CN107296985A - A kind of methods and applications based on Stereolithography 3 D-printing bioceramic scaffold - Google Patents
A kind of methods and applications based on Stereolithography 3 D-printing bioceramic scaffold Download PDFInfo
- Publication number
- CN107296985A CN107296985A CN201710339197.5A CN201710339197A CN107296985A CN 107296985 A CN107296985 A CN 107296985A CN 201710339197 A CN201710339197 A CN 201710339197A CN 107296985 A CN107296985 A CN 107296985A
- Authority
- CN
- China
- Prior art keywords
- bioceramic
- stereolithography
- printing
- scaffold
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003462 bioceramic Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000007639 printing Methods 0.000 title claims abstract description 16
- 239000000919 ceramic Substances 0.000 claims abstract description 94
- 238000005245 sintering Methods 0.000 claims abstract description 50
- 239000002002 slurry Substances 0.000 claims abstract description 37
- 239000011347 resin Substances 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 60
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 37
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 26
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 26
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 26
- 244000028419 Styrax benzoin Species 0.000 claims description 19
- 235000000126 Styrax benzoin Nutrition 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 16
- 235000012241 calcium silicate Nutrition 0.000 claims description 15
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 14
- 239000003085 diluting agent Substances 0.000 claims description 13
- 239000003999 initiator Substances 0.000 claims description 11
- VEBCLRKUSAGCDF-UHFFFAOYSA-N ac1mi23b Chemical compound C1C2C3C(COC(=O)C=C)CCC3C1C(COC(=O)C=C)C2 VEBCLRKUSAGCDF-UHFFFAOYSA-N 0.000 claims description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 9
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 claims description 9
- 229910021534 tricalcium silicate Inorganic materials 0.000 claims description 9
- 235000019976 tricalcium silicate Nutrition 0.000 claims description 9
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 238000005238 degreasing Methods 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 6
- 239000004068 calcium phosphate ceramic Substances 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- MRIKSZXJKCQQFT-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) prop-2-enoate Chemical compound OCC(C)(C)COC(=O)C=C MRIKSZXJKCQQFT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- -1 acrylic acid tetrahydrofuran methyl esters Chemical class 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 3
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 239000005365 phosphate glass Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910021532 Calcite Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical compound C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 claims description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 2
- 239000012965 benzophenone Substances 0.000 claims description 2
- 239000001506 calcium phosphate Substances 0.000 claims description 2
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 235000019700 dicalcium phosphate Nutrition 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical group OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000391 magnesium silicate Substances 0.000 claims description 2
- 235000019792 magnesium silicate Nutrition 0.000 claims description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 239000005368 silicate glass Substances 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 2
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 claims 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 235000015511 Liquidambar orientalis Nutrition 0.000 claims 1
- 239000004870 Styrax Substances 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 230000006735 deficit Effects 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 150000004702 methyl esters Chemical class 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 claims 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000009418 renovation Methods 0.000 claims 1
- 229910001720 Åkermanite Inorganic materials 0.000 claims 1
- 238000000016 photochemical curing Methods 0.000 abstract description 47
- 238000000465 moulding Methods 0.000 abstract description 43
- 239000011148 porous material Substances 0.000 abstract description 32
- 239000005312 bioglass Substances 0.000 abstract description 16
- 230000008439 repair process Effects 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 4
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical group C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 36
- 235000008411 Sumatra benzointree Nutrition 0.000 description 18
- 229960002130 benzoin Drugs 0.000 description 18
- 235000019382 gum benzoic Nutrition 0.000 description 18
- 239000000378 calcium silicate Substances 0.000 description 12
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 12
- 239000007790 solid phase Substances 0.000 description 11
- 238000010146 3D printing Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000010433 feldspar Substances 0.000 description 8
- 238000002591 computed tomography Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000004154 testing of material Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000010456 wollastonite Substances 0.000 description 4
- 229910052882 wollastonite Inorganic materials 0.000 description 4
- YIKSHDNOAYSSPX-UHFFFAOYSA-N 1-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)C YIKSHDNOAYSSPX-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003325 tomography Methods 0.000 description 3
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical group C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000006259 organic additive Substances 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- CVEJGUNFKNTPEW-UHFFFAOYSA-N 2-cyclohexyl-1,3-dioxolane Chemical compound O1CCOC1C1CCCCC1 CVEJGUNFKNTPEW-UHFFFAOYSA-N 0.000 description 1
- VSYDLUXFKAXBBY-UHFFFAOYSA-N C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(COCCO)O Chemical compound C(C=1C(C(=O)O)=CC=CC1)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(COCCO)O VSYDLUXFKAXBBY-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013406 biomanufacturing process Methods 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000004820 osteoconduction Effects 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/195—Alkaline earth aluminosilicates, e.g. cordierite or anorthite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/22—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/067—Macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
- C04B2235/3212—Calcium phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
- C04B2235/365—Borosilicate glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开一种基于光固化成型三维打印生物陶瓷支架的方法,首先将生物陶瓷、生物玻璃助烧剂与树脂预混液均匀混合,获得光敏陶瓷浆料;将光敏陶瓷浆料置于光固化成型设备上,根据输入成型机的三维模型三维打印出生物陶瓷支架坯体;将陶瓷支架坯体进行干燥、脱脂、烧结,获得生物陶瓷支架。该生物陶瓷支架具有三维尺寸不受限制、强度高、100%三维孔连通,孔结构精确可控等特点,在骨缺损修复材料领域中具有很好的应用前景。The invention discloses a method for three-dimensionally printing bioceramic brackets based on photocuring molding. Firstly, bioceramic, bioglass sintering aid and resin premix are uniformly mixed to obtain photosensitive ceramic slurry; the photosensitive ceramic slurry is placed in photocuring molding On the equipment, according to the 3D model input into the molding machine, the body of the bioceramic stent is three-dimensionally printed; the body of the ceramic stent is dried, degreased, and sintered to obtain the bioceramic stent. The bioceramic scaffold has the characteristics of unlimited three-dimensional size, high strength, 100% three-dimensional pore connectivity, precise and controllable pore structure, etc., and has good application prospects in the field of bone defect repair materials.
Description
技术领域technical field
本发明属于生物制造或生物医用材料技术领域,更具体地,涉及一种基于光固化成型三维打印生物陶瓷支架的方法和应用。The invention belongs to the technical field of biomanufacturing or biomedical materials, and more specifically relates to a method and application of a three-dimensionally printed bioceramic scaffold based on photocuring molding.
背景技术Background technique
可降解生物陶瓷是最常见的人工合成骨修复材料。可降解生物陶瓷材料主要包括硅酸盐陶瓷、磷酸钙陶瓷和碳酸钙陶瓷等。可降解生物陶瓷往往做成多孔支架,为骨组织和细胞的长入提供空间,实现结构上的骨传导,并促进材料的降解和吸收,从而加速骨重建和再生。目前,多孔生物陶瓷的成型制备方法主要有造孔剂法、冷冻浇筑法、气体发泡法、有机泡沫浸渍法等。采用这些方法制备的多孔生物陶瓷支架难以平衡孔结构和力学性能的关系。由于孔结构不均匀,存在较大的应力集中,随着孔隙率、孔径和三维连通性的提高,支架的力学性能急剧恶化。三维打印(也叫快速成型或增材制造)法制得的多孔生物陶瓷支架孔结构均匀可控,完全三维孔连通,可获得较高的强度。目前用于制备多孔生物陶瓷支架的三维打印方法主要是三维绘图打印、喷墨打印、自动注浆成型或熔融沉积型打印。这些三维打印方法的打印精度较低,采用的陶瓷浆料浓度较小,采用的水基粘结剂的粘结力有限,在多孔支架的成型过程中,当支架坯体的高度超过一定尺寸后,多孔支架坯体在自身重力的作用下容易坍塌变形。这些三维打印方法制备的多孔陶瓷支架的高度(Z轴)有限。Degradable bioceramics are the most common synthetic bone repair materials. Degradable bioceramic materials mainly include silicate ceramics, calcium phosphate ceramics and calcium carbonate ceramics. Degradable bioceramics are often made into porous scaffolds to provide space for the growth of bone tissue and cells, to achieve structural osteoconduction, and to promote the degradation and absorption of materials, thereby accelerating bone reconstruction and regeneration. At present, the molding and preparation methods of porous bioceramics mainly include pore-forming agent method, freezing casting method, gas foaming method, organic foam impregnation method, etc. Porous bioceramic scaffolds prepared by these methods are difficult to balance the relationship between pore structure and mechanical properties. Due to the inhomogeneous pore structure, there is a large stress concentration, and the mechanical properties of the scaffold deteriorate sharply with the increase of porosity, pore size, and three-dimensional connectivity. The pore structure of the porous bioceramic scaffold prepared by 3D printing (also called rapid prototyping or additive manufacturing) method is uniform and controllable, and the 3D pores are completely connected, which can obtain higher strength. The three-dimensional printing methods currently used to prepare porous bioceramic scaffolds are mainly three-dimensional drawing printing, inkjet printing, automatic grouting or fused deposition printing. The printing accuracy of these three-dimensional printing methods is low, the concentration of the ceramic slurry used is small, and the cohesive force of the water-based binder used is limited. , the porous stent body is easy to collapse and deform under the action of its own gravity. The height (Z-axis) of porous ceramic scaffolds prepared by these 3D printing methods is limited.
综上所述,虽然采用三维打印制备的多孔可降解生物陶瓷支架具有明显的优点,但是存在孔结构精度较低,支架三维尺寸有限的问题。基于光固化成型的三维打印技术具有较高的精度,主要用于打印光敏树脂。用陶瓷-光敏树脂的混合浆料替代光敏树脂,可以在光固化成型机上三维打印陶瓷件素坯。由于作为粘结剂的光敏树脂固化后具有较高的强度,利用光固化成型三维打印的陶瓷素坯不受尺寸限制。通过后处理工艺(包括干燥、脱脂和烧结等),可以最终获得相应的陶瓷异形件。目前,光固化成型技术已经被成功用于三维打印氧化铝陶瓷、氧化锆陶瓷、氧化硅陶瓷、锆钛酸铅压电陶瓷等。然而,目前尚无利用光固化成型技术三维打印多孔生物陶瓷支架的相关论文和专利报道,主要的原因是陶瓷光固化成型的树脂含量偏高,而生物陶瓷的烧结性能较差,采用陶瓷光固化成型技术三维打印的生物陶瓷支架结构疏松,强度偏低,难以满足骨缺损修复的要求。In summary, although the porous biodegradable bioceramic scaffold prepared by 3D printing has obvious advantages, it has the problems of low pore structure precision and limited three-dimensional size of the scaffold. The 3D printing technology based on photocuring has high precision and is mainly used to print photosensitive resin. By replacing the photosensitive resin with a ceramic-photosensitive resin mixed slurry, it is possible to three-dimensionally print ceramic blanks on a photocuring molding machine. Due to the high strength of the photosensitive resin used as a binder after curing, the 3D-printed ceramic green body by photocuring is not limited in size. Through the post-processing process (including drying, degreasing and sintering, etc.), the corresponding ceramic special-shaped parts can be finally obtained. At present, light curing molding technology has been successfully used in three-dimensional printing of alumina ceramics, zirconia ceramics, silicon oxide ceramics, lead zirconate titanate piezoelectric ceramics, etc. However, there are currently no relevant papers and patent reports on 3D printing of porous bioceramic scaffolds using photocuring technology. Forming technology 3D printed bioceramic scaffolds have a loose structure and low strength, which is difficult to meet the requirements of bone defect repair.
发明内容Contents of the invention
本发明的目的是为了克服现有技术的不足,提供一种基于光固化成型三维打印生物陶瓷支架的方法。该方法通过引入低熔点生物玻璃作为助烧剂,可以解决有机物添加剂过多、生物陶瓷烧结性能差而导致的生物陶瓷支架强度偏低的问题,采用光固化成型三维打印生物陶瓷支架可获得更高精度的孔结构,且三位尺寸(尤其是Z轴)不受限制。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for three-dimensionally printing bioceramic scaffolds based on photocuring. By introducing low-melting-point bioglass as a sintering aid, this method can solve the problem of low strength of bioceramic scaffolds caused by excessive organic additives and poor sintering performance of bioceramics, and the use of photocuring 3D printing bioceramic scaffolds can obtain higher Precision hole structure, and the three-dimensional size (especially the Z axis) is not limited.
本发明的另一目的是提供一种上述方法制备的生物陶瓷支架,该生物陶瓷支架具有三维尺寸不受限制、孔结构精确可控,100%三维孔连通和强度高的优点,具有很好的应用前景。Another object of the present invention is to provide a bioceramic scaffold prepared by the above method, which has the advantages of unlimited three-dimensional size, precise and controllable pore structure, 100% three-dimensional pore connectivity and high strength, and has good Application prospects.
本发明上述目的通过以下技术方案予以实现:The above-mentioned purpose of the present invention is achieved through the following technical solutions:
一种基于光固化成型三维打印生物陶瓷支架的方法,包括以下具体步骤:A method for three-dimensionally printing a bioceramic support based on photocuring, comprising the following specific steps:
S1.将生物陶瓷、生物玻璃助烧剂与树脂预混液均匀混合,获得用于光固化成型的光敏陶瓷浆料;S1. Uniformly mix bioceramic, bioglass sintering aid and resin premix to obtain photosensitive ceramic slurry for photocuring molding;
S2.将光敏陶瓷浆料置于光固化成型设备上,将多孔支架的三维模型输入到光固化成型机,通过光固化成型法三维打印出多孔生物陶瓷支架坯体;S2. Place the photosensitive ceramic slurry on the photocuring molding equipment, input the three-dimensional model of the porous support into the photocuring molding machine, and three-dimensionally print the porous bioceramic support body through the photocuring molding method;
S3.将多孔生物陶瓷支架坯体进行干燥后,先真空、中性气氛或惰性气氛下脱脂处理,然后在空气进行脱脂,烧结,获得生物陶瓷支架。S3. After drying the porous bioceramic stent green body, degrease in vacuum, neutral atmosphere or inert atmosphere, then degrease in air and sinter to obtain the bioceramic stent.
优选地,步骤S1中所述的生物陶瓷为磷酸钙陶瓷、硅酸盐陶瓷或碳酸钙陶瓷中的一种以上。Preferably, the bioceramic described in step S1 is one or more of calcium phosphate ceramics, silicate ceramics or calcium carbonate ceramics.
更为优选地,所述的磷酸钙陶瓷为羟基磷灰石、磷酸氢钙、α-磷酸三钙或β-磷酸三钙中的一种以上,所述的硅酸盐陶瓷为硅酸钙、硅酸二钙、硅酸三钙、镁黄长石、白硅钙石或硅酸镁中的一种以上,所述的碳酸钙陶瓷为方解石、霰石或球霰石一种以上。More preferably, the calcium phosphate ceramic is more than one of hydroxyapatite, calcium hydrogen phosphate, α-tricalcium phosphate or β-tricalcium phosphate, and the silicate ceramic is calcium silicate, More than one of dicalcium silicate, tricalcium silicate, feldspar, vitreousite or magnesium silicate, and the calcium carbonate ceramics are more than one of calcite, aragonite or vaterite.
优选地,步骤S1中所述的生物玻璃助烧剂为磷酸盐玻璃或硅酸盐玻璃,所述的生物玻璃助烧剂含有镁、硼、硅、锌、铁、银、铜或锶元素中的一种以上,所述的生物玻璃助烧剂的熔点为300~1150℃。Preferably, the bioglass sintering aid described in step S1 is phosphate glass or silicate glass, and the bioglass sintering aid contains magnesium, boron, silicon, zinc, iron, silver, copper or strontium More than one kind, the melting point of the bioglass sintering aid is 300-1150°C.
优选地,步骤S1中所述树脂预混液包括预聚物、稀释剂和光引发剂。Preferably, the resin premix in step S1 includes a prepolymer, a diluent and a photoinitiator.
更为优选地,所述光敏树脂预聚物为聚氨酯丙烯酸酯、环氧丙烯酸酯、聚酯丙烯酸酯或环氧树脂;所述稀释剂为2-苯氧乙基丙烯酸酯(POEA)、丙烯酸四氢呋喃甲酯(THFA)、丙氧化新戊二醇丙烯酸酯、邻苯二甲酸二乙二醇二丙烯酸酯、三环癸烷二甲醇二丙烯酸酯、(2-环己基-1,3-二氧戊环基-4)丙烯酸甲酯(CHDOL10)或二乙氧基双酚A二丙烯酸酯(EM260)中的一种以上,所述光引发剂为安息香(BE)、过氧化苯甲酰、异丙基硫杂蒽酮(ITX)、苯基双(2,4,6-三甲基苯甲酰基)氧化膦或二苯甲酮的一种以上。More preferably, the photosensitive resin prepolymer is polyurethane acrylate, epoxy acrylate, polyester acrylate or epoxy resin; the diluent is 2-phenoxyethyl acrylate (POEA), acrylic tetrahydrofuran Methyl ester (THFA), Propoxylated Neopentyl Glycol Acrylate, Diethylene Glycol Diacrylate Phthalate, Tricyclodecane Dimethanol Diacrylate, (2-Cyclohexyl-1,3-Dioxolane Cyclo-4) more than one of methyl acrylate (CHDOL10) or diethoxy bisphenol A diacrylate (EM260), the photoinitiator is benzoin (BE), benzoyl peroxide, isopropyl One or more of thioxanthone (ITX), phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, or benzophenone.
优选地,步骤S1中所述生物陶瓷和生物玻璃助烧剂的质量比为1:(0.1~1),所述的生物陶瓷和生物玻璃助烧剂的总质量为光敏陶瓷浆料的20~80wt.%。Preferably, the mass ratio of the bioceramic and bioglass sintering aid in step S1 is 1: (0.1-1), and the total mass of the bioceramic and bioglass sintering aid is 20-20% of the photosensitive ceramic slurry. 80wt.%.
其中,步骤S2中所述的光固化成型机采用立体光刻技术或数字光投影技术,所述的光固化成型机的投影方式为自上而下或自下而上。Wherein, the photo-curing molding machine described in step S2 adopts stereolithography technology or digital light projection technology, and the projection method of the photo-curing molding machine is top-down or bottom-up.
优选地,步骤S3中所述烧结的温度为700~1300℃,烧结的时间为10~300min;所述惰性气氛为氩气或氦气;所述中性气氛为氮气或二氧化碳。Preferably, the sintering temperature in step S3 is 700-1300° C., and the sintering time is 10-300 min; the inert atmosphere is argon or helium; the neutral atmosphere is nitrogen or carbon dioxide.
步骤S3中采用先真空、中性气氛或惰性气氛下脱脂处理,然后在空气进行脱脂的方式,是由于树脂含量太多,如果在空气中脱脂,速度很快,会导致支架坯体严重开裂。在惰性气氛或中性气氛,又几乎通过缓慢裂解成小分子除去,或碳化。而采用先真空、中性气氛或惰性气氛下脱脂处理,然后在空气进行脱脂的方式防止坯体开裂,使变形较小。In step S3, degreasing in vacuum, neutral atmosphere or inert atmosphere, and then degreasing in air is used because the resin content is too much. If degreasing in air, the speed is very fast, which will cause severe cracking of the stent blank. In an inert atmosphere or a neutral atmosphere, it is almost removed by slow cracking into small molecules, or carbonization. However, the method of degreasing in vacuum, neutral atmosphere or inert atmosphere first, and then degreasing in air prevents the green body from cracking and makes the deformation smaller.
上述方法制备的生物陶瓷支架,所述生物陶瓷支架的高度(Z轴方向的尺寸)为0.1~1000mm,孔隙率为20%~80%,大孔孔径为100~1000μm,大孔率为25%~75%,抗压强度在0.2~120MPa。The bioceramic support prepared by the above method, the height of the bioceramic support (dimension in the Z-axis direction) is 0.1-1000 mm, the porosity is 20%-80%, the macropore diameter is 100-1000 μm, and the macroporosity is 25% ~75%, the compressive strength is 0.2~120MPa.
上述方法制备的生物陶瓷支架在骨缺损修复材料领域中的应用。The application of the bioceramic support prepared by the above method in the field of bone defect repair materials.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.与现有的自动注浆、三维绘图、喷墨打印等方法三维打印的生物陶瓷支架相比,本发明采用光固化成型三维打印生物陶瓷支架可获得更高精度的孔结构,且三位尺寸(尤其是Z轴)不受限制。通过引入低熔点生物玻璃作为助烧剂,可以解决有机物添加剂过多、生物陶瓷烧结性能差而导致的生物陶瓷支架强度偏低的问题。1. Compared with the existing three-dimensionally printed bioceramic scaffolds by automatic grouting, three-dimensional drawing, inkjet printing and other methods, the present invention adopts photocuring and forming three-dimensionally printed bioceramic scaffolds to obtain a higher-precision pore structure, and the three-dimensional Dimensions (especially the Z axis) are not limited. By introducing low melting point bioglass as a sintering aid, the problem of low strength of bioceramic scaffolds caused by excessive organic additives and poor sintering performance of bioceramics can be solved.
2.本发明制备的生物陶瓷支架孔隙率为20%~80%,大孔孔径为100~1000μm,大孔率25%~75%,抗压强度在0.2~120MPa,不仅可以用于非承重部位的骨缺损修复,还可以用于部分承重部位的骨缺损修复。2. The bioceramic scaffold prepared by the present invention has a porosity of 20% to 80%, a macropore diameter of 100 to 1000 μm, a macroporosity of 25% to 75%, and a compressive strength of 0.2 to 120 MPa, which can be used not only in non-load-bearing parts It can also be used for the repair of bone defects in some load-bearing parts.
3.本发明所制备生物陶瓷支架可以通过改变支架的三维模型、光敏陶瓷浆料的固相含量、助烧剂的添加量和烧结工艺,调控支架的孔结构、力学性能和降解速率。3. The bioceramic scaffold prepared by the present invention can adjust the pore structure, mechanical properties and degradation rate of the scaffold by changing the three-dimensional model of the scaffold, the solid phase content of the photosensitive ceramic slurry, the amount of sintering aid added and the sintering process.
4.本发明所制备的生物陶瓷支架降解后会释放出铁、锶、锌、铜等痕量元素离子,利于成骨和血管化,同时可通过改变组分、结构和烧结工艺,调控离子的释放规律,提高材料的促成骨和血管化能力。4. The bioceramic stent prepared by the present invention will release trace element ions such as iron, strontium, zinc, and copper after degradation, which is beneficial to osteogenesis and vascularization. At the same time, the ion concentration can be adjusted by changing the composition, structure, and sintering process. The regularity of release improves the osteogenesis and vascularization capabilities of the material.
具体实施方式detailed description
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The content of the present invention will be further described below in conjunction with specific examples, but it should not be construed as a limitation of the present invention. Unless otherwise specified, the technical means used in the embodiments are conventional means well known to those skilled in the art. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
实施例1β-磷酸三钙陶瓷支架的制备方法The preparation method of embodiment 1β-tricalcium phosphate ceramic support
1.配置光敏树脂预混液,采用的预聚物为聚氨酯丙烯酸酯,引发剂为过氧化苯甲酰,稀释剂为丙氧化新戊二醇丙烯酸酯。将β-磷酸三钙和含Sr低熔点生物玻璃助烧剂(50P2O5-20Na2O-30SrO)粉末与光敏树脂预混液均匀混合,获得固相含量为50%的光敏陶瓷浆料。陶瓷浆料中β-磷酸三钙的含量为30%,玻璃烧助烧剂的含量为20%。1. Configure the photosensitive resin premix, the prepolymer used is urethane acrylate, the initiator is benzoyl peroxide, and the diluent is propoxylated neopentyl glycol acrylate. The powder of β-tricalcium phosphate and Sr-containing low-melting bioglass sintering aid (50P 2 O 5 -20Na 2 O-30SrO) is evenly mixed with the photosensitive resin premix to obtain a photosensitive ceramic slurry with a solid phase content of 50%. The content of β-tricalcium phosphate in the ceramic slurry is 30%, and the content of the glass firing aid is 20%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤(1)的光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自上而下,通过光固化成型法三维打印出多孔β-磷酸三钙陶瓷支架坯体。2. Input the three-dimensional model of the porous bracket into the photocuring molding machine; place the photosensitive ceramic slurry in step (1) on the DLP photocuring molding equipment, and the projection method is top-down, and the three-dimensional printing is performed by the photocuring molding method. Porous β-tricalcium phosphate ceramic stent body.
3.将β-磷酸三钙陶瓷支架坯体进行冷冻干燥,放入高温炉中,先在氮气气氛下脱脂,然后在空气中缓慢脱脂,最后在空气中以1℃/分钟的速度升温,1120℃下烧结,保温120分钟,随炉温冷却,获得β-磷酸三钙陶瓷生物陶瓷支架。3. Freeze-dry the β-tricalcium phosphate ceramic stent body, put it into a high-temperature furnace, degrease it under a nitrogen atmosphere first, then slowly degrease it in the air, and finally raise the temperature in the air at a rate of 1°C/min, 1120 Sintering at ℃, keeping the temperature for 120 minutes, and cooling with the furnace temperature to obtain the β-tricalcium phosphate ceramic bioceramic support.
所得β-磷酸三钙陶瓷生物陶瓷支架完全三维孔连通,孔径约为400μm左右,用计算机断层扫描术(μ-CT)测得β-磷酸三钙支架的孔隙率为50%,用万能材料试验机测得支架抗压强度为30MPa。The obtained β-tricalcium phosphate ceramic bioceramic scaffold is completely connected with three-dimensional pores, and the pore diameter is about 400 μm. The porosity of the β-tricalcium phosphate scaffold measured by computer tomography (μ-CT) is 50%. The compressive strength of the bracket measured by the machine is 30MPa.
实施例2碳酸钙陶瓷支架的制备方法The preparation method of embodiment 2 calcium carbonate ceramic support
1.配置光敏树脂预混液,采用的预聚物为聚氨酯丙烯酸酯,引发剂为安息香(BE),稀释剂为丙氧化新戊二醇丙烯酸酯。将方解石型碳酸钙和含Sr的生物玻璃助烧剂(50P2O5-20Na2O-20CaO-10SrO)粉末与光敏树脂预混液均匀混合,获得固相含量为60%的光敏陶瓷浆料。陶瓷浆料中碳酸钙的含量为30%,玻璃助烧剂的含量为30%。1. Configure the photosensitive resin premix, the prepolymer used is polyurethane acrylate, the initiator is benzoin (BE), and the diluent is propoxylated neopentyl glycol acrylate. The calcite-type calcium carbonate and Sr-containing biological glass sintering aid (50P 2 O 5 -20Na 2 O-20CaO-10SrO) powder are evenly mixed with the photosensitive resin premix to obtain a photosensitive ceramic slurry with a solid phase content of 60%. The content of calcium carbonate in the ceramic slurry is 30%, and the content of glass sintering aid is 30%.
2.将多孔支架的三维模型输入到光固化成型机;将上述的光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自下而上,通过光固化成型法三维打印出设计的多孔碳酸钙陶瓷支架坯体。2. Input the three-dimensional model of the porous bracket into the photocuring molding machine; place the above-mentioned photosensitive ceramic slurry on the DLP photocuring molding equipment, and the projection method is bottom-up, and the designed porous structure is three-dimensionally printed by the photocuring molding method Calcium carbonate ceramic stent body.
3.将碳酸钙陶瓷支架坯体进行冷冻干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂,最后在二氧化碳气氛以2℃/分钟的速度升温,在750℃下烧结,保温10分钟,随炉温冷却,获得碳酸钙陶瓷生物陶瓷支架。3. Freeze-dry the calcium carbonate ceramic stent body, put it into a high-temperature furnace, degrease it under vacuum first, then degrease it in air, and finally heat it up at a rate of 2°C/min in a carbon dioxide atmosphere, and sinter it at 750°C. Keep it warm for 10 minutes, and cool down with the furnace temperature to obtain a calcium carbonate ceramic bioceramic support.
所得碳酸钙生物陶瓷支架完全三维孔连通,孔径约为300μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为40%,用万能材料试验机测得支架的抗压强度为15MPa。The obtained calcium carbonate bioceramic support is completely connected in three-dimensional pores, and the pore diameter is about 300 μm. The macroporosity of the calcium carbonate support is 40% as measured by computerized tomography (μ-CT), and the compression resistance of the support is measured by a universal material testing machine. The strength is 15MPa.
实施例3硅酸钙陶瓷支架的制备方法The preparation method of embodiment 3 calcium silicate ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将硅酸钙和含B、Si生物玻璃玻璃助烧剂(45SiO2-29CaO-15Na2O-4P2O5-7B2O3)粉末与光敏树脂预混液均匀混合,获得固相含量为55%的光敏陶瓷浆料。陶瓷浆料中硅酸钙的含量为35%,玻璃助烧剂的含量为20%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. Mix calcium silicate and B and Si-containing bioglass glass sintering aid (45SiO 2 -29CaO-15Na 2 O-4P 2 O 5 -7B 2 O 3 ) powder with the photosensitive resin premix to obtain a solid phase content of 55 % photosensitive ceramic paste. The content of calcium silicate in the ceramic slurry is 35%, and the content of glass sintering aid is 20%.
2.将多孔支架的三维模型输入到光固化成型机;将上述光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自下而上,通过光固化成型法三维打印出设计的多孔碳酸钙陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the above-mentioned photosensitive ceramic slurry on the DLP photocuring molding equipment, and the projection method is bottom-up, and the designed porous carbonic acid is three-dimensionally printed by the photocuring molding method. Calcium ceramic stent body.
3.将硅酸钙陶瓷支架坯体进行空气自然干燥,放入高温炉中,先在氩气下脱脂,然后在空气中脱脂;最后在空气中以1℃/分钟的速度升温,于1120℃下烧结,保温90分钟,随炉温冷却,获得硅酸钙陶瓷生物陶瓷支架。3. Air-dry the calcium silicate ceramic stent body naturally, put it into a high-temperature furnace, degrease it under argon, and then degrease it in the air; finally, heat it up at a rate of 1°C/min in the air, at 1120°C sintering at lower temperature, heat preservation for 90 minutes, and cooling with furnace temperature to obtain calcium silicate ceramic bioceramic support.
所得碳酸钙生物陶瓷支架完全三维孔连通,孔径约为500μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为55%,用万能材料试验机测得支架的抗压强度为25MPa。The obtained calcium carbonate bioceramic support is completely connected in three-dimensional pores, and the pore diameter is about 500 μm. The macroporosity of the calcium carbonate support is 55% as measured by computerized tomography (μ-CT), and the compression resistance of the support is measured by a universal material testing machine. The strength is 25MPa.
实施例4羟基磷灰石陶瓷支架的制备方法The preparation method of embodiment 4 hydroxyapatite ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将羟基磷灰石和含Mg生物玻璃助烧剂(45P2O5-25Na2O-10MgO)与光敏树脂预混液均匀混合,获得固相含量为60%的光敏陶瓷浆料。陶瓷浆料中羟基磷灰石的含量为45%,玻璃助烧剂的含量为15%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. The hydroxyapatite and Mg-containing bioglass sintering aid (45P 2 O 5 -25Na 2 O-10MgO) are evenly mixed with the photosensitive resin premix to obtain a photosensitive ceramic slurry with a solid phase content of 60%. The content of hydroxyapatite in the ceramic slurry is 45%, and the content of glass sintering aid is 15%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤1的光敏陶瓷浆料置于SLA光固化成型设备上,投影方式为自上而下,通过光固化成型法三维打印出设计的多孔羟基磷灰石陶瓷支架坯体。2. Input the three-dimensional model of the porous bracket into the photocuring molding machine; place the photosensitive ceramic slurry in step 1 on the SLA photocuring molding equipment, and the projection method is top-down, and print out the designed 3D model through the photocuring molding method Porous hydroxyapatite ceramic scaffold body.
3.将羟基磷灰石陶瓷支架坯体进行真空干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂;最后在空气中以2℃/分钟的速度升温,于1200℃下烧结,保温90分钟,随炉温冷却,获得羟基磷灰石陶瓷支架。3. Vacuum dry the hydroxyapatite ceramic stent body, put it in a high-temperature furnace, degrease it under vacuum first, then degrease it in the air; Sintering, heat preservation for 90 minutes, and cooling with the furnace temperature to obtain a hydroxyapatite ceramic support.
所得羟基磷灰石生物陶瓷支架完全三维孔连通,孔径约为300μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为50%,用万能材料试验机测得支架的抗压强度为45MPa。The obtained hydroxyapatite bioceramic support is completely connected in three-dimensional pores, and the pore diameter is about 300 μm. The macroporosity of the calcium carbonate support is measured by computer tomography (μ-CT). The macroporosity of the calcium carbonate support is 50%. The compressive strength is 45MPa.
实施例5镁黄长石陶瓷支架的制备方法The preparation method of embodiment 5 feldspar ceramic support
1.配置光敏树脂预混液,采用的预聚物为聚酯丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将镁黄长石和含Sr生物玻璃助烧剂(45P2O5-35Na2O-30SrO)与光敏树脂预混液均匀混合,获得固相含量为40%的光敏陶瓷浆料。陶瓷浆料中镁黄长石的含量为25%,玻璃助烧剂的含量为15%。1. Configure the photosensitive resin premix, the prepolymer used is polyester acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. The feldspar and Sr-containing bioglass sintering aid (45P 2 O 5 -35Na 2 O-30SrO) are evenly mixed with the photosensitive resin premix to obtain a photosensitive ceramic slurry with a solid phase content of 40%. The content of feldspar in the ceramic slurry is 25%, and the content of glass sintering aid is 15%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤(1)的光敏陶瓷浆料置于SLA光固化成型设备上,投影方式为自上而下,通过光固化成型法三维打印出设计的多孔镁黄长石陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the photosensitive ceramic slurry in step (1) on the SLA photocuring molding equipment, and the projection method is from top to bottom, and three-dimensionally print out through the photocuring molding method The designed porous magnesian feldspar ceramic scaffold body.
3.将镁黄长石陶瓷支架坯体进行真空干燥,放入高温炉中,先在氮气下脱脂,然后在空气中脱脂;最后在空气中3℃/分钟的速度升温,于1300℃下烧结,保温150分钟,随路温冷却,获得镁黄长石陶瓷生物陶瓷支架。3. Vacuum-dry the magnesia feldspar ceramic support body, put it into a high-temperature furnace, degrease it under nitrogen, and then degrease it in the air; finally raise the temperature in the air at a rate of 3°C/min, sinter it at 1300°C, and keep it warm After cooling for 150 minutes with the temperature of the road, a magnesian feldspar ceramic bioceramic support was obtained.
所得镁黄长石生物陶瓷支架完全三维孔连通,孔径约为400μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为35%,用万能材料试验机测得支架的抗压强度为35MPa。The obtained magnesia feldspar bioceramic support is completely connected in three-dimensional pores, and the pore diameter is about 400 μm. The macroporosity of the calcium carbonate support is 35% measured by computerized tomography (μ-CT), and the compression resistance of the support is measured by a universal material testing machine. The strength is 35MPa.
实施例6羟基磷灰石/β-磷酸三钙陶瓷支架的制备方法The preparation method of embodiment 6 hydroxyapatite/β-tricalcium phosphate ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将羟基磷灰石、β-磷酸三钙和含Sr生物玻璃助烧剂(50P2O5-35Na2O-15SrO)与光敏树脂预混液均匀混合,获得固相含量为65%的光敏陶瓷浆料。陶瓷浆料中羟基磷灰石的含量为18%,β-磷酸三钙的含量为27%,玻璃助烧剂的含量为20%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. Mix hydroxyapatite, β-tricalcium phosphate and Sr-containing bioglass sintering aid (50P 2 O 5 -35Na 2 O-15SrO) with the photosensitive resin premix to obtain a photosensitive ceramic slurry with a solid phase content of 65%. material. The content of hydroxyapatite in the ceramic slurry is 18%, the content of β-tricalcium phosphate is 27%, and the content of glass sintering aid is 20%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤1的光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自下而上,通过光固化成型法三维打印出设计的多孔羟基磷灰石/β-磷酸三钙陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the photosensitive ceramic slurry in step 1 on the DLP photocuring molding equipment, and the projection method is bottom-up, and print out the designed three-dimensional model through the photocuring molding method Porous hydroxyapatite/β-tricalcium phosphate ceramic scaffold body.
3.将羟基磷灰石/β-磷酸三钙陶瓷支架坯体进行冷冻干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂;最后在空气中以3℃/分钟的速度升温,于1150℃下烧结,保温80分钟,随炉温冷却,获得羟基磷灰石/β-磷酸三钙生物陶瓷支架。3. Freeze-dry the hydroxyapatite/β-tricalcium phosphate ceramic stent body, put it in a high-temperature furnace, degrease it under vacuum first, then degrease it in the air; finally degrease it in the air at a speed of 3°C/min Heating up, sintering at 1150° C., holding the temperature for 80 minutes, and cooling with the furnace temperature to obtain the hydroxyapatite/β-tricalcium phosphate bioceramic scaffold.
所得羟基磷灰石/β-磷酸三钙生物陶瓷支架完全三维孔连通,孔径约为350μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为40%,用万能材料试验机测得支架的抗压强度为50MPa。The obtained hydroxyapatite/β-tricalcium phosphate bioceramic scaffold is completely connected with three-dimensional pores, and the pore diameter is about 350 μm. The macroporosity of the calcium carbonate scaffold measured by computer tomography (μ-CT) is 40%. The compressive strength of the bracket measured by the testing machine is 50MPa.
实施例7硅酸钙/β-磷酸三钙陶瓷支架的制备方法The preparation method of embodiment 7 calcium silicate/β-tricalcium phosphate ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将硅酸钙、β-磷酸三钙和含Fe生物玻璃助烧剂(45P2O5-30Na2O-20CaO-10Fe2O3)粉末与光敏树脂预混液液均匀混合,获得固相含量为45%的光敏陶瓷浆料。陶瓷浆料中硅酸钙的含量为硅酸钙10%,β-磷酸三钙的含量为30%,玻璃助烧剂的含量为15%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. Mix calcium silicate, β-tricalcium phosphate, and Fe-containing bioglass sintering aid (45P 2 O 5 -30Na 2 O-20CaO-10Fe 2 O 3 ) powder with the photosensitive resin premix liquid to obtain a solid phase content of 45% photosensitive ceramic paste. The content of calcium silicate in the ceramic slurry is 10% of calcium silicate, the content of β-tricalcium phosphate is 30%, and the content of glass sintering aid is 15%.
2.将多孔支架的三维模型输入到光固化成型机;将上述光敏陶瓷浆料置于SLA光固化成型设备上,投影方式为自上而下,通过光固化成型法三维打印出设计的多孔硅酸钙/β-磷酸三钙陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the above-mentioned photosensitive ceramic slurry on the SLA photocuring molding equipment, and the projection method is top-down, and the designed porous silicon is three-dimensionally printed by the photocuring molding method Calcium acid/β-tricalcium phosphate ceramic stent body.
3.将硅酸钙/β-磷酸三钙陶瓷支架坯体进行空气自然干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂;最后在空气中以1.5℃/分钟的速度升温,于1120℃下烧结,保温300分钟,随炉温冷却,获得硅酸钙/β-磷酸三钙生物陶瓷支架。3. Air-dry the calcium silicate/β-tricalcium phosphate ceramic stent body naturally, put it in a high-temperature furnace, degrease under vacuum first, then degrease in air; finally degrease in air at a speed of 1.5°C/min Raise the temperature, sinter at 1120° C., keep the temperature for 300 minutes, and cool down with the furnace temperature to obtain the calcium silicate/β-tricalcium phosphate bioceramic scaffold.
所得羟基磷灰石/β-磷酸三钙生物陶瓷支架完全三维孔连通,孔径约为450μm,用计算机断层扫描术(μ-CT)测得碳酸钙支架的大孔率为50%,用万能材料试验机测得支架的抗压强度为17MPa。The obtained hydroxyapatite/β-tricalcium phosphate bioceramic scaffold is completely connected with three-dimensional pores, and the pore diameter is about 450 μm. The macroporosity of the calcium carbonate scaffold measured by computer tomography (μ-CT) is 50%. The compressive strength of the bracket measured by the testing machine is 17MPa.
实施例8碳酸钙/羟基磷灰石陶瓷支架的制备方法The preparation method of embodiment 8 calcium carbonate/hydroxyapatite ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将霰石型碳酸钙、羟基磷灰石和含Zn、Sr生物玻璃助烧剂(45P2O5-30Na2O-20SrO-5ZnO)与光敏树脂预混液均匀混合,获得固相含量为50%的光敏陶瓷浆料。陶瓷浆料中碳酸钙的含量为10%,羟基磷灰石的含量为20%,玻璃助烧剂的含量为20%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. Aragonite-type calcium carbonate, hydroxyapatite and Zn, Sr-containing biological glass sintering aid (45P 2 O 5 -30Na 2 O-20SrO-5ZnO) were uniformly mixed with the photosensitive resin premix to obtain a solid phase content of 50%. Photosensitive ceramic paste. The content of calcium carbonate in the ceramic slurry is 10%, the content of hydroxyapatite is 20%, and the content of glass sintering aid is 20%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤1的光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自下而上,通过光固化成型法三维打印出设计的多孔碳酸钙/羟基磷灰石陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the photosensitive ceramic slurry in step 1 on the DLP photocuring molding equipment, and the projection method is bottom-up, and print out the designed three-dimensional model through the photocuring molding method Porous calcium carbonate/hydroxyapatite ceramic scaffold body.
3.将碳酸钙/羟基磷灰石陶瓷支架坯体进行空气自然干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂,最后在二氧化碳气氛中以4℃/分钟的速度升温,于700℃下烧结,保温30分钟,随炉温冷却,获得碳酸钙/羟基磷灰石生物陶瓷支架。3. Air-dry the calcium carbonate/hydroxyapatite ceramic stent body naturally, put it into a high-temperature furnace, degrease under vacuum first, then degrease in air, and finally heat up at a rate of 4°C/min in a carbon dioxide atmosphere , sintered at 700° C., kept for 30 minutes, and cooled with the furnace temperature to obtain a calcium carbonate/hydroxyapatite bioceramic scaffold.
所得碳酸钙/羟基磷灰石生物陶瓷支架完全三维孔连通,孔径约为350μm,用计算机断层扫描术(μ-CT)测得碳酸钙/羟基磷灰石支架的大孔率为40%,用万能材料试验机测得支架的抗压强度为28MPa。The obtained calcium carbonate/hydroxyapatite bioceramic support is completely connected with three-dimensional pores, and the pore diameter is about 350 μm. The macroporosity of the calcium carbonate/hydroxyapatite support measured by computer tomography (μ-CT) is 40%. The compressive strength of the bracket measured by the universal material testing machine is 28MPa.
实施例9白硅钙石/α-磷酸三钙陶瓷支架的制备方法The preparation method of embodiment 9 wollastonite/α-tricalcium phosphate ceramic support
1.配置光敏树脂预混液,采用的预聚物为聚酯丙烯酸酯,引发剂为安息香(BE),稀释剂为三环癸烷二甲醇二丙烯酸酯。将白硅钙石、α-磷酸三钙和含B、Sr磷酸盐玻璃助烧剂(47P2O5-35Na2O-13SrO-5B2O3)与光敏树脂预混液均匀混合,获得固相含量为70%的光敏陶瓷浆料。陶瓷浆料中白硅钙石的含量为25%,羟基磷灰石的含量为25%,玻璃助烧剂的含量为20%。1. Configure the photosensitive resin premix, the prepolymer used is polyester acrylate, the initiator is benzoin (BE), and the diluent is tricyclodecane dimethanol diacrylate. Mix silicate, α-tricalcium phosphate and B, Sr-containing phosphate glass sintering aid (47P 2 O 5 -35Na 2 O-13SrO-5B 2 O 3 ) with the photosensitive resin premix to obtain a solid phase A photosensitive ceramic slurry with a content of 70%. The content of the doxonotlite in the ceramic slurry is 25%, the content of the hydroxyapatite is 25%, and the content of the glass sintering aid is 20%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤1的光敏陶瓷浆料置于DLP光固化成型设备上,投影方式为自下而上,通过光固化成型法三维打印出设计的多孔白硅钙石/α-磷酸三钙陶瓷支架坯体。2. Input the three-dimensional model of the porous support into the photocuring molding machine; place the photosensitive ceramic slurry in step 1 on the DLP photocuring molding equipment, and the projection method is bottom-up, and print out the designed three-dimensional model through the photocuring molding method Porous wollastonite/α-tricalcium phosphate ceramic stent body.
3.将白硅钙石/α-磷酸三钙陶瓷支架坯体进行真空干燥,放入高温炉中,先在真空下脱脂,然后在空气中脱脂,最后在空气中以3℃/分钟的速度升温,于1100℃下烧结,保温120分钟,随炉温冷却,获得白硅钙石/α-磷酸三钙生物陶瓷支架。3. Vacuum-dry the white wollastonite/α-tricalcium phosphate ceramic stent body, put it into a high-temperature furnace, degrease it under vacuum first, then degrease it in the air, and finally degrease it in the air at a speed of 3°C/min Heating up, sintering at 1100° C., holding the temperature for 120 minutes, and cooling with the furnace temperature to obtain the wrathite/α-tricalcium phosphate bioceramic support.
所得白硅钙石/α-磷酸三钙生物陶瓷支架完全三维孔连通,孔径约为330μm,用计算机断层扫描术(μ-CT)测得碳酸钙/羟基磷灰石支架的大孔率为40%,用万能材料试验机测得支架的抗压强度为85MPa。The obtained white wollastonite/α-tricalcium phosphate bioceramic scaffold is completely connected with three-dimensional pores, the pore diameter is about 330 μm, and the macroporosity of the calcium carbonate/hydroxyapatite scaffold measured by computer tomography (μ-CT) is 40 %, the compressive strength of the bracket measured by a universal material testing machine is 85MPa.
实施例10硅酸三钙/α-磷酸三钙陶瓷支架的方法The method of embodiment 10 tricalcium silicate/α-tricalcium phosphate ceramic support
1.配置光敏树脂预混液,采用的预聚物为环氧丙烯酸酯,引发剂为异丙基硫杂蒽酮(ITX),稀释剂为三环癸烷二甲醇二丙烯酸酯。将硅酸三钙、α-磷酸三钙和含Ag生物玻璃助烧剂(47P2O5-25Na2O-20CaO-8AgO)与光敏树脂预混液均匀混合,获得固相含量为50%的光敏陶瓷浆料。陶瓷浆料中硅酸三钙的含量为22%,α-磷酸三钙的含量为13%,玻璃助烧剂的含量为15%。1. Configure the photosensitive resin premix, the prepolymer used is epoxy acrylate, the initiator is isopropylthioxanthone (ITX), and the diluent is tricyclodecane dimethanol diacrylate. Mix tricalcium silicate, α-tricalcium phosphate and Ag-containing bioglass sintering aid (47P 2 O 5 -25Na 2 O-20CaO-8AgO) with the photosensitive resin premix to obtain a photosensitive resin with a solid phase content of 50%. ceramic slurry. The content of tricalcium silicate in the ceramic slurry is 22%, the content of α-tricalcium phosphate is 13%, and the content of glass sintering aid is 15%.
2.将多孔支架的三维模型输入到光固化成型机;将步骤1的光敏陶瓷浆料置于SLA光固化成型设备上,投影方式为自上而下,通过光固化成型法三维打印出设计的多孔硅酸三钙/α-磷酸三钙陶瓷支架坯体。2. Input the three-dimensional model of the porous bracket into the photocuring molding machine; place the photosensitive ceramic slurry in step 1 on the SLA photocuring molding equipment, and the projection method is top-down, and print out the designed 3D model through the photocuring molding method Porous tricalcium silicate/α-tricalcium phosphate ceramic stent body.
3.将硅酸三钙/α-磷酸三钙陶瓷支架坯体进行冷冻干燥,放入高温炉中,先在氮气下脱脂,然后在空气中脱脂,最后在空气中以2℃/分钟的速度升温,于1120℃下烧结,保温150分钟,随炉温冷却,获得硅酸三钙/α-磷酸三钙生物陶瓷支架。3. Freeze-dry the tricalcium silicate/α-tricalcium phosphate ceramic stent body, put it in a high-temperature furnace, degrease it under nitrogen, then degrease it in the air, and finally degrease it in the air at a speed of 2°C/min. Heating up, sintering at 1120° C., holding the temperature for 150 minutes, cooling with the furnace temperature, and obtaining the tricalcium silicate/α-tricalcium phosphate bioceramic scaffold.
所得硅酸三钙/α-磷酸三钙生物陶瓷支架完全三维孔连通,孔径约为550μm,用计算机断层扫描术(μ-CT)测得碳酸钙/羟基磷灰石支架的大孔率为55%,用万能材料试验机测得支架的抗压强度为12MPa。The obtained tricalcium silicate/α-tricalcium phosphate bioceramic scaffold is completely connected with three-dimensional pores, and the pore diameter is about 550 μm. The macroporosity of the calcium carbonate/hydroxyapatite scaffold measured by computer tomography (μ-CT) is 55%. %, the compressive strength of the bracket measured by a universal testing machine is 12MPa.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations and modifications made without departing from the spirit and principles of the present invention Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710339197.5A CN107296985B (en) | 2017-05-15 | 2017-05-15 | A method and application of three-dimensional printing bioceramic scaffolds based on photocuring molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710339197.5A CN107296985B (en) | 2017-05-15 | 2017-05-15 | A method and application of three-dimensional printing bioceramic scaffolds based on photocuring molding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107296985A true CN107296985A (en) | 2017-10-27 |
CN107296985B CN107296985B (en) | 2020-09-22 |
Family
ID=60137230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710339197.5A Active CN107296985B (en) | 2017-05-15 | 2017-05-15 | A method and application of three-dimensional printing bioceramic scaffolds based on photocuring molding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107296985B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107721408A (en) * | 2017-11-01 | 2018-02-23 | 江苏师范大学 | A kind of method that 3D printing prepares β tricalcium phosphate porous bio-ceramics |
CN108057437A (en) * | 2017-11-28 | 2018-05-22 | 辽宁科技大学 | Active ingredient passes through SCR catalyst of 3D printing straight forming and preparation method thereof |
CN109053183A (en) * | 2018-09-03 | 2018-12-21 | 山东大学 | The preparation method of bioceramic slurry for photocuring 3 D-printing |
CN109095912A (en) * | 2018-09-06 | 2018-12-28 | 深圳大学 | A kind of method that 3D printing is integrated cordierite honeycomb ceramic carrier |
CN109133972A (en) * | 2018-10-09 | 2019-01-04 | 广州润虹医药科技股份有限公司 | A kind of porous bioceramic scaffold and preparation method thereof |
CN109180175A (en) * | 2018-10-25 | 2019-01-11 | 河北大洲智造科技有限公司 | A kind of photocuring 3D printing bioceramic slurry and preparation method thereof, bone tissue engineering scaffold and its application |
CN109227877A (en) * | 2018-10-31 | 2019-01-18 | 南京航空航天大学 | A method of based on the molding porous bone hydroxylapatite ceramic cytoskeleton of photocuring 3D printing technique |
CN109650909A (en) * | 2019-02-20 | 2019-04-19 | 四川大学 | A kind of calcium phosphate bone induction bioceramic scaffold and preparation method thereof based on photocuring 3D printing technique |
CN109665819A (en) * | 2018-12-10 | 2019-04-23 | 北京工业大学 | A kind of preparation method of the porous minimal surface structure aluminium oxide ceramics based on 3D printing |
CN109730811A (en) * | 2018-12-17 | 2019-05-10 | 中国科学院上海硅酸盐研究所 | Bone-imitation Haversian system bioactive scaffold and preparation method and application thereof |
CN109912303A (en) * | 2019-04-24 | 2019-06-21 | 南京航空航天大学 | A kind of calcium phosphate/zirconia gradient porous scaffold and preparation method and application |
CN110227178A (en) * | 2019-07-30 | 2019-09-13 | 广东工业大学 | A kind of bioceramic scaffold and its application |
CN110357657A (en) * | 2019-08-15 | 2019-10-22 | 河北大洲智造科技有限公司 | A kind of 3D printing bioceramic slurry and preparation method thereof, a kind of bio-ceramic artificial bone and preparation method thereof |
CN110790570A (en) * | 2019-11-26 | 2020-02-14 | 杭州电子科技大学 | A three-dimensional porous structure manufacturing method |
CN110981463A (en) * | 2019-11-11 | 2020-04-10 | 第七元素(北京)新材料科技有限公司 | Photocuring biological ceramic composite material for 3D printing and application and printing system thereof |
CN111592620A (en) * | 2020-06-01 | 2020-08-28 | 深圳市瑞晟新材料有限公司 | Photocuring material for 3D printing |
CN112341206A (en) * | 2020-11-05 | 2021-02-09 | 衡阳凯新特种材料科技有限公司 | Forming method of rare earth praseodymium-holmium-stabilized silicon nitride ceramic |
CN112794732A (en) * | 2021-01-05 | 2021-05-14 | 中国科学院上海硅酸盐研究所 | A kind of calcium silicate ceramic with microbial mineralization modified surface and its application |
CN113061022A (en) * | 2021-02-19 | 2021-07-02 | 南京航空航天大学 | Method for preparing calcium silicate/magnesium oxide porous biological bone scaffold based on in-situ method |
CN113135754A (en) * | 2021-04-29 | 2021-07-20 | 安徽工业大学 | Method for preparing gelled composite material with piezoelectric property, gelled composite material and application thereof |
CN113559326A (en) * | 2021-05-14 | 2021-10-29 | 南京航空航天大学 | Calcium silicate/magnesium silicate biological bone porous implant and preparation method and application thereof |
CN113636836A (en) * | 2021-08-10 | 2021-11-12 | 西安交通大学 | A kind of light-cured calcium silicate/β-tricalcium phosphate ceramic paste and preparation method of porous scaffold |
CN113831110A (en) * | 2021-09-17 | 2021-12-24 | 杭州电子科技大学 | A kind of 3D printing porous coral and preparation method thereof |
CN114191615A (en) * | 2021-12-21 | 2022-03-18 | 浙江大学 | Multilayer composite material for promoting articular cartilage-calcification layer-subchondral bone repair and preparation method thereof |
CN114751732A (en) * | 2022-06-14 | 2022-07-15 | 季华实验室 | Method for 3D printing of ceramic material with vascular network structure |
CN114891165A (en) * | 2022-06-09 | 2022-08-12 | 四川大学 | Piezoelectric composite photosensitive resin material for three-dimensional photocuring molding printing and preparation method and application thereof |
CN116496102A (en) * | 2023-04-27 | 2023-07-28 | 大连理工大学 | A method for preparing piezoelectric ceramic fiber composite actuator based on freeze casting method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1480419A (en) * | 2002-07-15 | 2004-03-10 | ������������ʽ���� | CaO-SiO2-base bioactive glass and sintered calcium orthophosphate glass using such raw material |
CN1613435A (en) * | 2004-11-29 | 2005-05-11 | 西安交通大学 | Photocureable rapid shaping indirect manufacturing method for controllable microtube structure stand |
CN101595071A (en) * | 2007-01-30 | 2009-12-02 | 株式会社村田制作所 | Photosensitive glass paste and chip part with multilayer wiring |
CN104149337A (en) * | 2014-07-02 | 2014-11-19 | 中国电子科技集团公司第五十五研究所 | Photocuring material for three-dimensional printing and application method thereof |
WO2014186769A1 (en) * | 2013-05-17 | 2014-11-20 | Uram Stuart | Molds for ceramic casting |
CN105198449A (en) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | Method for preparing photocuring-formed high-density ceramic |
CN105566860A (en) * | 2015-12-11 | 2016-05-11 | 上海联泰科技股份有限公司 | Ceramic material for 3D (three-dimensional) light curing forming printing and preparation method thereof |
CN105582571A (en) * | 2016-02-24 | 2016-05-18 | 浙江大学 | Manufacturing method of high-strength bioactive porous scaffold |
CN106007723A (en) * | 2016-05-20 | 2016-10-12 | 中国科学院上海硅酸盐研究所 | Making method of SiC ceramic green body |
-
2017
- 2017-05-15 CN CN201710339197.5A patent/CN107296985B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1480419A (en) * | 2002-07-15 | 2004-03-10 | ������������ʽ���� | CaO-SiO2-base bioactive glass and sintered calcium orthophosphate glass using such raw material |
CN1613435A (en) * | 2004-11-29 | 2005-05-11 | 西安交通大学 | Photocureable rapid shaping indirect manufacturing method for controllable microtube structure stand |
CN101595071A (en) * | 2007-01-30 | 2009-12-02 | 株式会社村田制作所 | Photosensitive glass paste and chip part with multilayer wiring |
WO2014186769A1 (en) * | 2013-05-17 | 2014-11-20 | Uram Stuart | Molds for ceramic casting |
CN104149337A (en) * | 2014-07-02 | 2014-11-19 | 中国电子科技集团公司第五十五研究所 | Photocuring material for three-dimensional printing and application method thereof |
CN105198449A (en) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | Method for preparing photocuring-formed high-density ceramic |
CN105566860A (en) * | 2015-12-11 | 2016-05-11 | 上海联泰科技股份有限公司 | Ceramic material for 3D (three-dimensional) light curing forming printing and preparation method thereof |
CN105582571A (en) * | 2016-02-24 | 2016-05-18 | 浙江大学 | Manufacturing method of high-strength bioactive porous scaffold |
CN106007723A (en) * | 2016-05-20 | 2016-10-12 | 中国科学院上海硅酸盐研究所 | Making method of SiC ceramic green body |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107721408A (en) * | 2017-11-01 | 2018-02-23 | 江苏师范大学 | A kind of method that 3D printing prepares β tricalcium phosphate porous bio-ceramics |
CN107721408B (en) * | 2017-11-01 | 2021-03-16 | 江苏卓燃高新科技有限公司 | Method for preparing beta-tricalcium phosphate porous bioceramic through 3D printing |
CN108057437A (en) * | 2017-11-28 | 2018-05-22 | 辽宁科技大学 | Active ingredient passes through SCR catalyst of 3D printing straight forming and preparation method thereof |
CN108057437B (en) * | 2017-11-28 | 2021-05-18 | 辽宁科技大学 | SCR catalyst with active ingredients directly formed through 3D printing and preparation method thereof |
CN109053183B (en) * | 2018-09-03 | 2019-04-30 | 山东大学 | Preparation method of bioceramic slurry for photocurable three-dimensional printing |
CN109053183A (en) * | 2018-09-03 | 2018-12-21 | 山东大学 | The preparation method of bioceramic slurry for photocuring 3 D-printing |
CN109095912A (en) * | 2018-09-06 | 2018-12-28 | 深圳大学 | A kind of method that 3D printing is integrated cordierite honeycomb ceramic carrier |
CN109133972A (en) * | 2018-10-09 | 2019-01-04 | 广州润虹医药科技股份有限公司 | A kind of porous bioceramic scaffold and preparation method thereof |
CN109180175A (en) * | 2018-10-25 | 2019-01-11 | 河北大洲智造科技有限公司 | A kind of photocuring 3D printing bioceramic slurry and preparation method thereof, bone tissue engineering scaffold and its application |
CN109227877A (en) * | 2018-10-31 | 2019-01-18 | 南京航空航天大学 | A method of based on the molding porous bone hydroxylapatite ceramic cytoskeleton of photocuring 3D printing technique |
CN109665819A (en) * | 2018-12-10 | 2019-04-23 | 北京工业大学 | A kind of preparation method of the porous minimal surface structure aluminium oxide ceramics based on 3D printing |
CN109730811A (en) * | 2018-12-17 | 2019-05-10 | 中国科学院上海硅酸盐研究所 | Bone-imitation Haversian system bioactive scaffold and preparation method and application thereof |
CN109650909A (en) * | 2019-02-20 | 2019-04-19 | 四川大学 | A kind of calcium phosphate bone induction bioceramic scaffold and preparation method thereof based on photocuring 3D printing technique |
CN109912303A (en) * | 2019-04-24 | 2019-06-21 | 南京航空航天大学 | A kind of calcium phosphate/zirconia gradient porous scaffold and preparation method and application |
CN110227178A (en) * | 2019-07-30 | 2019-09-13 | 广东工业大学 | A kind of bioceramic scaffold and its application |
CN110357657A (en) * | 2019-08-15 | 2019-10-22 | 河北大洲智造科技有限公司 | A kind of 3D printing bioceramic slurry and preparation method thereof, a kind of bio-ceramic artificial bone and preparation method thereof |
CN110981463A (en) * | 2019-11-11 | 2020-04-10 | 第七元素(北京)新材料科技有限公司 | Photocuring biological ceramic composite material for 3D printing and application and printing system thereof |
CN110790570A (en) * | 2019-11-26 | 2020-02-14 | 杭州电子科技大学 | A three-dimensional porous structure manufacturing method |
CN111592620A (en) * | 2020-06-01 | 2020-08-28 | 深圳市瑞晟新材料有限公司 | Photocuring material for 3D printing |
CN112341206A (en) * | 2020-11-05 | 2021-02-09 | 衡阳凯新特种材料科技有限公司 | Forming method of rare earth praseodymium-holmium-stabilized silicon nitride ceramic |
CN112794732A (en) * | 2021-01-05 | 2021-05-14 | 中国科学院上海硅酸盐研究所 | A kind of calcium silicate ceramic with microbial mineralization modified surface and its application |
CN112794732B (en) * | 2021-01-05 | 2022-04-08 | 中国科学院上海硅酸盐研究所 | A kind of calcium silicate ceramic with microbial mineralization modified surface and its application |
CN113061022A (en) * | 2021-02-19 | 2021-07-02 | 南京航空航天大学 | Method for preparing calcium silicate/magnesium oxide porous biological bone scaffold based on in-situ method |
CN113135754A (en) * | 2021-04-29 | 2021-07-20 | 安徽工业大学 | Method for preparing gelled composite material with piezoelectric property, gelled composite material and application thereof |
CN113135754B (en) * | 2021-04-29 | 2022-06-03 | 安徽工业大学 | Method for preparing gelled composite material with piezoelectric property, gelled composite material and application thereof |
CN113559326A (en) * | 2021-05-14 | 2021-10-29 | 南京航空航天大学 | Calcium silicate/magnesium silicate biological bone porous implant and preparation method and application thereof |
CN113636836A (en) * | 2021-08-10 | 2021-11-12 | 西安交通大学 | A kind of light-cured calcium silicate/β-tricalcium phosphate ceramic paste and preparation method of porous scaffold |
CN113636836B (en) * | 2021-08-10 | 2022-08-05 | 西安交通大学 | A kind of light-cured calcium silicate/β-tricalcium phosphate ceramic paste and preparation method of porous scaffold |
CN113831110A (en) * | 2021-09-17 | 2021-12-24 | 杭州电子科技大学 | A kind of 3D printing porous coral and preparation method thereof |
CN114191615A (en) * | 2021-12-21 | 2022-03-18 | 浙江大学 | Multilayer composite material for promoting articular cartilage-calcification layer-subchondral bone repair and preparation method thereof |
CN114191615B (en) * | 2021-12-21 | 2022-07-08 | 浙江大学 | Multilayer composite material for promoting repair of articular cartilage-calcified layer-subchondral bone and preparation method thereof |
CN114891165A (en) * | 2022-06-09 | 2022-08-12 | 四川大学 | Piezoelectric composite photosensitive resin material for three-dimensional photocuring molding printing and preparation method and application thereof |
CN114891165B (en) * | 2022-06-09 | 2023-04-07 | 四川大学 | Piezoelectric composite photosensitive resin material for three-dimensional photocuring molding printing and preparation method and application thereof |
CN114751732A (en) * | 2022-06-14 | 2022-07-15 | 季华实验室 | Method for 3D printing of ceramic material with vascular network structure |
CN114751732B (en) * | 2022-06-14 | 2022-09-09 | 季华实验室 | Method for 3D printing of ceramic material with vascular network structure |
CN116496102A (en) * | 2023-04-27 | 2023-07-28 | 大连理工大学 | A method for preparing piezoelectric ceramic fiber composite actuator based on freeze casting method |
Also Published As
Publication number | Publication date |
---|---|
CN107296985B (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107296985B (en) | A method and application of three-dimensional printing bioceramic scaffolds based on photocuring molding | |
Liu et al. | DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry | |
Lamnini et al. | Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters-A review | |
CN105196398B (en) | For the ceramic slurry of air pressure extruded type 3 D-printing and the preparation method of bioceramic scaffold | |
CN105582571B (en) | A kind of bioactivity, porous support manufacturing method of high intensity | |
CN105198449B (en) | A kind of preparation method of the high ceramic of compact of Stereolithography | |
Deliormanlı et al. | Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair | |
CN110028335B (en) | A method for 3D printing porous ceramic tissue engineering parts | |
CN112778020B (en) | High-temperature porous ceramic and preparation method thereof | |
CN105233346B (en) | Multiporous biological stent slurry, three-dimensional porous biological support and preparation method thereof | |
CN107160534A (en) | A kind of 3 D-printing bioceramic compound rest and its application | |
CN107098717A (en) | A kind of 3 D-printing molding method for preparing of filtering porous ceramics | |
CN105769382A (en) | Biological active porous structure support suitable for bone regeneration and repair and manufacturing method thereof | |
CN110002883B (en) | A light-cured 3D printed polysilazane ceramic product and preparation method thereof | |
CN110668807B (en) | Biocomposite ceramic scaffold with controllable degradation performance and strength and preparation method thereof | |
CN109498844B (en) | A low-cost method for preparing high composite porosity bone tissue scaffolds | |
CN107226693A (en) | The method that increasing material manufacturing support attached gel cast prepares porous calcium phosphate ceramic | |
Cai et al. | Indirect 3D printed ceramic: A literature review | |
CN111825443A (en) | A kind of preparation method of photocuring 3D printing Tyson polygon biomimetic structure tricalcium phosphate/silica composite bioceramic | |
CN110092653A (en) | A kind of degradable bata-tricalcium phosphate porous bioceramic scaffold of 3D printing and its preparation method and application | |
CN112979283A (en) | Ceramic slurry based on surface exposure rapid prototyping process and preparation method and application thereof | |
Wang et al. | 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds | |
CN115970062B (en) | Bone cement-based drug slow-release carrier and preparation method thereof | |
CN105435303A (en) | Enhanced type bioactive glass scaffold and preparation method thereof | |
CN111646803B (en) | A molten state 3D direct writing printing paste and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |