[go: up one dir, main page]

CN107403061A - User's medical assessment model building method and medical assessment server - Google Patents

User's medical assessment model building method and medical assessment server Download PDF

Info

Publication number
CN107403061A
CN107403061A CN201710549371.9A CN201710549371A CN107403061A CN 107403061 A CN107403061 A CN 107403061A CN 201710549371 A CN201710549371 A CN 201710549371A CN 107403061 A CN107403061 A CN 107403061A
Authority
CN
China
Prior art keywords
data
user
model
sample
medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710549371.9A
Other languages
Chinese (zh)
Inventor
王黎明
杨阳
韩星程
李璇
路宇
庞永丽
张宏达
张凡
张一凡
杨涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201710549371.9A priority Critical patent/CN107403061A/en
Publication of CN107403061A publication Critical patent/CN107403061A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Fuzzy Systems (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Mathematical Physics (AREA)
  • Pulmonology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本发明提供一种用户医疗评估模型构建方法和医疗评估服务器,该模型包括:步骤101:构建样本数据U和样本输入数据V,所述样本数据U经模糊变换得到所述样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量;步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y,步骤103:建立样本输入数据V与样本输出结果y之间神经网络映射关系;步骤104:对所述模型的神经网络进行训练;将所述样本输入数据V作为所述模型的神经网络输入,所述样本输出结果y作为所述模型的神经网络输出;通过样本训练学习,确定所述模型的神经网络中的权值。本发明的用户医疗评估模型构建方法和医疗评估服务器,结合智能终端的采集数据,可以为用户提供便携可靠的医疗诊断服务。

The present invention provides a user medical evaluation model construction method and a medical evaluation server, the model includes: Step 101: Construct sample data U and sample input data V, the sample data U is fuzzy transformed to obtain the sample input data V, V =Ω.U, where Ω is the weight vector of fuzzy quantization; Step 102: Based on the clinical diagnosis results of the sample data U, construct the sample output result y, Step 103: Establish the neural network mapping between the sample input data V and the sample output result y relationship; step 104: train the neural network of the model; use the sample input data V as the neural network input of the model, and the sample output result y as the neural network output of the model; learn through sample training , to determine the weights in the neural network of the model. The user medical evaluation model construction method and the medical evaluation server of the present invention, combined with the data collected by the smart terminal, can provide users with portable and reliable medical diagnosis services.

Description

用户医疗评估模型构建方法和医疗评估服务器User medical evaluation model construction method and medical evaluation server

技术领域technical field

本发明涉及计算机领域,特别涉及一种医疗评估模型构建方法和医疗评估服务器。The invention relates to the field of computers, in particular to a method for constructing a medical evaluation model and a medical evaluation server.

背景技术Background technique

随着人们生活水平的提高,不合理的生活和饮食方式,所导致的慢性疾病和并发症正逐渐影响着人们的健康。此外,老龄化的加剧,老龄人口的增多,老年群体的健康也受到老年慢性疾病的影响。医学表明,这些慢性疾病的恶化是可以通过对人体生理数据指标的监测而提前发现,所以利用智能医疗评估系统对生理数据的采集和评估显得非常有意义。With the improvement of people's living standards, chronic diseases and complications caused by unreasonable living and eating patterns are gradually affecting people's health. In addition, with the intensification of aging and the increase of the elderly population, the health of the elderly group is also affected by the chronic diseases of the elderly. Medicine shows that the exacerbation of these chronic diseases can be detected in advance by monitoring the physiological data indicators of the human body, so it is very meaningful to use the intelligent medical evaluation system to collect and evaluate physiological data.

现有的的智能医疗评估系统的构建上的主要有两种技术方案。分别是单一的可穿戴设备监护系统,和可穿戴设备与智能手机等设备结合的评估监护系统。There are mainly two technical solutions for the construction of the existing intelligent medical evaluation system. They are a single wearable device monitoring system, and an evaluation monitoring system that combines wearable devices with smart phones and other devices.

第一种系统技术方案,主要是智能术后监护贴片、智能手表或手环等可穿戴设备,其外设传感器采集用户的生理体征数据,并显示产品屏幕上。这种技术方案的成本较低,但医疗评估性不高,准确性较差。The first system technical solution is mainly wearable devices such as intelligent postoperative monitoring patches, smart watches or bracelets, whose peripheral sensors collect the user's physiological sign data and display them on the product screen. The cost of this technical solution is lower, but the medical evaluation is not high and the accuracy is poor.

第二种系统技术方案,主要是智能手表或手环上的几种传感器采集到用户的生理体征数据,通过蓝牙或者无线将采集数据发送到用户的智能手机等设备上,智能手机上的应用采用简单的算法分析评估每次采集数据的结果。用户可以调用查看近期的采集数据及相应评估结果。这种技术方案提高了医疗评估性和分析结果准确性,也能存储一段时间的数据用作参考数据变化趋势。但不能对长期大量的采集数据进行综合分析评估,计算能力也不足以对采集的数据进行信息融合分析,评估结果缺乏医疗应用层次的准确性。The second system technical solution is mainly that several sensors on the smart watch or bracelet collect the user's physiological sign data, and send the collected data to the user's smart phone and other devices through Bluetooth or wirelessly. The application on the smart phone adopts Simple algorithmic analysis evaluates the results of each data acquisition. Users can call to view recent collected data and corresponding evaluation results. This technical solution improves the accuracy of medical evaluation and analysis results, and can also store data for a period of time as a reference data change trend. However, it is not possible to comprehensively analyze and evaluate a large amount of collected data for a long time, and the computing power is not enough to conduct information fusion analysis on the collected data, and the evaluation results lack the accuracy of medical application level.

以上方案表明目前的智能终端还不能用于医疗诊断,对于慢性疾病患病人员或潜在的慢性疾病患病人群的,如何结合智能终端,便捷享受可靠的医疗服务,目前尚未提出有效的解决方案。The above schemes show that the current smart terminal cannot be used for medical diagnosis. For patients with chronic diseases or potential chronic disease patients, how to combine smart terminals to enjoy reliable medical services conveniently has not yet proposed an effective solution.

发明内容Contents of the invention

本发明提供了一种用户医疗评估模型构建方法和医疗评估服务器,结合智能终端的采集数据,可以为用户提供便携可靠的医疗诊断服务。The invention provides a method for constructing a user's medical evaluation model and a medical evaluation server, which can provide users with portable and reliable medical diagnosis services in combination with data collected by an intelligent terminal.

本发明提供一种用户医疗评估模型构建方法,包括:The present invention provides a method for constructing a user medical assessment model, comprising:

步骤101:构建样本数据U和样本输入数据V,U包括心电信号ECG特征值数据、血氧数据SpO2、心率数据HR、血压数据BP,心电信号ECG特征值数据包括:RR间期、QRS波间期、PR间期、QT间期、ST段、R波幅度、P波幅度和T波幅度;样本数据U经模糊变换得到样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量;Step 101: Construct sample data U and sample input data V. U includes ECG eigenvalue data, blood oxygen data SpO2, heart rate data HR, and blood pressure data BP. ECG eigenvalue data includes: RR interval, QRS Wave interval, PR interval, QT interval, ST segment, R wave amplitude, P wave amplitude and T wave amplitude; the sample data U is fuzzy transformed to obtain the sample input data V, V=Ω.U, where Ω is fuzzy quantization weight vector of

步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y,Step 102: Based on the clinical diagnosis results of the sample data U, construct a sample output result y,

步骤103:建立样本输入数据V与样本输出结果y之间神经网络映射关系;Step 103: Establish a neural network mapping relationship between the sample input data V and the sample output result y;

步骤104:对模型的神经网络进行训练;将样本输入数据V作为模型的神经网络输入,样本输出结果y作为模型的神经网络输出;通过样本训练学习,确定模型的神经网络中的权值。Step 104: Train the neural network of the model; use the sample input data V as the input of the neural network of the model, and the output result y of the sample as the output of the neural network of the model; determine the weights in the neural network of the model through sample training and learning.

本发明还提供一种医疗评估服务器,包括:包括数据模块和用户医疗评估模块。The present invention also provides a medical evaluation server, including: a data module and a user medical evaluation module.

数据模块,定期收集并保存用户终端采集的生理体征数据,生理体征数据至少包括心电信号ECG、血氧数据SpO2、心率数据HR和血压数据BP;The data module regularly collects and saves the physiological sign data collected by the user terminal. The physiological sign data includes at least the electrocardiographic signal ECG, blood oxygen data SpO2, heart rate data HR and blood pressure data BP;

用户医疗评估模块:使用本发明的用户医疗评估模型,分析数据模块保存的用户数据,根据模型的输出结果,判断用户发病风险。User medical assessment module: use the user medical assessment model of the present invention to analyze the user data saved by the data module, and judge the user's risk of disease according to the output results of the model.

本发明提供的用户医疗评估模型构建方法,可结合用户终端采集的生理体征数据,输出可靠的医疗诊断结果,且该模型可自学习提高输出结果的准确性。使得采用该医疗评估模型的医疗评估服务器,可以为用户提供准确、可靠、便捷的医疗服务。通过模型输出结果自动预警风险就医或服务器主动通知医生提供医疗服务,代替现有的身体不适后再就医,可以让患者在发病初期或急性发病期及时获得治疗,避免耽误最佳治疗期和延误病情,减少患者治疗代价,改善现有医疗服务的体验感和时效性。The user medical evaluation model construction method provided by the present invention can combine the physiological sign data collected by the user terminal to output reliable medical diagnosis results, and the model can self-learn to improve the accuracy of the output results. The medical evaluation server adopting the medical evaluation model can provide users with accurate, reliable and convenient medical services. Through the output of the model, it can automatically warn of risks and seek medical treatment or the server actively notifies doctors to provide medical services, instead of seeking medical treatment after existing physical discomfort, so that patients can receive timely treatment in the early stage or acute stage of disease, avoiding delaying the best treatment period and delaying the condition. , reduce the cost of patient treatment, and improve the experience and timeliness of existing medical services.

附图说明Description of drawings

图1为本发明用户医疗评估模型构建方法的流程图;Fig. 1 is a flow chart of the method for constructing the user's medical evaluation model of the present invention;

图2为本发明用户医疗评估模型实时修正流程图;Fig. 2 is the flow chart of real-time revision of the user's medical evaluation model of the present invention;

图3为本发明医疗评估服务器的结构示意图。Fig. 3 is a schematic structural diagram of the medical evaluation server of the present invention.

具体实施方式detailed description

为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明的用户医疗评估模型构建方法,如图1所示,至少包括:The user medical evaluation model construction method of the present invention, as shown in Figure 1, at least includes:

步骤101:构建样本数据U和样本输入数据V。Step 101: Construct sample data U and sample input data V.

样本数据U包括心电信号ECG特征值数据、血氧数据SpO2、心率数据HR、血压数据BP,心电信号ECG特征值数据包括:RR间期、QRS波间期、PR间期、QT间期、ST段、R波幅度、P波幅度和T波幅度;样本数据U经模糊变换得到样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量。Sample data U includes ECG eigenvalue data, blood oxygen data SpO2, heart rate data HR, blood pressure data BP, ECG eigenvalue data includes: RR interval, QRS wave interval, PR interval, QT interval , ST segment, R wave amplitude, P wave amplitude and T wave amplitude; the sample data U is fuzzy transformed to obtain the sample input data V, V=Ω.U, where Ω is the weight vector of fuzzy quantization.

步骤102:基于样本数据U的临床诊断结果,构建样本输出结果y。Step 102: Based on the clinical diagnosis results of the sample data U, construct a sample output result y.

例如,可以将用户样本数据的经验判断发病风险y定义为正常、低风险和高风险3种,分别用y0、y1、y2表示,或者再进一步细化风险等级。For example, the empirical judgment risk y of user sample data can be defined as three types of normal, low risk and high risk, represented by y 0 , y 1 , and y 2 respectively, or the risk level can be further refined.

步骤103:并建立样本输入数据V与样本输出结果y之间神经网络映射关系。Step 103: and establish a neural network mapping relationship between the sample input data V and the sample output result y.

步骤104:对医疗评估模型的神经网络模型进行训练;将样本输入数据V作为用户医疗评估模型的神经网络输入,样本输出结果y作为用户医疗评估模型的神经网络输出;通过样本训练学习,确定用户医疗评估模型的神经网络中的权值。Step 104: Train the neural network model of the medical evaluation model; use the sample input data V as the neural network input of the user's medical evaluation model, and the sample output result y as the neural network output of the user's medical evaluation model; through sample training and learning, determine the user Weights in a neural network for a medical assessment model.

本申请的用户医疗评估模型构建方法,可以针对每个用户的样本数据,训练并构建不同的用户医疗评估模型,因为每个用户的生理体征指标各具特点,同一个生理体征指标的某个数值,对一些用户而言是健康数值,而对另一些用户而言,则是危险数值,因此采用本申请的用户医疗评估模型,可以实现个性化定制,使得该模型的精度比一般的统计模型更高。The user medical evaluation model construction method of this application can train and build different user medical evaluation models for each user’s sample data, because each user’s physiological signs have their own characteristics, and a certain value of the same physiological sign index , for some users, it is a healthy value, while for other users, it is a dangerous value. Therefore, the user medical evaluation model of this application can realize personalized customization, so that the accuracy of the model is higher than that of general statistical models. high.

基于步骤101至步骤103建立用户医疗评估模型后,即可将模型用于实时评估;将新采集到的用户数据U’模糊转换为V’,输入到的该模型后,模型输出结果y',根据输出结果y'和样本输出结果y的比较,判断用户发病风险。After the user medical evaluation model is established based on steps 101 to 103, the model can be used for real-time evaluation; the newly collected user data U' is fuzzy converted into V', and after inputting into the model, the model outputs the result y', According to the comparison between the output result y' and the sample output result y, the risk of the user's disease is judged.

进一步地,本申请的用户医疗模型,还具备自学习功能,可基于模型的实时评估结果不断修正、完善模型,如图2所示。Furthermore, the user medical model of this application also has a self-learning function, which can continuously modify and improve the model based on the real-time evaluation results of the model, as shown in FIG. 2 .

模型修正:将新采集到的用户数据的模型输出结果y'与临床诊断结果进行比较,如果输出结果y'与临床诊断结果不符,计算输出误差为输出结果y'与诊断结果的数值差值,将输出误差通过用户医疗评估模型的神经网络的隐含层向输入层逐层反传,将输出误差分摊给医疗评估算法神经网络各层的所有单元。Model correction: compare the model output result y' of the newly collected user data with the clinical diagnosis result, if the output result y' does not match the clinical diagnosis result, calculate the output error as the numerical difference between the output result y' and the diagnosis result, The output error is passed back layer by layer to the input layer through the hidden layer of the neural network of the user's medical evaluation model, and the output error is distributed to all units of each layer of the neural network of the medical evaluation algorithm.

图3为本申请另一个实施例,一种医疗评估服务器,至少包括数据模块和医疗评估模块。Fig. 3 is another embodiment of the present application, a medical assessment server at least including a data module and a medical assessment module.

数据模块,定期收集并保存用户终端采集的生理体征数据,生理体征数据至少包括心电信号ECG、血氧数据SpO2、心率数据HR和血压数据BP;The data module regularly collects and saves the physiological sign data collected by the user terminal. The physiological sign data includes at least the electrocardiographic signal ECG, blood oxygen data SpO2, heart rate data HR and blood pressure data BP;

用户医疗评估模块:使用本申请任一实施例的用户医疗评估模型,分析数据模块保存的用户数据,判断用户发病风险。User medical evaluation module: use the user medical evaluation model of any embodiment of the application to analyze the user data saved by the data module to determine the user's risk of disease.

为了提高数据模块所保存数据的准确性,在数据保存之前,先对用户采集的生理体征数据进行预处理,包括对异常数据和非用户生理体征数据的剔除,以确保输入到用户医疗评估模型数据的一致性和稳定性。In order to improve the accuracy of the data stored in the data module, before the data is saved, the physiological sign data collected by the user is preprocessed, including the elimination of abnormal data and non-user physiological sign data, so as to ensure input into the user medical evaluation model data consistency and stability.

本申请的医疗服务器保存用户生理体征数据,以一定的格式打包成数据包,存储于数据模块。数据包格式,按照包头加数据的格式进行编码,其中包头包括起始位、设备号、时间戳、生理体征及状态数据名和校验位。起始位用于区分每段数据包;设备号用于区分显示用户的不同设备;时间戳用于记录采集时间;生理体征数据名主要用于区分不同传感器采集的生理体征数据以及用户不同的状态信息,如区分采集的数据时心电数据还是心率数据等;校验位用于校验数据传输是否出错。The medical server of this application saves the user's physiological sign data, packs them into data packets in a certain format, and stores them in the data module. The data packet format is encoded according to the format of packet header plus data, where the packet header includes start bit, device number, time stamp, physiological signs and status data name and check digit. The start bit is used to distinguish each data packet; the device number is used to distinguish different devices that display the user; the timestamp is used to record the collection time; the physiological sign data name is mainly used to distinguish the physiological sign data collected by different sensors and the different states of the user Information, such as distinguishing whether the collected data is ECG data or heart rate data; the check digit is used to verify whether the data transmission is wrong.

本申请的医疗评估服务器还包括在线医生,当数据模块保存的用户数据较少时,在线医生审核用户医疗评估模型的输出结果,并将审核结果反馈给用户医疗评估模型,用于用户医疗评估模型的实时修正。The medical evaluation server of this application also includes an online doctor. When the user data saved in the data module is small, the online doctor reviews the output results of the user medical evaluation model, and feeds back the audit results to the user medical evaluation model for use in the user medical evaluation model. real-time corrections.

或者在线医生根据用户医疗评估模型的输出结果和数据模块保存的数据,给用户提供相关医疗诊断建议,并将诊断建议发送到用户终端。当用户医疗评估模型可独立输出可靠的判断结果时,服务器也可以将用户医疗评估模型的输出结果直接发送给用户终端。Or the online doctor provides relevant medical diagnosis suggestions to the user according to the output results of the user's medical evaluation model and the data stored in the data module, and sends the diagnosis suggestions to the user terminal. When the user's medical assessment model can independently output reliable judgment results, the server can also directly send the output result of the user's medical assessment model to the user terminal.

如果用户医疗评估模型的输出结果为“高风险”,服务器自动开启实时监控模块,用户终端实时上传用户生理体征数据,服务器实时监控用户数据,若监控到突发异常,服务器立刻通知在线医生采取医疗措施,为用户提供医疗服务。If the output result of the user's medical evaluation model is "high risk", the server automatically turns on the real-time monitoring module, the user terminal uploads the user's physiological sign data in real time, and the server monitors the user data in real time. Measures to provide users with medical services.

本发明提供的医疗评估模型构建方法,可结合用户终端采集的生理体征数据输出可靠的医疗诊断结果,且该模型可自学习提高输出结果的准确性。使得采用该医疗评估模型的医疗评估服务器,可以为用户提供准确、可靠、便捷的医疗服务。通过模型输出结果自动预警风险就医或服务器主动通知医生提供医疗服务,代替现有的身体不适后再就医,可以让患者在发病初期或急性发病期及时获得治疗,避免耽误最佳治疗期和延误病情,减少患者治疗代价,改善现有医疗服务的体验感和时效性。The medical evaluation model construction method provided by the present invention can combine the physiological sign data collected by the user terminal to output reliable medical diagnosis results, and the model can self-learn to improve the accuracy of the output results. The medical evaluation server adopting the medical evaluation model can provide users with accurate, reliable and convenient medical services. Through the output of the model, it can automatically warn of risks and seek medical treatment or the server actively notifies doctors to provide medical services, instead of seeking medical treatment after existing physical discomfort, so that patients can receive timely treatment in the early stage or acute stage of disease, avoiding delaying the best treatment period and delaying the condition. , reduce the cost of patient treatment, and improve the experience and timeliness of existing medical services.

以上所述仅为本发明的较佳实施例而已,并不用以限定本发明的包含范围,凡在本发明技术方案的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the technical solutions of the present invention are Should be included within the protection scope of the present invention.

Claims (7)

1.一种用户医疗评估模型构建方法,其特征在于,所述模型的构建至少包括:1. A user medical assessment model construction method, characterized in that the construction of the model at least includes: 步骤101:构建样本数据U和样本输入数据V,所述U包括心电信号ECG特征值数据、血氧数据SpO2、心率数据HR、血压数据BP,所述心电信号ECG特征值数据包括:RR间期、QRS波间期、PR间期、QT间期、ST段、R波幅度、P波幅度和T波幅度;所述样本数据U经模糊变换得到所述样本输入数据V,V=Ω.U,其中Ω为模糊量化的权重向量;Step 101: Construct sample data U and sample input data V, the U includes ECG eigenvalue data, blood oxygen data SpO2, heart rate data HR, blood pressure data BP, and the ECG eigenvalue data includes: RR Interval, QRS interval, PR interval, QT interval, ST segment, R wave amplitude, P wave amplitude and T wave amplitude; the sample data U is fuzzy transformed to obtain the sample input data V, V=Ω .U, where Ω is the weight vector of fuzzy quantization; 步骤102:基于所述样本数据U的临床诊断结果,构建样本输出结果y,Step 102: Based on the clinical diagnosis results of the sample data U, construct a sample output result y, 步骤103:建立所述样本输入数据V与所述样本输出结果y之间神经网络映射关系;Step 103: Establish a neural network mapping relationship between the sample input data V and the sample output result y; 步骤104:对所述模型的神经网络进行训练;将所述样本输入数据V作为所述模型的神经网络输入,所述样本输出结果y作为所述模型的神经网络输出;通过样本训练学习,确定所述模型的神经网络中的权值。Step 104: train the neural network of the model; use the sample input data V as the input of the neural network of the model, and the output result y of the sample as the output of the neural network of the model; determine through sample training and learning The weights in the neural network for the model. 2.根据权利要求1所述的模型,其特征在于,所述模型还包括:2. The model according to claim 1, wherein the model further comprises: 模型修正:将新采集到的用户数据U’经模糊转换为V’,输入到所述步骤103训练后的所述模型中,输出结果y',如果输出结果y'与临床诊断结果不符,计算输出误差为输出结果y'与所述临床诊断结果的数值差值,将所述输出误差通过所述模型的神经网络的隐含层向输入层逐层反传,将所述输出误差分摊给所述模型的神经网络各层的所有单元。Model correction: Fuzzy transform the newly collected user data U' into V', input it into the model trained in step 103, and output the result y', if the output result y' does not match the clinical diagnosis result, calculate The output error is the numerical difference between the output result y' and the clinical diagnosis result, and the output error is passed back layer by layer to the input layer through the hidden layer of the neural network of the model, and the output error is apportioned to all All units of each layer of the neural network of the above model. 3.一种医疗评估服务器,其特征在于,至少包括数据模块和用户医疗评估模块;3. A medical evaluation server, characterized in that it at least includes a data module and a user medical evaluation module; 数据模块,定期收集并保存用户终端采集的生理体征数据,所述生理体征数据至少包括心电信号ECG、血氧数据SpO2、心率数据HR和血压数据BP;The data module regularly collects and saves the physiological sign data collected by the user terminal, and the physiological sign data includes at least the electrocardiographic signal ECG, blood oxygen data SpO2, heart rate data HR and blood pressure data BP; 用户医疗评估模块:使用权利要求1-2任一所述的用户医疗评估模型,分析所述数据模块保存的用户数据,根据所述模型的输出结果,判断用户发病风险。User medical evaluation module: using the user medical evaluation model described in any one of claims 1-2, analyzing the user data saved by the data module, and judging the user's risk of disease according to the output results of the model. 4.根据权利要求3所述的服务器,其特征在于,当所述数据模块保存的用户数据较少时,所述服务器将所述用户医疗评估模型的输出结果发送给医生审核,并将所述医生审核结果反馈给所述用户医疗评估模型。4. The server according to claim 3, wherein when the user data saved by the data module is less, the server sends the output result of the user medical assessment model to a doctor for review, and sends the The results of the doctor's review are fed back to the user's medical evaluation model. 5.根据权利要求3所述的服务器,其特征在于,所述服务器将所述用户医疗评估模型的输出结果和所述数据模块保存的数据发送给医生诊断,给用户提供相关医疗诊断建议,并将所述建议发送;或所述服务器将所述用户医疗评估模型的输出结果直接发送。5. The server according to claim 3, wherein the server sends the output result of the user's medical evaluation model and the data stored by the data module to a doctor for diagnosis, provides relevant medical diagnosis suggestions to the user, and sending the suggestion; or the server directly sending the output result of the user's medical evaluation model. 6.根据权利要求3所述的服务器,其特征在于,所述服务器还包括实时监控模块,6. The server according to claim 3, wherein the server also includes a real-time monitoring module, 当用户医疗评估模型的输出结果为“高风险”,所述服务器自动开启实时监控模块,用户终端实时上传所述用户生理体征数据,所述服务器实时监控用户数据,若监控到突发异常,所述服务器立刻发出通知。When the output result of the user's medical evaluation model is "high risk", the server automatically turns on the real-time monitoring module, the user terminal uploads the user's physiological sign data in real time, and the server monitors the user data in real time. The above server sends a notification immediately. 7.根据权利要求3所述的服务器,其特征在于,所述数据模块保存数据时,以预设数据包格式存储;7. The server according to claim 3, wherein when the data module saves data, it is stored in a preset data packet format; 所述预设数据包格式按包头加数据的格式进行编码,所述包头包括起始位、设备号、时间戳、生理体征及状态数据名和校验位;所述起始位用于区分每段数据包;所述设备号用于区分显示用户的不同设备;所述时间戳用于记录采集时间;所述生理体征数据名用于区分不同传感器采集的生理体征数据以及用户不同的状态信息,所述校验位用于校验数据传输是否出错。The preset data packet format is encoded according to the format of header plus data, and the header includes start bit, device number, time stamp, physiological signs and status data name and check digit; the start bit is used to distinguish each segment data packet; the device number is used to distinguish and display different devices of the user; the timestamp is used to record the collection time; the physiological sign data name is used to distinguish the physiological sign data collected by different sensors and the different status information of the user, so The above parity bit is used to check whether there is an error in data transmission.
CN201710549371.9A 2017-07-07 2017-07-07 User's medical assessment model building method and medical assessment server Pending CN107403061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710549371.9A CN107403061A (en) 2017-07-07 2017-07-07 User's medical assessment model building method and medical assessment server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710549371.9A CN107403061A (en) 2017-07-07 2017-07-07 User's medical assessment model building method and medical assessment server

Publications (1)

Publication Number Publication Date
CN107403061A true CN107403061A (en) 2017-11-28

Family

ID=60404897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710549371.9A Pending CN107403061A (en) 2017-07-07 2017-07-07 User's medical assessment model building method and medical assessment server

Country Status (1)

Country Link
CN (1) CN107403061A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108095708A (en) * 2018-01-19 2018-06-01 动析智能科技有限公司 Physiological monitoring and analyzing method and system based on hybrid sensing
CN109767836A (en) * 2018-12-29 2019-05-17 上海亲看慧智能科技有限公司 A kind of medical diagnosis artificial intelligence system, device and its self-teaching method
CN111317440A (en) * 2018-12-13 2020-06-23 通用电气公司 Early warning method for patients, monitoring device using the method, and readable storage medium
CN111353972A (en) * 2018-12-21 2020-06-30 财团法人工业技术研究院 State evaluation system, diagnosis and treatment system and operation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477581A (en) * 2003-07-01 2004-02-25 �Ϻ���ͨ��ѧ A Predictive Modeling Approach for Computer-Aided Medical Diagnosis
CN103038772A (en) * 2010-03-15 2013-04-10 新加坡保健服务集团有限公司 Method of predicting the survivability of a patient
CN105956374A (en) * 2016-04-21 2016-09-21 青岛大学 Remote monitoring comprehensive medical system
CN106021941A (en) * 2016-05-27 2016-10-12 成都信汇聚源科技有限公司 Method for obtaining risk predictions of sudden death with weight value matrices of artificial neural network
CN106407644A (en) * 2016-08-03 2017-02-15 无锡金世纪国民体质与健康研究有限公司 Assessment system used for health risk assessment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477581A (en) * 2003-07-01 2004-02-25 �Ϻ���ͨ��ѧ A Predictive Modeling Approach for Computer-Aided Medical Diagnosis
CN103038772A (en) * 2010-03-15 2013-04-10 新加坡保健服务集团有限公司 Method of predicting the survivability of a patient
CN105956374A (en) * 2016-04-21 2016-09-21 青岛大学 Remote monitoring comprehensive medical system
CN106021941A (en) * 2016-05-27 2016-10-12 成都信汇聚源科技有限公司 Method for obtaining risk predictions of sudden death with weight value matrices of artificial neural network
CN106407644A (en) * 2016-08-03 2017-02-15 无锡金世纪国民体质与健康研究有限公司 Assessment system used for health risk assessment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108095708A (en) * 2018-01-19 2018-06-01 动析智能科技有限公司 Physiological monitoring and analyzing method and system based on hybrid sensing
WO2019142119A1 (en) * 2018-01-19 2019-07-25 动析智能科技有限公司 Hybrid sensing based physiological monitoring and analysis method and system
CN111317440A (en) * 2018-12-13 2020-06-23 通用电气公司 Early warning method for patients, monitoring device using the method, and readable storage medium
CN111353972A (en) * 2018-12-21 2020-06-30 财团法人工业技术研究院 State evaluation system, diagnosis and treatment system and operation method thereof
CN111353972B (en) * 2018-12-21 2024-03-12 财团法人工业技术研究院 State evaluation system, diagnosis and treatment system and operation method thereof
CN109767836A (en) * 2018-12-29 2019-05-17 上海亲看慧智能科技有限公司 A kind of medical diagnosis artificial intelligence system, device and its self-teaching method

Similar Documents

Publication Publication Date Title
CN110544541B (en) A monitoring and evaluation system for elderly life and health status
US9597029B2 (en) System and method for remotely evaluating patient compliance status
WO2020224041A1 (en) Wearable device-based smart real-time health monitoring system, and implementation method therefor
CN110648737B (en) Knowledge base building system and method based on senior care guidelines and disability and intelligence losing
CN208942118U (en) A kind of COPD reconditioning intelligent monitor wearable system based on Internet of Things
CN112164455B (en) Interactive health management system and method for chronic diseases of old people
CN110584601B (en) A system for monitoring and evaluating cognitive function of the elderly
CN103400332A (en) Health service platform system based on real-time monitoring
CN202362780U (en) Family health management system
CN110033866A (en) Healthalert method, apparatus, computer equipment and storage medium
TW201006512A (en) Sleep assistant device and method
CN107403061A (en) User's medical assessment model building method and medical assessment server
CN106108846A (en) A kind of intelligent drug risk monitoring method and system
CN207410367U (en) A kind of family health care cloud service system based on Internet of Things
CN107887020A (en) A kind of sign detecting system and sign detection method
CN111820879A (en) A health evaluation management method suitable for patients with chronic diseases
CN105249958B (en) Human body information monitoring method, apparatus and system
CN110277152A (en) Pharmacy service system based on user portrait
CN105447334A (en) Hypertension diagnosing, treating and managing system based on Android platform
TWI537864B (en) Personalize exercise decision-making device and manipulating method for patients with chronic diseases
US20220287565A1 (en) Enhanced reporting and charting of vital signs and other patient parameters
CN107785083A (en) A kind of user health collecting method and user health monitor system
CN107495947A (en) Blood pressure dynamic analysis method and blood pressure measuring device
CN112951391A (en) Intelligent nursing monitoring
CN109215773B (en) Daily detection method based on big data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171128

RJ01 Rejection of invention patent application after publication