[go: up one dir, main page]

CN107039533B - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN107039533B
CN107039533B CN201710022300.3A CN201710022300A CN107039533B CN 107039533 B CN107039533 B CN 107039533B CN 201710022300 A CN201710022300 A CN 201710022300A CN 107039533 B CN107039533 B CN 107039533B
Authority
CN
China
Prior art keywords
semiconductor layer
insulating film
layer
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710022300.3A
Other languages
English (en)
Other versions
CN107039533A (zh
Inventor
花田明纮
渡壁创
渡部一史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Publication of CN107039533A publication Critical patent/CN107039533A/zh
Application granted granted Critical
Publication of CN107039533B publication Critical patent/CN107039533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6758Thin-film transistors [TFT] characterised by the insulating substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/069Management of faults, events, alarms or notifications using logs of notifications; Post-processing of notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/421Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
    • H10D86/423Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/431Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having different compositions, shapes, layouts or thicknesses of gate insulators in different TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/471Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having different architectures, e.g. having both top-gate and bottom-gate TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/826Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent periodically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • H04Q9/02Automatically-operated arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6723Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device having light shields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/6731Top-gate only TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/6736Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes characterised by the shape of gate insulators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6743Silicon
    • H10D30/6745Polycrystalline or microcrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/685Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本实施方式提供一种半导体装置,具备:绝缘基板;位于所述绝缘基板的上方的硅制的第一半导体层;位于比所述第一半导体层靠上方的位置的金属氧化物制的第二半导体层;位于所述第一半导体层与所述第二半导体层之间的硅氮化物制的第一绝缘膜;以及位于所述第一绝缘膜与所述第二半导体层之间、且与所述第一绝缘膜相比氢的扩散性更低的阻挡层。

Description

半导体装置
与相关申请的关联
本申请基于2016年1月15日在日本提出申请的No.2016-006123号主张优先权,在此援引其全部内容。
技术领域
本发明的实施方式涉及一种半导体装置。
背景技术
薄膜晶体管根据使用于半导体层的材料的不同而显示出各种特性。例如,在将低温多晶硅半导体使用于半导体层的情况下,能够得到可靠性良好的薄膜晶体管。另外,在将氧化物半导体使用于半导体层的情况下,能够得到截止电流小的薄膜晶体管。在将具有多晶硅半导体层的薄膜晶体管与具有氧化物半导体层的薄膜晶体管制作在同一基板上的情况下,由于从多晶硅半导体层向氧化物半导体层的氢扩散,存在氧化物半导体层低电阻化而无法得到所希望的特性的隐患。
发明内容
本实施方式提供一种半导体装置,具备:绝缘基板;硅制的第一半导体层,位于所述绝缘基板的上方;金属氧化物制的第二半导体层,位于比所述第一半导体层靠上方的位置;硅氮化物制的第一绝缘膜,位于所述第一半导体层与所述第二半导体层之间;以及阻挡层,位于所述第一绝缘膜与所述第二半导体层之间,与所述第一绝缘膜相比氢的扩散性更低。
根据本实施方式,能够提供一种可抑制可靠性的降低的半导体装置。
附图说明
图1是示出本实施方式所涉及的半导体装置的结构的剖面图。
图2是示出阻挡层被图案化了的变形例的结构的剖面图。
图3是示出阻挡层的位置不同的变形例的结构的剖面图。
图4是示出阻挡层被图案化了的变形例的结构的剖面图。
图5是示出薄膜晶体管TR2采用顶栅构造的变形例的结构的剖面图。
图6是示出阻挡层被图案化了的图5的变形例的结构的剖面图。
图7是示出阻挡层的位置不同的图5的变形例的结构的剖面图。
图8是示出阻挡层被图案化了的图5的变形例的结构的剖面图。
图9是示出具备本实施方式所涉及的半导体装置的显示装置的结构的图。
具体实施方式
以下,参照附图说明本实施方式。需要说明的是,本发明的公开内容仅是一个例子,本领域技术人员针对保留了本发明的主旨的适当变更而容易想到的方案当然也包含于本发明的范围。另外,附图用于使说明更清楚,与实际的方式相比,存在示意性地表示各部分的宽度、厚度、形状等的情况,但也仅仅是一个例子,不用于限定本发明的解释。另外,在本说明书与各附图中,对发挥与在先的附图相同或者类似的功能的结构要素标注相同的附图标记,适当省略重复的详细说明。
需要说明的是,在本实施方式的说明中,上(或者上方)相当于方向Z的箭头朝向,下(或者下方)相当于与方向Z的箭头相反的朝向。
图1是示出本实施方式所涉及的半导体装置的结构的剖面图。图示的半导体装置1是具备多个薄膜晶体管(TFT;Thin Film Transistor)TR1及TR2的TFT基板。
半导体装置1具备绝缘基板10、底涂层UC、半导体层SC1、绝缘膜11、栅电极ML1、栅电极ML2、绝缘膜12、绝缘膜13、阻挡层HB、半导体层SC2、绝缘膜14、绝缘膜15等。需要说明的是,有时也将绝缘膜11、12、13、14、15称作第一绝缘膜、第二绝缘膜、第三绝缘膜…、以及层间绝缘膜等。例如,有时也将绝缘膜11称作层间绝缘膜,将绝缘膜12称作第一绝缘膜,将绝缘膜13称作第二绝缘膜,将第四绝缘膜14称作层间绝缘膜。另外,有时也将半导体层SC1称作第一半导体层,将半导体层SC2称作第二半导体层。
绝缘基板10由例如具有透光性的玻璃基板、树脂基板等形成。在绝缘基板10的上方存在绝缘性的底涂层UC。底涂层UC既可以是单层构造也可以是多层构造,例如,具有硅氮化物膜与硅氧化物膜。
半导体层SC1位于绝缘基板10的上方,在图示的例子中形成在底涂层UC上。半导体层SC1位于绝缘基板10与阻挡层HB之间。半导体层SC1由硅系半导体形成,在图示的例子中,是多晶硅(polysilicon)制。半导体层SC1具有高电阻区域SCc、以及与高电阻区域SCc相比电阻更低的低电阻区域SCa、SCb。低电阻区域SCa、SCb分别位于高电阻区域SCc的两端侧。低电阻区域SCa、SCb包括与高电阻区域SCc相比更高浓度的离子性杂质。
绝缘膜11覆盖半导体层SC1。在图示的例子中,绝缘膜11也位于底涂层UC的上方。在一个例子中,绝缘膜11是硅氧化物制。
栅电极ML1位于绝缘膜11的上方,隔着绝缘膜11而与半导体层SC1对置。栅电极ML1与半导体层SC1的高电阻区域SCc对置。栅电极ML2位于绝缘膜11的上方,与栅电极ML1分离。栅电极ML1及ML2分别具有由导电性良好的金属材料形成的层。在图示的例子中,栅电极ML1及ML2因位于相同的层上而能够利用相同的材料一并形成。
绝缘膜12位于半导体层SC1与半导体层SC2之间。绝缘膜12位于绝缘膜11的上方,覆盖栅电极ML1及ML2。绝缘膜12由膜中含氢的绝缘性的材料形成。在一个例子中,绝缘膜12是硅氮化物制。
绝缘膜13位于绝缘膜12的上方。在图示的例子中,绝缘膜13位于绝缘膜12与阻挡层HB之间,与后述的阻挡层HB的下表面HBa接触。绝缘膜13优选由能够在高温下释放氧的材料形成,在一个例子中是硅氧化物制。
阻挡层HB位于绝缘膜12与半导体层SC2之间。阻挡层HB具有与绝缘基板10对置的下表面HBa、以及位于与下表面HBa相反侧的上表面HBb。在图示的例子中,阻挡层HB位于绝缘膜13的上方。在图示的例子中,阻挡层HB连续地延伸至与半导体层SC1对置的位置、以及与半导体层SC2对置的位置。阻挡层HB与绝缘膜12、绝缘膜13相比氢的扩散性更低。因此,阻挡层HB能够抑制氢从阻挡层HB的一面侧朝向另一面侧的扩散。在图示的例子中,阻挡层HB能够抑制氢从位于下表面HBa侧的绝缘膜11、12、13、底涂层UC、半导体层SC1等朝向位于上表面HBb侧的半导体层SC2的扩散。
阻挡层HB的厚度可以是均匀的也可以是不均匀的。在图示的例子中,阻挡层HB在与后述的电极ML3a、ML3b的外缘部对置的位置,在上表面HBb具有高度差,与半导体层SC2对置的区域的厚度比与半导体层SC1对置的区域的厚度更厚。基于抑制在栅电极ML1、半导体层SC1等导电性构件之间形成不必要的电容的观点、或防止阻挡层HB的上表面HBb与半导体层SC2的下表面SC2a接触的情况下的沟道层的短路的观点,优选阻挡层HB由绝缘性的材料形成。作为形成阻挡层HB的材料,例如,能够列举出作为金属氧化物的AlOx、TiOx、ZrOx、TaOx、HfOx等、或将SiF4作为原材料之一而形成的含氢量少的SiNx、SiON等。从氢的阻挡性能、透光性的观点来看,优选阻挡层HB是氧化铝(AlOx)制。
半导体层SC2相对于绝缘基板10位于比半导体层SC1靠上方的位置。半导体层SC2在与绝缘基板10对置的一侧具有下表面SC2a。在图示的例子中,半导体层SC2位于阻挡层HB的上方,与阻挡层HB的上表面HBb接触。半导体层SC2与栅电极ML2对置。半导体层SC2由金属氧化物系的半导体形成。从半导体特性的观点来看,优选形成半导体层SC2的金属氧化物包括铟、镓、锌、锡中的至少一种金属。半导体层SC2的一个端部与电极ML3a接触,另一个端部与电极ML3b接触。在图示的例子中,电极ML3a、ML3b分别向半导体层SC2的外侧延伸,也位于阻挡层HB的上方。
绝缘膜14位于阻挡层HB的上方,覆盖半导体层SC2以及电极ML3a、ML3b。绝缘膜14在一个例子中是硅氧化物制,形成为比绝缘膜11、12、13厚。
绝缘膜15位于绝缘膜14的上方。绝缘膜15在一个例子中是硅氮化物制。需要说明的是,从抑制水分从上方侵入的观点出发,优选绝缘膜15具有较高的水蒸汽阻挡性。
端子T1a、T1b、T2a及T2c位于绝缘膜15的上方。端子T1a及T1b分别形成为贯通绝缘膜11、12、13、14、15以及阻挡层HB的形态,且分别与半导体层SC1的低电阻区域SCa及SCb电连接。端子T2a形成为贯通绝缘膜14及15的形态,与电极ML3a电连接。端子T2c形成为贯通绝缘膜12、13、14、15以及阻挡层HB的形态,与栅电极ML2电连接。端子T1a、T1b、T2a及T2c与省略图示的布线等电连接。
在图示的例子中,薄膜晶体管TR1是栅电极ML1位于半导体层SC1的上方的所谓顶栅构造的TFT。另外,薄膜晶体管TR2是栅电极ML2位于半导体层SC2的下方的所谓底栅构造的TFT。但是,薄膜晶体管TR1及TR2的构造不特别限定,薄膜晶体管TR1也可以是底栅构造,另外,薄膜晶体管TR2也可以是顶栅构造。
如上,根据本实施方式,半导体装置1具备绝缘基板10、硅制的半导体层SC1、金属氧化物制的半导体层SC2、位于半导体层SC1与半导体层SC2之间的硅氮化物制的绝缘膜12、以及位于绝缘膜12与半导体层SC2之间的阻挡层HB。因此,能够抑制氢从半导体层SC1以及绝缘膜12朝向半导体层SC2的扩散。即,能够通过抑制氢对半导体层SC2进行的还原而抑制薄膜晶体管TR2的可靠性的降低。
半导体层SC1位于绝缘基板10与阻挡层HB之间。因此,在向绝缘基板10的上方依次层叠各构件的制造工序中,能够在形成半导体层SC2之前进行半导体层SC1的形成以及活性化处理。由此,能够防止半导体层SC1的活性化处理时的加热所导致的半导体层SC2的组分变化。因此,能够抑制薄膜晶体管TR2的可靠性的降低。
由于半导体层SC2与阻挡层HB接触,因此能够进一步抑制氢从下表面SC2a朝向半导体层SC2的侵入。另外,由于阻挡层HB连续地延伸至与半导体层SC1对置的位置、以及与半导体层SC2对置的位置,因此能够更有效地抑制从绝缘膜12以及半导体层SC1朝向上方的氢扩散。
半导体装置1还具备栅电极ML1及ML2。由于栅电极ML1及ML2位于相同层(绝缘膜11)上,由相同的材料形成,因此能够在相同的工序内一并形成。即,半导体装置1能够减少制造工序数,抑制制造成本。
阻挡层HB在一个例子中是氧化铝制,因此能够通过对与氧化铝相比成膜率更高的铝进行成膜,利用退火工序使成膜后的铝氧化而形成阻挡层HB。因此,能够缩短半导体装置1的准备时间。另外,在氧化铝制的阻挡层HB与半导体层SC2接触的情况下,由于铝从阻挡层HB向半导体层SC2扩散而提供了载体,因此能够提高半导体层SC2的移动度。
接下来,通过图2~图4说明本实施方式的变形例。需要说明的是,在这些变形例中也能够得到与上述相同的效果。
图2是示出阻挡层被图案化了的变形例的结构的剖面图。
本变形例与图1所示的结构例的不同之处在于,阻挡层HB的形状被图案化成岛状这一点。
在图示的例子中,阻挡层HB在与半导体层SC2的整个面对置的区域、和与电极ML3a及ML3b对置的区域形成为岛状。阻挡层HB不形成在除此之外的区域,例如不与半导体层SC1对置。图示的阻挡层HB的图案化能够通过将半导体层SC2、电极ML3a及ML3b用作掩膜而进行。需要说明的是,在以此方式将阻挡层HB形成为岛状的情况下,从抑制氢朝向半导体层SC2的侵入的观点出发,优选阻挡层HB的面积至少比半导体层SC2的面积大。
根据本变形例,由于阻挡层HB被图案化成岛状,因此能够减少位于各个TFT之间的区域中的界面的数量。由此,本变形例能够提高TFT间的区域的透过率。在将本实施方式的半导体装置1应用于透射式显示装置的情况下,由于TFT间的区域相当于供光透过的开口部,因此能够得到亮度高的显示装置。
图3是示出阻挡层的位置不同的变形例的结构的剖面图。
本变形例与图1所示的结构的不同之处在于,在阻挡层HB与半导体层SC2之间存在绝缘膜13这一点。在图示的例子中,阻挡层HB位于绝缘膜12的上方,绝缘膜13位于阻挡层HB的上方,半导体层SC2位于绝缘膜13的上方。即,绝缘膜13分别与阻挡层HB的上表面HBb以及半导体层SC2的下表面SC2a接触。
在本变形例中,能够抑制氢从绝缘膜12朝向绝缘膜13的扩散。即,能够在更靠近氢供给源的位置抑制氢的扩散。
图4是示出阻挡层被图案化了的变形例的结构的剖面图。
本变形例与图3所示的变形例的不同之处在于,阻挡层HB的形状被图案化成岛状这一点。根据本变形例,能够得到与使用图2说明的变形例相同的效果。
图5是示出薄膜晶体管TR2为顶栅构造的变形例的结构的剖面图。
本变形例与图1所示的结构的不同之处在于,具有与半导体层SC2对置配置的栅电极ML4这一点。
栅电极ML4位于半导体层SC2的上方,在图示的例子中位于绝缘膜14与绝缘膜15之间。在图示的例子中,在半导体层SC2的下方,遮光层SH配置为与半导体层SC2对置的形态。遮光层SH位于与栅电极ML1相同的层(绝缘膜11)上,能够利用与栅电极ML1相同的材料一并形成。遮光层SH在光从下方入射到半导体装置1的情况下,阻碍朝向半导体层SC2的光照射。另外,在图示的例子中,绝缘膜14与栅电极ML4相同地被图案化,但也可以与绝缘膜15相同地形成于整个面。
根据本变形例,半导体装置1能够抑制光漏电流所导致的薄膜晶体管TR2的性能降低。
接下来,通过图6~图8说明本实施方式的变形例。需要说明的是,在这些变形例中,也能够得到与上述相同的效果。
图6是示出阻挡层被图案化了的变形例的结构的剖面图。
本变形例与图5所示的结构例的不同之处在于,阻挡层HB的形状被图案化成岛状这一点。
在图示的例子中,阻挡层HB在与半导体SC2的整个面对置的区域形成为岛状。阻挡层HB不形成在除此以外的区域,例如不与半导体层SC1对置。图示的阻挡层HB的图案化能够通过将半导体层SC2用作掩膜而进行。需要说明的是,在以此方式将阻挡层HB形成为岛状的情况下,从抑制氢朝向半导体层SC2的侵入的观点出发,优选阻挡层HB的面积至少比半导体层SC2的面积大。
根据本变形例,由于阻挡层HB被图案化成岛状,因此能够减少位于各个TFT之间的区域中的界面的数量。由此,本变形例能够提高TFT间的区域的透过率。
图7是示出阻挡层的位置不同的变形例的结构的剖面图。
本变形例与图5所示的结构例的不同之处在于,在阻挡层HB与半导体层SC2之间存在绝缘膜13这一点。
在图示的例子中,阻挡层HB位于绝缘膜12的上方,绝缘膜13位于阻挡层HB的上方,半导体层SC2位于绝缘膜13的上方。即,绝缘膜13分别与阻挡层HB的上表面HBb以及半导体层SC2的下表面SC2a接触。
在本变形例中,能够抑制氢从绝缘膜12朝向绝缘膜13的扩散。图8是示出阻挡层被图案化了的变形例的结构的剖面图。
本变形例与图7所示的变形例的不同之处在于,阻挡层HB的形状被图案化成岛状这一点。
在图示的例子中,阻挡层HB位于绝缘膜12的上方,在与半导体SC2的整个面对置的区域形成为岛状。阻挡层HB不形成在除此以外的区域,例如不与半导体层SC1对置。绝缘膜13位于绝缘膜12的上方,一部分位于形成为岛状的阻挡层HB的上方。即,绝缘膜13的一部分分别与阻挡层HB的上表面HBb以及半导体层SC2的下表面SC2a接触。
根据本变形例,能够得到与使用图6说明的变形例相同的效果。
接下来,说明向显示装置DSP应用半导体装置1的应用例。
图9是示出具备本实施方式所涉及的半导体装置的显示装置的结构的图。显示装置DSP例如是液晶显示装置,但也可以是有机电致发光(EL)显示装置等其他显示装置。
显示面板PNL内置有半导体装置1。显示面板PNL具有显示图像的显示区域DA、以及位于显示区域DA的周围的非显示区域NDA。显示装置DSP在非显示区域NDA具备驱动电路Dr、信号线驱动电路SD、扫描线驱动电路GD等。
显示面板PNL在显示区域DA中具备多个像素PX。另外,显示面板PNL在显示区域DA中具备多条扫描线G(G1~Gn)、多条信号线S(S1~Sm)等。
扫描线G引出到显示区域DA的外侧,与扫描线驱动电路GD连接。扫描线驱动电路GD具备互补型TFT元件CC。信号线S引出到显示区域DA的外侧,与信号线驱动电路SD连接。共用电极CE在多个像素PX中被共用。共用电极CE引出到显示区域DA的外侧,与驱动电路Dr连接。各个驱动电路GD、SD、及Dr控制经由扫描线G、信号线S、共用电极CE向显示区域DA进行电信号的供给。
各像素PX具备转换元件SW、像素电极PE、共用电极CE、液晶层LQ等。转换元件SW例如由薄膜晶体管构成。转换元件SW与扫描线G以及信号线S电连接,控制像素PX的亮度。像素电极PE与转换元件SW电连接。像素电极PE与共用电极CE对置。保持电容CS例如形成在共用电极CE与像素电极PE之间。
在图示的例子中,互补型TFT元件CC由薄膜晶体管TR1构成,转换元件SW由薄膜晶体管TR2构成。薄膜晶体管TR1不限于用作互补型TFT元件CC,也可以用作p型TFT元件或者n型TFT元件。薄膜晶体管TR1不限于配备于扫描线驱动电路GD,也可以配备于信号线驱动电路SD,也可以配备于驱动电路Dr。另外,也可以由薄膜晶体管TR1构成转换元件SW,由薄膜晶体管TR2构成驱动电路Dr、信号线驱动电路SD、扫描线驱动电路GD等周边驱动电路。
如上,显示装置DSP具备本实施方式所涉及的半导体装置1。薄膜晶体管TR1例如与薄膜晶体管TR2相比阈值电压的变动较小。另一方面,薄膜晶体管TR2例如与薄膜晶体管TR1相比截止电流较小。此时,显示装置DSP能够在周边电路配置可靠性高的薄膜晶体管TR1,在像素PX配置能够抑制电荷的漏出的薄膜晶体管TR2。因此,根据本实施方式,能够提供可靠性高且消耗电力低的显示装置DSP。这样,由于半导体装置1在一个基板上具备特性不同的薄膜晶体管TR1及TR2,因此能够与TFT的要求特性匹配地适当配置薄膜晶体管TR1及TR2。
如以上说明,根据本实施方式,能够提供可抑制可靠性降低的半导体装置。
虽然以上叙述了具体实施方式,但应当理解为上述实施方式仅是一例,对本发明不起限定性作用。实质上,在不脱离本发明主旨的范围内,上述实施方式能够以其他不同的变形方式加以实施,此外,进行了各种省略、替换以及变更的技术方案也包含于本发明。此外,本发明还包含与权利要求书等同的含义以及等同范围内的全部变更。

Claims (9)

1.一种半导体装置,具备:
绝缘基板;
硅制的第一半导体层,位于所述绝缘基板的上方;
金属氧化物制的第二半导体层,位于比所述第一半导体层靠上方的位置;
硅氮化物制的第一绝缘膜,位于所述第一半导体层与所述第二半导体层之间;以及
阻挡层,位于所述第一绝缘膜与所述第二半导体层之间,与所述第一绝缘膜相比氢的扩散性更低,
在所述第一绝缘膜与所述阻挡层之间具备硅氧化物制的第二绝缘膜,
所述阻挡层由包含金属氧化物的材料形成,形成为不与所述第一半导体层对置、而是与所述第二半导体层的整个面对置的岛状,并且由比所述第二半导体层的面积大的面积形成,
所述第二半导体层与所述阻挡层的上表面接触,
所述第二绝缘膜与所述阻挡层的下表面接触。
2.根据权利要求1所述的半导体装置,其中,
所述半导体装置还具备:
第一栅电极,与所述第一半导体层对置;以及
第二栅电极,位于与所述第一栅电极相同的层上,与所述第二半导体层对置,并利用与所述第一栅电极相同的材料形成。
3.根据权利要求1所述的半导体装置,其中,
所述半导体装置具备:
第一栅电极,与所述第一半导体层对置;以及
第二栅电极,与所述第二半导体层对置,利用与所述第一栅电极相同的材料形成。
4.根据权利要求3所述的半导体装置,其中,
所述半导体装置还在所述第一半导体层与所述第一绝缘膜之间具备硅氧化物制的层间绝缘膜,
所述层间绝缘膜分别与所述第一半导体层的上表面以及所述第一绝缘膜的下表面接触。
5.根据权利要求4所述的半导体装置,其中,
所述第一栅电极与所述层间绝缘膜的上表面接触,且被所述第一绝缘膜覆盖,
所述第二栅电极与所述层间绝缘膜的上表面接触,且被所述第一绝缘膜覆盖。
6.根据权利要求1所述的半导体装置,其中,
所述硅是多晶硅。
7.根据权利要求1所述的半导体装置,其中,
所述第二半导体层的金属氧化物含有铟、镓、锌、锡中的至少一种金属。
8.根据权利要求1所述的半导体装置,其中,
所述阻挡层是氧化铝制。
9.根据权利要求1所述的半导体装置,其中,
所述半导体装置内置于显示面板,该显示面板具有显示图像的显示区域、以及位于所述显示区域的周围的非显示区域,其中,
具有所述第一半导体层的第一薄膜晶体管位于所述非显示区域,构成控制朝向所述显示区域的电信号供给的驱动电路,
具有所述第二半导体层的第二薄膜晶体管位于所述显示区域,构成控制像素的亮度的转换元件。
CN201710022300.3A 2016-01-15 2017-01-12 半导体装置 Active CN107039533B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006123 2016-01-15
JP2016006123A JP6692645B2 (ja) 2016-01-15 2016-01-15 半導体装置

Publications (2)

Publication Number Publication Date
CN107039533A CN107039533A (zh) 2017-08-11
CN107039533B true CN107039533B (zh) 2021-01-08

Family

ID=59313930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710022300.3A Active CN107039533B (zh) 2016-01-15 2017-01-12 半导体装置

Country Status (3)

Country Link
US (4) US10115740B2 (zh)
JP (1) JP6692645B2 (zh)
CN (1) CN107039533B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103408A (ja) * 2015-12-04 2017-06-08 株式会社ジャパンディスプレイ 表示装置
JP6751613B2 (ja) * 2016-07-15 2020-09-09 株式会社ジャパンディスプレイ 表示装置
CN107026178B (zh) * 2017-04-28 2019-03-15 深圳市华星光电技术有限公司 一种阵列基板、显示装置及其制作方法
JP7109902B2 (ja) * 2017-10-26 2022-08-01 株式会社ジャパンディスプレイ 表示装置及びその製造方法
KR20190071198A (ko) * 2017-12-14 2019-06-24 엘지디스플레이 주식회사 디지털 엑스레이 검출기용 기판, 이를 포함하는 디지털 엑스레이 검출기 및 제조 방법
KR102126552B1 (ko) 2017-12-19 2020-06-24 엘지디스플레이 주식회사 표시 장치
KR102173434B1 (ko) 2017-12-19 2020-11-03 엘지디스플레이 주식회사 표시 장치
KR102763624B1 (ko) 2018-02-12 2025-02-10 삼성디스플레이 주식회사 유기 발광 표시 장치
JP7210179B2 (ja) * 2018-07-25 2023-01-23 株式会社ジャパンディスプレイ 半導体装置および半導体装置の製造方法
KR20200039867A (ko) * 2018-10-05 2020-04-17 삼성디스플레이 주식회사 유기 발광 표시 장치
JP2020126200A (ja) * 2019-02-06 2020-08-20 株式会社ジャパンディスプレイ 表示装置
JP2020129635A (ja) * 2019-02-12 2020-08-27 株式会社ジャパンディスプレイ 半導体装置および半導体装置の製造方法
US11088078B2 (en) * 2019-05-22 2021-08-10 Nanya Technology Corporation Semiconductor device and method for manufacturing the same
JP7412924B2 (ja) 2019-08-26 2024-01-15 株式会社ジャパンディスプレイ 半導体装置および半導体装置の製造方法
CN112838098A (zh) * 2020-12-30 2021-05-25 厦门天马微电子有限公司 一种显示面板及显示装置
KR20230032187A (ko) * 2021-08-30 2023-03-07 엘지디스플레이 주식회사 산화물 반도체를 포함하는 디스플레이 장치
CN119604968A (zh) * 2022-08-01 2025-03-11 株式会社日本显示器 层叠结构体及薄膜晶体管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760488A (zh) * 2011-04-29 2012-10-31 株式会社半导体能源研究所 半导体器件
US20130105791A1 (en) * 2011-10-27 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104332485A (zh) * 2014-09-24 2015-02-04 苹果公司 硅和半导体氧化物薄膜晶体管显示器
TW201517276A (zh) * 2013-10-22 2015-05-01 Semiconductor Energy Lab 半導體裝置
CN104867936A (zh) * 2014-02-24 2015-08-26 乐金显示有限公司 薄膜晶体管基板及利用该薄膜晶体管基板的显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771110A (en) * 1995-07-03 1998-06-23 Sanyo Electric Co., Ltd. Thin film transistor device, display device and method of fabricating the same
US6380558B1 (en) * 1998-12-29 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2002299632A (ja) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd 半導体装置及びアクティブマトリクス型表示装置
JP3939140B2 (ja) * 2001-12-03 2007-07-04 株式会社日立製作所 液晶表示装置
KR100532082B1 (ko) * 2001-12-28 2005-11-30 엘지.필립스 엘시디 주식회사 다결정 박막트랜지스터 및 그 제조방법
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7868320B2 (en) * 2005-05-31 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
EP1843194A1 (en) * 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
JP5505757B2 (ja) * 2008-03-25 2014-05-28 Nltテクノロジー株式会社 液晶表示装置の製造方法および液晶表示装置
KR101996773B1 (ko) * 2009-10-21 2019-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8541266B2 (en) * 2011-04-01 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9112037B2 (en) * 2012-02-09 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6034048B2 (ja) * 2012-04-23 2016-11-30 株式会社半導体エネルギー研究所 表示装置、電子機器
JP6310194B2 (ja) * 2012-07-06 2018-04-11 株式会社半導体エネルギー研究所 半導体装置
JP6374221B2 (ja) * 2013-06-05 2018-08-15 株式会社半導体エネルギー研究所 半導体装置
US9564478B2 (en) 2013-08-26 2017-02-07 Apple Inc. Liquid crystal displays with oxide-based thin-film transistors
US9818765B2 (en) 2013-08-26 2017-11-14 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
US9593414B2 (en) * 2013-12-31 2017-03-14 Intermolecular, Inc. Hydrogenated amorphous silicon dielectric for superconducting devices
US10074576B2 (en) * 2014-02-28 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2015155656A1 (en) * 2014-04-11 2015-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760488A (zh) * 2011-04-29 2012-10-31 株式会社半导体能源研究所 半导体器件
US20130105791A1 (en) * 2011-10-27 2013-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW201517276A (zh) * 2013-10-22 2015-05-01 Semiconductor Energy Lab 半導體裝置
CN104867936A (zh) * 2014-02-24 2015-08-26 乐金显示有限公司 薄膜晶体管基板及利用该薄膜晶体管基板的显示装置
CN104332485A (zh) * 2014-09-24 2015-02-04 苹果公司 硅和半导体氧化物薄膜晶体管显示器

Also Published As

Publication number Publication date
US20220367528A1 (en) 2022-11-17
CN107039533A (zh) 2017-08-11
US11942484B2 (en) 2024-03-26
US10115740B2 (en) 2018-10-30
US10824211B2 (en) 2020-11-03
US20210011536A1 (en) 2021-01-14
US20170207245A1 (en) 2017-07-20
US20190041932A1 (en) 2019-02-07
US11442515B2 (en) 2022-09-13
JP6692645B2 (ja) 2020-05-13
JP2017126693A (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
CN107039533B (zh) 半导体装置
TWI629796B (zh) Semiconductor device, display device, and the like
JP6111398B2 (ja) 表示装置および電子機器
CN107240608B (zh) 半导体器件、显示装置和它们的制作方法
TWI643319B (zh) 半導體裝置、顯示單元及電子設備
KR102148850B1 (ko) 박막 트랜지스터 및 이를 구비하는 표시 장치
US9991319B2 (en) Thin film transistor, method of manufacturing the thin film transistor and flat panel display having the thin film transistor
JP2018170325A (ja) 表示装置
KR20150082236A (ko) 반도체 장치, 표시 장치 및 전자 기기
JP5824535B2 (ja) 半導体装置およびその製造方法
JP6142136B2 (ja) トランジスタの製造方法、表示装置の製造方法および電子機器の製造方法
TW201635555A (zh) 半導體裝置、顯示裝置以及半導體裝置的製造方法
JP6019331B2 (ja) トランジスタ、半導体装置、表示装置および電子機器、並びに半導体装置の製造方法
JP2018133398A (ja) 半導体装置
JP2018133404A (ja) 半導体装置
JP2018110184A (ja) 半導体装置およびその製造方法
US20200044090A1 (en) Thin film transistor substrate and method for manufacturing same
KR101960390B1 (ko) 박막 트랜지스터를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant