[go: up one dir, main page]

CN107492496B - Semiconductor structure and its manufacturing method - Google Patents

Semiconductor structure and its manufacturing method Download PDF

Info

Publication number
CN107492496B
CN107492496B CN201610407517.1A CN201610407517A CN107492496B CN 107492496 B CN107492496 B CN 107492496B CN 201610407517 A CN201610407517 A CN 201610407517A CN 107492496 B CN107492496 B CN 107492496B
Authority
CN
China
Prior art keywords
region
fin
ions
ion
lightly doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610407517.1A
Other languages
Chinese (zh)
Other versions
CN107492496A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201610407517.1A priority Critical patent/CN107492496B/en
Publication of CN107492496A publication Critical patent/CN107492496A/en
Application granted granted Critical
Publication of CN107492496B publication Critical patent/CN107492496B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构及其制造方法,所述方法包括:提供衬底,衬底具有鳍部;在鳍部之间的衬底上形成隔离结构,凸出于隔离结构的鳍部作为鳍部第一区域;形成横跨鳍部且覆盖所鳍部第一区域部分顶部表面和侧壁表面的栅极结构;以栅极结构为掩膜,对鳍部第一区域的一侧进行第一轻掺杂工艺,掺杂离子为第一离子;以栅极结构为掩膜,对鳍部第一区域的另一侧进行第二轻掺杂工艺,掺杂离子为第二离子,第二离子类型与第一离子类型相同,且第二离子的原子质量小于第一离子的原子质量;第一轻掺杂工艺和第二轻掺杂工艺后,对衬底进行退火工艺。通过第一离子和第二离子的结合,既提高了鳍部的质量,又改善了器件的短沟道效应,进而优化了半导体器件的电学性能。

A semiconductor structure and a manufacturing method thereof, the method comprising: providing a substrate, the substrate has fins; forming an isolation structure on the substrate between the fins, the fin protruding from the isolation structure as the first fin region; forming a gate structure across the fin and covering part of the top surface and sidewall surface of the first region of the fin; using the gate structure as a mask, performing first light doping on one side of the first region of the fin process, the doping ions are the first ions; using the gate structure as a mask, a second light doping process is performed on the other side of the first region of the fin, the doping ions are the second ions, and the second ion type is the same as the first The first ion type is the same, and the atomic mass of the second ion is smaller than the atomic mass of the first ion; after the first light doping process and the second light doping process, the substrate is annealed. Through the combination of the first ions and the second ions, not only the quality of the fin portion is improved, but also the short channel effect of the device is improved, thereby optimizing the electrical performance of the semiconductor device.

Description

半导体结构及其制造方法Semiconductor structure and manufacturing method thereof

技术领域technical field

本发明涉及半导体领域,尤其涉及一种半导体结构及其制造方法。The invention relates to the field of semiconductors, in particular to a semiconductor structure and a manufacturing method thereof.

背景技术Background technique

在半导体制造中,随着超大规模集成电路的发展趋势,集成电路特征尺寸持续减小。为了适应特征尺寸的减小,MOSFET场效应管的沟道长度也相应不断缩短。然而,随着器件沟道长度的缩短,器件源极与漏极间的距离也随之缩短,因此栅极对沟道的控制能力随之变差,栅极电压夹断(pinch off)沟道的难度也越来越大,使得亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(SCE:short-channel effects)更容易发生。In semiconductor manufacturing, with the development trend of VLSI, the feature size of integrated circuits continues to decrease. In order to adapt to the reduction of feature size, the channel length of MOSFET field effect transistors is also continuously shortened accordingly. However, as the channel length of the device is shortened, the distance between the source and the drain of the device is also shortened, so the control ability of the gate to the channel becomes worse, and the gate voltage pinches off the channel. The difficulty is also increasing, making the phenomenon of subthreshold leakage (subthreshold leakage), the so-called short-channel effect (SCE: short-channel effects) more likely to occur.

因此,为了更好的适应特征尺寸的减小,半导体工艺逐渐开始从平面MOSFET晶体管向具有更高功效的三维立体式的晶体管过渡,如鳍式场效应管(FinFET)。FinFET中,栅至少可以从两侧对超薄体(鳍部)进行控制,具有比平面MOSFET器件强得多的栅对沟道的控制能力,能够很好的抑制短沟道效应;且FinFET相对于其他器件,具有更好的现有的集成电路制作技术的兼容性。Therefore, in order to better adapt to the reduction of feature size, the semiconductor process gradually begins to transition from planar MOSFET transistors to three-dimensional three-dimensional transistors with higher efficiency, such as Fin Field Effect Transistors (FinFETs). In FinFET, the gate can control the ultra-thin body (fin) from at least two sides, which has a much stronger gate-to-channel control ability than planar MOSFET devices, and can well suppress short-channel effects; and FinFET is relatively Compared with other devices, it has better compatibility with the existing integrated circuit manufacturing technology.

但是,现有技术形成的半导体器件的电学性能仍有待提高。However, the electrical properties of semiconductor devices formed in the prior art still need to be improved.

发明内容Contents of the invention

本发明解决的问题是提供一种半导体结构及其制造方法,优化半导体器件的电学性能。The problem to be solved by the present invention is to provide a semiconductor structure and its manufacturing method to optimize the electrical performance of the semiconductor device.

为解决上述问题,本发明提供一种半导体结构的制造方法,包括:提供衬底,所述衬底具有鳍部;在所述鳍部之间的衬底上形成隔离结构,其中凸出于所述隔离结构的鳍部作为鳍部第一区域;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;以所述栅极结构为掩膜,对所述鳍部第一区域的一侧进行第一轻掺杂工艺,形成第一轻掺杂离子区,所述第一轻掺杂工艺的掺杂离子为第一离子;以所述栅极结构为掩膜,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺,形成第二轻掺杂离子区,所述第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,且所述第二离子的原子质量小于所述第一离子的原子质量;第一轻掺杂工艺和第二轻掺杂工艺后,对所述衬底进行退火工艺。In order to solve the above problems, the present invention provides a method for manufacturing a semiconductor structure, including: providing a substrate, the substrate has fins; forming an isolation structure on the substrate between the fins, wherein the The fin of the isolation structure is used as the first region of the fin; a gate structure is formed across the fin, and the gate structure covers part of the top surface and the sidewall surface of the first region of the fin; The gate structure is a mask, and a first lightly doped process is performed on one side of the first region of the fin to form a first lightly doped ion region, and the dopant ion of the first lightly doped process is the first Ions; using the gate structure as a mask, perform a second lightly doped process on the other side of the first region of the fin to form a second lightly doped ion region, the second lightly doped process The dopant ion is a second ion, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is smaller than the atomic mass of the first ion; the first light doping process After the second light doping process, an annealing process is performed on the substrate.

可选的,所述衬底用于形成N型器件,所述第一离子和第二离子为N型离子。Optionally, the substrate is used to form an N-type device, and the first ions and the second ions are N-type ions.

可选的,所述第一离子为As离子,所述第二离子为P离子。Optionally, the first ions are As ions, and the second ions are P ions.

可选的,所述第一轻掺杂工艺的参数包括:注入的离子能量为1Kev至8Kev,注入的离子剂量为1E14至8E14原子每平方厘米,注入角度为7度至20度。Optionally, the parameters of the first light doping process include: implanted ion energy is 1Kev to 8Kev, implanted ion dose is 1E14 to 8E14 atoms per square centimeter, and implantation angle is 7 degrees to 20 degrees.

可选的,所述第二轻掺杂工艺的参数包括:注入的离子能量为1Kev至6Kev,注入的离子剂量为1E14至5E14原子每平方厘米,注入角度为7度至20度。Optionally, the parameters of the second light doping process include: implanted ion energy is 1Kev to 6Kev, implanted ion dose is 1E14 to 5E14 atoms per square centimeter, and implantation angle is 7 degrees to 20 degrees.

可选的,所述退火工艺为激光退火、尖峰退火或快速热退火工艺。Optionally, the annealing process is laser annealing, spike annealing or rapid thermal annealing process.

可选的,所述退火工艺为尖峰退火工艺;所述退火工艺的工艺参数包括:退火温度为900摄氏度至1050摄氏度,压强为一个标准大气压,反应气体为氮气,氮气的气体流量为5每分钟标准升至40每分钟标准升。Optionally, the annealing process is a spike annealing process; the process parameters of the annealing process include: the annealing temperature is 900 degrees Celsius to 1050 degrees Celsius, the pressure is a standard atmospheric pressure, the reaction gas is nitrogen, and the gas flow rate of nitrogen is 5 per minute Standard rose to 40 standard liters per minute.

可选的,对所述衬底进行退火工艺后,所述制造方法还包括:在所述栅极结构两侧的鳍部内形成源漏掺杂区。Optionally, after performing an annealing process on the substrate, the manufacturing method further includes: forming source-drain doped regions in the fins on both sides of the gate structure.

可选的,所述衬底包括第一区域和第二区域,所述第一区域衬底用于形成N型器件,所述第二区域衬底用于形成P型器件;位于所述第一区域衬底上的鳍部为第一鳍部,位于所述第二区域衬底上的鳍部为第二鳍部;凸出于所述第一区域隔离结构的第一鳍部为第一鳍部第一区域,凸出于所述第二区域隔离结构的第二鳍部为第二鳍部第一区域;对所述鳍部第一区域的一侧进行第一轻掺杂工艺的步骤中,对所述第一鳍部第一区域的一侧进行第一轻掺杂工艺;对所述鳍部第一区域的另一侧进行第二轻掺杂工艺的步骤中,对所述第一鳍部第一区域的另一侧进行第二轻掺杂工艺;对所述衬底进行退火工艺之前,所述制造方法还包括:对所述第二鳍部第一区域进行第三轻掺杂工艺,形成第三轻掺杂离子区。Optionally, the substrate includes a first region and a second region, the substrate in the first region is used to form an N-type device, and the substrate in the second region is used to form a P-type device; The fins on the regional substrate are first fins, the fins on the second regional substrate are second fins; the first fins protruding from the first regional isolation structure are first fins The first region of the first region, the second fin protruding from the isolation structure of the second region is the first region of the second fin; in the step of performing the first lightly doped process on one side of the first region of the fin performing a first lightly doped process on one side of the first region of the first fin; performing a second lightly doped process on the other side of the first region of the fin, the first performing a second light doping process on the other side of the first region of the fin; before performing an annealing process on the substrate, the manufacturing method further includes: performing a third light doping process on the first region of the second fin process to form a third lightly doped ion region.

可选的,所述第三轻掺杂工艺的参数包括:注入的离子能量为2Kev至8Kev,注入的离子剂量为8E13至5E14原子每平方厘米,注入角度为7度至20度。Optionally, the parameters of the third light doping process include: the implanted ion energy is 2Kev to 8Kev, the implanted ion dose is 8E13 to 5E14 atoms per square centimeter, and the implantation angle is 7 degrees to 20 degrees.

可选的,对所述衬底进行退火工艺的步骤包括:同时对所述第一轻掺杂离子区、第二轻掺杂离子区和第三轻掺杂离子区进行退火工艺,以激活离子。Optionally, the step of performing an annealing process on the substrate includes: performing an annealing process on the first lightly doped ion region, the second lightly doped ion region and the third lightly doped ion region at the same time, so as to activate the ion .

相应的,本发明还提供一种半导体结构,包括:衬底,所述衬底具有鳍部;隔离结构,位于所述鳍部之间的衬底上,其中凸出于所述隔离结构的鳍部作为鳍部第一区域;栅极结构,横跨所述鳍部且覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;第一轻掺杂离子区,位于所述鳍部第一区域内的一侧,所述第一轻掺杂离子区的掺杂离子为第一离子;第二轻掺杂离子区,位于所述鳍部第一区域内的另一侧,所述第二轻掺杂离子区的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。Correspondingly, the present invention also provides a semiconductor structure, including: a substrate having fins; an isolation structure located on the substrate between the fins, wherein the fins protruding from the isolation structure The part serves as the first region of the fin; the gate structure spans the fin and covers part of the top surface and the sidewall surface of the first region of the fin; the first lightly doped ion region is located in the first region of the fin On one side of a region, the doping ions of the first lightly doped ion region are first ions; the second lightly doped ion region is located on the other side of the first region of the fin, and the first lightly doped ion region is located on the other side of the first region of the fin. The doping ions in the second lightly doped ion region are second ions, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is smaller than the atomic mass of the first ion.

可选的,所述半导体结构为N型器件,所述第一离子和第二离子为N型离子。Optionally, the semiconductor structure is an N-type device, and the first ions and the second ions are N-type ions.

可选的,所述第一离子为As离子,所述第二离子为P离子。Optionally, the first ions are As ions, and the second ions are P ions.

可选的,所述第一轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米。Optionally, the ion concentration of the first lightly doped ion region is 1E19 atoms per cubic centimeter to 5E20 atoms per cubic centimeter.

可选的,所述第二轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米。Optionally, the ion concentration of the second lightly doped ion region is 1E19 atoms per cubic centimeter to 5E20 atoms per cubic centimeter.

可选的,所述半导体结构还包括:源漏掺杂区,位于所述栅极结构两侧的鳍部内。Optionally, the semiconductor structure further includes: source and drain doped regions located in the fins on both sides of the gate structure.

可选的,所述衬底包括第一区域和第二区域,所述第一区域的半导体结构为N型器件,所述第二区域的半导体结构为P型器件;位于所述第一区域衬底上的鳍部为第一鳍部,位于所述第二区域衬底上的鳍部为第二鳍部;凸出于所述第一区域隔离结构的第一鳍部为第一鳍部第一区域,凸出于所述第二区域隔离结构的第二鳍部为第二鳍部第一区域;所述第一轻掺杂离子区位于所述第一鳍部第一区域内的一侧;所述第二轻掺杂离子区位于所述第一鳍部第一区域内的另一侧;所述半导体结构还包括:位于所述第二鳍部第一区域内的第三轻掺杂离子区。Optionally, the substrate includes a first region and a second region, the semiconductor structure in the first region is an N-type device, the semiconductor structure in the second region is a P-type device; The fin on the bottom is the first fin, the fin located on the substrate in the second region is the second fin; the first fin protruding from the isolation structure in the first region is the first fin and the second fin. A region, the second fin protruding from the isolation structure of the second region is the first region of the second fin; the first lightly doped ion region is located on one side of the first region of the first fin ; the second lightly doped ion region is located on the other side of the first region of the first fin; the semiconductor structure further includes: a third lightly doped ion region located in the first region of the second fin ion region.

可选的,所述第三轻掺杂离子区的掺杂离子包括硼离子,所述第三轻掺杂离子区的离子浓度为8E13原子每立方厘米至5E14原子每立方厘米。Optionally, the dopant ions in the third lightly doped ion region include boron ions, and the ion concentration of the third lightly doped ion region is 8E13 atoms per cubic centimeter to 5E14 atoms per cubic centimeter.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明对所述鳍部第一区域的一侧进行第一轻掺杂工艺,所述第一轻掺杂工艺的掺杂离子为第一离子,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺,第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。一方面通过只对所述鳍部第一区域的一侧掺杂质量较重的离子,避免所述鳍部第一区域另一侧的鳍部由于掺杂质量较重的离子而转化成非晶态,从而在后续退火工艺过程中,使未被所述第一离子轰击的部分鳍部第一区域提供更多的单晶材料,避免所述鳍部第一区域因缺少单晶材料而难以修复成单晶态的问题,进而提高了所述鳍部的质量;另一方面通过只对所述鳍部第一区域的另一侧掺杂质量较轻的离子,避免过多质量较轻的离子横向扩散进沟道区,从而改善器件的短沟道效。因此,通过第一离子和第二离子的结合,既提高了鳍部的质量,又改善了器件的短沟道效应,进而优化了半导体器件的电学性能。In the present invention, the first light doping process is performed on one side of the first region of the fin, and the dopant ions in the first light doping process are first ions, and the other side of the first region of the fin is Performing a second light doping process, the dopant ions of the second light doping process are second ions, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is less than the set Atomic mass of the first ion. On the one hand, only one side of the first region of the fin is doped with heavier ions to prevent the fins on the other side of the first region of the fin from being transformed into amorphous due to doping with heavier ions. state, so that during the subsequent annealing process, the part of the first region of the fin that is not bombarded by the first ions provides more single crystal material, so as to prevent the first region of the fin from being difficult to repair due to the lack of single crystal material single-crystal state, thereby improving the quality of the fin; on the other hand, by only doping the other side of the first region of the fin with lighter-weight ions, avoiding too many lighter-weight ions Laterally diffused into the channel region, thereby improving the short channel efficiency of the device. Therefore, through the combination of the first ions and the second ions, not only the quality of the fin portion is improved, but also the short channel effect of the device is improved, thereby optimizing the electrical performance of the semiconductor device.

本发明提供的半导体结构中,所述第一轻掺杂离子区位于所述鳍部第一区域内的一侧,所述第一轻掺杂离子的掺杂离子为第一离子;所述第二轻掺杂离子区位于所述鳍部第一区域内的另一侧,所述第二轻掺杂离子的掺杂离子为第二离子;其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。一方面避免所述鳍部第一区域另一侧在第一轻掺杂离子区的形成过程中,因受到质量较重的第一离子轰击而由单晶态转化成非晶态,从而使未被所述第一离子轰击的部分鳍部第一区域在鳍部修复过程中提供更多单晶态材料,以将非晶态材料重新转化成单晶态材料,进而提高所述鳍部的质量;另一方面,可以避免过多质量较轻的离子横向扩散至器件沟道区,从而可以改善器件的短沟道效应。因此,通过第一离子和第二离子的结合,既提高了所述鳍部的质量,又改善了器件的短沟道效应,从而使半导体器件的电学性能得到了优化。In the semiconductor structure provided by the present invention, the first lightly doped ion region is located on one side of the first region of the fin, and the doping ions of the first lightly doped ions are first ions; the first lightly doped ion region is the first ion; Two lightly doped ion regions are located on the other side of the first region of the fin, and the doping ions of the second lightly doped ions are second ions; wherein, the second ion type is the same as the first ion type The ion types are the same, and the atomic mass of the second ion is smaller than the atomic mass of the first ion. On the one hand, prevent the other side of the first region of the fin from being bombarded by heavy first ions during the formation process of the first lightly doped ion region from being transformed from a single crystal state into an amorphous state, so that the non-crystalline state The portion of the first region of the fin bombarded by the first ions provides more single crystalline material during the fin repair process to reconvert the amorphous material to single crystalline material, thereby improving the quality of the fin. ; On the other hand, it can avoid excessive lateral diffusion of ions with lighter mass to the channel region of the device, thereby improving the short channel effect of the device. Therefore, through the combination of the first ions and the second ions, not only the quality of the fin portion is improved, but also the short channel effect of the device is improved, so that the electrical performance of the semiconductor device is optimized.

附图说明Description of drawings

图1和图2是一种半导体结构的制造方法中各步骤对应结构示意图;Fig. 1 and Fig. 2 are a kind of structure diagram corresponding to each step in the manufacturing method of semiconductor structure;

图3是一种半导体结构的电镜示意图;Fig. 3 is a schematic diagram of an electron microscope of a semiconductor structure;

图4至图13是本发明半导体结构的制造方法一实施例中各步骤对应结构示意图。4 to 13 are schematic diagrams of structures corresponding to each step in an embodiment of the manufacturing method of the semiconductor structure of the present invention.

具体实施方式Detailed ways

由背景技术可知,现有技术形成的FinFET的电学性能仍有待提高。It can be seen from the background art that the electrical performance of the FinFET formed in the prior art still needs to be improved.

结合一种半导体结构的形成方法分析其原因。结合参考图1和图2,示出了一种半导体结构的制造方法中各步骤对应结构示意图。Combined with a method of forming a semiconductor structure, the reason is analyzed. Referring to FIG. 1 and FIG. 2 together, a schematic structural diagram corresponding to each step in a manufacturing method of a semiconductor structure is shown.

参考图1,提供衬底100,所述衬底100上具有鳍部110;在所述鳍部110之间的衬底100上形成隔离结构101,其中露出于所述隔离结构的鳍部110作为鳍部第一区域(未标示);形成横跨所述鳍部110的栅极结构102,所述栅极结构102覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;以所述栅极结构102为掩膜,对所述鳍部第一区域进行轻掺杂工艺120,形成轻掺杂离子区(图未示)。Referring to FIG. 1 , a substrate 100 is provided with fins 110 thereon; an isolation structure 101 is formed on the substrate 100 between the fins 110 , wherein the fins 110 exposed to the isolation structure serve as a first region of the fin (not labeled); forming a gate structure 102 across the fin 110, the gate structure 102 covering part of the top surface and sidewall surfaces of the first region of the fin; The gate structure 102 is a mask, and a lightly doped process 120 is performed on the first region of the fin to form a lightly doped ion region (not shown).

上述方法中,所述衬底100用于形成N型器件;所述轻掺杂工艺120的掺杂离子为N型离子。具体地,所述N型离子包括As离子或P离子。In the above method, the substrate 100 is used to form an N-type device; the dopant ions in the light doping process 120 are N-type ions. Specifically, the N-type ions include As ions or P ions.

但是,当所述轻掺杂工艺120的掺杂离子为P离子时,由于P离子的原子质量较轻,在进行所述轻掺杂工艺120时,容易横向扩散至器件沟道区,从而容易对器件的短沟道效应(SCE:short-channel effects)产生不良影响,进而对半导体器件的电学性能造成不良影响。However, when the dopant ions of the light doping process 120 are P ions, since the atomic mass of the P ions is relatively light, when the light doping process 120 is performed, it is easy to laterally diffuse to the channel region of the device, thereby easily It has adverse effects on the short-channel effects (SCE: short-channel effects) of the device, and then has an adverse effect on the electrical performance of the semiconductor device.

当所述轻掺杂工艺120的掺杂离子为As离子时,结合参考图2和图3,图2为图1沿AA1方向的剖面结构示意图,图3为图2中区域B的电镜图。由于As离子的原子质量较重,所述鳍部第一区域受到As离子轰击后,所述鳍部第一区域的两侧的材料容易由单晶态转化成非晶态,即两侧转化成非晶态层111(如图2所示);经后续退火工艺后,所述非晶态层110容易因缺少单晶态材料而难以修复成单晶态,且转化成非晶态层110的现象越严重(即越多鳍部第一区域的材料被转化成非晶态层110),所述鳍部第一区域就越难修复,从而导致所述鳍部第一区域的质量下降,进而对半导体器件的电学性能造成不良影响。When the doping ions of the light doping process 120 are As ions, refer to FIG. 2 and FIG. 3 in combination. FIG. 2 is a schematic cross-sectional structure diagram along the AA1 direction of FIG. 1 , and FIG. 3 is an electron microscope image of region B in FIG. 2 . Due to the heavy atomic mass of As ions, after the first region of the fin is bombarded by As ions, the material on both sides of the first region of the fin is easily converted from a single crystal state to an amorphous state, that is, the two sides are transformed into Amorphous layer 111 (as shown in FIG. 2 ); after the subsequent annealing process, the amorphous layer 110 is easily repaired into a single crystal state due to the lack of single crystal material, and is transformed into the amorphous layer 110 The more severe the phenomenon (i.e., the more material in the first fin region is converted to the amorphous layer 110), the more difficult it is to repair the first fin region, resulting in a decrease in the quality of the first fin region, which in turn adversely affect the electrical performance of semiconductor devices.

为了解决所述技术问题,本发明提供一种半导体器件的制造方法,包括:提供衬底,所述衬底具有鳍部;在所述鳍部之间的衬底上形成隔离结构,其中凸出于所述隔离结构的鳍部作为鳍部第一区域;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;以所述栅极结构为掩膜,对所述鳍部第一区域的一侧进行第一轻掺杂工艺,形成第一轻掺杂离子区,所述第一轻掺杂工艺的掺杂离子为第一离子;以所述栅极结构为掩膜,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺,形成第二轻掺杂离子区,所述第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,且所述第二离子的原子质量小于所述第一离子的原子质量;第一轻掺杂工艺和第二轻掺杂工艺后,对所述衬底进行退火工艺。In order to solve the technical problem, the present invention provides a method for manufacturing a semiconductor device, including: providing a substrate, the substrate has fins; forming an isolation structure on the substrate between the fins, wherein the protruding the fin portion of the isolation structure as a fin portion first region; forming a gate structure across the fin portion, the gate structure covering part of the top surface and the sidewall surface of the fin portion first region; The gate structure is a mask, and a first lightly doped process is performed on one side of the first region of the fin to form a first lightly doped ion region, and the dopant ions in the first lightly doped process are First ions; using the gate structure as a mask, perform a second lightly doped process on the other side of the first region of the fin to form a second lightly doped ion region, the second lightly doped The dopant ion of the process is a second ion, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is smaller than the atomic mass of the first ion; the first lightly doped After the impurity process and the second light doping process, the substrate is annealed.

本发明对所述鳍部第一区域的一侧进行第一轻掺杂工艺,所述第一轻掺杂工艺的掺杂离子为第一离子,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺,第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。一方面通过只对所述鳍部第一区域的一侧掺杂质量较重的离子,避免所述鳍部第一区域另一侧的鳍部由于掺杂质量较重的离子而转化成非晶态,从而在后续退火工艺过程中,使未被所述第一离子轰击的部分鳍部第一区域提供更多的单晶材料,避免所述鳍部第一区域因缺少单晶材料而难以修复成单晶态的问题,进而提高了所述鳍部的质量;另一方面通过只对所述鳍部第一区域的另一侧掺杂质量较轻的离子,避免过多质量较轻的离子横向扩散进沟道区,从而改善器件的短沟道效。因此,通过第一离子和第二离子的结合,既提高了鳍部的质量,又改善了器件的短沟道效应,进而优化了半导体器件的电学性能。In the present invention, the first light doping process is performed on one side of the first region of the fin, and the dopant ions in the first light doping process are first ions, and the other side of the first region of the fin is Performing a second light doping process, the dopant ions of the second light doping process are second ions, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is less than the set Atomic mass of the first ion. On the one hand, only one side of the first region of the fin is doped with heavier ions to prevent the fins on the other side of the first region of the fin from being transformed into amorphous due to doping with heavier ions. state, so that during the subsequent annealing process, the part of the first region of the fin that is not bombarded by the first ions provides more single crystal material, so as to prevent the first region of the fin from being difficult to repair due to the lack of single crystal material single-crystal state, thereby improving the quality of the fin; on the other hand, by only doping the other side of the first region of the fin with lighter-weight ions, avoiding too many lighter-weight ions Laterally diffused into the channel region, thereby improving the short channel efficiency of the device. Therefore, through the combination of the first ions and the second ions, not only the quality of the fin portion is improved, but also the short channel effect of the device is improved, thereby optimizing the electrical performance of the semiconductor device.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图4至图13是本发明半导体结构的制造方法一实施例中各步骤对应结构示意图。4 to 13 are schematic diagrams of structures corresponding to each step in an embodiment of the manufacturing method of the semiconductor structure of the present invention.

结合参考图4和图5,其中,图4为半导体结构的立体图(仅示意出两个鳍部),图5是图4沿CC1方向的剖面结构示意图,提供衬底200,所述衬底200具有鳍部(未标示)。4 and 5 in combination, wherein, FIG. 4 is a perspective view of a semiconductor structure (only two fins are shown), and FIG. 5 is a schematic cross-sectional structure diagram of FIG. 4 along CC1 direction, providing a substrate 200, the substrate 200 Has fins (not shown).

所述衬底200为后续形成半导体器件提供工艺平台。The substrate 200 provides a process platform for subsequent formation of semiconductor devices.

本实施例中,所述衬底200为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 200 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. substrate.

本实施例中,所述衬底200包括第一区域Ⅰ(如图5所示)和第二区域Ⅱ(如图5所示)。相应的,位于所述第一区域Ⅰ衬底200上的鳍部为第一鳍部210,位于所述第二区域Ⅱ衬底200上的鳍部为第二鳍部220。In this embodiment, the substrate 200 includes a first region I (as shown in FIG. 5 ) and a second region II (as shown in FIG. 5 ). Correspondingly, the fins located on the substrate 200 in the first region I are the first fins 210 , and the fins located on the substrate 200 in the second region II are the second fins 220 .

所述第一鳍部210和所述第二鳍部220的材料与所述衬底200的材料相同。本实施例中,所述第一鳍部210和第二鳍部220的材料为硅。其他实施例中,所述第一鳍部和所述第二鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the first fin 210 and the second fin 220 is the same as that of the substrate 200 . In this embodiment, the material of the first fin portion 210 and the second fin portion 220 is silicon. In other embodiments, the material of the first fin and the second fin may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

本实施例中,所述第一区域Ⅰ用于形成N型器件,所述第二区域Ⅱ用于形成P型器件。在另一实施例中,所述第一区域用于形成P型器件,所述第二区域用于形成N型器件。在其他实施例中,所述第一区域和第二区域均用于形成N型器件。In this embodiment, the first region I is used to form N-type devices, and the second region II is used to form P-type devices. In another embodiment, the first region is used to form a P-type device, and the second region is used to form an N-type device. In other embodiments, both the first region and the second region are used to form N-type devices.

具体地,提供所述衬底200和鳍部的步骤包括:提供初始基底,在所述初始基底上形成图形化的硬掩膜层300;以所述硬掩模层300为掩膜,刻蚀所述初始基底,形成若干分立的凸起;所述凸起为鳍部,刻蚀后的初始基底作为衬底200,所述衬底200包括第一区域Ⅰ和第二区域Ⅱ,位于所述第一区域Ⅰ的鳍部为第一鳍部210,位于所述第二区域Ⅱ的鳍部为第二鳍部220。Specifically, the step of providing the substrate 200 and the fins includes: providing an initial base, forming a patterned hard mask layer 300 on the initial base; using the hard mask layer 300 as a mask, etching The initial base forms several discrete protrusions; the protrusions are fins, and the etched initial base serves as a substrate 200, the substrate 200 includes a first region I and a second region II, located in the The fins in the first region I are the first fins 210 , and the fins in the second region II are the second fins 220 .

本实施例中,所述硬掩膜层300的材料为氮化硅,后续在进行平坦化工艺时,所述硬掩膜层300表面用于定义平坦化工艺的停止位置,且所述硬掩膜层300还能够起到保护所述第一鳍部210顶部和第二鳍部220顶部的作用。In this embodiment, the material of the hard mask layer 300 is silicon nitride, and when the planarization process is performed subsequently, the surface of the hard mask layer 300 is used to define the stop position of the planarization process, and the hard mask layer The film layer 300 can also protect the top of the first fin 210 and the top of the second fin 220 .

需要说明的是,提供所述衬底200和鳍部之后,所述制造方法还包括:在所述第一鳍部210和第二鳍部220表面形成衬垫氧化层(图未示),用于修复所述第一鳍部210和第二鳍部220。It should be noted that after the substrate 200 and the fins are provided, the manufacturing method further includes: forming a pad oxide layer (not shown) on the surfaces of the first fins 210 and the second fins 220 , using for repairing the first fin portion 210 and the second fin portion 220 .

在氧化处理过程中,由于所述第一鳍部210和第二鳍部220凸出的棱角部分的比表面更大,更容易被氧化,后续去除所述衬垫氧化层之后,不仅所述第一鳍部210和第二鳍部220表面的缺陷层被去除,且凸出棱角部分也被去除,使所述第一鳍部210和第二鳍部220的表面光滑,晶格质量得到改善,避免所述第一鳍部210和第二鳍部220顶角尖端放电问题,有利于改善鳍式场效应管的性能。During the oxidation process, since the protruding corners of the first fin 210 and the second fin 220 have a larger specific surface area, they are more likely to be oxidized. After the subsequent removal of the pad oxide layer, not only the first The defect layer on the surface of the first fin 210 and the second fin 220 is removed, and the protruding corners are also removed, so that the surface of the first fin 210 and the second fin 220 is smooth, and the lattice quality is improved. Avoiding the discharge problem at the top corners of the first fin portion 210 and the second fin portion 220 is beneficial to improve the performance of the FinFET.

本实施例中,所述衬垫氧化层还位于所述衬底200表面,所述衬垫氧化层的材料为氧化硅。In this embodiment, the pad oxide layer is also located on the surface of the substrate 200, and the material of the pad oxide layer is silicon oxide.

如无特别说明,后续工艺过程中提供的结构示意图均为在图5基础上的示意图。Unless otherwise specified, the structural schematic diagrams provided in the subsequent process are all schematic diagrams based on FIG. 5 .

参考图6,在所述鳍部(未标示)之间的衬底200上形成隔离结构201,其中凸出于所述隔离结构201的鳍部作为鳍部第一区域(未标示)。Referring to FIG. 6 , an isolation structure 201 is formed on the substrate 200 between the fins (not shown), wherein the fin protruding from the isolation structure 201 serves as a first fin region (not shown).

所述隔离结构201作为半导体结构的隔离结构,用于对相邻器件起到隔离作用。本实施例中,所述隔离结构201的材料为氧化硅。在其他实施例中,所述隔离结构201的材料还可以为氮化硅、氮氧化硅或碳氮氧化硅。The isolation structure 201 is used as an isolation structure of a semiconductor structure for isolating adjacent devices. In this embodiment, the material of the isolation structure 201 is silicon oxide. In other embodiments, the material of the isolation structure 201 may also be silicon nitride, silicon oxynitride or silicon oxycarbonitride.

需要说明的是,本实施例中,所述隔离结构201是浅沟槽隔离层,但不限于浅沟槽隔离层。It should be noted that, in this embodiment, the isolation structure 201 is a shallow trench isolation layer, but is not limited to a shallow trench isolation layer.

本实施例中,所述鳍部包括位于所述第一区域Ⅰ衬底200上的第一鳍部210,以及位于所述第二区域Ⅱ衬底200上的第二鳍部210。相应的,凸出于所述第一区域Ⅰ隔离结构201的第一鳍部210为第一鳍部第一区域(未标示);凸出于所述第二区域Ⅱ隔离结构201的第二鳍部220为第二鳍部第一区域(未标示)。In this embodiment, the fins include a first fin 210 located on the substrate 200 in the first region I, and a second fin 210 located on the substrate 200 in the second region II. Correspondingly, the first fin portion 210 protruding from the isolation structure 201 in the first region I is the first region of the first fin portion (not marked); the second fin portion protruding from the isolation structure 201 in the second region II Portion 220 is the first region of the second fin (not shown).

具体地,形成所述隔离结构201的步骤包括:在所述衬垫氧化层(图未示)上形成隔离膜,所述隔离膜的顶部高于所述硬掩膜层300(如图5所示)顶部;研磨去除高于所述硬掩膜层300顶部的隔离膜;去除部分厚度的隔离膜以形成隔离结构201;去除所述硬掩膜层300。Specifically, the step of forming the isolation structure 201 includes: forming an isolation film on the pad oxide layer (not shown), the top of the isolation film is higher than the hard mask layer 300 (as shown in FIG. 5 (shown) top; grinding and removing the isolation film higher than the top of the hard mask layer 300; removing part of the thickness of the isolation film to form the isolation structure 201; removing the hard mask layer 300.

需要说明的是,在去除部分厚度的隔离膜的同时中还去除部分鳍部表面的衬垫氧化层。It should be noted that part of the pad oxide layer on the surface of the fin is also removed while part of the thickness of the isolation film is removed.

参考图7,形成横跨所述鳍部(未标示)的栅极结构(未标示),所述栅极结构覆盖所述鳍部第一区域(未标示)的部分顶部表面和侧壁表面。Referring to FIG. 7 , a gate structure (not shown) is formed across the fin (not shown), the gate structure covers part of the top surface and the sidewall surface of the first region (not shown) of the fin.

本实施例中,所述栅极结构包括横跨所述第一鳍部第一区域(未标示)的第一栅极结构211,所述第一栅极结构211覆盖所述第一鳍部第一区域的部分顶部表面和侧壁表面;还包括横跨所述第二鳍部第一区域(未标示)的第二栅极结构221,所述第二栅极结构221覆盖所述第二鳍部第一区域的部分顶部表面和侧壁表面。In this embodiment, the gate structure includes a first gate structure 211 across the first region (not marked) of the first fin, and the first gate structure 211 covers the first fin of the first fin. Part of the top surface and sidewall surface of a region; also includes a second gate structure 221 across the first region (not labeled) of the second fin, the second gate structure 221 covers the second fin part of the top surface and sidewall surface of the first region.

本实施例中,所述栅极结构为伪栅结构,所述栅极结构用于为后续形成金属栅极结构占据空间位置。In this embodiment, the gate structure is a dummy gate structure, and the gate structure is used to occupy a space position for subsequent formation of a metal gate structure.

所述栅极结构为单层结构或叠层结构,所述栅极结构包括伪栅层,或者所述栅极结构包括伪氧化层以及位于伪氧化层表面的伪栅层。所述伪氧化层的材料为氧化硅,所述伪栅层的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳。本实施例中,所述伪栅层的材料为多晶硅。The gate structure is a single-layer structure or a stacked structure, and the gate structure includes a dummy gate layer, or the gate structure includes a dummy oxide layer and a dummy gate layer located on the surface of the dummy oxide layer. The material of the dummy oxide layer is silicon oxide, and the material of the dummy gate layer is polysilicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride or amorphous carbon. In this embodiment, the material of the dummy gate layer is polysilicon.

在另一实施例中,所述栅极结构为金属栅极结构。所述栅极结构包括栅介质层以及位于所述栅介质层表面的栅电极层,其中,栅介质层的材料为氧化硅或高k栅介质材料,所述栅电极层的材料为多晶硅或金属材料,所述金属材料包括Ti、Ta、TiN、TaN、TiAl、TiAlN、Cu、Al、W、Ag或Au中的一种或多种。In another embodiment, the gate structure is a metal gate structure. The gate structure includes a gate dielectric layer and a gate electrode layer located on the surface of the gate dielectric layer, wherein the material of the gate dielectric layer is silicon oxide or a high-k gate dielectric material, and the material of the gate electrode layer is polysilicon or metal Material, the metal material includes one or more of Ti, Ta, TiN, TaN, TiAl, TiAlN, Cu, Al, W, Ag or Au.

本实施例中,以所述栅极结构为伪栅结构作为示例。形成所述栅极结构的工艺步骤包括:在所述隔离结构201上形成伪栅膜,所述伪栅膜覆盖所述鳍部(未标示);对所述伪栅膜进行平坦化工艺;在所述伪栅膜表面形成图形层(图未示),所述图形层定义出待形成的栅极结构的图形;以所述图形层为掩膜,图形化所述伪栅膜,在所述第一鳍部210表面形成第一栅极结构211,且还在所述第二鳍部220表面形成第二栅极结构221。In this embodiment, it is taken as an example that the gate structure is a dummy gate structure. The process steps of forming the gate structure include: forming a dummy gate film on the isolation structure 201, the dummy gate film covering the fins (not shown); performing a planarization process on the dummy gate film; A pattern layer (not shown) is formed on the surface of the dummy gate film, and the pattern layer defines the pattern of the gate structure to be formed; using the pattern layer as a mask, patterning the dummy gate film, in the A first gate structure 211 is formed on the surface of the first fin portion 210 , and a second gate structure 221 is also formed on the surface of the second fin portion 220 .

需要说明的是,形成所述第一栅极结构211和第二栅极结构221之后,所述制造方法还包括:在所述第一栅极结构211侧壁形成第一区域第一侧墙(图未示),在所述第二栅极结构221侧壁形成第二区域第一侧墙(图未示)。It should be noted that, after forming the first gate structure 211 and the second gate structure 221, the manufacturing method further includes: forming a first sidewall (first region) on the sidewall of the first gate structure 211 ( Not shown in the figure), forming a first sidewall in the second region (not shown in the figure) on the sidewall of the second gate structure 221 .

所述第一区域第一侧墙和第二区域第一侧墙的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述第一区域第一侧墙和第二区域第一侧墙可以为单层结构或叠层结构。本实施例中,所述第一区域第一侧墙和第二区域第一侧墙为单层结构,所述第一区域第一侧墙和第二区域第一侧墙的材料为氮化硅。The material of the first sidewall in the first region and the first sidewall in the second region can be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbon oxynitride, silicon oxynitride, boron nitride or carbon For boron nitride, the first sidewall in the first region and the first sidewall in the second region can be a single-layer structure or a laminated structure. In this embodiment, the first sidewall in the first region and the first sidewall in the second region have a single-layer structure, and the material of the first sidewall in the first region and the first sidewall in the second region is silicon nitride .

参考图8和图9,图8为基于图4的结构示意图,其中,图8仅示意出一个鳍部,图9为图8沿DD1方向的剖面结构示意图,以所述栅极结构(未标示)为掩膜,对所述鳍部第一区域(未标示)的一侧进行第一轻掺杂工艺231,形成第一轻掺杂离子区(图未示),所述第一轻掺杂工艺231的掺杂离子为第一离子。Referring to FIG. 8 and FIG. 9, FIG. 8 is a schematic structural diagram based on FIG. 4, wherein FIG. 8 only shows one fin, and FIG. 9 is a schematic cross-sectional structural schematic diagram of FIG. ) as a mask, and perform a first lightly doped process 231 on one side of the first region (not shown) of the fin to form a first lightly doped ion region (not shown in the figure), and the first lightly doped The dopant ions in process 231 are the first ions.

具体地,形成所述第一轻掺杂离子区的步骤包括:在所述第二区域Ⅱ的衬底200上形成第一图形层310,所述第一图形层310还覆盖所述第二栅极结构221;以所述第一图形层310和第一区域第一侧墙(图未示)为掩膜,对所述第一鳍部第一区域(未标示)的一侧进行第一轻掺杂工艺231。Specifically, the step of forming the first lightly doped ion region includes: forming a first pattern layer 310 on the substrate 200 in the second region II, and the first pattern layer 310 also covers the second gate Pole structure 221: using the first pattern layer 310 and the first side wall (not shown) in the first region as a mask, perform a first lightening on one side of the first region (not shown) of the first fin Doping process 231 .

本实施例中,形成所述第一轻掺杂离子区后,保留所述第一图形层310,所述第一图形层310还作为后续掺杂工艺的掩膜层。In this embodiment, after the formation of the first lightly doped ion region, the first pattern layer 310 remains, and the first pattern layer 310 also serves as a mask layer for a subsequent doping process.

本实施例中,所述第一区域Ⅰ衬底200用于形成N型器件,相应的,所述第一离子为N型离子。In this embodiment, the first region I substrate 200 is used to form an N-type device, and correspondingly, the first ions are N-type ions.

本实施例中,所述第一离子为As离子。具体地,所述第一轻掺杂工艺231的参数包括:注入角度为7度至20度。In this embodiment, the first ions are As ions. Specifically, the parameters of the first light doping process 231 include: the implantation angle is 7 degrees to 20 degrees.

需要说明的是,注入的离子能量不宜过大,也不宜过小,如果注入的离子能量过小,离子难以注入至所述第一鳍部第一区域的预设深度内;如果注入的离子能量过大,容易恶化短沟道效应,从而导致器件的电学性能降低。为此,本实施例中,所述第一轻掺杂工艺231注入的离子能量为1Kev至8Kev。It should be noted that the implanted ion energy should not be too large, nor should it be too small. If the implanted ion energy is too small, it will be difficult for the ions to be implanted into the preset depth of the first region of the first fin; if the implanted ion energy If it is too large, it is easy to deteriorate the short channel effect, resulting in a decrease in the electrical performance of the device. Therefore, in this embodiment, the ion energy implanted in the first light doping process 231 is 1Kev to 8Kev.

需要说明的是,注入的离子剂量不宜过大,也不宜过小。如果注入的离子剂量过小,容易导致所述第一鳍部210的阻值升高;如果注入的离子剂量过大,容易恶化短沟道效应,从而导致器件的电学性能降低。为此,本实施例中,所述第一轻掺杂工艺231注入的离子剂量为1E14至8E14原子每平方厘米。It should be noted that the dose of implanted ions should not be too large, nor should it be too small. If the implanted ion dose is too small, the resistance of the first fin portion 210 will increase easily; if the implanted ion dose is too large, the short channel effect will be deteriorated, resulting in a decrease in the electrical performance of the device. Therefore, in this embodiment, the ion dose implanted in the first light doping process 231 is 1E14 to 8E14 atoms per square centimeter.

结合参考图8和图10,图10为基于图9的结构示意图,以所述栅极结构(未标示)为掩膜,对所述鳍部第一区域(未标示)的另一侧进行第二轻掺杂工艺232,形成第二轻掺杂离子区(图未示),所述第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。Referring to FIG. 8 and FIG. 10 in conjunction, FIG. 10 is a schematic structural diagram based on FIG. 9 , using the gate structure (not marked) as a mask to perform the second step on the other side of the first region (not marked) of the fin Second light doping process 232, forming a second lightly doped ion region (not shown in the figure), the doping ions of the second lightly doping process are second ions, wherein the second ion type is the same as the first ion type An ion of the same type, the atomic mass of the second ion is smaller than the atomic mass of the first ion.

具体地,形成第二轻掺杂离子区的步骤包括:以所述第一图形层310和第一区域第一侧墙(图未示)为掩膜,对所述第一鳍部第一区域(未标示)的另一侧进行第二轻掺杂工艺232;去除所述第一图形层310。Specifically, the step of forming the second lightly doped ion region includes: using the first pattern layer 310 and the first sidewall (not shown in the figure) in the first region as a mask, to the first region of the first fin The other side (not shown) is subjected to a second light doping process 232; the first pattern layer 310 is removed.

本实施例中,所述第一图形层310为光刻胶层。采用湿法去胶或灰化工艺去除所述第一图形层310。In this embodiment, the first pattern layer 310 is a photoresist layer. The first graphic layer 310 is removed by wet stripping or ashing process.

本实施例中,所述第一区域Ⅰ衬底200用于形成N型器件,所述第一离子为N型离子,相应的,所述第二离子为N型离子。In this embodiment, the first region I substrate 200 is used to form N-type devices, the first ions are N-type ions, and correspondingly, the second ions are N-type ions.

本实施例中,所述第二离子为P离子。具体地,所述第二轻掺杂工艺232的参数包括:注入角度为7度至20度。In this embodiment, the second ions are P ions. Specifically, the parameters of the second light doping process 232 include: the implantation angle is 7 degrees to 20 degrees.

需要说明的是,注入的离子能量不宜过大,也不宜过小,如果注入的离子能量过小,离子难以注入至所述第一鳍部第一区域的预设深度内;如果注入的离子能量过大,容易恶化短沟道效应,从而导致器件的电学性能降低。为此,本实施例中,所述第二轻掺杂工艺232注入的离子能量为1Kev至6Kev。It should be noted that the implanted ion energy should not be too large, nor should it be too small. If the implanted ion energy is too small, it will be difficult for the ions to be implanted into the preset depth of the first region of the first fin; if the implanted ion energy If it is too large, it is easy to deteriorate the short channel effect, resulting in a decrease in the electrical performance of the device. Therefore, in this embodiment, the energy of ions implanted in the second light doping process 232 is 1Kev to 6Kev.

还需要说明的是,注入的离子剂量不宜过大,也不宜过小。如果注入的离子剂量过小,容易导致所述第一鳍部210的阻值升高;如果注入的离子剂量过大,容易恶化短沟道效应,从而导致器件的电学性能降低。为此,本实施例中,所述第二轻掺杂工艺232注入的离子剂量为1E14至5E14原子每平方厘米。It should also be noted that the dose of implanted ions should not be too large, nor should it be too small. If the implanted ion dose is too small, the resistance of the first fin portion 210 will increase easily; if the implanted ion dose is too large, the short channel effect will be deteriorated, resulting in a decrease in the electrical performance of the device. Therefore, in this embodiment, the ion dose implanted in the second light doping process 232 is 1E14 to 5E14 atoms per square centimeter.

结合参考图11,图11为图8中第一区域Ⅰ的局部结构剖面图。本实施例中,所述第一轻掺杂工艺231的掺杂离子为As离子,所述第二轻掺杂工艺232的掺杂离子为P离子;Referring to FIG. 11 , FIG. 11 is a cross-sectional view of a partial structure of the first area I in FIG. 8 . In this embodiment, the doping ions of the first light doping process 231 are As ions, and the doping ions of the second light doping process 232 are P ions;

需要说明的是,一方面,由于As离子的原子质量较重,所述第一鳍部第一区域(未标示)的一侧受到As离子轰击后,材料由单晶态转化成非晶态,即一侧转化成非晶态层215(如图11所示),但另一侧由于未被As离子轰击,材料仍为单晶态;因此在后续的退火工艺中,未被As离子轰击的部分第一鳍部第一区域可以提供较多单晶态材料,从而可以对所述第一鳍部第一区域进行修复,将非晶态层215重新转化成单晶态层,以提高所述第一鳍部210的质量;另一方面,由于P离子的原子质量较轻,通过只对所述第一鳍部第一区域的另一侧进行P离子掺杂,可以避免过多质量较轻的P离子横向扩散至器件沟道区,从而可以改善器件的短沟道效应。It should be noted that, on the one hand, due to the heavy atomic mass of As ions, after one side of the first region (not shown) of the first fin is bombarded by As ions, the material is converted from a single crystal state to an amorphous state, That is, one side is transformed into an amorphous layer 215 (as shown in FIG. 11 ), but the material on the other side is still in a single crystal state because it is not bombarded by As ions; therefore, in the subsequent annealing process, the Part of the first region of the first fin can provide more single crystal material, so that the first region of the first fin can be repaired, and the amorphous layer 215 can be converted into a single crystal layer again, so as to improve the The quality of the first fin portion 210; on the other hand, because the atomic mass of P ions is relatively light, by only carrying out P ion doping to the other side of the first region of the first fin portion, too much light mass can be avoided. The P ions diffuse laterally to the channel region of the device, which can improve the short channel effect of the device.

因此,通过As离子和P离子的结合,既提高了所述第一鳍部210的质量,又改善了器件的短沟道效应,从而使半导体器件的电学性能得到了优化。Therefore, the combination of As ions and P ions not only improves the quality of the first fin 210 but also improves the short channel effect of the device, thereby optimizing the electrical performance of the semiconductor device.

还需要说明的是,所述第一轻掺杂工艺231(如图9所示)和第二轻掺杂工艺232(如图10所示)后,所述制造方法还包括:对所述第二鳍部第一区域(未标示)进行第三轻掺杂工艺(图未示),形成第三轻掺杂离子区(图未示),掺杂离子为第三离子。It should also be noted that, after the first light doping process 231 (as shown in FIG. 9 ) and the second light doping process 232 (as shown in FIG. 10 ), the manufacturing method further includes: A third lightly doped process (not shown) is performed on the first region (not shown) of the second fin to form a third lightly doped ion region (not shown), and the doped ions are third ions.

本实施例中,所述第二区域Ⅱ衬底200用于形成P型器件,相应的,所述第三离子为P型离子。具体地,第三轻掺杂工艺的参数包括:注入的离子包括硼离子,注入的离子能量为2Kev至8Kev,注入的离子剂量为8E13至5E14原子每平方厘米,注入角度为7度至20度。In this embodiment, the second region II substrate 200 is used to form P-type devices, and correspondingly, the third ions are P-type ions. Specifically, the parameters of the third light doping process include: the implanted ions include boron ions, the implanted ion energy is 2Kev to 8Kev, the implanted ion dose is 8E13 to 5E14 atoms per square centimeter, and the implantation angle is 7 degrees to 20 degrees .

还需要说明的是,本实施例中,先对所述第一鳍部第一区域进行第一轻掺杂工艺231和第二轻掺杂工艺232,再对所述第二鳍部第一区域进行第三轻掺杂工艺;在另一实施例中,还可以先对所述第二鳍部第一区域进行第三轻掺杂工艺,再对所述第一鳍部第一区域进行第一轻掺杂工艺和第二轻掺杂工艺。It should also be noted that in this embodiment, the first lightly doped process 231 and the second lightly doped process 232 are performed on the first region of the first fin first, and then the first region of the second fin is performing the third light doping process; in another embodiment, the third light doping process may be firstly performed on the first region of the second fin, and then the first a lightly doped process and a second lightly doped process.

参考图12,第一轻掺杂工艺231(如图9所示)和第二轻掺杂工艺232(如图10所示)后,对所述衬底200进行退火工艺400。Referring to FIG. 12 , after the first light doping process 231 (as shown in FIG. 9 ) and the second light doping process 232 (as shown in FIG. 10 ), an annealing process 400 is performed on the substrate 200 .

本实施例中,对所述衬底200进行退火工艺400的步骤包括:同时对所述第一轻掺杂离子区(图未示)、第二轻掺杂离子区(图未示)和第三轻掺杂离子区(图未示)进行退火工艺400,以激活离子。In this embodiment, the step of performing the annealing process 400 on the substrate 200 includes: simultaneously treating the first lightly doped ion region (not shown in the figure), the second lightly doped ion region (not shown in the figure) and the first lightly doped ion region (not shown in the figure) Three lightly doped ion regions (not shown) are annealed 400 to activate ions.

在进行所述退火工艺400之后,所述第一离子、第二离子和第三离子被激活,并且所述退火工艺400还能够修复所述鳍部第一区域内的晶格损伤,并将所述第一鳍部第一区域中的非晶态材料转化成单晶态材料,也就是说,经过所述退火工艺400之后,所述非晶态层215(如图11所示)转化成单晶态层。After performing the annealing process 400, the first ions, the second ions and the third ions are activated, and the annealing process 400 can also repair the lattice damage in the first region of the fin, and the The amorphous material in the first region of the first fin is converted into a single crystal material, that is, after the annealing process 400, the amorphous layer 215 (as shown in FIG. 11 ) is converted into a single crystal material. crystalline layer.

本实施例中,所述退火工艺400为尖峰退火工艺。在其他实施例中,还可以采用激光退火或快速热退火工艺进行所述退火工艺。In this embodiment, the annealing process 400 is a spike annealing process. In other embodiments, laser annealing or rapid thermal annealing can also be used to perform the annealing process.

需要说明的是,为了激活所述第一离子、第二离子和第三离子,并促进所述第一鳍部第一区域中的非晶态材料转化成单晶态材料的同时,避免对所述第一离子、第二离子和第三离子,以及所述第一轻掺杂工艺231(如图9所示)、第二轻掺杂工艺232(如图10所示)和第三轻掺杂工艺之前的离子掺杂工艺中注入的离子分布造成不良影响,所述退火工艺400的工艺参数需控制在合理范围内。It should be noted that, in order to activate the first ions, the second ions and the third ions, and promote the transformation of the amorphous material in the first region of the first fin into a single crystal material, avoid The first ions, the second ions and the third ions, and the first light doping process 231 (as shown in FIG. 9 ), the second light doping process 232 (as shown in FIG. 10 ) and the third light doping process The distribution of ions implanted in the ion doping process before the impurity process will cause adverse effects, and the process parameters of the annealing process 400 need to be controlled within a reasonable range.

具体地,所述尖峰退火工艺的工艺参数包括:退火温度为750摄氏度至1000摄氏度,压强为一个标准大气压,反应气体为氮气,氮气的气体流量为5每分钟标准升至40每分钟标准升。Specifically, the process parameters of the spike annealing process include: the annealing temperature is 750 degrees Celsius to 1000 degrees Celsius, the pressure is one standard atmospheric pressure, the reaction gas is nitrogen, and the gas flow rate of nitrogen gas is 5 standard liters per minute to 40 standard liters per minute.

结合参考图13,需要说明的是,对所述衬底200进行退火工艺400(如图12所示)后,所述制造方法还包括:在所述栅极结构两侧的鳍部内形成源漏掺杂区(图未示)。With reference to FIG. 13 , it should be noted that after the annealing process 400 (as shown in FIG. 12 ) is performed on the substrate 200, the manufacturing method further includes: forming source and drain in the fins on both sides of the gate structure doped region (not shown).

本实施例中,所述第一区域Ⅰ衬底200用于形成N型器件,所述第二区域Ⅱ衬底200用于形成P型器件。In this embodiment, the first region I substrate 200 is used to form N-type devices, and the second region II substrate 200 is used to form P-type devices.

相应的,所述源漏掺杂区包括:位于所述第一栅极结构211两侧的第一鳍部210内的第一源漏掺杂区(图未示);位于所述第二栅极结构221两侧的第二鳍部220内的第二源漏掺杂区(图未示)。其中,所述第一源漏掺杂区的离子类型为N型,所述第二源漏掺杂区的离子类型为P型。Correspondingly, the source-drain doped region includes: a first source-drain doped region (not shown) located in the first fin portion 210 on both sides of the first gate structure 211; The second source-drain doped regions (not shown) in the second fin portion 220 on both sides of the pole structure 221 . Wherein, the ion type of the first source-drain doped region is N-type, and the ion type of the second source-drain doped region is P-type.

在另一实施例中,所述第一区域衬底用于形成P型器件,所述第二区域衬底用于形成N型器件,相应的,所述第一源漏掺杂区的离子类型为P型,所述第二源漏掺杂区的离子类型为N型。在又一实施例中,所述第一区域衬底和第二区域衬底均用于形成N型器件,相应的,所述第一源漏掺杂区和第二源漏掺杂区的离子类型均为N型。In another embodiment, the substrate in the first region is used to form a P-type device, and the substrate in the second region is used to form an N-type device. Correspondingly, the ion type of the first source-drain doped region is P-type, and the ion type of the second source-drain doped region is N-type. In yet another embodiment, both the substrate in the first region and the substrate in the second region are used to form N-type devices, and correspondingly, the ions in the first source-drain doped region and the second source-drain doped region All types are N-type.

本实施例中,形成所述源漏掺杂区的步骤包括:在所述第一栅极结构211两侧的第一鳍部210内形成第一应力层212,在所述第二栅极结构221两侧的第二鳍部220内形成第二应力层222;在所述第一应力层212内形成第一源漏掺杂区;在所述第二应力层222内形成第二源漏掺杂区。In this embodiment, the step of forming the source-drain doped region includes: forming a first stress layer 212 in the first fin portion 210 on both sides of the first gate structure 211; The second stress layer 222 is formed in the second fin portion 220 on both sides of 221; the first source-drain doped region is formed in the first stress layer 212; the second source-drain doped region is formed in the second stress layer 222. Miscellaneous area.

本实施例中,在形成所述第一应力层212的过程中采用原位自掺杂处理形成所述第一源漏掺杂区;在形成所述第二应力层222的过程中采用原位自掺杂处理形成所述第二源漏掺杂区。In this embodiment, in the process of forming the first stress layer 212, in-situ self-doping treatment is used to form the first source-drain doped region; in the process of forming the second stress layer 222, in-situ Self-doping process forms the second source-drain doping region.

在其他实施例中,还可以在形成所述第一应力层212后,对所述第一应力层212进行重掺杂处理,以形成所述第一源漏掺杂区;在形成所述第二应力层222后,对所述第二应力层222进行重掺杂处理,以形成所述第二源漏掺杂区。In other embodiments, after forming the first stress layer 212, the first stress layer 212 may be heavily doped to form the first source-drain doped region; After the second stress layer 222, the second stress layer 222 is heavily doped to form the second source-drain doped region.

还需要说明的是,对所述衬底200进行退火工艺400(如图12所示)后,形成所述源漏掺杂区之前,所述制造方法还包括:在所述第一区域第一侧墙(图未示)表面形成第一区域第二侧墙(图未示);在所述第二区域第一侧墙(图未示)表面形成第二区域第二侧墙(图未示)。It should also be noted that, after performing the annealing process 400 (as shown in FIG. 12 ) on the substrate 200 and before forming the source-drain doped regions, the manufacturing method further includes: A second side wall (not shown) in the first region is formed on the surface of the side wall (not shown in the figure); a second side wall (not shown in the figure) in the second region is formed on the surface of the first side wall (not shown in the figure). ).

所述第一区域第二侧墙和第二区域第二侧墙的材料可以为氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼或碳氮化硼,所述第一区域第二侧墙和第二区域第二侧墙可以为单层结构或叠层结构。本实施例中,所述第一区域第二侧墙和第二区域第二侧墙为单层结构,所述第一区域第二侧墙和第二区域第二侧墙的材料为氮化硅The material of the second sidewall in the first region and the second sidewall in the second region may be silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride or carbon For boron nitride, the second sidewall in the first region and the second sidewall in the second region may have a single-layer structure or a laminated structure. In this embodiment, the second sidewall in the first region and the second sidewall in the second region have a single-layer structure, and the material of the second sidewall in the first region and the second sidewall in the second region is silicon nitride

本实施例对所述第一鳍部第一区域(未标示)的一侧进行第一轻掺杂工艺231(如图9所示),所述第一轻掺杂工艺231的掺杂离子为第一离子,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺232(如图10所示),第二轻掺杂工艺232的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。既避免了所述第一鳍部第一区域难以修复的问题,又改善了器件的短沟道效应,从而使半导体器件的电学性能得到了优化。In this embodiment, a first light doping process 231 (as shown in FIG. 9 ) is performed on one side of the first region (not marked) of the first fin, and the doping ions in the first light doping process 231 are The first ions are used to perform a second light doping process 232 (as shown in FIG. 10 ) on the other side of the first region of the fin, and the doping ions in the second light doping process 232 are second ions, wherein, The second ion type is the same as the first ion type, and the atomic mass of the second ion is less than the atomic mass of the first ion. The problem that the first region of the first fin is difficult to repair is avoided, and the short channel effect of the device is improved, thereby optimizing the electrical performance of the semiconductor device.

继续参考图13,本发明还提供一种半导体结构,包括:Continuing to refer to FIG. 13, the present invention also provides a semiconductor structure, including:

衬底200,所述衬底200具有鳍部(未标示);a substrate 200, the substrate 200 has fins (not labeled);

隔离结构201,位于所述鳍部之间的衬底200上,其中凸出于所述隔离结构201的鳍部作为鳍部第一区域(未标示);an isolation structure 201 located on the substrate 200 between the fins, wherein the fin protruding from the isolation structure 201 serves as a first region of the fin (not marked);

栅极结构(未标示),横跨所述鳍部且覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;a gate structure (not shown) spanning the fin and covering part of the top surface and sidewall surface of the first region of the fin;

第一轻掺杂离子区(图未示),位于所述鳍部第一区域内的一侧,所述第一轻掺杂离子区的掺杂离子为第一离子;a first lightly doped ion region (not shown in the figure), located on one side of the first region of the fin, and the doping ions in the first lightly doped ion region are first ions;

第二轻掺杂离子区(图未示),位于所述鳍部第一区域内的另一侧,所述第二轻掺杂离子区的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。The second lightly doped ion region (not shown in the figure) is located on the other side of the first region of the fin, and the doping ions in the second lightly doped ion region are second ions, wherein the first The two ion types are the same as the first ion type, and the atomic mass of the second ion is less than the atomic mass of the first ion.

本实施例中,所述衬底200为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 200 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate. substrate.

本实施例中,所述衬底200包括第一区域Ⅰ和第二区域Ⅱ。相应的,位于所述第一区域Ⅰ衬底200上的鳍部为第一鳍部210,位于所述第二区域Ⅱ衬底200上的鳍部为第二鳍部220。In this embodiment, the substrate 200 includes a first region I and a second region II. Correspondingly, the fins located on the substrate 200 in the first region I are the first fins 210 , and the fins located on the substrate 200 in the second region II are the second fins 220 .

所述第一鳍部210和所述第二鳍部220的材料与所述衬底200的材料相同。本实施例中,所述第一鳍部210和第二鳍部220的材料为硅。其他实施例中,所述第一鳍部和所述第二鳍部的材料还可以是锗、锗化硅、碳化硅、砷化镓或镓化铟。The material of the first fin 210 and the second fin 220 is the same as that of the substrate 200 . In this embodiment, the material of the first fin portion 210 and the second fin portion 220 is silicon. In other embodiments, the material of the first fin and the second fin may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

本实施例中,所述第一区域Ⅰ的半导体结构为N型器件,所述第二区域Ⅱ的半导体结构为P型器件。在另一实施例中,所述第一区域的半导体结构为P型器件,所述第二区域的半导体结构为N型器件。在其他实施例中,所述第一区域和第二区域的半导体结构均为N型器件。In this embodiment, the semiconductor structure in the first region I is an N-type device, and the semiconductor structure in the second region II is a P-type device. In another embodiment, the semiconductor structure in the first region is a P-type device, and the semiconductor structure in the second region is an N-type device. In other embodiments, the semiconductor structures in the first region and the second region are both N-type devices.

所述隔离结构201作为半导体结构的隔离结构,用于对相邻器件起到隔离作用。本实施例中,所述隔离结构201的材料为氧化硅。在其他实施例中,所述隔离结构201的材料还可以为氮化硅、氮氧化硅或碳氮氧化硅。The isolation structure 201 is used as an isolation structure of a semiconductor structure for isolating adjacent devices. In this embodiment, the material of the isolation structure 201 is silicon oxide. In other embodiments, the material of the isolation structure 201 may also be silicon nitride, silicon oxynitride or silicon oxycarbonitride.

需要说明的是,本实施例中,所述隔离结构201是浅沟槽隔离层,但不限于浅沟槽隔离层。It should be noted that, in this embodiment, the isolation structure 201 is a shallow trench isolation layer, but is not limited to a shallow trench isolation layer.

相应的,凸出于所述第一区域Ⅰ隔离结构201的第一鳍部210为第一鳍部第一区域(未标示);凸出于所述第二区域Ⅱ隔离结构201的第二鳍部220为第二鳍部第一区域(未标示)。Correspondingly, the first fin portion 210 protruding from the isolation structure 201 in the first region I is the first region of the first fin portion (not marked); the second fin portion protruding from the isolation structure 201 in the second region II Portion 220 is the first region of the second fin (not shown).

相应的,所述第一轻掺杂离子区位于所述第一鳍部第一区域内的一侧;所述第二轻掺杂离子区位于所述第一鳍部第一区域内的另一侧。Correspondingly, the first lightly doped ion region is located on one side of the first region of the first fin; the second lightly doped ion region is located on the other side of the first region of the first fin. side.

本实施例中,所述第一区域Ⅰ的半导体结构为N型器件,相应的,所述第一离子和第二离子为N型离子。具体地,所述第一离子为As离子,所述第二离子为P离子。In this embodiment, the semiconductor structure in the first region I is an N-type device, and correspondingly, the first ions and the second ions are N-type ions. Specifically, the first ions are As ions, and the second ions are P ions.

需要说明的是,所述第一轻掺杂离子区和第二轻掺杂离子区的离子浓度不宜过高,也不宜过低。如果离子浓度过低,容易导致所述第一鳍部210的阻值升高;如果离子浓度过高,容易恶化短沟道效应,从而导致器件的电学性能降低。为此,本实施例中,所述第一轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米;所述第二轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米。It should be noted that the ion concentration of the first lightly doped ion region and the second lightly doped ion region should not be too high, nor should it be too low. If the ion concentration is too low, the resistance of the first fin portion 210 will increase easily; if the ion concentration is too high, the short channel effect will be deteriorated, thereby reducing the electrical performance of the device. Therefore, in this embodiment, the ion concentration of the first lightly doped ion region is 1E19 atoms per cubic centimeter to 5E20 atoms per cubic centimeter; the ion concentration of the second lightly doped ion region is 1E19 atoms per cubic centimeter cm to 5E20 atoms per cubic centimeter.

需要说明的是,所述半导体结构还包括:位于所述第二鳍部第一区域(未标示)内的第三轻掺杂离子区(图未示),掺杂离子为第三离子。It should be noted that the semiconductor structure further includes: a third lightly doped ion region (not shown) located in the first region (not shown) of the second fin, and the dopant ions are third ions.

本实施例中,所述第二区域Ⅱ的半导体结构为P型器件,相应的,所述第三离子为P型离子。具体地,所述第三离子包括硼离子,所述第三轻掺杂离子区的离子浓度为8E13原子每立方厘米至5E14原子每立方厘米。In this embodiment, the semiconductor structure in the second region II is a P-type device, and correspondingly, the third ions are P-type ions. Specifically, the third ions include boron ions, and the ion concentration of the third lightly doped ion region is 8E13 atoms per cubic centimeter to 5E14 atoms per cubic centimeter.

本实施例中,所述栅极结构包括横跨所述第一鳍部第一区域(未标示)的第一栅极结构211,所述第一栅极结构211覆盖所述第一鳍部第一区域的部分顶部表面和侧壁表面;还包括横跨所述第二鳍部第一区域(未标示)的第二栅极结构221,所述第二栅极结构221覆盖所述第二鳍部第一区域的部分顶部表面和侧壁表面。In this embodiment, the gate structure includes a first gate structure 211 across the first region (not marked) of the first fin, and the first gate structure 211 covers the first fin of the first fin. Part of the top surface and sidewall surface of a region; also includes a second gate structure 221 across the first region (not labeled) of the second fin, the second gate structure 221 covers the second fin part of the top surface and sidewall surface of the first region.

所述栅极结构为金属栅极结构。所述栅极结构包括栅介质层以及位于所述栅介质层表面的栅电极层,其中,栅介质层的材料为氧化硅或高k栅介质材料,所述栅电极层的材料为多晶硅或金属材料,所述金属材料包括Ti、Ta、TiN、TaN、TiAl、TiAlN、Cu、Al、W、Ag或Au中的一种或多种。本实施例中,所述金属材料为W。The gate structure is a metal gate structure. The gate structure includes a gate dielectric layer and a gate electrode layer located on the surface of the gate dielectric layer, wherein the material of the gate dielectric layer is silicon oxide or a high-k gate dielectric material, and the material of the gate electrode layer is polysilicon or metal Material, the metal material includes one or more of Ti, Ta, TiN, TaN, TiAl, TiAlN, Cu, Al, W, Ag or Au. In this embodiment, the metal material is W.

还需要说明的是,所述半导体结构还包括:位于所述栅极结构两侧的鳍部内的源漏掺杂区(图未示)。It should also be noted that the semiconductor structure further includes: doped source and drain regions (not shown) located in the fins on both sides of the gate structure.

具体地,所述源漏掺杂区包括:位于所述第一栅极结构211两侧的第一鳍部210内的第一源漏掺杂区(图未示);位于所述第二栅极结构221两侧的第二鳍部220内的第二源漏掺杂区(图未示)。其中,所述第一源漏掺杂区的离子类型为N型,所述第二源漏掺杂区的离子类型为P型。Specifically, the source-drain doped region includes: a first source-drain doped region (not shown) located in the first fin portion 210 on both sides of the first gate structure 211; The second source-drain doped regions (not shown) in the second fin portion 220 on both sides of the pole structure 221 . Wherein, the ion type of the first source-drain doped region is N-type, and the ion type of the second source-drain doped region is P-type.

在另一实施例中,所述第一区域的半导体结构为P型器件,所述第二区域的半导体结构为N型器件,相应的,所述第一源漏掺杂区的离子类型为P型,所述第二源漏掺杂区的离子类型为N型。在又一实施例中,所述第一区域和第二区域的半导体结构均为N型器件,相应的,所述第一源漏掺杂区和第二源漏掺杂区的离子类型均为N型。In another embodiment, the semiconductor structure in the first region is a P-type device, and the semiconductor structure in the second region is an N-type device. Correspondingly, the ion type of the first source-drain doped region is P type, the ion type of the second source-drain doped region is N-type. In yet another embodiment, the semiconductor structures in the first region and the second region are both N-type devices, and correspondingly, the ion types of the first source-drain doped region and the second source-drain doped region are both Type N.

本实施例中,所述半导体结构还包括:位于所述第一栅极结构211两侧第一鳍部210内的第一应力层212,位于所述第二栅极结构221两侧第二鳍部220内的第二应力层222;其中,所述第一源漏掺杂区位于所述第一应力层212内,所述第二源漏掺杂区位于所述第二应力层222内。In this embodiment, the semiconductor structure further includes: a first stress layer 212 located in the first fins 210 on both sides of the first gate structure 211 , a second fin located on both sides of the second gate structure 221 The second stress layer 222 in the portion 220 ; wherein, the first source-drain doped region is located in the first stress layer 212 , and the second source-drain doped region is located in the second stress layer 222 .

所述第一轻掺杂离子区(图未示)位于所述第一鳍部第一区域(未标示)内的一侧,所述第一轻掺杂离子的掺杂离子为第一离子;所述第二轻掺杂离子区(图未示)位于所述第一鳍部第一区域内的另一侧,所述第二轻掺杂离子的掺杂离子为第二离子;其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。一方面避免所述第一鳍部第一区域另一侧在第一轻掺杂离子区的形成过程中,因受到质量较重的第一离子轰击而由单晶态转化成非晶态,从而使未被As离子轰击的部分鳍部第一区域在第一鳍部210修复过程中提供更多单晶态材料,以将非晶态材料重新转化成单晶态材料,进而提高所述第一鳍部210的质量;另一方面,可以避免过多质量较轻的离子横向扩散至器件沟道区,从而可以改善器件的短沟道效应。因此,通过第一离子和第二离子的结合,既提高了所述第一鳍部210的质量,又改善了器件的短沟道效应,从而使半导体器件的电学性能得到了优化。The first lightly doped ion region (not shown) is located on one side of the first fin region (not shown), and the doping ions of the first lightly doped ions are first ions; The second lightly doped ion region (not shown) is located on the other side of the first region of the first fin, and the doping ions of the second lightly doped ions are second ions; wherein, the The second ion type is the same as the first ion type, and the atomic mass of the second ion is less than the atomic mass of the first ion. On the one hand, prevent the other side of the first region of the first fin from being bombarded by heavy first ions during the formation of the first lightly doped ion region from being transformed from a single crystal state to an amorphous state, thereby Part of the first region of the fin not bombarded by As ions provides more single-crystal material during the repair process of the first fin 210, so as to reconvert the amorphous material into a single-crystal material, thereby improving the first fin 210. The quality of the fin portion 210; on the other hand, it can avoid excessive lateral diffusion of ions with lower mass to the channel region of the device, thereby improving the short channel effect of the device. Therefore, through the combination of the first ions and the second ions, not only the quality of the first fin 210 is improved, but also the short channel effect of the device is improved, so that the electrical performance of the semiconductor device is optimized.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (19)

1.一种半导体结构的制造方法,其特征在于,包括:1. A method for manufacturing a semiconductor structure, comprising: 提供衬底,所述衬底具有鳍部;providing a substrate having fins; 在所述鳍部之间的衬底上形成隔离结构,其中凸出于所述隔离结构的鳍部作为鳍部第一区域;forming an isolation structure on the substrate between the fins, wherein the fin protruding from the isolation structure serves as a first region of the fin; 形成横跨所述鳍部的栅极结构,所述栅极结构覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;forming a gate structure across the fin, the gate structure covering a portion of a top surface and a sidewall surface of the first region of the fin; 以所述栅极结构为掩膜,对所述鳍部第一区域的一侧进行第一轻掺杂工艺,形成第一轻掺杂离子区,所述第一轻掺杂工艺的掺杂离子为第一离子;Using the gate structure as a mask, perform a first lightly doped process on one side of the first region of the fin to form a first lightly doped ion region, and the dopant ions in the first lightly doped process is the first ion; 以所述栅极结构为掩膜,对所述鳍部第一区域的另一侧进行第二轻掺杂工艺,形成第二轻掺杂离子区,所述第二轻掺杂工艺的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,且所述第二离子的原子质量小于所述第一离子的原子质量;Using the gate structure as a mask, perform a second lightly doped process on the other side of the first region of the fin to form a second lightly doped ion region, and the doping in the second lightly doped process the ion is a second ion, wherein the second ion type is the same as the first ion type, and the atomic mass of the second ion is less than the atomic mass of the first ion; 第一轻掺杂工艺和第二轻掺杂工艺后,对所述衬底进行退火工艺。After the first light doping process and the second light doping process, the substrate is annealed. 2.如权利要求1所述的半导体结构的制造方法,其特征在于,所述衬底用于形成N型器件,所述第一离子和第二离子为N型离子。2. The method for manufacturing a semiconductor structure according to claim 1, wherein the substrate is used to form an N-type device, and the first ions and the second ions are N-type ions. 3.如权利要求1所述的半导体结构的制造方法,其特征在于,所述第一离子为As离子,所述第二离子为P离子。3. The method for manufacturing a semiconductor structure according to claim 1, wherein the first ions are As ions, and the second ions are P ions. 4.如权利要求3所述的半导体结构的制造方法,其特征在于,所述第一轻掺杂工艺的参数包括:注入的离子能量为1Kev至8Kev,注入的离子剂量为1E14至8E14原子每平方厘米,注入角度为7度至20度。4. The method for manufacturing a semiconductor structure according to claim 3, wherein the parameters of the first light doping process include: implanted ion energy is 1Kev to 8Kev, implanted ion dose is 1E14 to 8E14 atoms per square centimeter, and the injection angle is 7 degrees to 20 degrees. 5.如权利要求3所述的半导体结构的制造方法,其特征在于,所述第二轻掺杂工艺的参数包括:注入的离子能量为1Kev至6Kev,注入的离子剂量为1E14至5E14原子每平方厘米,注入角度为7度至20度。5. The method for manufacturing a semiconductor structure according to claim 3, wherein the parameters of the second light doping process include: implanted ion energy is 1Kev to 6Kev, implanted ion dose is 1E14 to 5E14 atoms per square centimeter, and the injection angle is 7 degrees to 20 degrees. 6.如权利要求1所述的半导体结构的制造方法,其特征在于,所述退火工艺为激光退火、尖峰退火或快速热退火工艺。6. The method for manufacturing a semiconductor structure according to claim 1, wherein the annealing process is laser annealing, spike annealing or rapid thermal annealing process. 7.如权利要求6所述的半导体结构的制造方法,其特征在于,所述退火工艺为尖峰退火工艺;7. The method for manufacturing a semiconductor structure according to claim 6, wherein the annealing process is a spike annealing process; 所述退火工艺的工艺参数包括:退火温度为900摄氏度至1050摄氏度,压强为一个标准大气压,反应气体为氮气,氮气的气体流量为5每分钟标准升至40每分钟标准升。The process parameters of the annealing process include: the annealing temperature is 900 to 1050 degrees Celsius, the pressure is one standard atmospheric pressure, the reaction gas is nitrogen, and the gas flow rate of nitrogen is 5 standard liters per minute to 40 standard liters per minute. 8.如权利要求1所述的半导体结构的制造方法,其特征在于,对所述衬底进行退火工艺后,所述制造方法还包括:在所述栅极结构两侧的鳍部内形成源漏掺杂区。8. The method for manufacturing a semiconductor structure according to claim 1, wherein after performing an annealing process on the substrate, the manufacturing method further comprises: forming source and drain in the fins on both sides of the gate structure doped region. 9.如权利要求1所述的半导体结构的制造方法,其特征在于,所述衬底包括第一区域和第二区域,所述第一区域衬底用于形成N型器件,所述第二区域衬底用于形成P型器件;9. The method for manufacturing a semiconductor structure according to claim 1, wherein the substrate comprises a first region and a second region, the first region substrate is used to form an N-type device, and the second region The regional substrate is used to form a P-type device; 位于所述第一区域衬底上的鳍部为第一鳍部,位于所述第二区域衬底上的鳍部为第二鳍部;The fins located on the substrate in the first region are first fins, and the fins located on the substrate in the second region are second fins; 凸出于所述第一区域隔离结构的第一鳍部为第一鳍部第一区域,凸出于所述第二区域隔离结构的第二鳍部为第二鳍部第一区域;The first fin protruding from the first region isolation structure is the first fin portion first region, and the second fin portion protruding from the second region isolation structure is the second fin portion first region; 对所述鳍部第一区域的一侧进行第一轻掺杂工艺的步骤中,对所述第一鳍部第一区域的一侧进行第一轻掺杂工艺;In the step of performing a first lightly doped process on one side of the first region of the fin, performing a first lightly doped process on one side of the first region of the first fin; 对所述鳍部第一区域的另一侧进行第二轻掺杂工艺的步骤中,对所述第一鳍部第一区域的另一侧进行第二轻掺杂工艺;In the step of performing a second lightly doped process on the other side of the first region of the fin, performing a second lightly doped process on the other side of the first region of the first fin; 对所述衬底进行退火工艺之前,所述制造方法还包括:对所述第二鳍部第一区域进行第三轻掺杂工艺,形成第三轻掺杂离子区。Before performing the annealing process on the substrate, the manufacturing method further includes: performing a third lightly doped process on the first region of the second fin to form a third lightly doped ion region. 10.如权利要求9所述的半导体结构的制造方法,其特征在于,所述第三轻掺杂工艺的参数包括:注入的离子包括硼离子,注入的离子能量为2Kev至8Kev,注入的离子剂量为8E13至5E14原子每平方厘米,注入角度为7度至20度。10. The method for manufacturing a semiconductor structure according to claim 9, wherein the parameters of the third light doping process include: the implanted ions include boron ions, the energy of the implanted ions is 2Kev to 8Kev, and the implanted ions The dose is 8E13 to 5E14 atoms per square centimeter, and the implantation angle is 7 degrees to 20 degrees. 11.如权利要求9所述的半导体结构的制造方法,其特征在于,对所述衬底进行退火工艺的步骤包括:同时对所述第一轻掺杂离子区、第二轻掺杂离子区和第三轻掺杂离子区进行退火工艺,以激活离子。11. The method for manufacturing a semiconductor structure according to claim 9, wherein the step of annealing the substrate comprises: simultaneously annealing the first lightly doped ion region and the second lightly doped ion region An annealing process is performed on the third lightly doped ion region to activate the ions. 12.一种半导体结构,其特征在于,包括:12. A semiconductor structure, characterized in that, comprising: 衬底,所述衬底具有鳍部;a substrate having fins; 隔离结构,位于所述鳍部之间的衬底上,其中凸出于所述隔离结构的鳍部作为鳍部第一区域;an isolation structure located on the substrate between the fins, wherein the fin protruding from the isolation structure serves as a first region of the fin; 栅极结构,横跨所述鳍部且覆盖所述鳍部第一区域的部分顶部表面和侧壁表面;a gate structure spanning the fin and covering a portion of the top surface and sidewall surfaces of the first region of the fin; 第一轻掺杂离子区,位于所述鳍部第一区域内的一侧,所述第一轻掺杂离子区的掺杂离子为第一离子;The first lightly doped ion region is located on one side of the first region of the fin, and the doping ions in the first lightly doped ion region are first ions; 第二轻掺杂离子区,位于所述鳍部第一区域内的另一侧,所述第二轻掺杂离子区的掺杂离子为第二离子,其中,所述第二离子类型与所述第一离子类型相同,所述第二离子的原子质量小于所述第一离子的原子质量。The second lightly doped ion region is located on the other side of the first region of the fin, and the dopant ions in the second lightly doped ion region are second ions, wherein the second ion type is the same as the second ion type. The same type of the first ion, the atomic mass of the second ion is less than the atomic mass of the first ion. 13.如权利要求12所述的半导体结构,其特征在于,所述半导体结构为N型器件,所述第一离子和第二离子为N型离子。13. The semiconductor structure according to claim 12, wherein the semiconductor structure is an N-type device, and the first ions and the second ions are N-type ions. 14.如权利要求12所述的半导体结构,其特征在于,所述第一离子为As离子,所述第二离子为P离子。14. The semiconductor structure according to claim 12, wherein the first ions are As ions, and the second ions are P ions. 15.如权利要求14所述的半导体结构,其特征在于,所述第一轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米。15. The semiconductor structure according to claim 14, wherein the ion concentration of the first lightly doped ion region is 1E19 atoms per cubic centimeter to 5E20 atoms per cubic centimeter. 16.如权利要求14所述的半导体结构,其特征在于,所述第二轻掺杂离子区的离子浓度为1E19原子每立方厘米至5E20原子每立方厘米。16. The semiconductor structure according to claim 14, wherein the ion concentration of the second lightly doped ion region is 1E19 atoms per cubic centimeter to 5E20 atoms per cubic centimeter. 17.如权利要求12所述的半导体结构,其特征在于,所述半导体结构还包括:源漏掺杂区,位于所述栅极结构两侧的鳍部内。17 . The semiconductor structure according to claim 12 , further comprising: source-drain doped regions located in the fins on both sides of the gate structure. 18.如权利要求12所述的半导体结构,其特征在于,所述衬底包括第一区域和第二区域,所述第一区域的半导体结构为N型器件,所述第二区域的半导体结构为P型器件;18. The semiconductor structure according to claim 12, wherein the substrate comprises a first region and a second region, the semiconductor structure in the first region is an N-type device, and the semiconductor structure in the second region It is a P-type device; 位于所述第一区域衬底上的鳍部为第一鳍部,位于所述第二区域衬底上的鳍部为第二鳍部;The fins located on the substrate in the first region are first fins, and the fins located on the substrate in the second region are second fins; 凸出于所述第一区域隔离结构的第一鳍部为第一鳍部第一区域,凸出于所述第二区域隔离结构的第二鳍部为第二鳍部第一区域;The first fin protruding from the first region isolation structure is the first fin portion first region, and the second fin portion protruding from the second region isolation structure is the second fin portion first region; 所述第一轻掺杂离子区位于所述第一鳍部第一区域内的一侧;The first lightly doped ion region is located on one side of the first region of the first fin; 所述第二轻掺杂离子区位于所述第一鳍部第一区域内的另一侧;The second lightly doped ion region is located on the other side in the first region of the first fin; 所述半导体结构还包括:位于所述第二鳍部第一区域内的第三轻掺杂离子区。The semiconductor structure further includes: a third lightly doped ion region located in the first region of the second fin. 19.如权利要求18所述的半导体结构,其特征在于,所述第三轻掺杂离子区的掺杂离子包括硼离子,所述第三轻掺杂离子区的离子浓度为8E13原子每立方厘米至5E14原子每立方厘米。19. The semiconductor structure according to claim 18, wherein the dopant ions in the third lightly doped ion region include boron ions, and the ion concentration of the third lightly doped ion region is 8E13 atoms per cubic meter cm to 5E14 atoms per cubic centimeter.
CN201610407517.1A 2016-06-12 2016-06-12 Semiconductor structure and its manufacturing method Active CN107492496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610407517.1A CN107492496B (en) 2016-06-12 2016-06-12 Semiconductor structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610407517.1A CN107492496B (en) 2016-06-12 2016-06-12 Semiconductor structure and its manufacturing method

Publications (2)

Publication Number Publication Date
CN107492496A CN107492496A (en) 2017-12-19
CN107492496B true CN107492496B (en) 2019-12-03

Family

ID=60642991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610407517.1A Active CN107492496B (en) 2016-06-12 2016-06-12 Semiconductor structure and its manufacturing method

Country Status (1)

Country Link
CN (1) CN107492496B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113130309B (en) * 2021-04-13 2023-05-05 中国科学院微电子研究所 Doping defect removal method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787406B1 (en) * 2003-08-12 2004-09-07 Advanced Micro Devices, Inc. Systems and methods for forming dense n-channel and p-channel fins using shadow implanting
CN2726117Y (en) * 2003-04-29 2005-09-14 台湾积体电路制造股份有限公司 Wafer with semiconductor on insulating layer
CN101183686A (en) * 2006-11-13 2008-05-21 国际商业机器公司 Asymmetric multi-gate transistor and method of forming same
CN102640273A (en) * 2009-12-01 2012-08-15 国际商业机器公司 Method and structure for forming finfets with multiple doping regions on a same chip
CN103681507A (en) * 2012-09-20 2014-03-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN104795332A (en) * 2014-01-21 2015-07-22 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor forming method
CN105225958A (en) * 2014-06-30 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of fin formula field effect transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761594B2 (en) * 2013-10-02 2017-09-12 Globalfoundries Inc. Hardmask for a halo/extension implant of a static random access memory (SRAM) layout
CN105097513B (en) * 2014-04-24 2019-09-03 中芯国际集成电路制造(北京)有限公司 Manufacturing method of semiconductor device, semiconductor device and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2726117Y (en) * 2003-04-29 2005-09-14 台湾积体电路制造股份有限公司 Wafer with semiconductor on insulating layer
US6787406B1 (en) * 2003-08-12 2004-09-07 Advanced Micro Devices, Inc. Systems and methods for forming dense n-channel and p-channel fins using shadow implanting
CN101183686A (en) * 2006-11-13 2008-05-21 国际商业机器公司 Asymmetric multi-gate transistor and method of forming same
CN102640273A (en) * 2009-12-01 2012-08-15 国际商业机器公司 Method and structure for forming finfets with multiple doping regions on a same chip
CN103681507A (en) * 2012-09-20 2014-03-26 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN104795332A (en) * 2014-01-21 2015-07-22 中芯国际集成电路制造(上海)有限公司 Fin-type field effect transistor forming method
CN105225958A (en) * 2014-06-30 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of fin formula field effect transistor

Also Published As

Publication number Publication date
CN107492496A (en) 2017-12-19

Similar Documents

Publication Publication Date Title
CN104022037B (en) Fin formula field effect transistor and forming method thereof
US10741453B2 (en) FinFET device
US8329566B2 (en) Method of manufacturing a high-performance semiconductor device
CN108122976B (en) Semiconductor structure and method of forming the same, and SRAM
CN106328589A (en) FinFET channel on oxide substrate and related methods
CN107785261A (en) Semiconductor structure and its manufacture method
CN106952810B (en) Method for manufacturing semiconductor structure
US20150270399A1 (en) Semiconductor structure and method for manufacturing the same
CN106558493B (en) Method for forming fin field effect transistor
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
CN107492496B (en) Semiconductor structure and its manufacturing method
CN108010846B (en) Method and semiconductor structure for improving short channel effect
CN109087892B (en) Semiconductor structure, forming method thereof and forming method of fin field effect transistor
CN109427681B (en) Semiconductor structure and method of forming the same
CN106935504B (en) Semiconductor structure and forming method thereof
CN106328706B (en) The forming method of fin formula field effect transistor
CN112018163B (en) Semiconductor structure and forming method thereof
CN111554635B (en) Semiconductor structure and forming method thereof
CN111354681B (en) Transistor structure and method of forming it
CN107437533B (en) Semiconductor structure and method of making the same
CN109427679B (en) Semiconductor structure and method of forming the same
CN112652578A (en) Forming method of semiconductor structure and transistor
CN104167363A (en) Method for forming ion injection side wall protecting layer on FinFET device
CN112017961A (en) Semiconductor structure and method of forming the same
CN107293490B (en) Method for manufacturing semiconductor structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant