CN107403061A - User's medical assessment model building method and medical assessment server - Google Patents
User's medical assessment model building method and medical assessment server Download PDFInfo
- Publication number
- CN107403061A CN107403061A CN201710549371.9A CN201710549371A CN107403061A CN 107403061 A CN107403061 A CN 107403061A CN 201710549371 A CN201710549371 A CN 201710549371A CN 107403061 A CN107403061 A CN 107403061A
- Authority
- CN
- China
- Prior art keywords
- data
- user
- model
- sample
- medical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 6
- 238000013210 evaluation model Methods 0.000 claims abstract description 31
- 238000011156 evaluation Methods 0.000 claims abstract description 24
- 238000013528 artificial neural network Methods 0.000 claims abstract description 23
- 238000003745 diagnosis Methods 0.000 claims abstract description 10
- 238000010276 construction Methods 0.000 claims abstract description 9
- 238000003759 clinical diagnosis Methods 0.000 claims abstract description 8
- 238000013507 mapping Methods 0.000 claims abstract description 4
- 238000013139 quantization Methods 0.000 claims abstract description 4
- 238000012549 training Methods 0.000 claims abstract description 4
- 238000012544 monitoring process Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 230000036772 blood pressure Effects 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 3
- 238000012552 review Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000000306 qrs interval Methods 0.000 claims 1
- 208000017667 Chronic Disease Diseases 0.000 description 5
- 230000001154 acute effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000008242 dietary patterns Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Fuzzy Systems (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Mathematical Physics (AREA)
- Pulmonology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
本发明提供一种用户医疗评估模型构建方法和医疗评估服务器,该模型包括:步骤101:构建样本数据U和样本输入数据V,所述样本数据U经模糊变换得到所述样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量;步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y,步骤103:建立样本输入数据V与样本输出结果y之间神经网络映射关系;步骤104:对所述模型的神经网络进行训练;将所述样本输入数据V作为所述模型的神经网络输入,所述样本输出结果y作为所述模型的神经网络输出;通过样本训练学习,确定所述模型的神经网络中的权值。本发明的用户医疗评估模型构建方法和医疗评估服务器,结合智能终端的采集数据,可以为用户提供便携可靠的医疗诊断服务。
The present invention provides a user medical evaluation model construction method and a medical evaluation server, the model includes: Step 101: Construct sample data U and sample input data V, the sample data U is fuzzy transformed to obtain the sample input data V, V =Ω.U, where Ω is the weight vector of fuzzy quantization; Step 102: Based on the clinical diagnosis results of the sample data U, construct the sample output result y, Step 103: Establish the neural network mapping between the sample input data V and the sample output result y relationship; step 104: train the neural network of the model; use the sample input data V as the neural network input of the model, and the sample output result y as the neural network output of the model; learn through sample training , to determine the weights in the neural network of the model. The user medical evaluation model construction method and the medical evaluation server of the present invention, combined with the data collected by the smart terminal, can provide users with portable and reliable medical diagnosis services.
Description
技术领域technical field
本发明涉及计算机领域,特别涉及一种医疗评估模型构建方法和医疗评估服务器。The invention relates to the field of computers, in particular to a method for constructing a medical evaluation model and a medical evaluation server.
背景技术Background technique
随着人们生活水平的提高,不合理的生活和饮食方式,所导致的慢性疾病和并发症正逐渐影响着人们的健康。此外,老龄化的加剧,老龄人口的增多,老年群体的健康也受到老年慢性疾病的影响。医学表明,这些慢性疾病的恶化是可以通过对人体生理数据指标的监测而提前发现,所以利用智能医疗评估系统对生理数据的采集和评估显得非常有意义。With the improvement of people's living standards, chronic diseases and complications caused by unreasonable living and eating patterns are gradually affecting people's health. In addition, with the intensification of aging and the increase of the elderly population, the health of the elderly group is also affected by the chronic diseases of the elderly. Medicine shows that the exacerbation of these chronic diseases can be detected in advance by monitoring the physiological data indicators of the human body, so it is very meaningful to use the intelligent medical evaluation system to collect and evaluate physiological data.
现有的的智能医疗评估系统的构建上的主要有两种技术方案。分别是单一的可穿戴设备监护系统,和可穿戴设备与智能手机等设备结合的评估监护系统。There are mainly two technical solutions for the construction of the existing intelligent medical evaluation system. They are a single wearable device monitoring system, and an evaluation monitoring system that combines wearable devices with smart phones and other devices.
第一种系统技术方案,主要是智能术后监护贴片、智能手表或手环等可穿戴设备,其外设传感器采集用户的生理体征数据,并显示产品屏幕上。这种技术方案的成本较低,但医疗评估性不高,准确性较差。The first system technical solution is mainly wearable devices such as intelligent postoperative monitoring patches, smart watches or bracelets, whose peripheral sensors collect the user's physiological sign data and display them on the product screen. The cost of this technical solution is lower, but the medical evaluation is not high and the accuracy is poor.
第二种系统技术方案,主要是智能手表或手环上的几种传感器采集到用户的生理体征数据,通过蓝牙或者无线将采集数据发送到用户的智能手机等设备上,智能手机上的应用采用简单的算法分析评估每次采集数据的结果。用户可以调用查看近期的采集数据及相应评估结果。这种技术方案提高了医疗评估性和分析结果准确性,也能存储一段时间的数据用作参考数据变化趋势。但不能对长期大量的采集数据进行综合分析评估,计算能力也不足以对采集的数据进行信息融合分析,评估结果缺乏医疗应用层次的准确性。The second system technical solution is mainly that several sensors on the smart watch or bracelet collect the user's physiological sign data, and send the collected data to the user's smart phone and other devices through Bluetooth or wirelessly. The application on the smart phone adopts Simple algorithmic analysis evaluates the results of each data acquisition. Users can call to view recent collected data and corresponding evaluation results. This technical solution improves the accuracy of medical evaluation and analysis results, and can also store data for a period of time as a reference data change trend. However, it is not possible to comprehensively analyze and evaluate a large amount of collected data for a long time, and the computing power is not enough to conduct information fusion analysis on the collected data, and the evaluation results lack the accuracy of medical application level.
以上方案表明目前的智能终端还不能用于医疗诊断,对于慢性疾病患病人员或潜在的慢性疾病患病人群的,如何结合智能终端,便捷享受可靠的医疗服务,目前尚未提出有效的解决方案。The above schemes show that the current smart terminal cannot be used for medical diagnosis. For patients with chronic diseases or potential chronic disease patients, how to combine smart terminals to enjoy reliable medical services conveniently has not yet proposed an effective solution.
发明内容Contents of the invention
本发明提供了一种用户医疗评估模型构建方法和医疗评估服务器,结合智能终端的采集数据,可以为用户提供便携可靠的医疗诊断服务。The invention provides a method for constructing a user's medical evaluation model and a medical evaluation server, which can provide users with portable and reliable medical diagnosis services in combination with data collected by an intelligent terminal.
本发明提供一种用户医疗评估模型构建方法,包括:The present invention provides a method for constructing a user medical assessment model, comprising:
步骤101:构建样本数据U和样本输入数据V,U包括心电信号ECG特征值数据、血氧数据SpO2、心率数据HR、血压数据BP,心电信号ECG特征值数据包括:RR间期、QRS波间期、PR间期、QT间期、ST段、R波幅度、P波幅度和T波幅度;样本数据U经模糊变换得到样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量;Step 101: Construct sample data U and sample input data V. U includes ECG eigenvalue data, blood oxygen data SpO2, heart rate data HR, and blood pressure data BP. ECG eigenvalue data includes: RR interval, QRS Wave interval, PR interval, QT interval, ST segment, R wave amplitude, P wave amplitude and T wave amplitude; the sample data U is fuzzy transformed to obtain the sample input data V, V=Ω.U, where Ω is fuzzy quantization weight vector of
步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y,Step 102: Based on the clinical diagnosis results of the sample data U, construct a sample output result y,
步骤103:建立样本输入数据V与样本输出结果y之间神经网络映射关系;Step 103: Establish a neural network mapping relationship between the sample input data V and the sample output result y;
步骤104:对模型的神经网络进行训练;将样本输入数据V作为模型的神经网络输入,样本输出结果y作为模型的神经网络输出;通过样本训练学习,确定模型的神经网络中的权值。Step 104: Train the neural network of the model; use the sample input data V as the input of the neural network of the model, and the output result y of the sample as the output of the neural network of the model; determine the weights in the neural network of the model through sample training and learning.
本发明还提供一种医疗评估服务器,包括:包括数据模块和用户医疗评估模块。The present invention also provides a medical evaluation server, including: a data module and a user medical evaluation module.
数据模块,定期收集并保存用户终端采集的生理体征数据,生理体征数据至少包括心电信号ECG、血氧数据SpO2、心率数据HR和血压数据BP;The data module regularly collects and saves the physiological sign data collected by the user terminal. The physiological sign data includes at least the electrocardiographic signal ECG, blood oxygen data SpO2, heart rate data HR and blood pressure data BP;
用户医疗评估模块:使用本发明的用户医疗评估模型,分析数据模块保存的用户数据,根据模型的输出结果,判断用户发病风险。User medical assessment module: use the user medical assessment model of the present invention to analyze the user data saved by the data module, and judge the user's risk of disease according to the output results of the model.
本发明提供的用户医疗评估模型构建方法,可结合用户终端采集的生理体征数据,输出可靠的医疗诊断结果,且该模型可自学习提高输出结果的准确性。使得采用该医疗评估模型的医疗评估服务器,可以为用户提供准确、可靠、便捷的医疗服务。通过模型输出结果自动预警风险就医或服务器主动通知医生提供医疗服务,代替现有的身体不适后再就医,可以让患者在发病初期或急性发病期及时获得治疗,避免耽误最佳治疗期和延误病情,减少患者治疗代价,改善现有医疗服务的体验感和时效性。The user medical evaluation model construction method provided by the present invention can combine the physiological sign data collected by the user terminal to output reliable medical diagnosis results, and the model can self-learn to improve the accuracy of the output results. The medical evaluation server adopting the medical evaluation model can provide users with accurate, reliable and convenient medical services. Through the output of the model, it can automatically warn of risks and seek medical treatment or the server actively notifies doctors to provide medical services, instead of seeking medical treatment after existing physical discomfort, so that patients can receive timely treatment in the early stage or acute stage of disease, avoiding delaying the best treatment period and delaying the condition. , reduce the cost of patient treatment, and improve the experience and timeliness of existing medical services.
附图说明Description of drawings
图1为本发明用户医疗评估模型构建方法的流程图;Fig. 1 is a flow chart of the method for constructing the user's medical evaluation model of the present invention;
图2为本发明用户医疗评估模型实时修正流程图;Fig. 2 is the flow chart of real-time revision of the user's medical evaluation model of the present invention;
图3为本发明医疗评估服务器的结构示意图。Fig. 3 is a schematic structural diagram of the medical evaluation server of the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明的用户医疗评估模型构建方法,如图1所示,至少包括:The user medical evaluation model construction method of the present invention, as shown in Figure 1, at least includes:
步骤101:构建样本数据U和样本输入数据V。Step 101: Construct sample data U and sample input data V.
样本数据U包括心电信号ECG特征值数据、血氧数据SpO2、心率数据HR、血压数据BP,心电信号ECG特征值数据包括:RR间期、QRS波间期、PR间期、QT间期、ST段、R波幅度、P波幅度和T波幅度;样本数据U经模糊变换得到样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量。Sample data U includes ECG eigenvalue data, blood oxygen data SpO2, heart rate data HR, blood pressure data BP, ECG eigenvalue data includes: RR interval, QRS wave interval, PR interval, QT interval , ST segment, R wave amplitude, P wave amplitude and T wave amplitude; the sample data U is fuzzy transformed to obtain the sample input data V, V=Ω.U, where Ω is the weight vector of fuzzy quantization.
步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y。Step 102: Based on the clinical diagnosis results of the sample data U, construct a sample output result y.
例如,可以将用户样本数据的经验判断发病风险y定义为正常、低风险和高风险3种,分别用y0、y1、y2表示,或者再进一步细化风险等级。For example, the empirical judgment risk y of user sample data can be defined as three types of normal, low risk and high risk, represented by y 0 , y 1 , and y 2 respectively, or the risk level can be further refined.
步骤103:并建立样本输入数据V与样本输出结果y之间神经网络映射关系。Step 103: and establish a neural network mapping relationship between the sample input data V and the sample output result y.
步骤104:对医疗评估模型的神经网络模型进行训练;将样本输入数据V作为用户医疗评估模型的神经网络输入,样本输出结果y作为用户医疗评估模型的神经网络输出;通过样本训练学习,确定用户医疗评估模型的神经网络中的权值。Step 104: Train the neural network model of the medical evaluation model; use the sample input data V as the neural network input of the user's medical evaluation model, and the sample output result y as the neural network output of the user's medical evaluation model; through sample training and learning, determine the user Weights in a neural network for a medical assessment model.
本申请的用户医疗评估模型构建方法,可以针对每个用户的样本数据,训练并构建不同的用户医疗评估模型,因为每个用户的生理体征指标各具特点,同一个生理体征指标的某个数值,对一些用户而言是健康数值,而对另一些用户而言,则是危险数值,因此采用本申请的用户医疗评估模型,可以实现个性化定制,使得该模型的精度比一般的统计模型更高。The user medical evaluation model construction method of this application can train and build different user medical evaluation models for each user’s sample data, because each user’s physiological signs have their own characteristics, and a certain value of the same physiological sign index , for some users, it is a healthy value, while for other users, it is a dangerous value. Therefore, the user medical evaluation model of this application can realize personalized customization, so that the accuracy of the model is higher than that of general statistical models. high.
基于步骤101至步骤103建立用户医疗评估模型后,即可将模型用于实时评估;将新采集到的用户数据U’模糊转换为V’,输入到的该模型后,模型输出结果y',根据输出结果y'和样本输出结果y的比较,判断用户发病风险。After the user medical evaluation model is established based on steps 101 to 103, the model can be used for real-time evaluation; the newly collected user data U' is fuzzy converted into V', and after inputting into the model, the model outputs the result y', According to the comparison between the output result y' and the sample output result y, the risk of the user's disease is judged.
进一步地,本申请的用户医疗模型,还具备自学习功能,可基于模型的实时评估结果不断修正、完善模型,如图2所示。Furthermore, the user medical model of this application also has a self-learning function, which can continuously modify and improve the model based on the real-time evaluation results of the model, as shown in FIG. 2 .
模型修正:将新采集到的用户数据的模型输出结果y'与临床诊断结果进行比较,如果输出结果y'与临床诊断结果不符,计算输出误差为输出结果y'与诊断结果的数值差值,将输出误差通过用户医疗评估模型的神经网络的隐含层向输入层逐层反传,将输出误差分摊给医疗评估算法神经网络各层的所有单元。Model correction: compare the model output result y' of the newly collected user data with the clinical diagnosis result, if the output result y' does not match the clinical diagnosis result, calculate the output error as the numerical difference between the output result y' and the diagnosis result, The output error is passed back layer by layer to the input layer through the hidden layer of the neural network of the user's medical evaluation model, and the output error is distributed to all units of each layer of the neural network of the medical evaluation algorithm.
图3为本申请另一个实施例,一种医疗评估服务器,至少包括数据模块和医疗评估模块。Fig. 3 is another embodiment of the present application, a medical assessment server at least including a data module and a medical assessment module.
数据模块,定期收集并保存用户终端采集的生理体征数据,生理体征数据至少包括心电信号ECG、血氧数据SpO2、心率数据HR和血压数据BP;The data module regularly collects and saves the physiological sign data collected by the user terminal. The physiological sign data includes at least the electrocardiographic signal ECG, blood oxygen data SpO2, heart rate data HR and blood pressure data BP;
用户医疗评估模块:使用本申请任一实施例的用户医疗评估模型,分析数据模块保存的用户数据,判断用户发病风险。User medical evaluation module: use the user medical evaluation model of any embodiment of the application to analyze the user data saved by the data module to determine the user's risk of disease.
为了提高数据模块所保存数据的准确性,在数据保存之前,先对用户采集的生理体征数据进行预处理,包括对异常数据和非用户生理体征数据的剔除,以确保输入到用户医疗评估模型数据的一致性和稳定性。In order to improve the accuracy of the data stored in the data module, before the data is saved, the physiological sign data collected by the user is preprocessed, including the elimination of abnormal data and non-user physiological sign data, so as to ensure input into the user medical evaluation model data consistency and stability.
本申请的医疗服务器保存用户生理体征数据,以一定的格式打包成数据包,存储于数据模块。数据包格式,按照包头加数据的格式进行编码,其中包头包括起始位、设备号、时间戳、生理体征及状态数据名和校验位。起始位用于区分每段数据包;设备号用于区分显示用户的不同设备;时间戳用于记录采集时间;生理体征数据名主要用于区分不同传感器采集的生理体征数据以及用户不同的状态信息,如区分采集的数据时心电数据还是心率数据等;校验位用于校验数据传输是否出错。The medical server of this application saves the user's physiological sign data, packs them into data packets in a certain format, and stores them in the data module. The data packet format is encoded according to the format of packet header plus data, where the packet header includes start bit, device number, time stamp, physiological signs and status data name and check digit. The start bit is used to distinguish each data packet; the device number is used to distinguish different devices that display the user; the timestamp is used to record the collection time; the physiological sign data name is mainly used to distinguish the physiological sign data collected by different sensors and the different states of the user Information, such as distinguishing whether the collected data is ECG data or heart rate data; the check digit is used to verify whether the data transmission is wrong.
本申请的医疗评估服务器还包括在线医生,当数据模块保存的用户数据较少时,在线医生审核用户医疗评估模型的输出结果,并将审核结果反馈给用户医疗评估模型,用于用户医疗评估模型的实时修正。The medical evaluation server of this application also includes an online doctor. When the user data saved in the data module is small, the online doctor reviews the output results of the user medical evaluation model, and feeds back the audit results to the user medical evaluation model for use in the user medical evaluation model. real-time corrections.
或者在线医生根据用户医疗评估模型的输出结果和数据模块保存的数据,给用户提供相关医疗诊断建议,并将诊断建议发送到用户终端。当用户医疗评估模型可独立输出可靠的判断结果时,服务器也可以将用户医疗评估模型的输出结果直接发送给用户终端。Or the online doctor provides relevant medical diagnosis suggestions to the user according to the output results of the user's medical evaluation model and the data stored in the data module, and sends the diagnosis suggestions to the user terminal. When the user's medical assessment model can independently output reliable judgment results, the server can also directly send the output result of the user's medical assessment model to the user terminal.
如果用户医疗评估模型的输出结果为“高风险”,服务器自动开启实时监控模块,用户终端实时上传用户生理体征数据,服务器实时监控用户数据,若监控到突发异常,服务器立刻通知在线医生采取医疗措施,为用户提供医疗服务。If the output result of the user's medical evaluation model is "high risk", the server automatically turns on the real-time monitoring module, the user terminal uploads the user's physiological sign data in real time, and the server monitors the user data in real time. Measures to provide users with medical services.
本发明提供的医疗评估模型构建方法,可结合用户终端采集的生理体征数据输出可靠的医疗诊断结果,且该模型可自学习提高输出结果的准确性。使得采用该医疗评估模型的医疗评估服务器,可以为用户提供准确、可靠、便捷的医疗服务。通过模型输出结果自动预警风险就医或服务器主动通知医生提供医疗服务,代替现有的身体不适后再就医,可以让患者在发病初期或急性发病期及时获得治疗,避免耽误最佳治疗期和延误病情,减少患者治疗代价,改善现有医疗服务的体验感和时效性。The medical evaluation model construction method provided by the present invention can combine the physiological sign data collected by the user terminal to output reliable medical diagnosis results, and the model can self-learn to improve the accuracy of the output results. The medical evaluation server adopting the medical evaluation model can provide users with accurate, reliable and convenient medical services. Through the output of the model, it can automatically warn of risks and seek medical treatment or the server actively notifies doctors to provide medical services, instead of seeking medical treatment after existing physical discomfort, so that patients can receive timely treatment in the early stage or acute stage of disease, avoiding delaying the best treatment period and delaying the condition. , reduce the cost of patient treatment, and improve the experience and timeliness of existing medical services.
以上所述仅为本发明的较佳实施例而已,并不用以限定本发明的包含范围,凡在本发明技术方案的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the technical solutions of the present invention are Should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710549371.9A CN107403061A (en) | 2017-07-07 | 2017-07-07 | User's medical assessment model building method and medical assessment server |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710549371.9A CN107403061A (en) | 2017-07-07 | 2017-07-07 | User's medical assessment model building method and medical assessment server |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107403061A true CN107403061A (en) | 2017-11-28 |
Family
ID=60404897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710549371.9A Pending CN107403061A (en) | 2017-07-07 | 2017-07-07 | User's medical assessment model building method and medical assessment server |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107403061A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108095708A (en) * | 2018-01-19 | 2018-06-01 | 动析智能科技有限公司 | Physiological monitoring and analyzing method and system based on hybrid sensing |
CN109767836A (en) * | 2018-12-29 | 2019-05-17 | 上海亲看慧智能科技有限公司 | A kind of medical diagnosis artificial intelligence system, device and its self-teaching method |
CN111317440A (en) * | 2018-12-13 | 2020-06-23 | 通用电气公司 | Early warning method for patients, monitoring device using the method, and readable storage medium |
CN111353972A (en) * | 2018-12-21 | 2020-06-30 | 财团法人工业技术研究院 | State evaluation system, diagnosis and treatment system and operation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1477581A (en) * | 2003-07-01 | 2004-02-25 | �Ϻ���ͨ��ѧ | A Predictive Modeling Approach for Computer-Aided Medical Diagnosis |
CN103038772A (en) * | 2010-03-15 | 2013-04-10 | 新加坡保健服务集团有限公司 | Method of predicting the survivability of a patient |
CN105956374A (en) * | 2016-04-21 | 2016-09-21 | 青岛大学 | Remote monitoring comprehensive medical system |
CN106021941A (en) * | 2016-05-27 | 2016-10-12 | 成都信汇聚源科技有限公司 | Method for obtaining risk predictions of sudden death with weight value matrices of artificial neural network |
CN106407644A (en) * | 2016-08-03 | 2017-02-15 | 无锡金世纪国民体质与健康研究有限公司 | Assessment system used for health risk assessment |
-
2017
- 2017-07-07 CN CN201710549371.9A patent/CN107403061A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1477581A (en) * | 2003-07-01 | 2004-02-25 | �Ϻ���ͨ��ѧ | A Predictive Modeling Approach for Computer-Aided Medical Diagnosis |
CN103038772A (en) * | 2010-03-15 | 2013-04-10 | 新加坡保健服务集团有限公司 | Method of predicting the survivability of a patient |
CN105956374A (en) * | 2016-04-21 | 2016-09-21 | 青岛大学 | Remote monitoring comprehensive medical system |
CN106021941A (en) * | 2016-05-27 | 2016-10-12 | 成都信汇聚源科技有限公司 | Method for obtaining risk predictions of sudden death with weight value matrices of artificial neural network |
CN106407644A (en) * | 2016-08-03 | 2017-02-15 | 无锡金世纪国民体质与健康研究有限公司 | Assessment system used for health risk assessment |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108095708A (en) * | 2018-01-19 | 2018-06-01 | 动析智能科技有限公司 | Physiological monitoring and analyzing method and system based on hybrid sensing |
WO2019142119A1 (en) * | 2018-01-19 | 2019-07-25 | 动析智能科技有限公司 | Hybrid sensing based physiological monitoring and analysis method and system |
CN111317440A (en) * | 2018-12-13 | 2020-06-23 | 通用电气公司 | Early warning method for patients, monitoring device using the method, and readable storage medium |
CN111353972A (en) * | 2018-12-21 | 2020-06-30 | 财团法人工业技术研究院 | State evaluation system, diagnosis and treatment system and operation method thereof |
CN111353972B (en) * | 2018-12-21 | 2024-03-12 | 财团法人工业技术研究院 | State evaluation system, diagnosis and treatment system and operation method thereof |
CN109767836A (en) * | 2018-12-29 | 2019-05-17 | 上海亲看慧智能科技有限公司 | A kind of medical diagnosis artificial intelligence system, device and its self-teaching method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110544541B (en) | A monitoring and evaluation system for elderly life and health status | |
US9597029B2 (en) | System and method for remotely evaluating patient compliance status | |
WO2020224041A1 (en) | Wearable device-based smart real-time health monitoring system, and implementation method therefor | |
CN110648737B (en) | Knowledge base building system and method based on senior care guidelines and disability and intelligence losing | |
CN208942118U (en) | A kind of COPD reconditioning intelligent monitor wearable system based on Internet of Things | |
CN112164455B (en) | Interactive health management system and method for chronic diseases of old people | |
CN110584601B (en) | A system for monitoring and evaluating cognitive function of the elderly | |
CN103400332A (en) | Health service platform system based on real-time monitoring | |
CN202362780U (en) | Family health management system | |
CN110033866A (en) | Healthalert method, apparatus, computer equipment and storage medium | |
TW201006512A (en) | Sleep assistant device and method | |
CN107403061A (en) | User's medical assessment model building method and medical assessment server | |
CN106108846A (en) | A kind of intelligent drug risk monitoring method and system | |
CN207410367U (en) | A kind of family health care cloud service system based on Internet of Things | |
CN107887020A (en) | A kind of sign detecting system and sign detection method | |
CN111820879A (en) | A health evaluation management method suitable for patients with chronic diseases | |
CN105249958B (en) | Human body information monitoring method, apparatus and system | |
CN110277152A (en) | Pharmacy service system based on user portrait | |
CN105447334A (en) | Hypertension diagnosing, treating and managing system based on Android platform | |
TWI537864B (en) | Personalize exercise decision-making device and manipulating method for patients with chronic diseases | |
US20220287565A1 (en) | Enhanced reporting and charting of vital signs and other patient parameters | |
CN107785083A (en) | A kind of user health collecting method and user health monitor system | |
CN107495947A (en) | Blood pressure dynamic analysis method and blood pressure measuring device | |
CN112951391A (en) | Intelligent nursing monitoring | |
CN109215773B (en) | Daily detection method based on big data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171128 |
|
RJ01 | Rejection of invention patent application after publication |