一PMOS管(M15)的栅极相连后再与第十八PMOS管(M12)的漏极相连作为第四偏置电压(Vb4),该第四偏置电压(Vb4)与第二十三PMOS管(M20)和第二十五PMOS管(M22)的栅极相连,第二十PMOS管(M14)的源极与第二十一PMOS管(M15)的漏极相连,第二十PMOS管(M14)的漏极与前述第二十二NMOS管(M16)的漏极相连,第二十二PMOS管(M19)的源极与第二十三PMOS管(M20)的漏极相连,第二十二PMOS管(M19)的漏极与前述第二十五NMOS管(M18)的漏极相连,第二十四PMOS管(M21)的源极与第二十五PMOS管(M22)的漏极相连,第二十四PMOS管(M21)的漏极与前述第二十六NMOS管(M23)的漏极相连,第十九PMOS管(M13)、第二十一PMOS管(M15)、第二十三PMOS管(M20)、第二十五PMOS管(M22)、第二十六PMOS管(MK3)、第二十七PMOS管(MK4)的源极接电源电压(VDD)。Wherein, the negative electrode of the first bias current source (I1) is connected to the power supply voltage (VDD), the positive electrode of the first bias current source (I1) is connected to the drain of the fourteenth NMOS transistor (M1) and then connected to the fourteenth NMOS transistor (M1). tube (M1), fifteenth NMOS tube (M2), sixteenth NMOS tube (M3), seventeenth NMOS tube (M4), eighteenth NMOS tube (M8), nineteenth NMOS tube (M9), The gate of the 20th NMOS transistor (M10) is connected to the gate of the 21st NMOS transistor (M11), the source of the 14th NMOS transistor (M1) is connected to the drain of the 15th NMOS transistor (M2), and the drain of the 10th NMOS transistor (M1) is connected. The source of the sixth NMOS transistor (M3) is connected to the drain of the seventeenth NMOS transistor (M4), the source of the eighteenth NMOS transistor (M8) is connected to the drain of the nineteenth NMOS transistor (M9), and the second The source of the tenth NMOS transistor (M10) is connected to the drain of the twenty-first NMOS transistor (M11), and the drain of the twenty-second NMOS transistor (M16) is connected to the gate and then connected to the twenty-third NMOS transistor (M16). M17a) is connected to the gate of the twenty-fourth NMOS transistor (M17b), the source of the twenty-second NMOS transistor (M16) is connected to the twenty-third NMOS transistor (M17a) and the twenty-fourth NMOS transistor (M17b) After the drain is connected, it is connected to the source of the twenty-fifth NMOS transistor (M18), and the source of the twenty-third NMOS transistor (M17a) is connected to the drain of the twenty-eighth NMOS transistor (MK5). The source of the fourth NMOS transistor (M17b) is connected to the drain of the twenty-ninth NMOS transistor (MK6), the gate of the twenty-eighth NMOS transistor (MK5) is connected to the first control word (EN5), and the twenty-ninth NMOS transistor (MK5) is connected to the first control word (EN5). The gate of the transistor (MK6) is connected to the second control word (EN6), the gate of the twenty-fifth NMOS transistor (M18) is connected to the drain and then connected to the gate of the twenty-sixth NMOS transistor (M23) as the first Three bias voltages (Vb2), the drain of the twenty-sixth NMOS transistor (M23) is connected to the gate of the twenty-seventh NMOS transistor (M24) as the first bias voltage (Vb1), the twenty-sixth NMOS transistor The source of (M23) is connected to the drain of the twenty-seventh NMOS transistor (M24), the fifteenth NMOS transistor (M2), the seventeenth NMOS transistor (M4), the nineteenth NMOS transistor (M9), the second The source ground (GND) of the eleventh NMOS transistor (M11), the twenty-seventh NMOS transistor (M24), the twenty-eighth NMOS transistor (MK5), and the twenty-ninth NMOS transistor (MK6), and the fourteenth PMOS transistor The gate and drain of (M5) are connected to the gate of the fifteenth PMOS transistor (M6a) and the gate of the sixteenth PMOS transistor (M6b) and then connected to the drain of the aforementioned sixteenth NMOS transistor (M3) , the source of the fourteenth PMOS transistor (M5) is connected to the drain of the fifteenth PMOS transistor (M6a) and the drain of the sixteenth PMOS transistor (M6b) and then connected to the source of the seventeenth PMOS transistor (M7) Pole connected, fifteenth PMO The source of the S tube (M6a) is connected to the drain of the twenty-sixth PMOS transistor (MK3), the source of the sixteenth PMOS transistor (M6b) is connected to the drain of the twenty-seventh PMOS transistor (MK4), and the drain of the twenty-seventh PMOS transistor (MK4) is connected. The gate of the twenty-sixth PMOS transistor (MK3) is connected to the third control word (EN3), the gate of the twenty-seventh PMOS transistor (MK4) is connected to the fourth control word (EN4), and the gate of the seventeenth PMOS transistor (M7) and then connected to the drain of the eighteenth NMOS transistor (M8) as the second bias voltage (Vb3), the second bias voltage (Vb3) is connected to the eighteenth PMOS transistor (M12), The gates of the twentieth PMOS transistor (M14), the twenty-second PMOS transistor (M19) and the twenty-fourth PMOS transistor (M21) are connected, and the drain of the eighteenth PMOS transistor (M12) is connected to the aforementioned twentieth NMOS transistor. The drain of the transistor (M10) is connected, the source of the eighteenth PMOS transistor (M12) is connected to the drain of the nineteenth PMOS transistor (M13), and the gate of the nineteenth PMOS transistor (M13) is connected to the twenty-first PMOS transistor (M13). The gate of the PMOS transistor (M15) is connected and then connected to the drain of the eighteenth PMOS transistor (M12) as the fourth bias voltage (Vb4), and the fourth bias voltage (Vb4) is connected with the twenty-third PMOS transistor (M20) is connected to the gate of the twenty-fifth PMOS transistor (M22), the source of the twentieth PMOS transistor (M14) is connected to the drain of the twenty-first PMOS transistor (M15), and the twentieth PMOS transistor ( The drain of M14) is connected to the drain of the aforementioned twenty-second NMOS transistor (M16), the source of the twenty-second PMOS transistor (M19) is connected to the drain of the twenty-third PMOS transistor (M20), and the second The drain of the twelve PMOS transistors (M19) is connected to the drain of the twenty-fifth NMOS transistor (M18), and the source of the twenty-fourth PMOS transistor (M21) is connected to the drain of the twenty-fifth PMOS transistor (M22). The drain of the twenty-fourth PMOS transistor (M21) is connected to the drain of the aforementioned twenty-sixth NMOS transistor (M23), the nineteenth PMOS transistor (M13), the twenty-first PMOS transistor (M15), The sources of the twenty-third PMOS transistor (M20), the twenty-fifth PMOS transistor (M22), the twenty-sixth PMOS transistor (MK3), and the twenty-seventh PMOS transistor (MK4) are connected to the power supply voltage (VDD).
所述输入差分信号比较器包括:两个比较器(COMP1、COMP2),即第一比较器COMP1和第二比较器COMP2;其中,第一比较器(COMP1)的负输入端和第二比较器(COMP2)的正输入端接输入差分信号VINN(即第一差分信号VINN),第一比较器(COMP1)的正输入端和第二比较器(COMP2)的负输入端接输入差分信号VINP(即第二差分信号VINP),第一比较器(COMP1)输出第一控制信号VC1,第二比较器(COMP2)输出第二控制信号VC2。The input differential signal comparator includes: two comparators (COMP1, COMP2), that is, the first comparator COMP1 and the second comparator COMP2; wherein, the negative input terminal of the first comparator (COMP1) and the second comparator The positive input terminal of (COMP2) is connected to the input differential signal VINN (ie, the first differential signal VINN), and the positive input terminal of the first comparator (COMP1) and the negative input terminal of the second comparator (COMP2) are connected to the input differential signal VINP ( That is, the second differential signal VINP), the first comparator ( COMP1 ) outputs the first control signal VC1 , and the second comparator ( COMP2 ) outputs the second control signal VC2 .
所述数据驱动电流支路包括:第二偏置电流源(I2)、第三偏置电流源(I3)、第三十NMOS管(MS1)、第三十一NMOS管(MS2),第三十二NMOS管(MS3)、第三十三NMOS管(MS4)、第三十四NMOS管(MK1)和第三十五NMOS管(MK2);The data driving current branch includes: a second bias current source (I2), a third bias current source (I3), a thirtieth NMOS transistor (MS1), a thirty-first NMOS transistor (MS2), and a third bias current source (I3). Twelve NMOS transistors (MS3), thirty-third NMOS transistors (MS4), thirty-fourth NMOS transistors (MK1) and thirty-fifth NMOS transistors (MK2);
其中,第二偏置电流源(I2)负极和第三偏置电流源(I3)负极与电源电压(VDD)相连,第三十NMOS管(MS1)的源极与第三十一NMOS管(MS2)的源极相连后再与第二偏置电流源(I2)正极相连,第三十NMOS管(MS1)的栅极接第一控制信号VC1,第三十一NMOS管(MS2)的栅极接第二控制信号VC2,第三十NMOS管(MS1)的漏极与第三十一NMOS管(MS2)的漏极相连后再与第三十四NMOS管(MK1)的漏极相连,第三十四NMOS管(MK1)的栅极接第五控制字(EN1),第三十二NMOS管(MS3)的源极与第三十三NMOS管(MS4)的源极相连后再与第三偏置电流源(I3)正极相连,第三十二NMOS管(MS3)的栅极接第一控制信号VC1,第三十三NMOS管(MS4)的栅极接第二控制信号VC2,第三十二NMOS管(MS3)的漏极与第三十三NMOS管(MS4)的漏极相连后再与第三十五NMOS管(MK2)的漏极相连,第三十五NMOS管(MK2)的栅极接第六控制字(EN2),第三十四NMOS管(MK1)的源极和第三十五NMOS管(MK2)的源极与前述第十四NMOS管(M1)的漏极相连。Wherein, the negative electrode of the second bias current source (I2) and the negative electrode of the third bias current source (I3) are connected to the power supply voltage (VDD), and the source electrode of the 30th NMOS transistor (MS1) is connected to the source electrode of the 31st NMOS transistor ( The source of MS2) is connected to the positive electrode of the second bias current source (I2), the grid of the 30th NMOS transistor (MS1) is connected to the first control signal VC1, and the gate of the 31st NMOS transistor (MS2) connected to the second control signal VC2, the drain of the 30th NMOS transistor (MS1) is connected to the drain of the 31st NMOS transistor (MS2) and then connected to the drain of the 34th NMOS transistor (MK1), The gate of the thirty-fourth NMOS transistor (MK1) is connected to the fifth control word (EN1), the source of the thirty-second NMOS transistor (MS3) is connected to the source of the thirty-third NMOS transistor (MS4) and then connected to the source of the thirty-third NMOS transistor (MS4). The positive pole of the third bias current source (I3) is connected, the gate of the thirty-second NMOS transistor (MS3) is connected to the first control signal VC1, the gate of the thirty-third NMOS transistor (MS4) is connected to the second control signal VC2, The drain of the thirty-second NMOS transistor (MS3) is connected to the drain of the thirty-third NMOS transistor (MS4) and then connected to the drain of the thirty-fifth NMOS transistor (MK2), and the thirty-fifth NMOS transistor ( The gate of MK2) is connected to the sixth control word (EN2), the source of the thirty-fourth NMOS transistor (MK1) and the source of the thirty-fifth NMOS transistor (MK2) are connected to the fourteenth NMOS transistor (M1) connected to the drain.
可选地,所述第一比较器和第二比较器均包括:比较器主电路和偏置电流可调的偏置电路。Optionally, both the first comparator and the second comparator include: a comparator main circuit and a bias circuit with adjustable bias current.
在本发明实施例中,图2是本发明中比较器的电路图。比较器的主电路也采用互补输入循环结构,由晶体管MK7、MK8、PC0a、PC0b、PC1a、PC1b、PC2a、PC2b、PC3、PC4、PC5、PC6、PC7、PC8、PC9、PC10、NC0、NC1a、NC1b、NC2a、NC2b、NC3、NC4、NC5、NC6、NC7、NC8、NC9、NC10构成。根据不同的应用需求,通过控制字EN7、EN8控制晶体管MK7、MK8的通断,可选择性地将晶体管PC0a或PC0b接入电路,以调整P输入支路的偏置电流,改变比较器的打开阈值。晶体管MC1、MC2、MC3、MC4、MC5、MC6、MC7、MC8、MC9、MC10、MC11、MC12、MC13、MC14、MC15、MC16、MC17、MC18、MC19、MC20、MC21、MC22、MC23、MC24构成比较器偏置主电路。比较器的偏置电流由电流源IC1、IC2提供,根据不同的应用需求,通过控制字EN9、EN10控制晶体管MK9、MK10的通断,可调整比较器偏置电流的大小,从而调整比较器的速度。通过控制字EN7、EN8、EN9、EN10的设置,可以控制大电流的工作窗口。In an embodiment of the present invention, FIG. 2 is a circuit diagram of a comparator in the present invention. The main circuit of the comparator also adopts a complementary input loop structure, consisting of transistors MK7, MK8, PC0a, PC0b, PC1a, PC1b, PC2a, PC2b, PC3, PC4, PC5, PC6, PC7, PC8, PC9, PC10, NC0, NC1a, NC1b, NC2a, NC2b, NC3, NC4, NC5, NC6, NC7, NC8, NC9, NC10. According to different application requirements, through the control words EN7, EN8 to control the on-off of the transistors MK7, MK8, the transistor PC0a or PC0b can be selectively connected to the circuit to adjust the bias current of the P input branch and change the opening of the comparator. threshold. Transistors MC1, MC2, MC3, MC4, MC5, MC6, MC7, MC8, MC9, MC10, MC11, MC12, MC13, MC14, MC15, MC16, MC17, MC18, MC19, MC20, MC21, MC22, MC23, MC24 composition comparison tor bias the main circuit. The bias current of the comparator is provided by current sources IC1 and IC2. According to different application requirements, the on-off of the transistors MK9 and MK10 can be controlled through the control words EN9 and EN10 to adjust the magnitude of the comparator bias current, thereby adjusting the comparator’s speed. Through the setting of control words EN7, EN8, EN9, EN10, the working window of high current can be controlled.
所述比较器主电路包括:第三十六NMOS管(NC1a)、第三十七NMOS管(NC1b)、第三十八NMOS管(NC2a)、第三十九NMOS管(NC2b)、第四十NMOS管(NC0)、第四十一NMOS管(NC5)、第四十二NMOS管(NC6),第四十三NMOS管(NC7),第四十四NMOS管(NC8)、第四十五NMOS管(NC3)、第四十六NMOS管(NC4)、第四十七NMOS管(NC9)、第四十八NMOS管(NC10)、第二十八PMOS管(PC5)、第二十九PMOS管(PC6)、第三十PMOS管(PC7)、第三十一PMOS管(PC8)、第三十二PMOS管(PC3)、第三十三PMOS管(PC4)、第三十四PMOS管(PC9)、第三十五PMOS管(PC10)、第三十六PMOS管(PC1a)、第三十七PMOS管(PC1b)、第三十八PMOS管(PC2a)、第三十九PMOS管(PC2b)、第四十PMOS管(PC0a)、第四十一PMOS管(PC0b)、第四十二PMOS管(MK7)和第四十三PMOS管(MK8);The comparator main circuit includes: the thirty-sixth NMOS transistor (NC1a), the thirty-seventh NMOS transistor (NC1b), the thirty-eighth NMOS transistor (NC2a), the thirty-ninth NMOS transistor (NC2b), the fourth Ten NMOS tubes (NC0), forty-first NMOS tubes (NC5), forty-second NMOS tubes (NC6), forty-third NMOS tubes (NC7), forty-fourth NMOS tubes (NC8), forty-second Five NMOS tubes (NC3), forty-sixth NMOS tubes (NC4), forty-seventh NMOS tubes (NC9), forty-eighth NMOS tubes (NC10), twenty-eighth PMOS tubes (PC5), twenty-eighth Nine PMOS transistors (PC6), thirty-first PMOS transistors (PC7), thirty-first PMOS transistors (PC8), thirty-second PMOS transistors (PC3), thirty-third PMOS transistors (PC4), thirty-fourth PMOS tube (PC9), thirty-fifth PMOS tube (PC10), thirty-sixth PMOS tube (PC1a), thirty-seventh PMOS tube (PC1b), thirty-eighth PMOS tube (PC2a), thirty-ninth PMOS transistor (PC2b), fortieth PMOS transistor (PC0a), forty-first PMOS transistor (PC0b), forty-second PMOS transistor (MK7) and forty-third PMOS transistor (MK8);
其中,第三十六NMOS管(NC1a)、第三十七NMOS管(NC1b)的栅极都与输入全差分信号中的其中一个差分信号VCN(即第三差分信号VCN)相连,第三十八NMOS管(NC2a)、第三十九NMOS管(NC2b)的栅极都与前述输入全差分信号中的另一个差分信号VCP(即第四差分信号VCP)相连,第四十NMOS管(NC0)栅极接第五偏置电压(VCb1),源极接地(GND),漏极接第三十六NMOS管(NC1a)、第三十七NMOS管(NC1b)、第三十八NMOS管(NC2a)和第三十九NMOS管(NC2b)的源极,第二十八PMOS管(PC5)的栅极与第二十九PMOS管(PC6)的栅极相连后再与第三十九NMOS管(NC2b)的漏极相连,第二十八PMOS管(PC5)、第二十九PMOS管(PC6)、第三十PMOS管(PC7)和第三十一PMOS管(PC8)的源极接电源电压(VDD),第三十二PMOS管(PC3)的栅极与第三十三PMOS管(PC4)的栅极相连后接第六偏置电压(VCb3),第三十四PMOS管(PC9)的栅极与第三十五PMOS管(PC10)的栅极相连后也接第六偏置电压(VCb3),第三十二PMOS管(PC3)的源极与第二十九PMOS管(PC6)的漏极相连,第三十三PMOS管(PC4)的源极与第三十PMOS管(PC7)的漏极相连,第三十二PMOS管(PC3)的漏极与第三十九NMOS管(NC2b)的漏极相连,第三十三PMOS管(PC4)的漏极与第三十七NMOS管(NC1b)的漏极相连,第三十四PMOS管(PC9)的源极与第三十六NMOS管(NC1a)的漏极相连后再与第二十八PMOS管(PC5)的漏极相连,第三十五PMOS管(PC10)的源极与第三十八NMOS管(NC2a)的漏极相连后再与第三十一PMOS管(PC8)的漏极相连,第三十六PMOS管(PC1a)、第三十七PMOS管(PC1b)的栅极都与输入全差分信号中的其中一个差分信号VCN(即第三差分信号VCN)相连,第三十八PMOS管(PC2a)、第三十九PMOS管(PC2b)的栅极都与前述输入全差分信号中的另一个差分信号VCP(即第四差分信号VCP)相连,第四十PMOS管(PC0a)和第四十一PMOS管(PC0b)的栅极接第七偏置电压(VCb4),第四十PMOS管(PC0a)的源极接第四十二PMOS管(MK7)的漏极,第四十一PMOS管(PC0b)的源极接第四十三PMOS管(MK8)的漏极,第四十二PMOS管(MK7)的栅极接第七控制字(EN7),第四十三PMOS管(MK8)的栅极接第八控制字(EN8),第四十二PMOS管(MK7)和第四十三PMOS管(MK8)的源极接电源电压(VDD),第四十PMOS管(PC0a)和第四十一PMOS管(PC0b)的漏极接第三十六PMOS管(PC1a)、第三十七PMOS管(PC1b)、第三十八PMOS管(PC2a)和第三十九PMOS管(PC2b)的源极,第四十一NMOS管(NC5)的栅极与第四十二NMOS管(NC6)的栅极相连后再与第三十九PMOS管(PC2b)的漏极相连,第四十三NMOS管(NC7)的栅极与第四十四NMOS管(NC8)的栅极相连后再与第三十七PMOS管(PC1b)的漏极相连,第四十一NMOS管(NC5)、第四十二NMOS管(NC6),第四十三NMOS管(NC7)和第四十四NMOS管(NC8)的源极接地(GND),第四十五NMOS管(NC3)的栅极与第四十六NMOS管(NC4)的栅极相连后接第八偏置电压(VCb2),第四十七NMOS管(NC9)的栅极与第四十八NMOS管(NC10)的栅极相连后也接第八偏置电压(VCb2),第四十五NMOS管(NC3)的源极与第四十二NMOS管(NC6)的漏极相连,第四十六NMOS管(NC4)的源极与第四十三NMOS管(NC7)的漏极相连,第四十五NMOS管(NC3)的漏极与第三十九PMOS管(PC2b)的漏极相连,第四十六NMOS管(NC4)的漏极与第三十七PMOS管(PC1b)的漏极相连,第四十七NMOS管(NC9)的源极与第三十六PMOS管(PC1a)的漏极相连后再与第四十一NMOS管(NC5)的漏极相连,第四十八NMOS管(NC10)的源极与第三十八PMOS管(PC2a)的漏极相连后再与第四十四NMOS管(NC8)的漏极相连,第四十八NMOS管(NC10)的漏极和第三十五PMOS管(PC10)的漏极相连后再与第三十PMOS管(PC7)的栅极和第三十一PMOS管(PC8)的栅极相连,第四十七NMOS管(NC9)与第三十四PMOS管(PC9)相连作为比较器输出VCOUT。Wherein, the gates of the thirty-sixth NMOS transistor (NC1a) and the thirty-seventh NMOS transistor (NC1b) are connected to one of the differential signal VCN (that is, the third differential signal VCN) in the input full differential signal, and the thirty-sixth The gates of the eighth NMOS transistor (NC2a) and the thirty-ninth NMOS transistor (NC2b) are connected to another differential signal VCP (that is, the fourth differential signal VCP) in the aforementioned input full differential signal, and the fortieth NMOS transistor (NC0 ) the gate is connected to the fifth bias voltage (VCb1), the source is grounded (GND), and the drain is connected to the thirty-sixth NMOS transistor (NC1a), the thirty-seventh NMOS transistor (NC1b), and the thirty-eighth NMOS transistor ( NC2a) and the source of the thirty-ninth NMOS transistor (NC2b), the gate of the twenty-eighth PMOS transistor (PC5) is connected to the gate of the twenty-ninth PMOS transistor (PC6) and then connected to the gate of the thirty-ninth NMOS transistor (PC6) The drain of the transistor (NC2b) is connected, and the source electrodes of the twenty-eighth PMOS transistor (PC5), the twenty-ninth PMOS transistor (PC6), the thirty-first PMOS transistor (PC7) and the thirty-first PMOS transistor (PC8) Connected to the power supply voltage (VDD), the gate of the thirty-second PMOS transistor (PC3) is connected to the gate of the thirty-third PMOS transistor (PC4) and then connected to the sixth bias voltage (VCb3), the thirty-fourth PMOS transistor The gate of (PC9) is connected to the gate of the thirty-fifth PMOS transistor (PC10) and then connected to the sixth bias voltage (VCb3), and the source of the thirty-second PMOS transistor (PC3) is connected to the gate of the twenty-ninth PMOS transistor (PC10). The drain of the thirty-third PMOS transistor (PC4) is connected to the drain of the thirty-third PMOS transistor (PC7), and the drain of the thirty-second PMOS transistor (PC3) is connected to the drain of the third PMOS transistor (PC3). The drain of the nineteenth NMOS transistor (NC2b) is connected, the drain of the thirty-third PMOS transistor (PC4) is connected to the drain of the thirty-seventh NMOS transistor (NC1b), and the source of the thirty-fourth PMOS transistor (PC9) The electrode is connected to the drain of the thirty-sixth NMOS transistor (NC1a) and then connected to the drain of the twenty-eighth PMOS transistor (PC5), and the source of the thirty-fifth PMOS transistor (PC10) is connected to the drain of the thirty-eighth NMOS transistor (PC10). The drain of the transistor (NC2a) is connected to the drain of the thirty-first PMOS transistor (PC8), and the gates of the thirty-sixth PMOS transistor (PC1a) and the thirty-seventh PMOS transistor (PC1b) are connected to the input One of the differential signals VCN (that is, the third differential signal VCN) in the fully differential signal is connected, and the gates of the thirty-eighth PMOS transistor (PC2a) and the thirty-ninth PMOS transistor (PC2b) are connected to the aforementioned input fully differential signal. Another differential signal VCP (that is, the fourth differential signal VCP) is connected, the gates of the fortieth PMOS transistor (PC0a) and the forty-first PMOS transistor (PC0b) are connected to the seventh bias voltage (VCb4), the fortieth The source of the PMOS transistor (PC0a) is connected to the drain of the forty-second PMOS transistor (MK7), and the forty-first The source of the PMOS transistor (PC0b) is connected to the drain of the forty-third PMOS transistor (MK8), the gate of the forty-second PMOS transistor (MK7) is connected to the seventh control word (EN7), and the forty-third PMOS transistor ( The gate of MK8) is connected to the eighth control word (EN8), the sources of the forty-second PMOS transistor (MK7) and the forty-third PMOS transistor (MK8) are connected to the power supply voltage (VDD), and the fortieth PMOS transistor (PC0a ) and the drain of the forty-first PMOS transistor (PC0b) are connected to the thirty-sixth PMOS transistor (PC1a), the thirty-seventh PMOS transistor (PC1b), the thirty-eighth PMOS transistor (PC2a) and the thirty-ninth PMOS transistor The source of the transistor (PC2b), the gate of the forty-first NMOS transistor (NC5) is connected to the gate of the forty-second NMOS transistor (NC6) and then connected to the drain of the thirty-ninth PMOS transistor (PC2b) , the gate of the forty-third NMOS transistor (NC7) is connected to the gate of the forty-fourth NMOS transistor (NC8) and then connected to the drain of the thirty-seventh PMOS transistor (PC1b), the forty-first NMOS transistor (NC5), the forty-second NMOS transistor (NC6), the source ground (GND) of the forty-third NMOS transistor (NC7) and the forty-fourth NMOS transistor (NC8), the forty-fifth NMOS transistor (NC3) The grid of the forty-sixth NMOS transistor (NC4) is connected to the eighth bias voltage (VCb2), and the grid of the forty-seventh NMOS transistor (NC9) is connected to the grid of the forty-eighth NMOS transistor (NC10). After the gate of the grid is connected, it is also connected to the eighth bias voltage (VCb2), the source of the forty-fifth NMOS transistor (NC3) is connected to the drain of the forty-second NMOS transistor (NC6), and the forty-sixth NMOS transistor (NC6) is connected to the drain. The source of NC4) is connected to the drain of the forty-third NMOS transistor (NC7), the drain of the forty-fifth NMOS transistor (NC3) is connected to the drain of the thirty-ninth PMOS transistor (PC2b), and the fortieth The drain of the sixth NMOS transistor (NC4) is connected to the drain of the thirty-seventh PMOS transistor (PC1b), and the source of the forty-seventh NMOS transistor (NC9) is connected to the drain of the thirty-sixth PMOS transistor (PC1a) Then it is connected to the drain of the forty-first NMOS transistor (NC5), and the source of the forty-eighth NMOS transistor (NC10) is connected to the drain of the thirty-eighth PMOS transistor (PC2a) and then connected to the forty-fourth NMOS transistor (PC2a). The drain of the NMOS transistor (NC8) is connected, and the drain of the forty-eighth NMOS transistor (NC10) is connected to the drain of the thirty-fifth PMOS transistor (PC10) and then connected to the gate of the thirty-fifth PMOS transistor (PC7). It is connected to the gate of the thirty-first PMOS transistor (PC8), and the forty-seventh NMOS transistor (NC9) is connected to the thirty-fourth PMOS transistor (PC9) as a comparator output VCOUT.
所述偏置电流可调的偏置电路包括:第四偏置电流源(IC1)、第五偏置电流源(IC2)、第四十九NMOS管(MC1)、第五十NMOS管(MC2)、第五十一NMOS管(MC3)、第五十二NMOS管(MC4)、第五十三NMOS管(MC8)、第五十四NMOS管(MC9)、第五十五NMOS管(MC10)、第五十六NMOS管(MC11)、第五十七NMOS管(MC16)、第五十八NMOS管(MC17)、第五十九NMOS管(MC18)、第六十NMOS管(MC23)、第六十一NMOS管(MC24)、第六十二NMOS管(MK9)、第六十三NMOS管(MK10)、第四十四PMOS管(MC5)、第四十五PMOS管(MC6)、第四十六PMOS管(MC7)、第四十七PMOS管(MC12)、第四十八PMOS管(MC13)、第四十九PMOS管(MC14)、第五十PMOS管(MC15)、第五十一PMOS管(MC19)、第五十二PMOS管(MC20)、第五十三PMOS管(MC21)和第五十四PMOS管(MC22);The bias circuit with adjustable bias current includes: a fourth bias current source (IC1), a fifth bias current source (IC2), a forty-ninth NMOS transistor (MC1), a fiftieth NMOS transistor (MC2 ), the fifty-first NMOS tube (MC3), the fifty-second NMOS tube (MC4), the fifty-third NMOS tube (MC8), the fifty-fourth NMOS tube (MC9), the fifty-fifth NMOS tube (MC10 ), the fifty-sixth NMOS tube (MC11), the fifty-seventh NMOS tube (MC16), the fifty-eighth NMOS tube (MC17), the fifty-ninth NMOS tube (MC18), the sixtieth NMOS tube (MC23) , the sixty-first NMOS tube (MC24), the sixty-second NMOS tube (MK9), the sixty-third NMOS tube (MK10), the forty-fourth PMOS tube (MC5), the forty-fifth PMOS tube (MC6) , the forty-sixth PMOS transistor (MC7), the forty-seventh PMOS transistor (MC12), the forty-eighth PMOS transistor (MC13), the forty-ninth PMOS transistor (MC14), the fiftieth PMOS transistor (MC15), Fifty-first PMOS transistor (MC19), fifty-second PMOS transistor (MC20), fifty-third PMOS transistor (MC21) and fifty-fourth PMOS transistor (MC22);
其中,第四偏置电流源(IC1)负极和第五偏置电流源(IC2)负极与电源电压(VDD)相连,第四十九NMOS管(MC1)的漏极与第四十九NMOS管(MC1)、第五十NMOS管(MC2)、第五十一NMOS管(MC3)、第五十二NMOS管(MC4)、第五十三NMOS管(MC8)、第五十四NMOS管(MC9)、第五十五NMOS管(MC10)和第五十六NMOS管(MC11)的栅极相连,第四十九NMOS管(MC1)的源极与第五十NMOS管(MC2)的漏极相连,第五十一NMOS管(MC3)的源极与第五十二NMOS管(MC4)的漏极相连,第五十三NMOS管(MC8)的源极与第五十四NMOS管(MC9)的漏极相连,第五十五NMOS管(MC10)的源极与第五十六NMOS管(MC11)的漏极相连,第五十七NMOS管(MC16)的漏极和栅极相连后再与第五十八NMOS管(MC17)的栅极相连,第五十七NMOS管(MC16)的源极和第五十八NMOS管(MC17)的漏极相连后再与第五十九NMOS管(MC18)的源极相连,第五十九NMOS管(MC18)的栅极与漏极相连后再与第六十NMOS管(MC23)的栅极相连作为第八偏置电压(VCb2),第六十NMOS管(MC23)的漏极与第六十一NMOS管(MC24)的栅极相连作为第五偏置电压(VCb1),第六十NMOS管(MC23)的源极与第六十一NMOS管(MC24)的漏极相连,第五十NMOS管(MC2)、第五十二NMOS管(MC4)、第五十四NMOS管(MC9)、第五十六NMOS管(MC11)、第五十八NMOS管(MC17)、第六十一NMOS管(MC24)的源极接地(GND),第四十四PMOS管(MC5)的栅极与第四十五PMOS管(MC6)的栅极和漏极相连后再与前述第五十一NMOS管(MC3)的漏极相连,第四十四PMOS管(MC5)的源极与第四十五PMOS管(MC6)的漏极相连后再与第四十六PMOS管(MC7)的源极相连,第四十六PMOS管(MC7)的栅极和漏极相连后再与前述第五十三NMOS管(MC8)的漏极相连作为第六偏置电压(VCb3),该第二偏置电压(Vb3)与第四十七PMOS管(MC12)、第四十九PMOS管(MC14)、第五十一PMOS管(MC19)和第五十三PMOS管(MC21)的栅极相连,第四十七PMOS管(MC12)的漏极与前述第五十五NMOS管(MC10)的漏极相连,第四十七PMOS管(MC12)的源极与第四十八PMOS管(MC13)的漏极相连,第四十八PMOS管(MC13)的栅极与第五十PMOS管(MC15)的栅极相连后再与第四十七PMOS管(MC12)的漏极相连作为第七偏置电压(VCb4),该第四偏置电压(Vb4)与第五十二PMOS管(MC20)和第五十四PMOS管(MC22)的栅极相连,第四十九PMOS管(MC14)的源极与第五十PMOS管(MC15)的漏极相连,第四十九PMOS管(MC14)的漏极与前述第五十七NMOS管(MC16)的漏极相连,第五十一PMOS管(MC19)的源极与第五十二PMOS管(MC20)的漏极相连,第五十一PMOS管(MC19)的漏极与前述第五十九NMOS管(MC18)的漏极相连,第五十三PMOS管(MC21)的源极与第五十四PMOS管(MC22)的漏极相连,第五十三PMOS管(MC21)的漏极与前述第六十NMOS管(MC23)的漏极相连,第四十五PMOS管(MC6)、第四十八PMOS管(MC13)、第五十PMOS管(MC15)、第五十二PMOS管(MC20)、第五十四PMOS管(MC22)的源极接电源电压(VDD),第四偏置电流源(IC1)的正极与第六十二NMOS管(MK9)的漏极相连,第六十二NMOS管(MK9)的栅极接第九控制字(EN9),第五偏置电流源(IC2)的正极与第六十三NMOS管(MK10)的漏极相连,第六十三NMOS管(MK10)的栅极接第十控制字(EN10),第六十二NMOS管(MK9)的源极和第六十三NMOS管(MK10)的源极与第四十九NMOS管(MC1)的漏极相连。Wherein, the cathode of the fourth bias current source (IC1) and the cathode of the fifth bias current source (IC2) are connected to the power supply voltage (VDD), and the drain of the forty-ninth NMOS transistor (MC1) is connected to the drain of the forty-ninth NMOS transistor (MC1), the fiftieth NMOS tube (MC2), the fifty-first NMOS tube (MC3), the fifty-second NMOS tube (MC4), the fifty-third NMOS tube (MC8), the fifty-fourth NMOS tube ( MC9), the gates of the fifty-fifth NMOS transistor (MC10) and the fifty-sixth NMOS transistor (MC11) are connected, the source of the forty-ninth NMOS transistor (MC1) is connected to the drain of the fiftieth NMOS transistor (MC2) The source of the fifty-first NMOS transistor (MC3) is connected to the drain of the fifty-second NMOS transistor (MC4), and the source of the fifty-third NMOS transistor (MC8) is connected to the fifty-fourth NMOS transistor ( MC9) is connected to the drain, the source of the fifty-fifth NMOS transistor (MC10) is connected to the drain of the fifty-sixth NMOS transistor (MC11), and the drain of the fifty-seventh NMOS transistor (MC16) is connected to the gate Then it is connected to the gate of the fifty-eighth NMOS transistor (MC17), and the source of the fifty-seventh NMOS transistor (MC16) is connected to the drain of the fifty-eighth NMOS transistor (MC17) and then connected to the fifty-ninth NMOS transistor (MC17). The source of the NMOS transistor (MC18) is connected, the gate of the fifty-ninth NMOS transistor (MC18) is connected to the drain, and then connected to the gate of the sixtieth NMOS transistor (MC23) as the eighth bias voltage (VCb2) , the drain of the sixtieth NMOS transistor (MC23) is connected to the gate of the sixtieth NMOS transistor (MC24) as the fifth bias voltage (VCb1), and the source of the sixtieth NMOS transistor (MC23) is connected to the gate of the sixth NMOS transistor (MC23). The drains of the eleventh NMOS transistor (MC24) are connected, the fiftieth NMOS transistor (MC2), the fifty-second NMOS transistor (MC4), the fifty-fourth NMOS transistor (MC9), and the fifty-sixth NMOS transistor (MC11) , the source electrode of the fifty-eighth NMOS transistor (MC17), the sixty-first NMOS transistor (MC24) is grounded (GND), the gate of the forty-fourth PMOS transistor (MC5) is connected to the forty-fifth PMOS transistor (MC6) The gate and drain of the gate are connected to the drain of the aforementioned fifty-first NMOS transistor (MC3), and the source of the forty-fourth PMOS transistor (MC5) is connected to the drain of the forty-fifth PMOS transistor (MC6). After being connected, it is connected to the source of the forty-sixth PMOS transistor (MC7), and the gate and drain of the forty-sixth PMOS transistor (MC7) are connected to the drain of the aforementioned fifty-third NMOS transistor (MC8). Connected as the sixth bias voltage (VCb3), the second bias voltage (Vb3) is connected to the forty-seventh PMOS transistor (MC12), the forty-ninth PMOS transistor (MC14), and the fifty-first PMOS transistor (MC19) It is connected to the gate of the fifty-third PMOS transistor (MC21), and the drain of the forty-seventh PMOS transistor (MC12) is connected to the aforementioned fifty-fifth N The drain of the MOS transistor (MC10) is connected, the source of the forty-seventh PMOS transistor (MC12) is connected to the drain of the forty-eighth PMOS transistor (MC13), and the gate of the forty-eighth PMOS transistor (MC13) is connected to the drain electrode of the forty-eighth PMOS transistor (MC13). The gate of the fiftieth PMOS transistor (MC15) is connected to the drain of the forty-seventh PMOS transistor (MC12) as the seventh bias voltage (VCb4), and the fourth bias voltage (Vb4) is the same as the fifth The gate of the twelve PMOS transistor (MC20) is connected to the gate of the fifty-fourth PMOS transistor (MC22), the source of the forty-ninth PMOS transistor (MC14) is connected to the drain of the fiftieth PMOS transistor (MC15), and the fourth The drain of the nineteenth PMOS transistor (MC14) is connected to the drain of the aforementioned fifty-seventh NMOS transistor (MC16), and the source of the fifty-first PMOS transistor (MC19) is connected to the drain of the fifty-second PMOS transistor (MC20). The drain of the fifty-first PMOS transistor (MC19) is connected to the drain of the aforementioned fifty-ninth NMOS transistor (MC18), and the source of the fifty-third PMOS transistor (MC21) is connected to the fifty-fourth PMOS transistor (MC22) is connected to the drain, the drain of the fifty-third PMOS transistor (MC21) is connected to the drain of the aforementioned sixtieth NMOS transistor (MC23), the forty-fifth PMOS transistor (MC6), the forty-eighth PMOS The sources of the tube (MC13), the fiftieth PMOS tube (MC15), the fifty-second PMOS tube (MC20), and the fifty-fourth PMOS tube (MC22) are connected to the power supply voltage (VDD), and the fourth bias current source ( The anode of IC1) is connected to the drain of the sixty-second NMOS transistor (MK9), the gate of the sixty-second NMOS transistor (MK9) is connected to the ninth control word (EN9), and the fifth bias current source (IC2) The anode is connected to the drain of the sixty-third NMOS transistor (MK10), the gate of the sixty-third NMOS transistor (MK10) is connected to the tenth control word (EN10), and the source of the sixty-second NMOS transistor (MK9) is connected to The source of the sixty-third NMOS transistor ( MK10 ) is connected to the drain of the forty-ninth NMOS transistor ( MC1 ).
可选地,所述N型和P型互补输入的循环折叠跨导运算放大器电路还包括:共模反馈电路;所述共模反馈电路包括:全差分信号与共模信号输入晶体管单元、偏置电压晶体管单元和共模反馈控制信号产生单元。Optionally, the loop-folded transconductance operational amplifier circuit with N-type and P-type complementary inputs also includes: a common-mode feedback circuit; the common-mode feedback circuit includes: a fully differential signal and a common-mode signal input transistor unit, a bias voltage A transistor unit and a common mode feedback control signal generating unit.
在本发明实施例中,图3是共模反馈电路连接图。N型晶体管M25、M26、M27、M28为共模反馈电路的输入晶体管,其中晶体管M25的栅极接全差分输出信号VOUTN,晶体管M28的栅极接另一路全差分输出信号VOUTP,晶体管M26和M27的栅极接共模输入电压VCM。晶体管M29和M30为输入晶体管提供偏置电流,M29和M30的栅极接偏置电压Vb1。输入晶体管M25、M28和M26、M27的电压差经过晶体管M31、M32和串接电阻R1、R2产生图1中OTA所用的共模控制信号VCMFB。VDD和GND可以分别为2.5V和0V的电源电压。In the embodiment of the present invention, FIG. 3 is a connection diagram of a common mode feedback circuit. N-type transistors M25, M26, M27, and M28 are the input transistors of the common-mode feedback circuit, wherein the gate of transistor M25 is connected to the full differential output signal VOUTN, the gate of transistor M28 is connected to another full differential output signal VOUTP, and transistors M26 and M27 The gate of the gate is connected to the common-mode input voltage VCM. Transistors M29 and M30 provide bias current for the input transistors, and gates of M29 and M30 are connected to bias voltage Vb1. The voltage difference of the input transistors M25, M28 and M26, M27 generates the common mode control signal VCMFB used by the OTA in FIG. 1 through the transistors M31, M32 and series resistors R1, R2. VDD and GND can be power supply voltages of 2.5V and 0V, respectively.
所述全差分信号与共模信号输入晶体管单元包括:第六十四NMOS管(M25)、第六十五NMOS管(M26)、第六十六NMOS管(M27)和第六十七NMOS管(M28);The fully differential signal and common mode signal input transistor unit includes: a sixty-fourth NMOS transistor (M25), a sixty-fifth NMOS transistor (M26), a sixty-sixth NMOS transistor (M27) and a sixty-seventh NMOS transistor ( M28);
其中,第六十四NMOS管(M25)的栅极接所述输出差分信号VOUTN,第六十七NMOS管(M28)的栅极接所述另一个输出差分信号VOUTP,第六十五NMOS管(M26)的栅极与第六十六NMOS管(M27)的栅极相连后接共模输入电压(VCM)。Wherein, the gate of the sixty-fourth NMOS transistor (M25) is connected to the output differential signal VOUTN, the gate of the sixty-seventh NMOS transistor (M28) is connected to the other output differential signal VOUTP, and the sixty-fifth NMOS transistor The gate of (M26) is connected to the gate of the sixty-sixth NMOS transistor (M27) and then connected to the common mode input voltage (VCM).
所述偏置电压晶体管单元包括:第六十八NMOS管(M29)和第六十九NMOS管(M30);The bias voltage transistor unit includes: a sixty-eighth NMOS transistor (M29) and a sixty-ninth NMOS transistor (M30);
其中,第六十八NMOS管(M29)的漏极与所述第六十四NMOS管(M25)的源极和第六十五NMOS管(M26)的源极相连,第六十九NMOS管(M30)的漏极与所述第六十六NMOS管(M27)的源极和第六十七NMOS管(M28)的源极相连,第六十八NMOS管(M29)的栅极与第六十九NMOS管(M30)的栅极相连后与所述第一偏置电压(Vb1)相连,第六十八NMOS管(M29)的源极与第六十九NMOS管(M30)的源极接地(GND)。Wherein, the drain of the sixty-eighth NMOS transistor (M29) is connected to the source of the sixty-fourth NMOS transistor (M25) and the source of the sixty-fifth NMOS transistor (M26), and the sixty-ninth NMOS transistor The drain of (M30) is connected to the source of the sixty-sixth NMOS transistor (M27) and the source of the sixty-seventh NMOS transistor (M28), and the gate of the sixty-eighth NMOS transistor (M29) is connected to the source of the sixth NMOS transistor (M29). The gate of the sixty-ninth NMOS transistor (M30) is connected to the first bias voltage (Vb1), and the source of the sixty-eighth NMOS transistor (M29) is connected to the source of the sixty-ninth NMOS transistor (M30). pole ground (GND).
所述共模反馈控制信号产生单元包括:第五十五PMOS管(M31)、第五十六PMOS管(M32)以及两个串接的电阻,即相互串接的第一电阻R1和第二电阻R2;The common-mode feedback control signal generation unit includes: a fifty-fifth PMOS transistor (M31), a fifty-sixth PMOS transistor (M32) and two resistors connected in series, that is, the first resistor R1 and the second resistor R1 connected in series with each other Resistor R2;
其中,第五十五PMOS管(M31)的栅极与第五十六PMOS管(M32)的栅极相连后与电阻R1和电阻R2的串接端相连,第五十五PMOS管(M31)的漏极与电阻R1的非串接端相连后再与所述第六十四NMOS管(M25)的漏极和第六十七NMOS管(M28)的漏极相连后接共模控制信号(VCMFB),第五十六PMOS管(M32)的漏极与电阻R2的非串接端相连后再与所述第六十五NMOS管(M26)的漏极和第六十六NMOS管(M27)的漏极相连,第五十五PMOS管(M31)的源极与第五十六PMOS管(M32)的源极接电源电压(VDD)。Wherein, the gate of the fifty-fifth PMOS transistor (M31) is connected to the gate of the fifty-sixth PMOS transistor (M32) and then connected to the serial connection end of the resistor R1 and the resistor R2, and the fifty-fifth PMOS transistor (M31) The drain of the resistor R1 is connected to the non-serial connection end of the resistor R1, and then connected to the drain of the sixty-fourth NMOS transistor (M25) and the drain of the sixty-seventh NMOS transistor (M28), and then connected to the common mode control signal ( VCMFB), the drain of the fifty-sixth PMOS transistor (M32) is connected to the non-serial end of the resistor R2 and then connected to the drain of the sixty-fifth NMOS transistor (M26) and the sixty-sixth NMOS transistor (M27 ) is connected to the drain, and the source of the fifty-fifth PMOS transistor (M31) and the source of the fifty-sixth PMOS transistor (M32) are connected to the power supply voltage (VDD).
本发明实施例包括:相互连接的N型和P型互补输入的循环折叠跨导运算放大器电路以及数据驱动的运算放大器偏置电路;所述数据驱动的运算放大器偏置电路包括输入差分信号比较器;所述输入差分信号比较器,用于检测输入差分信号,并当所述输入差分信号大于或等于所述输入差分信号比较器的打开阈值时增大电路的偏置电流,当所述输入差分信号小于所述输入差分信号比较器的打开阈值时,保持电路的偏置电流不会变。通过该实施例方案,提高了高性能开关电容电路的速度,并降低了功耗、提高了良率,具有高速、高线性度的优点。Embodiments of the present invention include: a loop-folded transconductance operational amplifier circuit with complementary input of N-type and P-type connected to each other and a data-driven operational amplifier bias circuit; the data-driven operational amplifier bias circuit includes an input differential signal comparator ; The input differential signal comparator is used to detect the input differential signal, and increase the bias current of the circuit when the input differential signal is greater than or equal to the opening threshold of the input differential signal comparator, when the input differential signal When the signal is smaller than the opening threshold of the input differential signal comparator, the bias current of the holding circuit does not change. Through the solution of this embodiment, the speed of the high-performance switched capacitor circuit is improved, the power consumption is reduced, the yield rate is improved, and it has the advantages of high speed and high linearity.
本发明实施例将差分输入信号通过比较器(COMP1、COMP2)进行比较,用来检测闭环放大器正负输入端(VINN、VINP)虚地状态,比较器的输出电平用于控制电流源,如比较器的输出电平控制开关(MS1,MS2),可在差分输入信号较大时增大偏置电流,提高电路的速度,并且可根据应用需求动态调整放大器电流大小,以及比较器打开阈值和比较器速度,控制大电流的工作窗口。本电路适用于负载电容较大的开关电容电路,如模数转换电路、滤波器等,可提高电路的速度,并降低功耗,提高良率,通过配置满足不同应用需求,符合集成电路目前研究和发展的方向。In the embodiment of the present invention, the differential input signal is compared by the comparator (COMP1, COMP2) to detect the virtual ground state of the positive and negative input terminals (VINN, VINP) of the closed-loop amplifier, and the output level of the comparator is used to control the current source, such as The output level control switch (MS1, MS2) of the comparator can increase the bias current when the differential input signal is large, improve the speed of the circuit, and dynamically adjust the amplifier current according to the application requirements, as well as the comparator open threshold and The comparator speed controls the operating window for high currents. This circuit is suitable for switched capacitor circuits with large load capacitance, such as analog-to-digital conversion circuits, filters, etc., which can increase the speed of the circuit, reduce power consumption, and improve yield. It can meet different application requirements through configuration, and is in line with current research on integrated circuits. and the direction of development.
虽然本发明实施例所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明实施例。任何本发明实施例所属领域内的技术人员,在不脱离本发明实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the implementation manner disclosed in the embodiment of the present invention is as above, the content described is only the implementation manner adopted for understanding the present invention, and is not intended to limit the embodiment of the present invention. Any person skilled in the field of the embodiments of the present invention can make any modifications and changes in the form and details of the implementation without departing from the spirit and scope disclosed by the embodiments of the present invention, but the embodiments of the present invention The scope of patent protection must still be subject to the scope defined in the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710801461.2A CN107528557B (en) | 2017-09-07 | 2017-09-07 | A data-driven operational amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710801461.2A CN107528557B (en) | 2017-09-07 | 2017-09-07 | A data-driven operational amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107528557A true CN107528557A (en) | 2017-12-29 |
CN107528557B CN107528557B (en) | 2021-03-02 |
Family
ID=60683711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710801461.2A Active CN107528557B (en) | 2017-09-07 | 2017-09-07 | A data-driven operational amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107528557B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110011627A (en) * | 2019-04-26 | 2019-07-12 | 苏州大学 | A Wide Input Range High Common Mode Rejection Ratio Operational Transconductance Amplifier |
CN112653319A (en) * | 2020-12-10 | 2021-04-13 | 中国科学院微电子研究所 | Receiving circuit of isolation driving circuit |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080001661A1 (en) * | 2006-06-20 | 2008-01-03 | Fujitsu Limited | Regulator circuit |
CN101645693A (en) * | 2008-08-05 | 2010-02-10 | 恩益禧电子股份有限公司 | Class AB amplifier circuit and display apparatus |
CN101741328A (en) * | 2009-12-16 | 2010-06-16 | 清华大学 | Circular Folded Transconductance Operational Amplifier with Complementary Inputs |
CN102035486A (en) * | 2010-12-24 | 2011-04-27 | 清华大学 | Complementary input circular folded transconductance operational amplifier with preamplifier |
US8035448B1 (en) * | 2010-07-08 | 2011-10-11 | Freescale Semiconductor, Inc. | Differential amplifier that compensates for process variations |
CN102723920A (en) * | 2012-07-19 | 2012-10-10 | 电子科技大学 | Transconductance stabilizing circuit of operational amplifiers |
CN102812635A (en) * | 2010-03-22 | 2012-12-05 | 高通股份有限公司 | Discrete time operational transconductance amplifier for switched capacitor circuits |
CN203027207U (en) * | 2012-11-26 | 2013-06-26 | 西安威正电子科技有限公司 | Operational amplifying circuit with capacitive load |
US20130214865A1 (en) * | 2012-02-17 | 2013-08-22 | International Business Machines Corporation | Capacitive level-shifting circuits and methods for adding dc offsets to output of current-integrating amplifier |
CN103618450A (en) * | 2013-11-27 | 2014-03-05 | 苏州贝克微电子有限公司 | System for double-mode DC-DC power conversion |
US20140266440A1 (en) * | 2013-03-15 | 2014-09-18 | Megachips Corporation | Offset cancellation with minimum noise impact and gain-bandwidth degradation |
CN104132702A (en) * | 2014-08-11 | 2014-11-05 | 东南大学 | Start acceleration circuit for band-gap reference voltage source |
CN104283519A (en) * | 2014-10-24 | 2015-01-14 | 中国电子科技集团公司第十三研究所 | Current multiplexing type feed-forward compensation fully differential operational amplifier |
CN106330120A (en) * | 2016-08-26 | 2017-01-11 | 浙江芯迈电子科技有限公司 | Transconductance operational amplifying circuit with high accuracy and high linearity |
CN106559054A (en) * | 2012-05-24 | 2017-04-05 | 意法半导体研发(深圳)有限公司 | Operation transconductance amplifier with enhanced current sink capability |
-
2017
- 2017-09-07 CN CN201710801461.2A patent/CN107528557B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080001661A1 (en) * | 2006-06-20 | 2008-01-03 | Fujitsu Limited | Regulator circuit |
CN101645693A (en) * | 2008-08-05 | 2010-02-10 | 恩益禧电子股份有限公司 | Class AB amplifier circuit and display apparatus |
CN101741328A (en) * | 2009-12-16 | 2010-06-16 | 清华大学 | Circular Folded Transconductance Operational Amplifier with Complementary Inputs |
CN102812635A (en) * | 2010-03-22 | 2012-12-05 | 高通股份有限公司 | Discrete time operational transconductance amplifier for switched capacitor circuits |
US8035448B1 (en) * | 2010-07-08 | 2011-10-11 | Freescale Semiconductor, Inc. | Differential amplifier that compensates for process variations |
CN102035486A (en) * | 2010-12-24 | 2011-04-27 | 清华大学 | Complementary input circular folded transconductance operational amplifier with preamplifier |
US20130214865A1 (en) * | 2012-02-17 | 2013-08-22 | International Business Machines Corporation | Capacitive level-shifting circuits and methods for adding dc offsets to output of current-integrating amplifier |
CN106559054A (en) * | 2012-05-24 | 2017-04-05 | 意法半导体研发(深圳)有限公司 | Operation transconductance amplifier with enhanced current sink capability |
CN102723920A (en) * | 2012-07-19 | 2012-10-10 | 电子科技大学 | Transconductance stabilizing circuit of operational amplifiers |
CN203027207U (en) * | 2012-11-26 | 2013-06-26 | 西安威正电子科技有限公司 | Operational amplifying circuit with capacitive load |
US20140266440A1 (en) * | 2013-03-15 | 2014-09-18 | Megachips Corporation | Offset cancellation with minimum noise impact and gain-bandwidth degradation |
CN103618450A (en) * | 2013-11-27 | 2014-03-05 | 苏州贝克微电子有限公司 | System for double-mode DC-DC power conversion |
CN104132702A (en) * | 2014-08-11 | 2014-11-05 | 东南大学 | Start acceleration circuit for band-gap reference voltage source |
CN104283519A (en) * | 2014-10-24 | 2015-01-14 | 中国电子科技集团公司第十三研究所 | Current multiplexing type feed-forward compensation fully differential operational amplifier |
CN106330120A (en) * | 2016-08-26 | 2017-01-11 | 浙江芯迈电子科技有限公司 | Transconductance operational amplifying circuit with high accuracy and high linearity |
Non-Patent Citations (2)
Title |
---|
XUE HAN等: "A single channel,6-bit 410-MS/s 3bits/stage asynchronous SAR ADC based on resistive DAC", 《JOURNAL OF SEMICONDUCTORS》 * |
张其营: "一种低功耗高线性度推挽跨导放大器", 《中国集成电路》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110011627A (en) * | 2019-04-26 | 2019-07-12 | 苏州大学 | A Wide Input Range High Common Mode Rejection Ratio Operational Transconductance Amplifier |
CN110011627B (en) * | 2019-04-26 | 2023-10-03 | 苏州大学 | Wide-input-range high-common-mode rejection ratio operational transconductance amplifier |
CN112653319A (en) * | 2020-12-10 | 2021-04-13 | 中国科学院微电子研究所 | Receiving circuit of isolation driving circuit |
CN112653319B (en) * | 2020-12-10 | 2022-04-19 | 中国科学院微电子研究所 | A receiver circuit of an isolated drive circuit |
Also Published As
Publication number | Publication date |
---|---|
CN107528557B (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102130659B (en) | Circuit structure for reducing input offset voltage of two-stage operational amplifier | |
US9634685B2 (en) | Telescopic amplifier with improved common mode settling | |
CN104283558B (en) | High-speed comparator DC maladjustment digital assistant self-calibration system and control method | |
CN101951236B (en) | Digital variable gain amplifier | |
CN109104157B (en) | A self-zeroing operational amplifier | |
CN103546127A (en) | A low-power high-speed comparator with offset storage | |
CN104270150B (en) | High-speed low-power-consumption reference voltage output buffer applied to production line analog-digital converter | |
CN109921756B (en) | Fully-differential transconductance operational amplifier | |
CN106209098B (en) | Digital-to-analog converter | |
CN107528557B (en) | A data-driven operational amplifier | |
CN105912066A (en) | Low-power-consumption high-PSRR band-gap reference circuit | |
CN102147630A (en) | Controller and driving circuit with controller | |
CN111669130B (en) | Automatic eliminating circuit for input offset voltage of operational amplifier | |
CN103973243A (en) | CMOS operation amplifier with great direct-current open-loop voltage gain | |
CN104702268B (en) | The circuit that voltage buffer circuit and driving load with it switch with sequential | |
CN113671236A (en) | Current detection circuit and equipment applied to load resistor | |
CN104836535B (en) | A kind of wide cut variable gain amplifier | |
CN106059516B (en) | Track to track operational amplification circuit and ADC converter, dcdc converter and power amplifier | |
CN208986903U (en) | A kind of rail-to-rail operational amplifier of low-power consumption | |
CN116054765B (en) | PVT stable bias enhanced high-gain annular amplifier and control method thereof | |
CN112003594A (en) | Low-power-consumption dynamic comparator circuit | |
Zha et al. | The design rail-to-rail operational amplifier used in PGA | |
CN111431490A (en) | Fully differential amplifier for pipeline ADC | |
CN115189654A (en) | A ring amplifier circuit | |
CN112398476B (en) | Low-power consumption comparator with low delay distortion characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |