CN107486555A - Ni基超合金组合物以及用于SLM加工这种Ni基超合金组合物的方法 - Google Patents
Ni基超合金组合物以及用于SLM加工这种Ni基超合金组合物的方法 Download PDFInfo
- Publication number
- CN107486555A CN107486555A CN201710445663.8A CN201710445663A CN107486555A CN 107486555 A CN107486555 A CN 107486555A CN 201710445663 A CN201710445663 A CN 201710445663A CN 107486555 A CN107486555 A CN 107486555A
- Authority
- CN
- China
- Prior art keywords
- based superalloy
- slm
- superalloy composition
- content
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 55
- 229910000601 superalloy Inorganic materials 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000002844 melting Methods 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 23
- 230000008018 melting Effects 0.000 claims abstract description 20
- 230000005496 eutectics Effects 0.000 claims abstract description 9
- 238000010894 electron beam technology Methods 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001465 metallisation Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 claims description 3
- 238000010348 incorporation Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 38
- 239000000956 alloy Substances 0.000 description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 238000005336 cracking Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 8
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000002362 energy-dispersive X-ray chemical map Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- B22F1/0003—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/123—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明涉及Ni基超合金组合物以及用于SLM加工这种Ni基超合金组合物的方法,采用用于基于粉末的添加制造(AM)技术,例如选择性激光熔化(SLM)或电子束熔化(EBM)的Ni基超合金组合物。通过控制形成低熔点共晶的元素尤其是Hf的量,在AM过程期间的裂纹敏感性显著降低。
Description
技术领域
本发明涉及Ni基超合金。它涉及一种Ni基超合金组合物。它还涉及用于SLM加工这种Ni基超合金组合物的方法。
背景技术
γ’(γ引发(Gamma Prime))Ni3(AI,Ti)硬化的Ni基超合金的选择性激光熔化是有挑战性的,因为这些超合金对热裂纹非常敏感。
尤其是在γ基体中具有高含量γ’(γ引发)相的合金,例如MarM247、CM247LC、CMSX486、René80、René108或MD2,导致在选择性激光熔化(SLM)期间广泛的热裂纹。
例如,CM247LC的标称化学组成(nominal chemical composition)为(以重量%表示):9.5W、9.2Co、8.1Cr、5.6Al、3.2Ta、1.4Hf、0.7Ti、0.5Mo、0.075C、0.015Zr、0.015B以及余量的Ni(the balance Ni)(参见US 2014/034626 A1),并且MarM247的标称化学组成为(以重量%表示):10.0W、10.0Co、8.4Cr、5.5Al、3.0Ta、1.5Hf、1.0Ti、0.7Mo、0.15C、0.05Zr、0,015B以及余量的Ni(the balance Ni)。
这种高热裂纹敏感性阻碍了该合金类别的SLM的工业化,而该合金类别的SLM的工业化是高温应用尤其是燃气涡轮工业中强烈需要的。
已提出了不同的方法来减少这种超合金中的热裂纹:
●文件EP 2 886 225 A1涉及借助于基于粉末床的添加制造,例如选择性激光熔化(SLM)或电子束熔化(EBM)生产三维制品的技术。尤其地,它涉及含有具有改进化学组成的基于IN738LC的Ni基超合金粉末的高抗氧化性和高γ引发(γ′)沉淀(high gamma-prime(γ′)precipitation)。这种粉末具有下述化学组成(以重量%表示):15.7-16.3Cr、8.0-9.0Co、1.5-2.0Mo、2.4-2.8W、1.5-2.0Ta、3.2-3.7Al、2.2-3.7Ti、0.6-1.1Nb、0.09-0.13C、0.007-0.012B、0.004<Zr<0.03、0.001<Si<0.03、剩余部分的Ni和不可避免的残余元素,并且另外,粉末粒度分布在10至100μm之间并为球形形态。作为优点,使用更高效的工艺参数,并且无需添加制造工艺(例如预热)和/或后处理(例如热等静压HIP)的复杂和耗时的变化,可产生几乎无裂纹的三维制品。
然而,已发现强烈促进热裂纹的类似于IN738LC的合金中的微量元素(尤其是Si和Zr)的降低和控制(参见上文文件EP 2 886 225 A1)不能完全避免含有较高γ′(γ引发)合金中的热裂纹。
●在SLM之后应用热等静压(HIP)以封闭零件中的现有热裂纹。
对于广泛的裂纹,由于在先前的热裂纹部位处的氧化物形成,这可能降低机械性能;此外,它不允许封闭通至表面的裂纹。已公开了通过一系列涂布和热等静压步骤来解决这个问题的方法(参见文件US 8,506,836),然而所述方法是成本昂贵的,并且因此是不经济的。
●在1200℃左右的极高温度下,通过SLM加工γ′(γ引发)强化的合金MarM247已显示导致完全无裂纹的零件(参见Y.C.Hagedorn,J.Risse,W.Meiners,N.Pirch,K.Wissenbach和R.Poprawe,“Processing of nickel based superalloy MAR M-247bymeans of High Temperature-Selective Laser Melting(HT-SLM),”in High ValueManufacturing:Advanced Research in Virtual and Rapid Prototyping:Proceedingsof the 6th International Conference on Advanced Research in Virtual and RapidPrototyping,Leiria,Portugal,1-5,十月,2013,2013,第291页)。
在当前设置中,仅加热基材,并且因此,由于与基材的距离增加,加工温度随着构造高度的增加而降低。因此,该方法目前限于小零件。如果该方法要工业化,则需要SLM设备的完全重新设计,由于所涉及的高温,这是有挑战性的。另外,在这样高的温度下预期粉末的强烈烧结。烧结但未熔化的粉末的去除是耗时的。此外,因为烧结粉末几乎不能被去除,所以很可能无法产生薄的内部结构例如冷却孔。因此,在这种方法中可能降低表面质量、精度和几何自由度。另外的缺点可能是在加工期间粉末的强氧化,这可能抑制可再循环性并因此增加材料成本。
●已发现使用电子束熔化(EBM)允许加工这样的合金而无热裂纹。
该方法也在高温下完成,并且因此具有如上文讨论的类似局限性(尽管它在真空下进行,并且因此降低了粉末氧化)。然而,EBM具有较低的精度,导致低得多的表面质量,并且不能象SLM一样生成小特征,因为部分烧结的粉末几乎无法从内部空腔中去除。
因此,现有的解决方案或不解决问题,或非常不经济,因此阻碍了γ′(γ引发)硬化的超合金的SLM方法的工业化。
发明内容
因此,本发明的目的是提供Ni基超合金组合物(Ni-base superalloycomposition),其具有在热处理后构建γ/γ′-微观结构的能力,并且显著降低在用于制造具有这种γ/γ′-微观结构的三维制品的添加制造(additive manufacturing,AM)方法期间合金的裂纹敏感性(cracking susceptibility),所述添加制造(AM)方法例如选择性激光熔化(SLM)、电子束熔化(EBM)、激光金属成形(LMF)、激光工程化净成形(LENS)或直接金属沉积(DMD)。
本发明的进一步目的是教导用于SLM加工这种Ni基超合金组合物的方法。
这些目的通过根据权利要求1所述的合金组合物和根据权利要求13所述的方法来实现。
根据本发明,Ni基超合金组合物的特征在于,通过控制形成低熔点共晶(low-melting eutectics)的元素的量,显著降低在AM过程期间的裂纹敏感性。
根据本发明的一个实施例,所述超合金组合物尤其提供用于基于粉末床的添加制造(SLM、EBM),并且包含未结合在沉淀物中(not bound in precipitates)的第一元素,并且所述第一元素形成低熔点共晶。所述第一元素的量相对于标准组成(standardcomposition)而言是增加的。术语标准组成(standard composition)指迄今为止商购可得的Ni基超合金的化学组成。
尤其地,所述第一元素包含铪(Hf)。所述第一元素还可包含Zr或B。
具体地,所述第一元素可包含Hf含量(content)在1.2重量(wt)%<Hf<5重量%范围内的Hf。
更具体地,所述第一元素可包含Hf含量在1.6重量%<Hf<3.5重量%范围内的Hf。
甚至更具体地,所述第一元素可包含Hf含量在1.7重量%<Hf<2.8重量%范围内的Hf。
所述超合金组合物可含有>1.2重量%Hf的最小量,并且C以Hf[at-%]/C[at-%]比(ratio)>1.55存在。
具体地,C以Hf[at-%]/C[at-%]比>1.91存在。
在这两种情况下,为了晶界强化(grain boundary strengthening),C可以C>0.01重量%存在。
尤其地,C可以0.01重量%<C<0.2重量%存在。
控制和调节合金中上述元素的量导致本发明的优点。通过实现所公开的Hf[at-%]/C[at-%]比,Hf在碳化物沉淀物中不完全结合(bound),并且“游离”Hf能够形成低熔点共晶。
其中,所述Ni基超合金是CM247LC的改进版本,具有下述化学组成(以wt.-%表示):9.5W、9.2Co、8.1Cr、5.6Al、3.2Ta、2.4Hf、0.7Ti、0.5Mo、0.075C、0.015Zr、0.015B以及余量的Ni。
其中,所述Ni基超合金是MarM247的改进版本,具有下述化学组成(以wt.-%表示):10.0W、10.0Co、8.4Cr、5.5Al、3.0Ta、2.4Hf、1.0Ti、0.7Mo、0.15C、0.05Zr、0.015B以及余量的Ni。
根据本发明的另一个实施例,所述Ni基超合金是CM247LC的改进版本(具有2.4重量%(2.4wt.-%)的更高的Hf量),所述CM247LC具有下述标称组成(nominal composition)(以重量%(wt.-%)表示):9.5W、9.2Co、8.1Cr、5.6Al、3.2Ta、1.4Hf、0.7Ti、0.5Mo、0.075C、0.015Zr、0.015B以及余量的Ni(the balance Ni)。Hf[at-%]/C[at-%]比对于根据本发明的改进版本为2.2,而对于具有标称组成的合金为1.3。
根据本发明的另外实施例,所述Ni基超合金是MarM247的改进版本(尤其具有更高的Hf量),所述MarM247具有下述标称组成(以重量%表示):10.0W、10.0Co、8.4Cr、5.5Al、3.0Ta、1.5Hf、1.0Ti、0.7Mo、0.15C、0.05Zr、0.015B以及余量的Ni。Hf[at-%]/C[at-%]比对于具有标称组成的MarM247合金仅为0.67。
根据本发明的用于SLM加工Ni基超合金组合物的方法的特征在于,为了防止游离Hf在氧化物中的结合(prevent binding of free Hf in oxides),SLM方法在具有O2<1%的保护大气下进行,而粉末中的O2含量<800ppm。
具体地,SLM方法在具有O2<0.6%的保护大气下进行,而粉末中的O2含量<500ppm。
更具体地,SLM方法在具有O2<0.4%的保护大气下进行,而粉末中的O2含量<300ppm。
附图说明
现在借助于不同的实施例并且参考附图更详细地解释本发明。
图1比较显示了三种不同的SLM加工的合金在建成状态(使用相同的加工参数和条件)下的显微切片,其中(a)涉及标准MarM247,(b)涉及标准CM247LC,并且(c)涉及根据本发明的实施例的改良的合金组合物;
图2显示了具有根据本发明的实施例的合金的EDX图的SEM显微照片,显示了通过富Hf熔体的裂纹回填的证据;
图3显示了由(a)标准CM247LC和(b)根据本发明的实施例的优化合金制成的SLM加工的零件的侧表面的显微照片(两个样品在相等条件下加工);而标准组成(a)导致大量通至表面的裂纹,用优化的合金组成(b)获得无裂纹表面;
图4显示了与标准合金相比较,通过根据本发明的优化的合金组合物的热裂纹(裂纹密度)降低;和
图5显示了随着合金的Hf/C比升高的热裂纹降低。
具体实施方式
本发明尤其涉及用于基于粉末床的添加制造(AM)技术,例如选择性激光熔化(SLM)或电子束熔化(EBM)的Ni基超合金组合物。然而,请求保护的Ni基超合金还可改善其他AM技术例如激光金属沉积(LMD)或激光金属成形(LMF)(吹粉法)中的可焊性(weldability)。
一般而言,根据本发明,通过控制形成低熔点共晶(low-melting eutectics)的元素的量,可显著降低在AM过程期间的裂纹敏感性。
当由于固化和热应变引起的两个固化前沿(solidification fronts)之间的体积收缩不能由来自主熔体池(main melt pool)的流体流动补偿时,出现热裂纹。这种流体流动(“回填(backfilling)”)强烈地取决于枝晶网络的渗透性(permeability of thedendrite network),其受最后阶段固化行为的影响。
本发明预期增加合金用于这种回填过程的能力,并且因此减少在AM/SLM加工期间的热裂纹的量。
本发明通过增加形成低熔点共晶的“游离(free)”(即不结合在沉淀物中)元素,尤其是Hf的量来实现这一点。这增加了存在直到固化的最后阶段的液体的体积分数(volumefraction),并且因此导致更大的枝晶分离(dendrite separation)和更高的渗透性(permeability)。
由于必需元素例如Zr的存在可能开始形成的热裂纹因此可在固化期间被回填且直接封闭。
Hf是非常强的碳化物和氧化物形成剂(carbide and oxide former)。Hf碳化物和氧化物在固化的早期由熔体(the melt)形成,并且大量Hf因此在固化的临界阶段之前固定在碳化物/氧化物中。
为了降低热裂纹,因此提出了含有1.2重量%Hf的最小量,包括C并且具有Hf[at%]/C[at%]比>1.55的合金组合物。
尤其地,所述合金组合物是商购可得的CM247LC合金的改进形式(标称组成(以重量%(wt.-%)表示):9.5W、9.2Co、8.1Cr、5.6Al、3.2Ta、1.4Hf、0.7Ti、0.5Mo、0.075C、0.015Zr、0.015B以及余量的Ni),具有较高的Hf含量(2.4重量%代替1.4重量%)。Hf[at%]/C[at%]比对于该标称化学组成为1.3,并且对于改进组合物,该比率为2.2。
根据本发明的另外实施例,所述Ni基超合金是MarM247的改进版本(尤其具有更高的Hf量),所述MarM247具有下述标称组成(以重量%表示):10.0W、10.0Co、8.4Cr、5.5A1、3.0Ta、1.5Hf、1.0Ti、0.7Mo、0.15C、0.05Zr、0.015B以及余量的Ni。Hf[at-%]/C[at-%]比对于具有标称组成的MarM247合金仅为0.67。
满足这些要求的合金显示足够体积的终末液体(terminal liquid),以允许回填新出现的热裂纹,并且因此在SLM加工期间显示非常低的热裂纹敏感性。
为了防止游离Hf在氧化物中的结合,SLM方法必须另外在具有O2<1%,优选<0.6%,并且更优选为0.4%的保护大气下进行,并且粉末中的O2含量必须<800ppm,优选<500ppm,并且更优选<300ppm。为了晶界强化,C含量必须>0.01重量%。
图1显示了由SLM加工的不同合金的三个显微切片。虽然两种标准合金(a)和(b)对热裂纹非常敏感,但根据本发明的实施例的实验合金不显示任何热裂纹。所有三种合金均使用相同的工艺参数/条件制造。
图2显示了具有显示出富Hf的晶间区域(Hf rich intergranular area)的EDX图插图(EDX map insert)的扫描电子显微镜图像,所述富Hf的晶间区域源自通过富Hf的终末液体回填新出现的热裂纹。
图3显示了由(a)标准CM247LC和(b)根据本发明的实施例的优化合金制成的SLM加工的零件的侧表面的显微照片(两个样品在相同条件下加工)。如可见的,由根据本发明的合金(b)SLM制造的零件不显示通至表面的裂纹,这是重要的,因为这些裂纹尤其难以去除并且可能降低疲劳性质。另一方面,标准CM247LC合金(a)在相同条件下加工时显示许多表面裂纹。
图4显示了来自使用相同条件通过SLM加工的不同合金的定量裂纹分析的结果。将根据本发明的优化的合金组合物与两种标准合金进行比较。根据本发明的实验(优化的)合金显示显著减少的热裂纹敏感性。
图5显示了在从零到2.2的比率范围内,随着Hf/C分数(Hf/C fraction)的增加,热裂纹敏感性的降低,其中裂纹密度几乎变为零。
向铸造合金中添加Hf以改善可铸性是现有技术。然而,对于铸造材料,Hf的添加具有一些严重的局限性:首先,Hf在固化期间强烈地偏析(segregates),并且形成具有非常低的固化温度的共晶结构(eutectic structures)。这强烈地增加了在随后的热处理期间初熔(incipientmelting)的可能性。其次,Hf是非常反应性的,并且可与用于熔模铸造的模具强烈反应。
因此,Hf含量在铸造合金中通常限于~1.5%。然而,这些局限性对于SLM方法不存在,因为发生的快速固化限制了Hf偏析(Hf segregation)和低熔点共晶结构(low meltingeutectic structures)的尺寸。这些尺寸小于几百nm的非常小的偏析已在加热期间均相化(homogenized),并且初熔因此不是问题。由于通过SLM直接由粉末床生成零件,Hf在熔体中的高反应性不是问题。
Claims (10)
1.一种Ni基超合金组合物,其具有在热处理后构建γ/γ′-微观结构的能力,并且用于具有γ/γ′-微观结构的三维制品的添加制造(AM),例如选择性激光熔化(SLM)、电子束熔化(EBM)、激光金属成形(LMF)、激光工程化净成形(LENS)或直接金属沉积(DMD),其中,所述Ni基超合金组合物通过控制形成低熔点共晶的元素的量,来显著降低在添加制造过程期间的裂纹敏感性。
2.根据权利要求1所述的Ni基超合金组合物,其中,所述超合金组合物尤其提供用于基于粉末床的添加制造(SLM、EBM)技术,其包括未结合在沉淀物中的第一元素,并且所述第一元素形成低熔点共晶,并且所述第一元素的量相对于标准组成而言是增加的;其中,所述第一元素包括Hf。
3.根据权利要求2所述的Ni基超合金组合物,其中,所述第一元素包括Hf含量在1.2wt-%<Hf<5wt-%范围内的Hf。
4.根据权利要求3所述的Ni基超合金组合物,其中,所述第一元素包括Hf含量在1.6wt-%<Hf<3.5wt-%范围内的Hf。
5.根据权利要求4所述的Ni基超合金组合物,其中,所述第一元素包括Hf含量在1.7wt-%<Hf<2.8wt-%范围内的Hf。
6.根据权利要求2所述的Ni基超合金组合物,其中,所述超合金组合物包括有最低含量>1.2wt-%的Hf,并且C以Hf[at-%]/C[at-%]比>1.55存在。
7.根据权利要求6所述的Ni基超合金组合物,其中,C以Hf[at-%]/C[at-%]比>1.91存在。
8.根据权利要求6或7所述的Ni基超合金组合物,其中,为了晶界强化C以C>0.01wt-%存在;其中进一步地,C以0.01wt-%<C<0.2wt-%存在。
9.用于SLM加工根据权利要求3所述的Ni基超合金组合物的方法,其中,为了防止游离Hf在氧化物中的结合,所述SLM方法在具有O2<1%的保护大气下进行,而所述粉末中的O2含量<800ppm。
10.根据权利要求9所述的方法,其中,所述SLM方法在具有O2<0.6%的保护大气下进行,而所述粉末中的O2含量<500ppm;进一步地,所述SLM方法在具有O2<0.4%的保护大气下进行,而所述粉末中的O2含量<300ppm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16174111.1A EP3257956B2 (en) | 2016-06-13 | 2016-06-13 | Ni-base superalloy composition and method for slm processing such ni-base superalloy composition |
EP16174111.1 | 2016-06-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107486555A true CN107486555A (zh) | 2017-12-19 |
CN107486555B CN107486555B (zh) | 2021-04-06 |
Family
ID=56203143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710445663.8A Active CN107486555B (zh) | 2016-06-13 | 2017-06-13 | Ni基超合金组合物以及用于SLM加工这种Ni基超合金组合物的方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10941466B2 (zh) |
EP (1) | EP3257956B2 (zh) |
JP (1) | JP7012459B2 (zh) |
CN (1) | CN107486555B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113383101A (zh) * | 2019-01-29 | 2021-09-10 | 西门子能源全球有限两合公司 | 用于高温应用的镍基合金和方法 |
WO2022105529A1 (zh) | 2020-11-19 | 2022-05-27 | 中国航发上海商用航空发动机制造有限责任公司 | 具有高温持久低各向异性的成形件、成形方法及成形粉末 |
WO2022105528A1 (zh) | 2020-11-19 | 2022-05-27 | 中国航发上海商用航空发动机制造有限责任公司 | 具有拉伸低各向异性的成形件、成形方法及其成形粉末 |
CN114892043A (zh) * | 2022-05-23 | 2022-08-12 | 南华大学 | 激光增材制造专用高韧性高温镍基合金粉末及其制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2565063B (en) | 2017-07-28 | 2020-05-27 | Oxmet Tech Limited | A nickel-based alloy |
EP3489376A1 (en) * | 2017-11-24 | 2019-05-29 | Siemens Aktiengesellschaft | Alloy for gas turbine applications with high oxidation resistance |
CN108941560B (zh) * | 2018-07-27 | 2019-06-11 | 中南大学 | 一种消除Renè104镍基高温合金激光增材制造裂纹的方法 |
GB2576305B (en) * | 2018-08-02 | 2022-06-29 | Lpw Technology Ltd | Nickel-based alloy |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
CN109097631B (zh) * | 2018-08-14 | 2020-10-23 | 山东大学 | 一种gh4169合金制备方法 |
EP3636381A1 (en) * | 2018-10-12 | 2020-04-15 | Siemens Aktiengesellschaft | Composition for material for liquid metal deposition or additive manufacturing, method and product |
US10577679B1 (en) | 2018-12-04 | 2020-03-03 | General Electric Company | Gamma prime strengthened nickel superalloy for additive manufacturing |
DE102018251722A1 (de) | 2018-12-27 | 2020-07-02 | Siemens Aktiengesellschaft | Nickelbasislegierung für additive Fertigung und Verfahren |
US20210180158A1 (en) * | 2019-01-23 | 2021-06-17 | Crs Holdings, Inc. | Ni-Based Superalloy Powder for Additive Manufacturing and an Article Made Therefrom |
GB2584654B (en) | 2019-06-07 | 2022-10-12 | Alloyed Ltd | A nickel-based alloy |
GB2587635B (en) * | 2019-10-02 | 2022-11-02 | Alloyed Ltd | A Nickel-based alloy |
US11795832B2 (en) | 2019-11-13 | 2023-10-24 | Siemens Energy, Inc. | System and method for repairing high-temperature gas turbine components |
EP4281239A1 (en) | 2021-01-19 | 2023-11-29 | Siemens Energy, Inc. | Superalloy powder mixture for liquid assisted additive manufacturing of a superalloy component |
US11712738B2 (en) | 2021-01-28 | 2023-08-01 | Siemens Energy, Inc. | Crack healing additive manufacturing of a superalloy component |
CN113881868B (zh) * | 2021-12-07 | 2022-03-04 | 天津大学 | 消除slm成形固溶强化型镍基合金凝固裂纹的改进方法 |
CN114807724B (zh) * | 2022-04-28 | 2023-04-11 | 北京工业大学 | 一种利用激光3d打印技术制备的耐磨复合材料及方法 |
CN116275115B (zh) * | 2023-05-16 | 2023-08-18 | 西安空天机电智能制造有限公司 | 一种TiAl合金的电子束选区增材制造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116723A (en) * | 1976-11-17 | 1978-09-26 | United Technologies Corporation | Heat treated superalloy single crystal article and process |
GB2153845A (en) * | 1984-02-07 | 1985-08-29 | Inco Alloys Products Limited | Production of superalloy sheet |
CN87103970A (zh) * | 1986-06-02 | 1987-12-16 | 联合工艺公司 | 镍基超耐热合金的制品及制造方法 |
CN1046944A (zh) * | 1989-04-10 | 1990-11-14 | 通用电气公司 | 含钽超级合金 |
CN101148727A (zh) * | 2007-10-19 | 2008-03-26 | 北京航空航天大学 | 一种Hf改性的NiAl-Cr(Mo)双相共晶金属间化合物 |
CN101263236A (zh) * | 2005-09-12 | 2008-09-10 | 桑阿洛伊工业株式会社 | 高强度超硬合金及其制造方法 |
CN102002612A (zh) * | 2009-08-31 | 2011-04-06 | 通用电气公司 | 镍基超合金及其制品 |
WO2013087515A1 (en) * | 2011-12-14 | 2013-06-20 | Alstom Technology Ltd | Method for additively manufacturing an article made of a difficult-to-weld material |
US20140034626A1 (en) * | 2012-08-06 | 2014-02-06 | Materials Solutions | Additive manufacturing |
CN105296806A (zh) * | 2014-05-28 | 2016-02-03 | 阿尔斯通技术有限公司 | 用于粉末基增材制造方法中的γ’沉淀强化的镍基超合金 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850624A (en) | 1973-03-06 | 1974-11-26 | Howmet Corp | Method of making superalloys |
US3802938A (en) | 1973-03-12 | 1974-04-09 | Trw Inc | Method of fabricating nickel base superalloys having improved stress rupture properties |
US4140555A (en) | 1975-12-29 | 1979-02-20 | Howmet Corporation | Nickel-base casting superalloys |
US4219592A (en) | 1977-07-11 | 1980-08-26 | United Technologies Corporation | Two-way surfacing process by fusion welding |
JP4449337B2 (ja) | 2003-05-09 | 2010-04-14 | 株式会社日立製作所 | 高耐酸化性Ni基超合金鋳造物及びガスタービン部品 |
EP1835040A1 (de) | 2006-03-17 | 2007-09-19 | Siemens Aktiengesellschaft | Schweisszusatzwekstoff, Verwendung des Schweisszusatzwekstoffes, Verfahren zum Schweissen und Bauteil |
US20110076181A1 (en) * | 2009-09-30 | 2011-03-31 | General Electric Company | Nickel-Based Superalloys and Articles |
US8506836B2 (en) | 2011-09-16 | 2013-08-13 | Honeywell International Inc. | Methods for manufacturing components from articles formed by additive-manufacturing processes |
CA2889477C (en) * | 2012-11-01 | 2021-06-15 | General Electric Company | Additive manufacturing method and apparatus |
US9482249B2 (en) * | 2013-09-09 | 2016-11-01 | General Electric Company | Three-dimensional printing process, swirling device and thermal management process |
EP2886225B1 (en) | 2013-12-23 | 2017-06-07 | Ansaldo Energia IP UK Limited | Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process |
CN104988355A (zh) * | 2015-07-09 | 2015-10-21 | 中国航空工业集团公司北京航空材料研究院 | 降低3d打印用镍基高温合金粉末材料热裂倾向的方法 |
-
2016
- 2016-06-13 EP EP16174111.1A patent/EP3257956B2/en active Active
-
2017
- 2017-06-08 JP JP2017113061A patent/JP7012459B2/ja active Active
- 2017-06-13 CN CN201710445663.8A patent/CN107486555B/zh active Active
- 2017-06-13 US US15/621,133 patent/US10941466B2/en active Active
-
2021
- 2021-01-13 US US17/147,831 patent/US11753705B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4116723A (en) * | 1976-11-17 | 1978-09-26 | United Technologies Corporation | Heat treated superalloy single crystal article and process |
GB2153845A (en) * | 1984-02-07 | 1985-08-29 | Inco Alloys Products Limited | Production of superalloy sheet |
CN87103970A (zh) * | 1986-06-02 | 1987-12-16 | 联合工艺公司 | 镍基超耐热合金的制品及制造方法 |
CN1046944A (zh) * | 1989-04-10 | 1990-11-14 | 通用电气公司 | 含钽超级合金 |
CN101263236A (zh) * | 2005-09-12 | 2008-09-10 | 桑阿洛伊工业株式会社 | 高强度超硬合金及其制造方法 |
CN101148727A (zh) * | 2007-10-19 | 2008-03-26 | 北京航空航天大学 | 一种Hf改性的NiAl-Cr(Mo)双相共晶金属间化合物 |
CN102002612A (zh) * | 2009-08-31 | 2011-04-06 | 通用电气公司 | 镍基超合金及其制品 |
WO2013087515A1 (en) * | 2011-12-14 | 2013-06-20 | Alstom Technology Ltd | Method for additively manufacturing an article made of a difficult-to-weld material |
US20140034626A1 (en) * | 2012-08-06 | 2014-02-06 | Materials Solutions | Additive manufacturing |
CN105296806A (zh) * | 2014-05-28 | 2016-02-03 | 阿尔斯通技术有限公司 | 用于粉末基增材制造方法中的γ’沉淀强化的镍基超合金 |
Non-Patent Citations (1)
Title |
---|
HAGEDORN Y.-C. ET AL.: "chapter 50: Processing of Nickel based super alloy MAR M-247 bei means of High Temperature-Selective Laser Melting (HT-SLM)", 《HIGH VALUE MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING ; PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH AND RAPID PROTOTYPING》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113383101A (zh) * | 2019-01-29 | 2021-09-10 | 西门子能源全球有限两合公司 | 用于高温应用的镍基合金和方法 |
US12221674B2 (en) | 2019-01-29 | 2025-02-11 | Siemens Energy Global GmbH & Co. KG | Nickel-based alloy for high-temperature applications, and method |
WO2022105529A1 (zh) | 2020-11-19 | 2022-05-27 | 中国航发上海商用航空发动机制造有限责任公司 | 具有高温持久低各向异性的成形件、成形方法及成形粉末 |
WO2022105528A1 (zh) | 2020-11-19 | 2022-05-27 | 中国航发上海商用航空发动机制造有限责任公司 | 具有拉伸低各向异性的成形件、成形方法及其成形粉末 |
CN114892043A (zh) * | 2022-05-23 | 2022-08-12 | 南华大学 | 激光增材制造专用高韧性高温镍基合金粉末及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3257956B2 (en) | 2022-02-16 |
US10941466B2 (en) | 2021-03-09 |
JP7012459B2 (ja) | 2022-01-28 |
US20210140015A1 (en) | 2021-05-13 |
CN107486555B (zh) | 2021-04-06 |
US20170356068A1 (en) | 2017-12-14 |
EP3257956A1 (en) | 2017-12-20 |
US11753705B2 (en) | 2023-09-12 |
JP2017222929A (ja) | 2017-12-21 |
EP3257956B1 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107486555B (zh) | Ni基超合金组合物以及用于SLM加工这种Ni基超合金组合物的方法 | |
CN112813308B (zh) | 钴基合金材料 | |
RU2566117C2 (ru) | Способ изготовления трехмерного изделия | |
EP2790858B1 (en) | Method for additively manufacturing an article made of a difficult-to-weld material | |
JP6499546B2 (ja) | 積層造形用Ni基超合金粉末 | |
CN106119608B (zh) | 制品和形成制品的方法 | |
CA2794015C (en) | A process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (slm) | |
EP3185253B1 (en) | Nickel base super alloys and methods of making the same | |
EP3034639A1 (en) | Nickel-based superalloys and additive manufacturing processes using nickel-based superalloys | |
US10221468B2 (en) | Article and additive manufacturing method for making | |
WO2020121367A1 (ja) | コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法 | |
CN106513660A (zh) | 用于基于粉末的制造方法的高温镍基高温合金 | |
CN105828983A (zh) | 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金 | |
WO2020179085A1 (ja) | 熱交換器 | |
Eylon et al. | Titanium and titanium alloy castings | |
JP2019537665A (ja) | チタンを含まない超合金、粉末、方法および部品 | |
US20200114426A1 (en) | An Additive Manufacturing Method for Precipitation-Hardened Superalloy Powdered Material | |
CN111373063A (zh) | 具有高抗氧化性的用于燃气涡轮应用的合金 | |
EP3263724B1 (en) | Metallurgical process and article with nickel-chromium superalloy | |
Xu et al. | Effect of hot isostatic pressure on the microstructure and tensile properties of γ′-strengthened superalloy fabricated through induction-assisted directed energy deposition | |
US20240189896A1 (en) | System and method for forming single crystal components using additive manufacturing tooling | |
WO2023157438A1 (ja) | Fe-Ni-Cr系合金製造物 | |
Sadek et al. | Heat Treatment of IN 718 Produced by Laser Powder Bed Fusion Process—Effect of Thickness on the Microstructure Characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |